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Abstract

A model is presented to explain the highly variable yet low level of

Langmuir waves measured in situ by spacecraft when electron beams associated

with Type III solar bursts are passing by; the low level of excited waves

allows the propagation of such streams from the sun to well past 1 AU without

catastrophic energy losses. The model is based, first, on the existence of

large scale density fluctuations that are able to efficiently diffuse small-k

beam-unstable Langmuir waves in phase space, and, second, on the presence of a

significant isotropic non-thermal tail in the distribution function of the
d	 i

background electron population, which is capable of stabilizing larger k 	 (^

modes. The strength of the model lies in its ability to predict various 	 j

M

levels tf Langmuir waves depending on the parameters. This feature is 	 r

consistent with the high variability actually observed in the measurements.

The calculations indicate that, for realistic parL^meters, the most unstable,

small k modes are fully stabilized while some oblique mode with higher k and

lower growth rate might remain unstable; thus a very broad range of levels of

Langmuir waves is possible from levels of the order of enhanced spontaneous

emission to the threshold level for nonlinear processes. On the other hand,

<5

from in situ measurements of the density fluctuations spectrum by ISEE 1 and 2

in the vicinity of the earth, it is shown that measured 100 km scale	 1

fluctuations may be too effective in quenching the instability. If such

yD ,
strong density fluctuations are common in the solar wind, we show they must be

highly anisotropic in order to allow the build -up of Langmuir waves to the
i

observed mV/m range. Moreover, the anisotropy must be such that the strongest 	 a

variations of density occur in a plane perpendicular to the magnetic field.
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1. Introduction

Highly variable yet rather low levels of Langmuir waves have been

measured in situ by spacecraft when electron-beams associated with Type III

solar bursts are passing by; due to the low level of excited waves the
e^

propagation of such streams from the sun to well past 1 AU is possible without

catastrophic energy losses. Detailed measurements at 1 AU (Lin et al., 1981)

have shown clearly the simultaneous occurrences of a bump on tail electron
r

distribution function and a rise of plasma waves above the background level.

Yet they also reveal that this distribution remains for a long enou gh time

(t z 10 min) to drive the plasma waves to far higher levels ( according to linear

instability theory) than the maximum values observed of a few mV m -1 and

that, contrary to what might be expected from pure quasilinear theory, no

plateau formation of the distribution is evident. One possible explariation is

that various nonlinear wave-wave interactions such as decay instability, OTS.

modulational instability, and soliton collapse are effective in limitin g the

wave growth by shifting the waves out of resonance with the beam (Weatherall

et al., 1981; Crognard, 1982). It should be noted, nevertheless, that the

threshold for such nonlinear processes to occur is about 10 mV m -1 for

conditions prevailing at 1 AU.

On the other hand, the electron density has been observed to fluctuate

significantly in the solar wind. In situ measurements of the density

fluctuation spectrum by ISEE 1 and 2 (Celnikier et al., 1983) reveal that a

variation Sn/n as high as 10 -2 may exist on the 100 Km scale range in the

vicinity of the Earth, while observations of interplanetary scintillation from

extragalactic radio sources ( Cronyn, 1972) lead to an average value Sn/n of



t

the order of 10 -3 (Smith and Sime, 1979)
	

Thus it seems that the
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background density of the solar wind, although not precisely known, is far

from being homogeneous and that, when dealing with the Langmuir turbulence

associated with Type III bursts, typically at Km wavelength, the effect of the

inhomogeneities must be accounted for. In this paper we show that_ the large

scale density fluctuations may be extremely effective in shifting the waves

out of resonance with the beam and therefore in quenching the instability.

Following an idea studied by Nishikawa and Ryutov in the context of laboratory

relativistic electron beams (Nishikawa and Ryutov, 1976) and by Goldman and

DuBois in that of the solar wind (Goldman and DuBois, 1982), it is

hypothesized that the effect of the inhomogeneities on the Langmuir turbulence

may be treated in terms of a diffusion process in phase space. However,

unlike the latter authors, we take into account the non-Maxwellian background

electron distribution, which results in quite different spectra, and we do not

assume that the background density Iluctuations are necessarily isotropic. In
.o

fact, it will be shown that, if the high level of density fluctuations

measured by ISEE is common and of long duration, the fluctuations must indeed

be highly anisotropic in order to allow the build-up of Langmuir waves up to
'D

the mV/m range. Moreover, the anisotropy must be such that the strongest

variations of density occur in a plane perpendicular to the magnetic field. 	 a.

This feature leads to a picture of the solar wind as composed of structures
:) a

elongated along the magnetic field axis in a way consistent with the ducting

considerations invoked by experts in radio-wave propagation (Robinson, 1983;

Duncan, 1979; Bougeret and Steinberg, 1977). 	 Iif

i
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2. Model

A heuristic picture of the wave diffusion process may be outlined briefly

for the reader familiar with particle velocity space diffusion (i.e. quasilinear

Vlasov theory). In the Langmuir wave diffusion, the plasmon (of wavenumber k)

plays the role of a diffusing particle in the usual quasilinear Vlasov

theory and the role of the external potential is played by the varying

refractive index associated with the density fluctuations (with a spectrum of

wavenumbers characterized by q). Suppose q -1 < L  where L  is the

typical growth length of the Langmuir waves so that a spectral energy density

averaged in space W(k) may be used. Further, we assume q << k i then the

relative change of k is small in each scattering event and the process is

treated as a diffusion. The diffusion in k-space experienced by the plasmon

may be estimated as D z k-21 at 12 tac with dt the fluctuating force
acting on it for an autocorrelation time tac . Since d = - eaXOe z Wpe Sn/n q,
and tac is of the order of the transit time for the plasmon across one density

fluctuation, tac a (qVg ) -1 x (gkaDve ) -1 , we have D z wpe (q/k) (ka D ) -2 (8n/n)2

A more rigorous general theoretical derivation (Goldman and DuBois, 1982)

leads, with the above assumptions, to the following Fokker-Planck equation for

the spectral energy density of Langmuir waves in phase space.

e t Wk = 2vkWk
 + ekj D j¢ ake W

k + Sk
(1)

where the diffusion coefficient is

Djp = Wpe n ,J d3q/( 2n ) 3 C(S) g j gt 8(2k'3)	
(2)

Q

,
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and C(g) is the spectrum of density fluctuationsi

f d3q/(2n )
3 
C(q) = (6n2/n2 ) .

(3)

The diffusion coefficient, Equation (2), incorporates the assumption of elastic

scattering. That assumption is justified when the propagation velocity of the

density inhomogeneities is small as compared to the group velocity of the plasmon

Vg = 3 I.X Dve . Note that in Equation (1) we have added an electron spontaneous

emission term Sk.

By assuming that the problem displays an azimuthal symmetry around the

beam axis we may rewrite Equation (1) as

a t W(k,e) = 2Yk W(k,e) + (sine) -l a e D(k,e) sine 0 eW(k,e) + S(k,e)	 H
i

(4)

where D(k,e) is derived from Equation (2):

i7

D(k,e) = Wpe/v2 1/k 3 1/(12n 2 ) We)
(5)

with

_ d(i) 
	 cos2e/sin2e

Q(e) = f d(cos ) ( 
(sin2esin2e-co52ecos2e)1/2

where C(e) = f dq q3 C(q,e) and I is the domain cose <Isinel.

Note that the diffusion occurs in angle only as a result of the assumption of

elastic scattering.

j
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The growth rate (or damping) Yk and the spontaneous emission term Sk

in Equation ( 4) depend on the actual distribution function. We model them by

f(y) = n/(2nve2 ) 3/2 exp (- v2/2va2)

+ nT 5vT5 /4n v-8 H(v-vT)

+ n0271) 3/2  et-3 exp I- (_v-2b ) 2/2nv2 ] .
(7)

Here H is the Heaviside step function, n  and n b are the fractions of

C	 electrons in an observed non-thermal electron tail and in the beam feature

(relative to the bulk); ev is the beam velocity spread. The shape of the

tail simulates a non-thermal component, such as that observed by Lin et al.

(1981) prior to and after the passage of the beam. We assume that it is valid

down to a velocity v = v  a 5ve . Since the beam velocity vb = 60-90 ve,

waves with a phase velocity vph ( 5ve will not be considered. Then the

^i	 presence of a step at v  in the distribution function has no importance, and

a smooth matching of the tail to the bulk is not required. It should be

mentioned here that attempts have been made to simulate the slight measured

C anisotropy of the tail associated with a heat flux (Curnett et al., 1979);

these have not led to significantly different results of concern to us, so

that complication will be omitted in the following.

C

The growth/damping rate Y k consists thus of two isotropic terms due to

the Landau damping from the bulk velocity distribution (denoted by M for

Maxwellian) and from the tail (denoted by T)

Y(M) = - (n/8) 1/2 wpe/(kap ) 3 exp I- 1 /2 (1/kap)2 1

(Ba)
QI

C
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Y (T) _ -5n/4 W pe nT (vT/ve ) 5 (kko)5
(Bb)

and of an anisotropic term due to the beam

Y (b) a (n/B) 1/2u 3penb/ov31/k 2 (vb cose-ups/k)exp(-1/2ev2 (vb toss-vpe/k)2]
(8c)

Similarly, the spontaneous emission is composed of two isotropic and one

anisotropic term

S (M) = -2Y
(M) mv2

e
(9a)

S(T) _ (5n/12) Wpe 
MV2 nT (kvT)3

(9b)

S (b) r (n/2)1/2 
cpe 

m(v	 2pe/k)
2
 nb/kav exP I- i/2nv (vbcose - upe/k1

(9c)

When the rate of diffusion of the Langmuir waves out of unstable regions

into stable regions of the phase space is high enough, Equation (4) has a

stationary solution. In order to study the stability boundaries in parameter

space as well as the level of electric field, Equation (4) has been solved

numerically in the steady state limit for various parameters.

1

a
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3. Results and Interpretation

3.1 Numerical Results

C

The Pokker-Planck Equation (4) displays two kinds of solution. Either

the rate of diffusion of the Langmuir waves out of unstable regions into

t '	 dissipation regions of the phase space is rather small and the wave energy

grows up ad infinitum as in the usual linear theory, or the rate is high

enough in order that the wave energy saturates, and Equation ( 4) then has a

Co	 steady solution.

A typical steady solution may be seen in Figure 1. Figure la displays the

contours of the wave energy density spectrum Wk /Te in the k-e plane of

phase space. Note that the enhanced spontaneous emission due to the

non-thermal tail, W k /Te a S(T)/(-2r(T)Te), would lead (with the

parameters of the Figure) to a spectrum of order 10 2 in the region of phase

space displayed. Thus, because of the diffusion, even the backward

propagating damped modes (e>n/2) have a comparatively high level of wave

C;	 energy. Let us now consider the total electric field assoca , ated to a

steady solution.

C.	
3.2 Properties of Steady State Solutions

On a sphere of radius k in three -dimensional k-space, energy source

regions are connected to energy sink regions by angular diffusion. Therefore,

it is possible to write a balance equation after integrating E quation ( 4) on the

sphere. For that purpose we define the two averages

r +1
<vk > = l/Wk J 1 d(cose) Yk(e) W(k,e)

(101

4'



Pa,e 10

(11)

P

'I

where	 Wk . f1
	

d(cose) W(k,e)
-

and

r+1

Yk = 112 J 1 d(cose) ye)

Zince the angle average of the diffusion term vanishes, the balance equation

may be written as

Wk = S(k)/(-2<Yk>1
(12)

Where the diffusion coefficient D(k,e) is large, a very weak angular

gradient in the spectrum is sufficient for the diffusion flux to remove the

wave energy from regions of sources into regions of sinks. The spectrum i>

therefore approximately independent of a so that <v ),>	 vk . A key

point of Nishikawa and Ryutov (1976) was to show that Y k <0 for any

distribution irrespective of the presence of a beam. Where D(k,e) is weaker,

the spectrum begins tc peak in angle at the energy source regions where

vk(e)>0.

This can be seen from numerical solutions to the steady state diffusion

equation. In one such solution, shown in Figure la, the Langmuir energy has

piled up in the forward propagating modes (e<n/2) which are in Cerenkov

resonance with the positive slope of the beam. Pigure lb displays clearly the

angular gradient of the spectrum that may occur at some wavenumbers. Az a

result of this spectral behaviour, the weighted average defined by Equation (10)

emphasizes the contribution from the forward angles, for which rk (e)>0, in

"Z -
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Yk<"k>
(13)

F'ETe 11

relation to the wider angular range, for which Yk (e)<0 • By contrast, in

the average, rk , all angles are weighted equally. Therefore

This inequality becomes stronger for more highly peaked spectra. In

fact, < Yk > may go through zero, in which case a E`,ysical steady state

solution ( cf. Equation (12)) no longer exists, (i.e. the growing Langmuir waves

f	 cannot be saturated.)	 A discussion about marginal stability is deferred to

the next section.

G

	

	 Let us assume here that <Yk ><0. Then combining Equations (12) and (13)

one has

g(b)+S(T)+S(M)

Wk > Wkin = _2(v(b)+Y(T)+Y(M))

(14)

Cs
where Oymin may be easily calculated from Eqs. (8)-(9) and evaluated for

various parameters. Amin turns out to be comparable in magnitude to Wk,

In Table I values ofv(b), Y(b) Y ( T), S (b) , S (T) and Wain/T are reported
max	 k

over a range of wavenumbers for the "nominal" beam and tail parameters.

When one compares the level of Langmuir waves determined by spontaneous

emission without the beam to Wkin one notices that the angle-averaged

spectral energy density is substantially enhanced due to the beam over a range

of small wavenumbers only where the tail is not important; from Table I and

Equation ( ld) it is seen that above kX 0 = 5 . 10-2 the beam does not play any

^j

f
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d	 '1

i
role. Thus, even if the beam -resonant spectral energy density, Ak /T, is

enhanced by as much as 104 through optimum choice of parameters, the effect
I

on the total enery, density is very weak. An upper bound to the enhancement

of the energy density would be

5x10-2

f10-2 d ( kr,D )(k>,D 1 2/( 2n2 )	 10 4 /n% = 2.10-2/nap

so that the total energy density would be E 2 /( 4nnT) = 5 . 10 -2 / n), 3
D
 and

the electric field only 1.5 u.V /m for the solar wind parameters at 1 AU

(n = 10 cm-3, I'D = 8m, T = 13 eV). This is, of course, far too small to

account for the observations. We are led to conclude that the rise of plasma

waves measured when the beam arrives is not due to an enhancement of the

spontaneous Langmuir fluctuations - as implied by Equation ( 14) but to growing

waves which cannot be saturated by the processes considered.

`' 1

A comment should be made about the results obtained in a previous study

I
(Goldman and Dubois, 1982). In that study the role of the electron tail was

I
not considered, so that the beam enhanced modes could extend up to kX D = 0.15,	 J

which resulted in an enhancement of the total energy density of two

orders of magnitude, and an enhancement of one order for the electric field.

3.3 Criterion for Steady State Solutions in the Presence of Isotropic Density

Fluctuations

.1

When the density fluctuations are isotropic, Equation ( 6) is easily

integrated, and the diffusion coefficient takes a form which is independent of e:

I

,ii)
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Diso ° W pe/24n (1/k% D ) 2 1/k f d q q3 C(q)

It
	 ° n/12 rape/(k%D ) 2 q/k <6n2/n2>

a 
Do/(k%D)3

X15)

where q is a typical wavenumber associated with the fluctuations. Due to 	 1,

the 0 dependence, it is expected that unstable modes with a high phase

velocity will be more quickly diffused out of the unstable region than will

lower phase velocity modes. Thus, the quenching of the instability

by the density fluctuations is expected to be much more effective for the high

phase velocity waves. In fact, this difference in behaviour is even more

pronounced because of the angular dependence of the Langmuir spectrum at
i

different k. That feature should become clear for the reader from the 	 j

following model.	
i}

F.	 f1

Let us consider the energy source and sink angular regions determined by 	 t

the beam or, a sphere of fixed radius k. For that purpose we rewrite Equation (8c)

C.	 and Equation 9(c) in terms of the variable x = cose with k considered as a 	 f
parameter

Q	 T(b)(x) = (n/B) I/2 nbvb/nv3 Wpe/k2 (x - Wpe/kvbl

X exp t -vb/2av2 (x-W	 2pe/kvb)
(16)

C,

S(b)(x) = (11/2) 1/2 nb W 2pe/kav m(Wpe/k)2

X exp E -vb/2ev2 (x-Wpe/kvb)2	
(17)

i
The behaviour of the above expressions is characterized by three particular

'fir
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angless x° = wpe /kvb where v (b) (x0 ) = 0 and S (b) (x0 ) is maximum,

W  = mpe /kvb + av/vb where v (b) (xM ) is maximum, and xm = u pe/kvb - av/vb

where v (b) (xm ) is minimum.

In the region xo<x<1 one has the power input

1

p in ' 
4n f V ( ) (X) W(x)dx + o+

xo	 (18)

with a+	
1

= 2n f S(b)(x)dx>O
x°

while in the region -1<x<xo one has the power output

x
P
	 °out	 "'4" 1„1

v (b) (x) (x) dx - o-
(19)

with v- = 2n j 1 °S (b) (x) dx > 0.

One necessary condition for stability is

pin ` pout ,	 (20)

On the other hand, the flux of energy from one region to the other,

m = 2n(1-x2 ) D(x) dx I xo = 2n Do (vb/ve ) 3xo (1-xo) ay Ixo
(21)

must balance the input of power,

1



Page 15

0 = Pin
(22)

which represents a second requirement for stability.

In order to form analytic criteria for steady state, we now model the

spectral shape, according to our numerical experiments, by a Maxwellian

centered on axis and a flat background (cf. the numerical result in Figure lb

for an example)!

W(x) = Wm + aW exp [ - Z ((x-1)/(xo-1))2 ]	
(23)

with the two free parameters Wm adn aW. Then we may rewrite Equation (20) as

(the detailed calculations are left for the Appendix)

SF < 1.17/ 1-exp [-vb2/2av2 (1-xo ) 2 1 	 _ 0.17
(24)

where the swelling factor SF is defined as the ratio of the peak to bottom

values of the spectrum SF = 1 + AW/Wm,

Thus the very fact that the energy sink and source angular regions are

finite on the sphere of radius k, and in a definite ratio, leads to a maximum

bound of the swelling factor. As the marginal stability boundary is

approached, the spontaneous emission becomes negligible and SF is equal to its

maximum bound. Now, as the wavenumber k increases, x = r pe/kvb decreases

so that the maximum bound decreases too (cf. Equation (24)). The spectrum is not
u

	

allowed to be as highly peaked for large k as it is for small k. However, a 	 }

certain amount of peaking is required in order for the flux o to balance the

input of power: Equation (22) leads to (cf. Appendix for details)

41

0
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)d
0.4B D/W (v /av) 3x (1+x )

SF > 1 + {	
° pl`—h	 0	 0	

2	
-0. B5 } -1

nb(vb/av) L I-exp [-( v
2
b /2av

2 

)(1-x0 ) 1^
(25)

Let us define for a given wavenumber k,

	

'max = Y
(b) (xM ) 	 (n/Se ) 1/2 nbWpe/(kav)2	

(26)

Combining the inequalities ( 24) and ( 25), an upper bound on 
'
max for a

steady rtate solution to exist may be written as

	

'max < rcrit ( xo)	
(27)	 lL

with

r	 (x) = 0.22
(y	 3b /ve )( yb/av) x30(1+xo)

Grit o	
exp[-( b/2av2 )( I -x0 ) 2 1 - 1

(2B)

Prom the viewpoint of numerical solutions of the diffusion equation it is

possible, for a given k or x o , to increase Y (b) by increasing themax

strength of the beam n  to a numerically determined maximum value, rcrit(xo),

where the marginally stationary boundary is reached and beyond which the

spectrum grows without ( linear) bound. Due to the exponential dependence in xo

displayed by the RHS of inequality ( 27) rcrit
(
xo) is expected to fall-off very

rapidly with increasing k.

In Pigure 2 the exact rcrit obtained by the numerical solution of

Equation ( 4) for given sets of parameters characterizing the beam has been 	 3
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plotted as a function of kvb/Wpe = 1/xo . The agreement with the

expression for rcrit given in (2B) is satisfying. The rapid fall-off

with increasing wavenumbers or decreasing phase velocities is evident. By

comparing with the relatively slow k -2 decrease of 
Ymax 

one sees

tliat, even if the small k modes with the supposedly largest growth rate are

stabilized because, for those k, 
r
crit >Ymax, for larger k the

inequality may be reversed so that the beam instability is then only partially

stabilized. Two important points are worth stressing about those "residual"

unstable waves. As compared to the fastest growing k-mode with phase velocity

Wp/k = vb-Gv and e = 0, they have a smaller growth rate given by Equation

(26) anL are oblique, cose = x  C 1.

Let us now turn to the role played by the nonthermal tail. In the first

place, the associated damping Y(T) increases quickly with increasing wave

number (cf. Equation (Bb)). Due to that, the stability boundary, rcrit

takes a V-shape as plotted in Figure (3). The second effect caused by the tail 	
is

is less transparent. It may be understood however following the same line of

reasoning as before. On a sphere of radius k the nonthermal tail reduces both r

the energy source region and the strength of the source; correlatively the	 1

energy sink region as well as the strength of the sink is increased. Thi p 	!^ ,

gives rise to a greater peaking of the spectrum. The flux of energy from the

source area to the sink area can then be more important. Therefore, the input

of power can be raised, so that rcrit is upshifted. For the plot we have

used a diffusion coefficient Do = 8•10-12 (kaD ) -3 ; it corresponds to	
'4

a fluctuation level of Sn /n = 5 . 10-4 in the range q-1=100 km, which is	 E

low compared to levels measured by ISEE. The parameters of the tail have been 	 Yj

fitted from the non-Maxwellian component observed by Lin et al. (1981),

nT(vT ,ve ) 5 - 20. In that situation a beam of parameters nb=5.10-7,
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vb/ve=90, ev/ve=20, is completely stabilized (c£.ymax in dashed
	

)

line). Yet, were the beam 40% denser, nb=7 . 10-7 , a small range of k

would be unstable (dotted line).

In general, three different regions of k-space must be considered. In the

small k region, k(k l , y (b) is stabilized by the diffusion. k l may be

expressed by using Equation (28) for evaluating rcrit in the condition

(b) (k
 _ y max (kI

Let x  = w pe /k lvb i by means of Equation (26) one may obtain the implicit equation

for x1

xl = 1 - v26v/vb t Ln [ I + 0.58 Do iwpevbav/ve 1/nb xl (1+x1 )	 1/2
(29)

In the high k region, Ok 2 , y (b) is stabilized by y(T) . k2 is defined
i

by

y(T)(k2) _ -ymar (k2)

or, using Equations (8b) and (26)

k2 XD = (0.10 nbve/nTvT ve/ov2)1/7
(30) i

^I

In the intermediate region, k l (k(k 2 , there might remain weakly unstable modes

so that the beam instability is only partially quenched and therefore slowly

growing electric fields are present. Then, either the instability saturates
	 j
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because of some weak nonlinearity such as decay off ions, or simply because

after a while (t : 10 min) the waves enter in Cerenkov resonance with the

0	
negative slope of the beam due to the advection of the latter. Depending on

the actual parameters, the relative position of the two curves rarit and

Ymax may change so that various growth rates, and therefore levels

L
of measured electric fields, are expected. In Figure 4 we display the change of

rcrit brought about by! a) an increase in the level of density fluctuations;

b) a downshift of the beam velocity and c) a decrease in the strength of the

tail. For comparison the rcrit of Figure 3 is indicated with a dashed line.

We are now ready to write a sufficient criterion for linear saturation by

letting k 1 7k 2 and using Equation (29)

k?vh+Wwp	 1/2 
< Wk 2vb -32k 2ev { Ln [1+0.58 (Do/Wpe)(nv/ve) Wpenb(k2aD)2	 pe

(31)

where k 2 may be computed via Equation (30).

It is important to note that when the strong level of density

fluctuations actually measured by ISEE is used to evaluate the coefficient Do

( Dp = 10
-5 

W pe ), the above inequality is satisfied for any conceivable

beam associated with Type III bursts. Thus, the instability is definitely

saturated linearly by the diffusion process.

3.4 Anisotropic Density Fluctuations; the Quest for Instability

M

	

	 At the end of Section 3.2 it was shown that the level of electric field is

hardly raised above background when dealing with steady state solutions to the

ID

C.

C
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diffusion equation. On the other hand, it has just been claimed that the

density fluctuations measured by ISEE were so strong that a steady state

solution is justified. Therefore, we are faced with a dilemma, either the 3

hour measurements on September 8, 1978 by ISEE were quite exceptional and not

at all representative of the usual solar wind, or something is basically wrong

in the model developed. We suspect that the difficulty lies with one

assumption which is not supported by observational evidences: the assumed

isotropy of the density fluctuations.

,.1

Let us assume that the density fluctuations split into two regions (cf.

Figure 5a)

	

C I I
	 Icosel > at

C(e) _

	

C1	 Icosel < a	 0 < a = coseo < 1

Then Equation (6) may be easily integrated to yield

	

A(e) = H(a-sine) Cln/2 	 0
+ B(sine-a) {C 1 n/2+(C1-C SI ) [ Aresin(a/sine)-a/sine(1-a2/sin2e)1/2I

In case of isotropic density fluctuations with the same energy one obtains

aiso = n/2 [C II + a(C1-CII)]

,.

Therefore, the relative reduction of the diffusion coefficient R(e)/aiso

may be evaluated at some angles.

i

ll
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Let us imagine for example that the fluctuations are concentrated in a
ffl

plane perpendicular to the beam axis. C 11	 = 0, at « 1	 ( cf.	 Figure 5c).	 Then
{I

F

2(n/2)/A
iso	2x2/3 << 1, namely the forward propagating modes are

nearly isolated from the backward ones. 	 The forward modes are generally

destabilized by the beam whereas the backward ones are always damped - so that

the unstable domain of phase space is cut off from the one of absolute
G

damping, and the beam instability may not be expected to be completely

quenched.	 On the other hand,	 if the fluctuations are concentrated along the
i^

beam axis, Cl = 0, a 4 1	 (cf.	 Figure 5b), one has A(o)/n iso = 0, namely

the parallel modes do not experience any diffusion at all and growth persists.
^<

Of course, from a physical point of view, since the beam axis coincides with the

magnetic field axis and because the diffusion of the plasma particle. is

inhibited by the magnetic field, the inhomogeneities in density are more

likely to be oriented across rather than parallel to the axis,

Lei

In view of that we introduce the following model of anisotropic density

fluctuations

C(q,e) - p(q) aft (cos 2e +a 2 ) -1	a << 1
(32)

C1	 where p ( q) is determined from the ISEE 1 -2 experiment (Celnikier at al., 1983)

p ( q ) = 2.5 10-6 (q),L )
-2.9	9.10-6 < qap < 7.10-4

By substituting Equation ( 32) into Equation ( 6) one obtains

C	 2(e)'= 7 . 6 10-10 a /singe [1 - a/(a2+sin2e)1/2

Thus the diffusion coefficient ( Equation ( 5)) reads
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1

D(k,e)	 6.4 10-9 ape ( 1/kX D ) 3 a /sin ge [ 1 - a /( a2+sin2e)1/2
	

(33)

i

The Fokker -Planck equation has been solved numerically using this diffusion

coefficient. In Figure 6 it may be seen that the anisotropy in the density

fluctuations leads to a concentration of the Langmuir energy in the forward

propagating modes. Now, if the anisotropy is pronounced enough, the flux of

energy at large angles between the source and sink regions may be too small to

balance the power generated. The largest angle we have to consider is given

by core = W p/k2vb where k 2 is defined in Equation ( 30). On the other hand,

it has been shown in Sec. 3.2 that with the parameters, n  = 10-6,

v  = 90 ve , av = 20 v  and n T ( vT/ve ) 5 = 20 a diffusion coefficient

Diso = 8 . 10
-12

( kx D ) -3 is too small to provide enough diffusion to

quench the instability. Therefore, we may expect to recover this situation

for a < 8 . 10-12 /6.4 10 -9 •( 1-(w P/k 2vb ) 2 ) = 10-3 . The numerical

integration of the Fokker -Planck equation indeed shows that for a ( 5.10-4

the fluctuations are unable to quickly remove the Langmuir energy from the beam 	 i 
j

unstable region of the phase space, and the wave develops unstably in spite of

the strong general level of density fluctuations. Only in this case, may
i

electric fields in the mV /m range be expected ( consistently with observations).

Thus, although measurements of both electric fields in the mV /m range and electron

density fluctuations in the 10 -2 range have not been obtained simultaneously,

our results strongly suggest that such density inhomogeneities of the solar

wind must be elongated along the magnetic field.

/^ r .. eli
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4. Conclusion

This study of the role played by the large scale density fluctuations of

the solar wind in relation to TIII electron streams leads to the following

conclusions.

1) It is possible to understand the rather low level, intermittent

character of the beam-excited Langmuir waves observed in situ, by considering

the background density fluctuations. In an environment where the latter are

strong and isotropic, the growth of Langmuir waves is quenched and the

electric field is hardly raised above its background value. However, when the

density fluctuations are smaller, slowly growing Langmuir waves are present,

which may result in an electric field in the mV/m range.

2) Another explanation for the mV/m Langmuir fields observed is as

followst If the relatively small scale density inhomogeneities of the solar

wind (6n/n " 10-2 , q-I " 102 kms) are assumed to be highly anisotropic

and elongated along the magnetic field in a way consistent with the large

inhomogeneities (Bn/n " 1, q -1 " 104 kms) invoked for ducting the radiowaves

through the corona, then we have shown that they are relatively ineffective in

scattering (diffusing) unstable Langmuir waves into stable regions of k-space.

In this case, one may turn to nonlinear and/or quasilinear processes for an

explanation of the saturation mechanism.

a..i
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Accendixt Evaluation of m, P
in , 

Pout with a model of spectrum

a) Flux of energy

Substituting the ansatz ( 23) into Equation (21) one obtains

2n/,/e Do (vbve)3 (1+xo ) xo aW.
(Al)

b) Input /Output of power 
P in , Pout

In order to simplify the integrals in Equations (18)-(19) we replace the

Maxwellian shape of the spectrum by a box with the same area:

W(x)	
Wm + 0.85 aW	 for x>xo

Wm 	for x<xo
(A2)

The integrals are then straightforward,

11	

^I

Pin	 o+ + 32n3/2 nb u3 /( k 2avv ) f l-exp ^ -vb	 2	 2

	

/2av (1-xo)^ I ( Wm+0.85aW)	 Vi,
pe	 b	 l	 1

Pout	

_o- 
+ 3203/2 nb epe /(

k2 avvb ) {1-4ix p [ -vb
/2av2(1+x

o )2	 Wm'	
f 1(A3)

Using these expressions, the condition (20) may be rewritten in the limit

vb/av»1, xo>O,

(1+0.85 Awwm { 1-exp [ -vb/26v2 ( 1-x 0 ) 2 t

1 - (o++o- ) k2avvb/( 32n3/2 W3penb).

Bence the inequality ( 24) where the equality is reached when the spontaneous

)I
emission terms become negligible. The other inequality (25) may be

m



&I	 obtained in the same way by using Equations (Al) and (A3).
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i

FI	 Figure Captions

Fig, 1 Langmuir spectrum when the diffusion is sufficiently strong to quench

the beam instability by diffusing tae waves out of the unstable

regions of phase space into stable ones, yet not strong enough to

prevent a pronouncedeakin of the spectrum in the energyp	 g	 p 	 source area.

a) Contours of Wk (unit Te ) in the k-e plane; the Langmuir energy

piles up in the forward propagating damped modes (9<n/2) which

are in Cerenkov resonance with the positive slope of the beam and

diffuses into the backward damped propagating modgn (V n/2).

b) Wk (e) in unit of T. at kvb/m pe = 1.62; note the substantial

angular gradient for el-n/9.

The parameters used are: n  = 5.10-7, 
V  = 90 ve , av = 20 ve.

nT (vT/ve ) 5 = 20, and isotropic density fluctuations with

6n/n = 5.10-4.

Firs. 2 Marginal stability boundary of the beam growth rate rcrit as a

function of kvb/wpe = xo (cf. Equation (26)). If, at a given

kvb/upe , the growth rate of the Langmuir waves maximised over

the angle e, rmax = 0.38 n b/(kav) 2 , is smaller than

rcrit (kvb/wpe), the instability at that wavenumber is quenched.

In the plot shown, the density fluctuations are chosen isotropic

with 6n/n = 5 . 10-6 and the electron distribution function consists

of a Maxwellian background without tail and of a beam with varying

parameters (solid line: v  = 90 ve , nv = 20 v e ; white circles:

V  = 90 ve , av = 30 ve ; crosses: vb = 60 ve , av = 20 ve).

0
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The rapid fall-off of rcrit is contrasted with the slow k-2

decrease of Y (b K indicated in dashed line for a beam of
ma

n  = 5.10-7, V  = 90 ve , ov = 20 ve . Thus, due to the diffusion,

waves with the fastest growth rate may be stable while waves with bigger

wavenumbers and slower growth rate are unstable.

f
Fig, 3 Marginal stability boundary rerit as in Figure 2 except that a

nonthermal tail in the electron distribution is considered. The

parameters of the tail have been fitted from the nonthermal component
fi

observed by Lin et al., 1981, nT (vT/ve ) 5 = 20. In that situation,

a beam of parameters n b = 5.10-7, vb/ve = 90, nv/v e = 20,

is completely stabilized (cf. Ymax in dashed line). Yet, were

(i
the beam 40$ more dense, n  = 7 . 10-7 , a small range of kX0	1

j!

would be unstable (dotted line).

C
Fig. 4 rcrit for various parameters. The marginal stability boundary

rcrit of Fi gure 3 is indicated in the dashed-line for comparison

purposes.
9>

a) v  = 90 ve , ev = 20 ve . nT (vT/ve ) 5 = 20, 6n/n = 1.5 10-3

b) same as for a) except v  = 
60 ve

c) same as for a) except nT(vT/ve)5 = 2.

Fi g .  5 A simple model of anisotropic density fluctuations. The function

C(e) (cf. Equation (6)) is assumed to be at two levels.
C,

Fig. 6 Spectrum of density fluctuations a) and corresponding spectrum of

6c	 Langmuir waves b). On panel a) the equilines of Lag (q2 (6n/n)21q)

are plotted in the q-9 plane. The density fluctuations are assumed

4,
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to be strong and highly peaked in the plane perpendicular to the

beam or magnetic field axis (cf. Equation (19) with a = 7.10-4).

On panel !h) the equilines of Langmuir energy are plotted in the

k-9 plane for the "nominal" beam-tail parameters (nb = 10-6,

Vb ' 90 ve, Av = 20 °e, nT (vT/ve )
5
 = 20). Note the substantial

concentration of energy in the foriiard propagating modes.

r
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"nominal" parameters
for the beam and the

nb - 10-6	6v =

Table

tail

20 ve

for Detailed

vb	 90

Balance

ve	
'Tv 5

= 20 ve

kX
D y(b)/wmax

y(T) /w y(b)/w S(b) /T w S(T) /T w W /Tpe pe pe a pe e re k e

1.11 10-2 0 -1.3 10-8 -1.4 10-6 6.4 10-3 3.5 10-5 2.2 103

1.3 10 2 -2.9 10-8 -8.3 10-7 5.9 10-3 5.7 10-5 3.4 103

1.5 10-2 3.9 10-6 -6.0 10-8 -3.9 10-7 4.5 10-3 8.9 10-5 5.1 103

1.7 10 2 3.0 10-6 -1.1 10-7 -1.8 10-7 3.3 10-3 1.3 10-4 6.0 103

1.9 10-2 2.4 10 6 -1.9 10-7 -8.4 10-8 2.5 10-3 1.8 10-4 4.7 103

2.2 10-2 1.8 10-6 -4.1 10-7 -3.0 10-8 1.6 10-3 2.8 10-4 2.2 103

2.5 10 2 1.4 10-6 -7.7 10-7 -1.2 10-8 1.1 10-3 4.1 10-4 970

3.0 10-2 9.8 10-7 -1.9 10-6 -3.5 10-9 6.0 10-4 7.0 10-4 350

3.5 10-2 7.3 10-7 -4.1 10-6 -1.3 10 9 4.1 10-4 1.1 10-3 185

4.0 10-2 5.6 10­7 -8.0 10-6 -5.5 10-10 1.7 10-3 2.7 10-3 121

6.0 10-2 2.5 10-7 -6.1 10 5 -5.8 10-11 8.1 10-5 5.6 10-3 47

Q:
8.0 10 2 1.4 10-7 -2.6 10-4 -1.5 10-11 3.4 10-5 1.4 10-2 26

1.0 10-1 9.1 10-8 -7.9 10-4 -5.8 10-12 1.7 10-5 2.6 10-2 17

I^

S

0

C,

0
	

'f

0



RUNNING HEAD: Quenching of the Beam-Plasma Instability by Density Fluctuations

MAILING ADDRESS: L. Muschietti
Department of Astrophyical, Planetary 6 Atmospheric Sciences
University of Colorado
Campus Box 391
Boulder, CO 80309 USA

j



c	 .

0

et•

0

C,

Tcr1f'wpe

x
0

^	 x
I	 ^
I	 0^

— I	 (b)
x	 Ymax pe

I	 ^ ^

UNSTABLE
x

1

0

-6
Q 10
0

D
O
m

H

107

a
F-

x

Z_

-8

Q 10

STABLE

0.9	 2.0
0

3.0

kVb/wpe



7r

(a)

r ILAAp9

I`•IJ

i

^i

j

ii

37x/4
Co

wJ
(.7

Q 7r/ 2

110 000 N 0

QJ
d 7r/4

0	
1.5	 2.0

k Vb/wpe
u

buuuu

70000

60000
W

50000

40000

(b)
0

4) I

0	 7r/4	 7r/2	 37x/4

e
	

^^ I



rerit

(1(56wpe)
E

a
y

I

6

3

Y
vv

at	 6

3

a>

I

0.5

--	 n=1.5103

1

Vb = 60 Ve

i

i

i

rlV

i

'i
0.9	 2.0	 3.0	

kVb /cvpe	 I' ;

4a^



,a

H

J 107
m

Q

(n

J
Q
Z_
CD -8

cl^ 10

—y(T)

-	 s

rcrit'WPe
k	 UNSTABLE

Q 10

D

/Om

I	 ^

I

I

STABLE

^-	 (b)
yMOX 1mPe
1

1 _

0.9	 2.0	 3.0	 kub/wpe



10-6	 7xli

WAVENUMBER qX,

I
(b)

)-4

7r

CD37r/4

CL 7r/4

f,

t^

0
00
%T

w
J
O

Q 7r/2

Q
J
O

2.0	 2.5
kVb/wpe

- - "tf

I	 (0)

5.60

4

8.40

11.2
2 -4.-

11.2

8.40

4 ^
5.60

n

37r/
m
w
J0
Q7T/

Q
r
	

O
0- 7r



1	 ^

O

U

U

r

O

U

^a
wxm<
	 m°

0v	 U

w

a

NQ

i



MULTIPLE RAMAN UP-CONVERSION OF RADIATION FROM

PRE-EXISTING LANGMUIR TURBULENCE

c

c

D. Russell, M. Goldman, and D. Newman

September 1984

r,

f;

r,

P

C

0

O



Pape 2	 71

bs a t

We consider the equilibrium states described by a damped and driven

kinetic equation governing the evolution of the spectrum of radiation in a

stationary Langmuir-turbulent plasma. Both Langmuir and transverse spectra

are assumed to be one-dimensional in wave-number space. A source of radiation

at the plasma frequency and a uniform rate of dissipation at the higher

harmonics are assumed. The radiation is characterized by an effective

temperature, z, proportional to the Langmuir energy density and inversely

proportional to the dissipation rate of the transverse waves. If z < 1 the

equilibrium photon spectrum decreases with increasing frequency as a power 'law

in z. If z > 1, photons scattered out of certain regions of phase space may

return at a significnat rate, and the spectrum is found to have a global

maximum above the plasma frequency, m p• The location of this maximum is

proportional to z1/3 U,p , which may be many times the plasma frequency. 	 ,

Applications to a laser-plasma experiment and to the solar-wind environment

are discussed.

i	 '
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1. Introduction and !Model kinetic Equation

Although there a number of important applications, little is known about

mechanisms for producing radiation at frequencies much higher than the maximum

plasma frequency in non-magnetic plasmas. Radiation at high multiples of the

plasma frequency has been observed in laser-pellet experiments, l in

relativistic beam-plasma interactions, Z and in low-energy beam-plasma

interactions. 3,4 It is also thought to play a role in astrophysical

phenomena.5

In relativistic beam-plasma systems, it has been suggested 2 that the	 }

high energy of beam electrons could be tapped by Compton-conversion of a

beam-electron and a plasma wave into a high-energy photon together with a

lower-energy electron. 6 Recent work shows that the growth-rate for this

process is very low for a wide variety of Langmuir spectra.

#,

	

	 Radiation at twice the plasma frequency can be produced by coalescence of 	 H
two Langmuir waves, and the process appears to be well-documented by examples

of radio-wave emissions from the solar corona. 8 Bowever, the emissivity is

®

	

	 proportional to the square of the intensity of the Langmuir-wave spectrum, and

the process is therefore not very efficient unless the Langmuir turbulence is

quite intense (Langmuir energy-density on the order of the particla

energy-density). Emission at the n-th harmonic of the plasma frequency by

n-plasmon coalescence is proportional to the n-th power of the Langmuir wave

intensity, so that this process would be still less efficient at weak levels

of Langmuir turbulence.
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Another alternative is to begin with radiation near the plasma frequency

or its second harmonic, produced by instability or by external sources, and to

allow it to Raman-scatter repeatedly from pre-existing Langmuir turbulence.

At each step such scattering will produce frequency upshifts (anti-Stokes

process) and downshifts (Stokes process--which is permissible as long as the

shift does not go below the plasma frequency). The resulting radiation

spectrum may exhibit frequency components significantly above the plasma

frequency.

This is the process we shall consider in this paper. For sufficiently

weak photon damping rates, we find that multiple Raman scatter to the n-th

harmonic is not proportional to the n-th harmonic of the Langmuir intensity,

so this process can be more efficient than the multiple plasmon coalescence

mechanism under certain conditions.

The multiple Raman scatter process works best in a hot plasma, with the

radiation in contact with the turbulence for a sufficiently long time. This

could be expedited in various ways: In astrophysical applications the spatial

extent of the turbulence may be considerable. In laboratory plasmas there may

be multiple reflections from chamber walls.

Consider the scattering interactions of two species of waves illustrated

in Figure 1. In a plasma, for example, the waves labeled by k could be

transverse waves scattering off ion acoustic waves labeled by q. This process

is commonly called Brillouin scattering. If, instead, the waves labeled by q

are Langmuir waves then the scattering is termed Raman. In addition to

higher-order wave-wave interactions not depicted in Figure 1, Brillouin and

6
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a

Raman scattering generally compete in determining the evolution of a

transverse spectrum. (Wave-particle interactions are ignored in this paper.)

We assume the presence of an enhanced background of Langmuir turbulence,

(rather than ion acoustic turbulencf), and focus our attention on the effect

such turbulence has on the evolution of an externally produced electromagnetic

(transverse) spectrum.

We take the Langmuir waves to be statistically stationaryi If WL(k)

denotes the ensemble-averaged energy density of Langmuir waves at wave-vector

k then WL (k) is assumed not to change in time. For example, the Langmuir

waves may be maintained in steady state by a source such as an electron beam.

In any case, we ignore the back-reaction of the transverse spectrum on the

Langmuir spectrum. We are justified in doing so provided the transverse

spectrum is far less energetic than the Langmuir spectrum responsible for the

scattering. To summarize, we are considering a plasma in which the

ion-acoustic, transverse, and Langmuir wave energy densities are ordered as

follows.

Wia << WT << WL

We also rely on the second inequality to justify our neglect of the

stimulated scattering of transverse waves in Sections II and III. This

process is described by terms in the kinetic equation that are proportional to

(WT)2, whereas the terms that we retain in the equation are proportional to

WLWT	 In general, if stimulated scattering must be included in the

evolution of the transverse spectrum then so must the evolution of the

Langmuir wave spectrum, since in this case WT - WL	(We briefly describe

equilibrium and temporal evolution in the presence of stimulated scattering in

Secs. IV and V.)

I.
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The scattering that we consider here is resonant, that is,	 i

h	 '1

k=k' t 
(2a)

'I

and

a(k) = o(k') is Wp

(2b)

are enforced in the kinetic equation (see Fig. 1). Here u p denotes the plasma

frequency and we neglect the thermal dispersion of Langmuir waves.

Our final assumption is that the Langmuir spectrum is confined to only

one direction in g-space, i.e., that it is maintained by a narrow source.

With our source of radiation taken to be in this same direction, the kinetic

equation describes transverse-wave evolution in a one-dimensional k-space and

therefore ignores effects such as angular diffusion.

From the dispersion relation for transverse waves

a(k) 2 a 'up + c2k2

and using Eq. (2a) and Eq. (2b) it is easily seen that only Langmuir waves with

wave numbers in the interval

C



r eyed i

contribute to the scattering. We ignore any variation of WL (q) on this

interval (see Fig. 2), and simply assume a flat spectrum.

According to Equation (2b), only transverse waves whose frequencies

differ by a multiple of the plasma frequency will interact with one another.

Therefore with a source of radiation at the plasma frequency, the transverse

spectrum (i.e., the ensemble-averaged energy density) will evolve only at the

harmonics of wp . Let n be the harmonic number,

n s w(k) /W 
p'

Then the usual "Golden Rule" kinetic equatiod describing this scattering may

be written in the following form. (We outline a derivation of this equation in

Appendix A.)

ddt" z -W (A3 + Bn ) Un/n

+ W (An n/(n+1)2 Un+1 + B 3 n/(n-1)2 Un-1)

+ V ( Un/n) (An Un+l/(n+1)2 - Bn Uo_1/(n-1)2)

-2 rnUn+Sn
(3a)

Here, U  is the transverse-wave energy density at the n-th harmonic normalized

to the ambient thermal energy density of the electrons, 4nn oTe (n o is the

average plasma density, and T  is the electron temperature), and time is

measured in units of the plasma frequency, u p . The coefficient W is

proportional to the Langmuir energy density, and is defined as

W s 
L

(ve/c) 2 a WL
(3b)

C

0
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where ve is the thermal velocity of the electrons; c is the speed of light in

a vacuum; WL is the total energy density of Langmuir waves normalized to

OnnoTe ; and a is a numerical reduction factor that selects, from a more

general Langmuir spectrum, that portion of the spectrum which is contained in

q-space between u+ p/c and 1 3w p/c and therefore active in the scattering

considered here:

a < 0.7.

Equality holds if all of the Langmuir energy is contained between u p/c and 33W p/c

(see pig. 2).
i

The scattering coefficients are defined as follows. 9 (See Appendix A.)

An a 3 ((n+1)2 3 (n2-1)
(3c)

I

t An-1	 n' 2
B 

0	 n=1
(3d) 4^

Equation (3d) expresses the result of detailed balancing. Using it one can

easily show that in the absence of sources and dissipation (Y n = S  = 0)

the total energy density, £ Un , is conserved.

The coefficient of the terms which describe stimulated scattering is

i

V s 
9 

(ve/c) 2 .
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Therefore, roughly speaking, the ratio of the stimulated to the linear

scattering rate ( 'LWU) is

ativU/w .

When this ratio is much less than one, the stimulated scattering is ignorable,

and the evolution of the spectrum is linear in U.

For simplicity, we assume a source term for radiation at the fundamental

only,

Sn = S Sl.n

Throughout this paper we take the source at w  only, but it is straightforward

to generalize our results to include different source configurations.

An independent source of radiation at 2w  (n-2) is the coalescence of two

Langmuir waves into a transverse wave. An important question is whether or not

the coalescence process produces a stronger source of radiation at 2w  than

does Raman scattering of a given source at v  into that second harmonic. In

fact, multiple Langmuir wave coalescence into radiation at the nth harmonic of

the plasma frequency generally should be compared to the nth-order radiation

produced by multiple Raman scattering. Bowever, in the one -dimensional k-space

we are assuming the matrix elements for coalescence vanish so that this process

is absent. ( See Ref. 9 pg. 354, for example.)

We take all harmonics to be dissipated at a constant rate, •d:

;.:: • -- ,-`^* -:cam-^.- ;^	 --

J

'i
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T  M Yd	 ,' n = 2,3, ...
(4a)

Loss of energy at nm p by convection out of a bounded plasma occurs at a rate

equal to the group velocity at nu p divided by the size of the plasma, so the

dimensionless radiation dissipation rate is taken to be:

Nd epR	
(4b)

where R is the characteristic length of the plasma. We have approximated the

group velocity by the speed of light, c (appropriate for the higher harmonics):

and, again, all rates are measured in units of the plasma froquenry, 	 j
I
i

With this scenario of injection at the fundamental, Equations (3) predict

a cascade of energy up to higher harmonics via Raman scattering. Our primary

concern in this paper is with the equilibrium spectra that result from this

cascade. Clearly such equilibria must exist if the damping rate at the

fundamental, %, is positive (incoherent source of fundamental radiation);

in this case all harmonics are dissipated exponentially fast, whereas the

Injection of energy at the source proceeds only linearly with time. If the

damDing rate at the fundamental is assigned a negative value, to simulate a

linear instability at u p , then the cascade either culminates in a stationary

state or else the energy in the spectrum diverges with increasing time. In
I

Sections I1 through IV we assume that a stationary state is eventually reached

by the solution of Equation (3a) for the particular choice of Y l . In

Section II we restrict our attention to equilibria for which

aWL » Un. n = 1.2,...

rA)
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dso that the linearized kinetic equation (i.e., Eq. 00 without the stimulate

scattering terms proportional to V) adequately decribes the stationary state.

Under this assumption it is possible to find analytic approximations to the

equilibria using a continued - fraction representation. That analysis is carried

out in Section III. In Section IV we present examples of equilibrium spectra,

including a case in which the nonlinear terms (stimulated scattering) ara not

ignored. Unbounded behavior is considered in Section V. Concluding remarks

appear in Section VI.

4

0

e

C

C

J^

)	 I

i

i

9
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II. Equilibrium Spectra

With 0 tun set equal to zero for all n in the linearized verison of

Equation (3a), we are faced with the task of solving an inhomogeneous system

of linear, algebraic equations. The number of these equations is, in

principle, infinite, although we expect the spectrum to fall off rapidly at

sufficiently large n to permit a truncation. Rather than impose an a priori

truncation, we proceed, innitead, to solve the equations recursively, writing

each U  as a product of unending continued fractions. This will yield the

exact solution for all n. With one very good approximation to the scattering

coefficients, the continued fractions are summable in terms of Bessel

functions (cf. Sec. III). This method is applicable to other discrete

systems enjoying linear nearest-neighbor interactions, although summability

depends crucially on the form of the coefficients.

For sufficiently weak photon dissipation rates, certain solutions we

obtain clearly demonstrate scattering to high harmonics of u p with

efficiencies well above unity (see Fig. 3). This is contrary to the popular

belief that the spectrum should in any case fall off as (W L ) n . The

reasoning which leads to that conclusion ignores the scattering back down to

lower frequencies described by the "A" coefficients in Eq. (3a). The

scattering down results in an accumulation or "bottle-necking" of transverse

energy at intermediate frequencies that is responsible for the observed

extremum in the spectrum that we will approximate analytically in Sec. III.

i'

l
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For convenience, we introduce

Fn a Un/n2
(5)

and write the stationary, linearized version of Equation (3a) in the following

form. (We suppress the exponents on the scattering coefficients.)

f

t

[2nYn + WAn + WBn ) Fn - WAn Fn+l - WBnFn _ l a S S1 n
(6)

f

For illustrative purposes, we truncate the system to only the fundamental, F 1 ,	 f

and its first harmonic, F2 , Then we can easily solve Equation (6):

	

F1 = S .	
1

2Y1 + WA1 +	 1

- (4 ,Yj + WA1 + WA2)

W2 A2
1

and

	

F e Fl .	 1

	

2 	 4Y2 + WA  + WA.)

W°1

r

9

4;

a.
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(7)

	Retaining three modes, the solution is,	 ORIGINAL PAGC 15

OF POOR QUALITY

F 1	 S •	 1

	

2Y 1 +WA 1 +	 1

	

-	 (4Y2+WA1+WA2)

+	 1

Wh2	
(6Y3+WA2+WA3)

A^

F2°F1

4Y2+WAl+WA2

+	 1

	WAl	 - (6Y3+WA2+WA3)

WA2^A1

and

F3 ° F2	
1

6Y3+WA2+WA3

WA 

As we increase the number of modes retained in the truncation, the following

pattern emerges.

Let f e be the continued fraction.

1fesf

el + f	 +	 1	 i
e2	 f	 +	 1

43

	

fe4 + ...	
(Ba)

r

^a J
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W2- h AC+
2

j-1 /gC j-1
ge j WAC

1

j>l

VO, j=1

C=O, j=1
t (8c)

Page is

with elements defined by

r	

2(C+ j)YC +j+WAC+j+WAC+j-1
—.	

gC 
j	 , (Ao a 01	

(8b)

9
	

and

0

ffi

Then

k

Fk+1 = S n	 fCC=0

Equations (8 and 9) are the exact solution of Eq.(6) and give us, using

Eq. (5), the exact stationary states of the linearized kinetic equation.

Writing the solution in this form is particularly useful because of the slow

variation of An with n for n >_ 3. (Notice from Eq. (3c) that An is

approximatly equal to one if n 2 3.) We were careful to factor this slow

dependence out of the scattering terms in the kinetic equation for the following

reason.

With our assumption that the -e n 's are constant (= vd ) for n ? 2 and

the approximation of the An 's by unity for all n, we can find simple

closed-form expressions for all F n with n >_ 2 in terms of f l . Therefore, we

will have approximations to all U n/U l , c.f. eq. (5), and, hence, to the

efficiency of the net up-scattering in the stationary state. Notice from Eqs.

0

(9)
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y (9 and 9) that we do not need to specify -fl or S in order to determine this

s I efficiency. These parameters serve only to determine the overall size or

total energy density of the spectrum and do not effect its shape.	 Of course we

assume that the particular choice of rl leads to a stationary spectrum,

` although for sufficiently large, negative values of 
Yl 

the behavior is	 i

j
unbounded in time.	 See Section V.

va

S V4

Y

4

f}

1

i

}

+ t
Ii 	 f

V

f
i

I

ii

e



V

C

V

..Q L.	 '0iq 110=. _ C tx. a.	 -i. _	 _. -	 _
lf^

Pa5e 17

Js'
III.	 Analytic Approximations

With all An u s approximated by unity and, for the case of a constant

dissipation rate at the higher harmonics,

An al n> l

I
n 	 Yd n22

j

I

we find from Eqs.	 (Ba thru c) that the continued fractions have the following

simple form if Z >_ 1.
i

f f	a	

1 ^	 i

21RZ + 1
 f

^

2(t424.7) 1 e

z 2(R+	 +	 -	 ...,
z

(2
(lo)

with ii	 9

z i W/Yd

This continued fraction is summable as a ratio of Bessel functions,ld

f C ` Jz+4+1(z)/Jz+E(z)
(11)

i

where 3 v (z) denotes the Bessel function of the first kind of order v,ll
a

It follows from Eq. (9) that 	 i
}

Fn 
s F

1 Jz+n ( z)^jz+1(z)
(12)

9



and thus from Eq. (5) that

Page i8

1

^A

U  a U1 ' n2 . az+n(z)/Jz+l(z) •	
(13)

Notice the recursion relation implied by, and implyin(+, Eq. (10):

	

fC - 2(C+z) /z	 -	 1/i C-1
(19)

If we multiply this equation through by F  and use Eq. ( 9) ar discover t!a'.

z(t+z)

	

FC+1 + FC-1 a z 	FC

This familiar three-term recursion relation is just Eq. (6) (01) and is

satisfied by PC (z) a Jl+z(x), among a great many other choices.11

Bowever, the continued fraction expansion, Eq. (10), specifies F  exactly

as Eq. (12).

Using simple properties of the Bessel functions it is easy to see that

0 < Jz+n
( z)/Jz+1 (z) < 1 if z > 0.

Therefore, Eq. (13) makes sense (i.e., Un is positive for all n) provided

only that U l is positive. Requiring U l to be positive, in the presence of

a linear instability at the fundamental ( rl < 0) enables us to locate the

threshold for saturating the instability using nor exact expression for Fl,

Eqs. (B and 9). We have observed that negative -;: ! Iues of F1 imply that the

numerical solution of the kinetic equation is nse bounded in time. We discuss

unbounded behavior in Sec. V.

O
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We will assume that U 1 is positive and conFider some physically

Interesting limiting forms of our expression for the equilibrium radiation

spectrum. The accuracy of our formula, Eq. (13), will be tested by comparing

Its predi ,tions with numerical solutions of Eqs. (3).

e

o.

E

i
t

^t

1 4:^f

d

r
fit'
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IV. Examples

It is noteworthy that larger values of z result in more efficient

up-scattering. When the scattering rate exceeds the dissipation rate at the lower

harmonics ( z > 1) significant up-sca ttering occurs, producing an extremum in the

spectrum at a harmonic of the fundamental. When z < 1 no such extremum

occurs, and most of the total energy resides at the fundamental.

We now consider the two limits:

A. z >> 1: Strong Un-Scattering

Here we assume that most of the energy in the spectrum resides at n << z.

Then using Debye's asymptotic formula for the Bessel functions ll
 and retaining

only leading terms in the small parameter, n/z, we obtain the following

expression for the equilibrium spectrum in this case.
J

Un 1 Ul n7/4 exp [3 d2 	 (1-n3/2)1

(15)	 1

In Fig. 3 we plot the equilibrium spectrum obtained by solving the

linearized Eqs. (3) numerically, in the limit of long time, with z = 10 3 and

i^
Yl=Yd' Notice that the energy densities are small enough to justify our

neglect of the stimulated scattering. (Here, as in Cases B and C below, we

take the dissipation to be due to convection, Yd = e/RWp , and ignore

collisional damping, for example.)
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Agreement between the numerical solutions and the predictions of our

formula, Eq. (15), is quite good and improves at the higher harmonics. In

particular, we call attention to the maximum in the spectrum at n a 12. The

formula predicts a maximum at

nm . (47212/3 z113

which is equal to 11.5 if z is 103.

Certain of the parameters used in Fig. 3 are characteristic of the solar

corona, although it is important to note that Langmuir wave energy densities

as high as those we are assuming (aWL = 0.7) have never been observed in

the solar wind, "here aWL <_ 10-5 is the rule. Such low levels of

background Langmuir turbulence will not produce the strong up-scattering

illustrated in Fig. 3, in a plasma the size of the solar corona.

It may, however be worth noting that larger (hypothetical) stellar coronas

could demonstrate strong up-scattering of fundamental radiation, even at weak

a	 levels of Langmuir energy density. To produce Fig. (3) with aWL a 7x10-6

we would require a corona 10 14 metres in radius, or 10 5 times the size of

the solar corona. (See the caption to Fig. (3), and recall that z - aWLR,

where R is the spatial extent of the plasma.)

Similar conclusions have been reached in a study of the diffusive limit

0
	

(i.e., the high frequency limit) of the kinetic equation by Colgate and his

co-workers. 12 As noted by them, the discovery of a maximum in the radiation

spectrum at a harmonic of the plasma frequency may have important consequences

6
	

for the theory of radio emission from quasi-stellar sources.

W

R

it

6

0
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B. z << 1: Laser-Plasma Interaction

When z « 1, we may ignore it in the order of the Bessel functions.

Expanding 3 (z) about z = 0 and keeping only leading terms in z we obtain the

following power-law formula for the equilibrium spectrum in this case.

U a U 1n .Z 2) n-1 nn	 ;	
(16)

For a physical example of this limiting form of the spectrum we consider the

observations of back-scattered light in a laser-target interaction reported by

Burnett and his coworkers. 13 In this case a strong source propagates through a

plasma of small extent. A typical photon remains in the plasma for a relatively

Mort time and so is not likely to be up-scattered. The result is a spectrum

that is strongly peaked at the plasma frequency. A value of z equal to 10-1
I

is appropriate for their experiment, and we have taken Y1 = ''d'

In Fig. (4a) we plot the equilibrium spectrum obtained by solving the

linearized kinetic equation numerically. In Fig. (4b) we plot the

corresponding result for the full kinetic equation, including the stimulated

scattering. Crosses indicate experimental results reported by Burnett et al. 	 {

Notice that efficiencies oberved in the laser experiment are greater than

i
those predicted by either the linear or nonlinear kinetic equations at high

frequencies. The scattering at these high frequencies is off Langmuir waves

I
with wave vectors clustered about u p/c. Thus, enhanced levels of plasma	 i

turbulence near this wave number (i.e., that wave number excited by the laser)
i

would account for the observed enhanced efficiencies, in the context of Raman

up-scattering.	 I ';

,.

e
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The nonlinear theory predicts smaller efficiencies than the linear

theory. The effect of stimulated scattering is to suppress up-scattering and

to concentrate a greater fraction of the total energy at the fundamental,

Wp , compared to the predictions of the linear theory. This result may be

inferred by comparing the signs of the two nonlinear terms in the full kinetic

equation (3a)i radiation at n+l causes U  to increase with time; radiation

at n-1 causes U  to decrease with time.' Thus, stimulated scattering

transfers energy to low frequencies, and so supresses up-scattering.

W,
	 our numerical results are compared with the prediction of our formula for

this case, Eq. (16), in Table I. Agreement with the linearized kinetic equation

is excellent at the third and higher harmonics, as it should be, since our

0
	

approximation to the scattering coefficients is very accurate at these harmonics. 	 }

i

In the experiment, the laser-source is so energetic that the stimulated 	
I

ell scattering cannot be ignored, and this implies that the back-reaction of the

Langmuir spectrum to the transverse waves ought to be considered as well, as

discussed earlier. However, the stationary spectrum, obtained by integrating the

G
	 nonlinear kinetic equation (3a) numerically, is reached very quickly. Starting	 f.,..

from no radiation initially, we find that a stationary spectrum is reached

within five pico-seconds, which is much shorter than the duration of the laser

C.	 pulse (two nano-seconds). This means that the predicted equilibrium Raman

spectrum is observable during the experiment. But it also suggests that the

back-reaction on the Langmuir spectrum may be ignorable, at least for times

C
	 of interest in this particular example.

0

6
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C. Coherent radiation from relativistic electron beams

Recently, radiation has been detected at high harmonics of the plasma

frequency during intense, relativistic beam-plasma laboratory experiments,2

The reported spectrum is relatively flat, continuous (i.e., no spikes), and

extends from w  out to at least 7 wp.

The lack of spikes in the spectrum may result from a broadband instability

and/or source of radiation excited by the electron beam, having a range in

frequencies on the order of wp . The theory could be genralized easily to

include such a mechanism for injection near w p . We expect the beam to excite

a linear instability at the fundamental, for example, via the parametric decay

of a Langmuir wave into an ion-acoustic and a transverse wave.

However, to explain a flat spectrum out to at least 7 w  in the content

of the present theory, we require a value of z at least on the order of unity,

z a W/vd > 1.

The Langmuir energy density, W L , is not measured in the experiment, so the

parameter W is undetermined. To ensure the validity of the weak turublence

theory used in this paper, WL must be less than one. Therefore W is bounded

above as follows (cf. Eq. (3b))

W c 9n (ve/c)2a

where a is less than 0.7, as explained in Sec. I.

I
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If the dominant dissipation mechanism is assumed to be absorption at, or

transmission through, the chamber walls, then v d = c/W pR, where R is the

effective length of the chamber. In this case we estimate the following upper

bound for z.

R	 z 
t 8Un (ve/c)2 (W A/c)

Typical measured values of ( ve/c) 2 and W  are 10 5 and 1010 s-1

e respectively. It follows that R must be at least 400 4 m to give us a value of

z that is greater than one and so to admit the present theory as an explanation

of the observations. The value of R depends on the rate at which radiation is

^.	 reflected by the chamber walls. If the walla do not reflect the radiation at
	

i

all, then R is the actual chamber length (1 m in the experiment). In the

limit of perfectly reflecting walls, R diverges ( v6+0); the plasma is

infinitely long, in effect, and efficient up-scattering is possible. In fact

Yd is bounded away from zero by other dissipation mechanisms, such as

eollisional losses.

is

It is unlikely that the effective length of the chamber is as large as 104

times the actual chamber length, so it is doubtful that Raman scattering is

responsible for producing the observed high-frequency radiation. It would be

interesting, however, to compare experimental results for a variety of chamber

wall coatings differing in reflectivity.

0;

0

r
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V. Unbounded Behavior

Here we briefly consider some interesting properties of unbounded

behavior resulting from linear instability at the fundamental. With the

addition of a growth rate at the fundamental (Y l < 0) it is possible for the

energy density of the radiation to diverge in time, eventually reaching the

nonlinear regime where the stimulated scattering plays an important role. Au

mentioned in Sec. IV, stimulated scattering tends to push the transverse

spectrum back down to low frequencies and thus to decrease the net rate of

dissipation. As the energy density diverges (Fig. (5a)) it does so faster

than exponentially (Fig. (5b)) with an increasing fraction of the total

energy at the fundamental (Fig. (5c)).

However, it is important to emphasize that even though the long-time 	 Cl

behavior is unbounded, the spectrum may be acceptably stationary for some
	 A

finite time of interest, depending on the particular problem. For example,

if the source is pulsed (along with the growth rate) it may shut off before 	 1

the stimulated scattering is activated.

There is a very interesting short-time behavior that is generally observed

in these "unbounded" examples which dramatically illustrates the effect of the

stimulated scattering on the evolution of the spectrum. In Fig. (5d) we see the

linear evolution responsible for up-scattering the radiation to a mean frequency

of just under Su p after about 0.7 seconds. (Except for the growth rate at

the fundamental, parameters are similar to those in the corona example of Fig.

(3).) At this point, the spectrum is as shown in Fig. (5e) and is on the



Page 27

brink of activating the stimulated scattering. When it does so, the nonlinear

terms push the radiation back down into the fundamental so that the average

fregeuncy swings back down toward wp.

A growth rate at the fundamental does not necessarily produce unbounded

behavior. The growth rate must be larger than a certain threshold value above

!	 which the linear instability cannot be saturated. The case depicted in Figs.

(5) lies just above threshold. Of course the equilibria reached in spite of

linear instability may lie well within the domain of the linearized kinetic

t'	 equation. In this case, the linear analysis correctly predicts the

characteristics of the spectrum. We emphasize that the shape of the spectrum is

independent of the source and growth rate at the fundamental (see Eq. 12, for

10	 example), these serving only to determine the overall size (total energy

density) of the spectrum.

M

d;

0
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IV. Concluding Remarks

We have obtained the stationary states of a linear kinetic equation that

describes the scattering of a source of radiation by a Langmuir-turbulent plasma

of finite spatial extent. Because the scattering proceeds via nearest-neighbor

Interactions only, it is straightforward to write the solution in terms of

unending continued fractions. These fractions provide an efficient algorithm

for calculating the equilibria as well as accurate approximations to those

equilibria in terms of simple analytic functions. The generalization of this

method to include the effects of nonlinear nearest-neighbor interactions

(stimulated scattering) is currently under investigation.
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Table I

n a) Formula b) Kinetic Equation

1 1.00 0.45

2 1.43 1.33

3 1.65 1.61

4 1.B1
1	 y

1.7B

5 1.92 1.91	 1
i

6 2.01
I

2.00	 !	 y

7 2.09 2.OB	
r

B 2.15
i

2.15

9 2.21 2.21

10 2.26 2.26	
J

11 2.30 2.30

^

Table It

I

-109101un+l/Un] vs n for a) the approximation to the spectrum given

by eq. ( 16), and b) the long-time asymptotic solution of linearized Eq. (3a).

z = 10-1 and physical parameters are given in the caption to Fig. 4. The

absolute error in both columns is ± 0.005.

0
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Figure Captionsi

1) Diagrams 0 Aaman scattering. k denotes photonsi q denotes Langmuir waves.

2) The (one-dimensional) Langmuir wave spectrum that we assume. W L ° (energy

density of Langmuir waves at q)/(4nnoTe),

3) Un vs n for parameters appropriate for a hypothetical stellar corona with

a higher level of Langmuir turbulence than is observed for the solar corona.

T  . 102 eV, u p - 6x107/sec, 4rn oTe = 2x10
-3 erg/cm3 , A = 109 m,

z = 103 , Yd - 5x10-9 , S = 100, aWL = 0.7.

4) Log10[Un/U1] vs n for the parameters of the laser-target interaction

experiment of Burnett at al. 13 Crosses indicate their results. T  = 104

eV, 
W  

= 1.78x1014 /sec, OnoTe = 2x.10 5 Joules/m
3
, z = 10-1,

A = 340-2 cm, Yd = 5.6x10-3 , S = 638, aWL = 0.7.

a) Linearized kinetic equation prediction.

b) Full kinetic equation prediction, including stimulated scattering.

5) Unbounded behavior resulting from linear instability at dp,

a) Total, dimensionless energy density (Z nun ) vs. time.

b) The logarithmic derivative of the total number density, U  : n, vs.

time, i.e., an effective growth rate.

c) The fraction of the total energy density that is at w  vs. time.

d) The average frequency, Z Un/(Z U./n], vs : time.

e) The spectrum at the time at which the up-scattering is greatest.

N

0
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'	 1

Te ° 102 eV, w  z 6x10 7 	 4up Te = 2%10-3 es9/cm3,

R	 168 m, 2 C 102 , Y1	 37.SUA^:-d, ra = 5x10-8 , S m lo,

aWL = 0.7.

J.
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Appendix A: Reduction of the Golden-Rule Kinetic Equation to One-Dimension 	

i.

ffi	 In terms of number densities for the transverse and longitudinal spectra,

<IEkI2-Br1SwkV - n 

0	 and

<IELI2> - L

8rA_pV - n 

C,

the well-known kinetic equation9 for the scattering processes described in

Fig. 1 is

®	 n ° J d3
k	 (2n)3

((	
G3) O

• iIM I Zd(w
k-Wk-q

-wp ) (-nknq+n
k-gngn

knk-q ) +
ll	

24	 6	
l

	

+ IM+I2d(Wk wk+q p) 
I-n nL+nk,n+nkO+ql}	 (Al)

where
2 -(W

M* I 2 = r2 (e) --P 
q2

me Wkwkfq

Here we neglect the thermal dispersion of Langmuir waves in using w
P 

alone for

their frequency. The polarization factors usually present in the matrix elements,	 j 1

®	 IM±I`, have been taken to be a constant and are suppressed. That is, we assume 	 Z lI

an unpolarized sc once. In Eq. (Al) we are also suppressing the vector notation 	 1

on the wave vectors k andTerms throu h 90	 4g.	 ©	 g	 give us the linearized kinetic 	 !'

equation; tezins OS and © provide the stimulated scattering. (Notice that we have

defined Fourier transforms in an arbitrarily large cube in x-space of volume V	 f

so that jEkI 2 and 
IEgLI2 

have the dimensions of energy-volume.) 	 f

4P

r



A2	 1

We assume that both the Langmuir and transverse spectra are strongly

peaked about a single direction in k-space and calculate narrow-angle

averages of the number densities about that direc 	 i. The result is expressed

in terms of the transverse wave number density as a ft,.iction of frequency,

d3k
N(^k ) E f nk d.)

k

For example, consider term o4 in Eq. (Al). Integrating over L'2k , we

have

r	 2	 n
1 dS2k ®tiJ d 3 q qk nq dOk wk+ 6(wk-wk+q+wp)

d^k	 k	 q

To perform the integration over a2k , define

Lk+^
and assume that the only contribution to the integral comes from a very narrow

neighborhood of e^ = 0; see Fig. 6. Then, ignoring the variation ICI that

results from a variation in ek , we have

Cd(cose^) = kd(cosek)

from a o = q2+k •g. So the integral over AQk is approximated by

kw
d(wk-w+wp ) 1 dS2

C
 n,

and we have	

r

J 
dQ (D lu d 3f I -11 2 kw w "E-k 

	
k -w &  P)

( ^S2k
k

Here n(^) E J df2^nC and is a function of ILl only; d 
3
	 d 3q, now, with k	 j

1
LQ

i

fixed. Integrating over the 6-function in w,, and using



INV

A3

W

a (w -w +w ) - a cE-^*)	 JRICINAL P@,'
k	 p	 c 

2 
^*	 OF POOR QUALITY

where c2 (C*) 2 =_ (wk+wp ) 2 - wP 	 leaves us with

^D
.

1 ^dZk	n(^*) (2 )2 j d.Q	 I 
►_kI2 n.

*_k
c kwk

From

(k$E*)cosec* - k2 a kIL*-kIcos6C*-k

and neglecting d(I&*-kj), we have

Q	 d(cose,*)	 I * kl d(coseC*-k)

or

to	 dQC* _ ^*	 d0c*-k

Thus

J(Di7 d	
(^*)2	 d2	 *_k 3 nL

^	 c2kwkV J C*-k ^^ I E*_k

The contribution to N(wk ) is obtained after multiplying this expression by

k2/V9(k)

where V9 (k) = dwk/dk.

using

w

V9 (k) k Vg (C*)	 = c2

we have finally

N(w) v 
nz 2 f d^^*_k IE*-k1 3 nLk	 *-k

c Vg (C*)wC* J

or

V

i

I

r1

^#	 1

i	 5

e



A4

2 ^fSW N (W ^ )	 r
I (m )	

P ^_ I c"-k 1 3 
J 

dStu nu

e	 c	 g•
Apli

as the contribution tha: te, -m4O makes to N(Wk).

Using the same tricks to evaluate the remaining five terms and assuming

that

W	 I d()) nu

0/Stu

is independent of IuI over

W	 W
<IUI< 33^

we arrive at the following kinetic equation:
_	 N(W )

N(Wk) + 2 w [I k—^+ I 3 + k-& I 3H(Wk 
2Wp)] W k

c	 k

_	 N (w +w )	 _	 N (w -W )

cW[Ik- E I3 
(Wk 

wp) + Ik-^ I3H(wk-2wp) 
(Wk-WP)  

1 +

+ m 
W 
k [Ik-E

+I2 
( W +w ) - Ik- 

12H 
(Wk-2u)p ) (W k^J

k	 k p	 k p

where H is the step function,

Ik-^ + I - ^ I (Wk`w'p )1 - [(wktwp)2-Wp

and

2	 ^{i	 W 
2 
v 

2

i e	 = . P _IM - F, (-L
m ) asWp	

Bn (4nnoTe)

N(wk ) has the dimensions of (time)/(lengrh)3.

Introducing

n = wk/Wp

a dimensionless energy density

'a

0
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A5

N 	 )

	

U(n) ° 2Kw w	
k	 ,	 OkIGh AL PH'^'^ 8W

k p 8'rtnoTe
OF. POOR QUALITY, 	 ^

and measuring time in units of wp-1 , the kinetic equation is written in the

following dimensionless form:

U(n) = -W(A 3+H83 ) U(n)/n + I

+ W(A3 	n 2 U(n+l) + Ha3 	n 2 U(n-1))
(n+l)	 (n-1)

+ V U
rn) (A2 U(n+1 2 - Hat U(n-1z)	

,	 (A2)
(n+1)	 (n-1)

where	 f,
I

o ._	 k'	
ve 

2 .P 3W	 P
- n gnn T ^ c

	

o 
	 (	 ) !	 )8 

	

v 2	 l:
V = 7T ( a )

and

7A , 8 = 1(n2.1)1-'f(ntl)2-113I
(+) (-)

Recapitulating:

	

r	

1

U (n) - --p diw N (Wk ) _ —g - 
J 
diw n k2 d

4ttnoTe k k	 4nnoTe	 k k V (k)g 
AR 

k	 a.

_L 
<IEk^2> k2

= OnOTe ! Eml V9 (k) k

^k
a

Dissipation will add a term to the right-hand-side of Eq. (A2):

-2y(n)•U(n) r

where -2y(n) is the rate at which transverse energy is removed from the system,
i

normalized to the electron plasma frequency. A source of radiation at k will add	 L

N

0

C
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a term to the RHS of Eq. (A2):

S(n)	
1

4nn T ^k S 
k2

k Vg (k) ask

"k
(Note,(Note, k - k(n) here.)

Thus, we arrive at Eq. (3a).
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