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Abstract

A model i{s presented to explain the highly variable yet low level of
Langmuir waves measured in situ by spacecraft when electron beams associated
with Type 111 solar bursts are passing by; the low level of excited waves
allows the propagation of such streams from the sun to well past 1 AU without
catastrophic energy losses. The model is based, first, on the existence of
large scale density fluctuations that are able to efficiently diffuse small-k
beam-unstable Langmuir waves in phase space, and, serond, on the presence of a
significant isotropic non-thermal tail in the distribution function of the
background electron population, which is capable of stabilizing larger k
modes. The strength of the model lies in its ability to predict various
levels ¢f Langmuir waves depending on the parameters. This feature is
consistent with the high variability actually observed in the measurements.
The calculations indicate that, for realistic pariémeters, the most unstable,
small k modes are fully stabilized while some oblique mode with higher k and
lower growth rate might remain unstable; thus a very broad range of levels of
Langmuir waves is possible from levels of the order of enhanced spontaneous
emission to the threshold level for nonlinear processes. On the other hand,
from in situ measurements of the density fluctuations spectrum by ISEE 1 and 2
in the vicirity of the earth, it is shown that measured 100 km scale
fluctuations may be too effective in quenching the instability. If such
strong density fluctuations are common in the solar wind, we show they must be
highly anisotropic in order to allow the build-up of Langmuir waves to the
observed mV/m range. Moreover, the anisotropy must be such that the strongest

variations of density occur in a plane perpendicular to the magnetic field.
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1. Introduction

Highly variable yet rather low levels of Langmuir waves have been
measured in situ by spacecraft when slectron-beams associated ;ith Type IlI
solar bursts are passing by; due to the low level of excited waves the
propagation of such streams from the sun to well past 1 AU is possible without
catastrophic energy losses. Detailed measurements at 1 AU {Lin et sl., 1981}
have shown clearly the simultaneous occurrences of a bump on tail electron
distribution function and a rise of plasma waves above the background level.
Yet they also reveal that this distribution remains for a long enough time
(t = 10 min) to drive the plasma waves to far higher levels (according to linear
instability theory) than the maximum values observed of a few mV m~! and
that, contrary to what might be expected from pure quasilinear theory, no
plateau formation of the distribution is evident. One possible explanation is
that various nonlinear wave-wave interactions such as decay instability, 0TS,
medulational instability, and soliton collapse are effective in limiting the
wave growth by shifting the waves out of resonance with the beam (Weatherall
et al., 1981; Grognard, 19B2). It should be noted, nevertheless, that the
threshold for such nonlinear processes to occur is about 10 mVY m-1 for

conditions prevailing at 1 AU.

on the other hand, the electron density has been observed to fluctuate
significantly in the solar wind. In sitv measurements of the density
fluctuation spectrum by ISEE 1 and 2 (Celnikier et al., 1983) reveal that a
variation §n/n as high as 10"2 may exist on the 100 Km scale range in the
vicinity of the Earth, while observations of interplanetary scintillation from

extragalactic radio sources {Cronyn, 1972) lead to an average value §n/n of
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the order of 10”3 (Smith and Sime, 1979)., Thus it Seems that the

background density of the solar wind, although not precisely known, is far
from being homogeneous 2nd that, when dealing with the Langmuir turbulence
associated with Type III bursts, typically at Km wavelength, t@e effect of the
inhomogeneities must be accounted for. In this paper we show that the large
scale density fluctuations may be extremely effective in shifting the waves
out of resonance with the beam and therefore in guenching the instability.
Pollowing an idea studied by Nishikawa and Ryutov in the context of laboratory
relativistic electron beams (Nishikawa and Ryutov, 1976) and by Goldman and
DuBois in that of the solar wind (Goldman and DuBois, 1982), it is
hypothesized that the effect of the inhomogeneities on the Langmuir turbulence
may be treated in terms of a diffusion process in phacse space. However,
unlike the latter authors, we take into account the non-Maxwellian background
electron distribution, which results in quite different spectra, and we do not
assume that the background density iluctuations are necessarily isotropic. 1In
fact, it will be shown that, if the high level of density fluctuations
measured by 1SEE is common and of long duration, the £luctuations must indeed
be highly anisotropic in order to allow the build-up of Langmuir waves up to
the mV/m range. Moreover, the anisotropy must be such that the strongest
variations of density occur in a plane perpendicular to the magnetic field.
This feature leads to a picture of the solar wind as composed of structures
elongated along the magnetic field axis in a way consistent with the ducting
considerations invoked by experts in radio-wave propagation (Robinson, 1983;

Duncan, 1979; Bougeret and Steinberg, 1977).
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2. MHodel

A heuristic picture of the wave diffusion process may be outlined briefly
for the reader familiar with particle velority space diffusion'(i.e. quasilinear
Vlasov theory). In the Langmuir wave diffusion, the plasmon (of wavenumber k)
plays the role of a diffusing particle in the usual quasilinear Vlasov
theory and the role of the external potential is played by the varying
refractive index associated with the density fluctuations (with a spectrum of

wavenumbers characterized by q). Suppose q"l { L_ where Lg is the

g
typical growth length of the Langmuir waves o that a spectral energy density

averaged in space W(k) may be used. Further, we agsume ¢ << k; then the
relative change of k is small in each scattering event and the prorcess is

treated as a diffusion. The diffusion in k-space experienced by the plasmon

may be estimated as D g k'2|%%|2 tac with g% the fluctuating force
. . , . dk  _ Bupe
acting on it for an autocorrelation time tac' Since 3¢ EEE_ R Vne sn/n q,

and tac iz of the order of the transit time for the plasmon across one density

; ~1 -1 - 2
fluctuation, t_ = (QVg)™" = (gkrpvg)™", we have D = vpe (87k) (kap) 2 (sn/m)2.

A more rigorous general theoretical derivation (Goldman and DuBois, 19B2)
leads, with the above assumptions, to the following Pokker-Planck equation for

the spertral energy density of Langmuir waves in phase space.

9. W, =2v W, + 8, D. 3 W, +8

where the diffusion coefficient is

Dip = vpe 0 J w2 C(@) g5, s(2k-0)

(2}
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and C(g) is the gpectrum of density fluctuations:

[ ar2m? eta) = (sn?/n?) . -

The diffusion coefficient, Eguation (2), incorporates the assumption of elastic
scattering. That assumption is justified when the propagation velocity of the
density inhomogeneities is small as compared to the group velocity of the plasmon

Vg = 3 kADvE. Note that in Equation (1) we have added an electron spontaneous

emisgicu ternm Sk'

By assuming that the problem displays an azimuthal symmetry around the

beam axis we may rewrite Bquation (1) as

at Hik,e) = ka Wik,0) + (sine)’lae D(k,e) sine BgW(k,0) + S(k,9)
(4
where D(k,8) is derived from Equation (2):
Dik,8) = w3 sv? 1/k? 1/7(120%) a(e)
pe’ e (5)
with
[ ) &6 cos%8/sinle
a(e) = d(cos &) C(® - ~
(sinzesin 6—00526c052611/2
(6)

where 5(6) = J- dg q3 C(q,é) and I is the domain cosé {|sineg|.
Note that the diffusion occurs in angle only as a result of the assumption of

elastic scattering.
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The growth rate (or damping) Yy and the spontaneous emission turm 5,

in Bquation (49 depend on the actual distribution function. We model them by

f(v) = n/(2nve2)3/2 exp (- vz/zvez)
+ g 5vT5/4n v'a H(V-VT)

3

+ nb/(Zn)3/2 av~" exp {- (g-gb\2/2av21 .

(7)

Here B is the Heaviside step function, o and n, are the fractions of
electrons in an observed non-thermal electron tail and in the beam feature
(relative to the bplk); 4v is the beam velocity spread. The shape of the
tail simulates a non-thermal component, such as that observed by Lin et al.
(1981) prior to and after the passage of the beam. We assume that it is valid
down to a velocity v ¢ vp = Sv,. Since the beam velocity vy = 60-90 vy,
waves with a phase velorcity Vph < Sve will not be considered. Then the
presence of a step at Vp in the distribution function has no importance, and
a smooth matching of the tail to the bulk is not reqguired. It should be
mentioned here that attempZs have bcen made to simulate the slight measured
anisotropy of the tail associated with a heat £lux (Gurnett et al., 1979);
these have not led to significantly different results of concern to us, so

that complication will be omitted in the following.

The growth/damping rate Yk consists thus of two isotropic terms due to
the Landau damping from the bulk velocity distribution {denoted by M for

Maxwellian) and from the tail (denoted by T)

M) - 172 3 2
v B = (/8w s kan)” exp [- 172 (1/7kX)€)
pe/ (K3p D (Ba)

——
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+({T) o _s5u/4 Vpe Np (VT/ve15 (kxD)S

(8b)
and of an anisotropic term due to the beam
{:D)] 72,3 3 50,2 2 2
¥ e (4/B) openb/av 1/k (vb cose-upelk)exp[—1/2Av (vb cose-wpe/k) ltec)
Similarly, the spontaneous emistion is compesed of two isotropic and one
anisotropic term
sM) = 5,/ mvg '
(%a)
{(T) -2 .2 3
8 = (5%/12} w_ " mvo n '
(5n/ pe ®Vp Pp (kvy) (3b)
|
{b) . 1/2 2 2 . 2 2 e
g fn/2) Uhe mprejk) np/kav exp [- 1/24v© (Vocose - Wpe/k) 1 (5c)

When the rate of diffusion of the Langmuir waves out of unstable regiens

into stable regions of the phase space is high enough, Equation (4) has a
stationary solution. 1In order to study the stability boundaries in parameter
space as well as the level of electric field, Equation (4) has been solved

numerically in the steady state limit for various parameters.
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3. Results and Interpretation

3.1 Numerical Results

The Fokker-Planck Equation (4) displays two kinds of solution. Either
the rate of diffusion of the Langmuir waves out of unstable regions into
dissipation regions of the phase space is rather small and the wave energy
grows up ad infinitum as in the usual linear theory, or the rate is high
enough in order that the wave energy saturates, and Equation (4) then has a

steady solution.

A typical steady solution may be seen in Figure 1. PFigure la displays the
contours of the wave energy density spectrum wk/Te in the k-e plane of
phas¢ space. Note that the anhanced spontaneous emission due to the
non-thermal tail, We/Tg & S(T)/(-Zv{T)Te), would lead (with the
parameters of the Pigure) to a spectrum of order 102 in the region of phase
space displayed. Thus, because of the diffusion, even the backward
propagating damped modes (6>n/2) have a comparatively high level of wave
energy. Let us now consider the total electric field associated to a

steady solution,
3.2 Properties of Steady State Solutions

On a sphere of radius k in three-dimensional k-space, energy source
regions are connected to energy sink regions by angular diffusion. Therefore,
it is possible to write a balance equation after integrating Emmation (4) on the
sphere. FPor that purpose we define the two averages
+1

o> = 170, '[1 d(cos8) v (e) W(k,0) (101



where ﬁk = J.l d{cose) W(k,8s) ,

and

_ +1
v =12 [ dlcose) ve) .
- (11)

€inee the angle average of the diffusion term vanishes, the balance equation

may be written as

W= S(k)/(=2¢v, )
k k (12)

Where the diffusion coefficient D(k,e) is large, a very weak angular
gradient in the spectrum is sufficient for the diffusion flux to remove the
wave energy irom regions of sources into regions of sinks. The gpectrum iz
therefore approximately independent of © so that <vk> = ;k' A key
point of Nishikawa and Ryutov (1976) was to show that ?kco for any
distribution irrespective of the presence of a beam. Where D(k,e) is weaker,
the spectrum begins tc¢ peak in angle at the energy source regions where

Vk(0)>0.

This can be seen from numerical solutions to the steady state diffusion
equation. In one such solution, shown in Figure la, the Langmuir energy has
piled up in the forward propagating medes (e<n/2) which are in Cerenkov
resonance with the positive siope of the beam. Pigure lb displays clearly the
angular gradient of the spectrum that may occur at some wavenumbers. A a
result of this spectral behaviour, the weighted average defined by Eguation (10)

emphasizes the contribution from the forward angles, for which v, (€)>0, in

:




relation to the wider angular range, for which vk(e)<0. By contrast, in

the average, ;k' all angles are weighted equally. Therefore

Y, <<y, )
k™™ Tk . (13)

This inequality becomes stronger for more highly peaked epectra. In
fact, <7k) may go through zero, in which case a Lhysical steady state
solution (cf. Equation (12)) no longer exists, (i.e. the growing Langmuir waves
cannot be saturated.} A discussicn about marginal stability is deferred to

the next section.

Let us assume here that <v ><0. Then combining Rquations (12) and (13)

one has

§(b),g(T), glM)

(14)
where ﬁﬁi“ may be easily calculated from Egs. (8)-(9) and evaluated for
various paramebers. ﬁﬂi" turns out to be comparable in magnitude to ﬂk,

In Table I values of vég;- ;(h), Y(T), E(b), S(T) and ﬁgin/T are reported

over a range of wavenumbers for the "nominal™ beam and tail parameters.

When one compares the level of Langmuir waves determined by spontaneous
emission without the beam to ﬂﬂi”, one notices that the angle-averaged
spectral energy density is substantially enhanced due to the beam over a range
of small wavenumbers only where the tail is not important; from Table I and

Equation (14) it is seen that above kAD = 5-10"2 the beam does not play any
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role. Thus, even {£ the beam-rasonant spectral energy density, ﬂk/T, is
enhanced by as much as 104 through optimum choice of parameters, the effect

on the total enery, density {s very weak. An upper bound to the enhancement

of the energy density weruld be

sul0? 2 /(92 4053 “2,0,3
[ -2 st tag?/2nd) - 10Y/m] = 21072 /mag

so that the total energy density would be 22/(4nnT) = 5-10'2/nzg and
the electric field only 1.5 uV/m for the solar wind parameters at 1 AU

(n = 10 cm'3

v Ay = Bm, T =13 eV). This is, of course, far too small to
account for the observations. We are led to conclude that the rise of plasma
waves measured when the beam arrives is not due to an enhancement of the
spontaneous Langmuir fluctuations.as implied by Equation (14) but to growing

waves which cannot be saturated by the processes considered.

A comment should be made about the results obtained in a previous study
(Goldman and Dubois, 1982). In that study the rvole of the electron tail was
not considered, so that the beam enhanced modes could extend up to kAD = 0,1%,
which resulted in an enhancement of the total energy density of tuwo

orders of magnitude, and an enhancement of one order for the electric field.

3.3 Criterion for Steady State Solutions in the Presence of Isotropic Density

Fluctuations

When the density fluctuations are isctropic, Equation (6) is easily

integrated, and the diffusion coefficient takes a form which is independent of o:




Fagg .3

3
Dygo = Upe/24n (1/kap)? 1/k [ g q° C(a)
o n/12 upe/(kxnjz q/k <5n2/n2>

3
= D_/{k\p) '
LR - (15)

where q i8 a typical wavenumber associated with the fluctuations. Due to

the k™3 dependence, {t is expected that unstable modes with a high phase
velocity will be more quickly diffused out of the unstable region than will
lower phase velocity modes. Thus, the guenching of the instability

by the density fluctuations is expected to be much more affective for the high
phase velocity waves. In fact, this difference in behaviour {5 even more
pronounced because of the angular dependence of the Langmuir spectrum at
different k. That feature should become clear for the reader from the

following model.

Let us consider the energy source and sink angular regions determined by
the beam or. a sphere of fixed radius k. For that purpose we rewrite Equation (B¢c)

and Bquation 89(c) in terms of the variable ¥ = cose with % considered as a

parameter
vy = (2 ngy rav® W22 (- o sk
X exp [-vﬁ/Zsz (x-Upe/kvb)z] (16)
5 (x) = (72)1/2 ne2 kav mee /)
X exp [ -v§/2bv2 (R-Upe/kvb)z ] (17)

The behaviour of the above expressions is characterized by three particular
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angles: X, = upe/kvb where ?(b)(xoj = (O and S(b)(xoi i5 maximum,

“M = “pe/kvb + Av/vb where v(b)(xul 15 maximum, and By = upe/kvb - Av/vb

where v(b)fxm) iz minimem,

In the region K <x<l one has the power input

1
=4n J Do wendx + ot

P
in
L (18)

1

with o* = 2n | s™®)(xyan0

%o

while in the region -1<x(xo one has the power output

b4
Pyt © ~Am j:l"v“’)rx) (%) dx - o

(19}
with o™ = 20 7 °s®) () ax > 0. »
One necessary condition for stability is
]
P, =P .
in out (20)
1
On the other hand, the flux of energy from one region to the other,
= el an - 3,3 ,4_,2, aH
o = 2n(l xo) D(x) an I}zo =20 D) (vy/v )%, (1 xo) T lxo (1) o

mvst balance the input of power,

(-i
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which represents a second requirement for stability.

In order to form analytic criterias for steady state, we now model the
spectral shape, according to our numerical experiments, by a Maxwellian
centered on axis and a flat bhackground (cf. the numeriecal result in Figure 1lb

for an example):

. 1 _ 2
Wxy = W4 ol exp [ -5 ((-1)/(2-10)° ] 21

with the two free parameters Nm adn aW. Then we may rewrite Equation (20) as

(the detailed calculations are left for the Appendix)

sF ¢ 117/ [ 1-exp [-vi/2avi(1-x»217] - 0.17 201

where the swelling factor SF is defined as the ratio of the peak to bottom

values of the spectrum SF =1 + Aw/wm,

Thus the very fact that the energy sink and source angular regione are
finite on the sphere of radius k, and in a definite ratio, leads to a maximum
bound of the swelling factor. As the marginal stability boundary is
approached, the spontaneous emission becomes negligible and SF is equal to its
maximum bound. Now, as the wavenumber k increases, x = 'pe/kvb decreases
o that the maximum bound decreases too (cf. Eguation (24)). The spectrum is not
allowed to be as highly peaked for large k as it is for =mall k. However, a
certain amount of peaking is required in order for the flux ¢ to balance the

input of power:; Equation (22) leads to (cf. Appendix for details)
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0.48 D /fu__ (v, /av)3%, (1ex,)

SF 51 4 -0.85 ) -1
ny, (v /ov) [1 exp(- (vb/24v J(1=x,) 1] (25)
Let us define for a given wavenumber kK,
w82 (B gy = (n/8e)l/2 ny /(kav)z
(26)
Combining the inegualities (24) and (25), an upper bound on v;b; for a
steady ntate solution to exist may be written as
+B) ¢
max ~ crit(" ) (27)
Wwith
(v v P (v, Jav) x3(14n )
~ b/ Ve b ) 1)
cr1t(“ 1= 0.22 3 3 3
exp{-(vb/ZAv )(l»xo) ] -1
(28)

From the viewpoint of numerical solutions of the diffusion equation it is

to increase be) by increasing the

possible, for & given k or Xy ma s

strength of the beam ny to a pumerically determined maximum value, rcrit‘“o}'

where the marginally staticnary boundery is reached and beyond which the

spectrum grows without (linear) bound., Due to the exponential dependence in ¥

displayed by the RHS of inequality (27) rcrit(“o) is expected to fall-off very

rapidly with increasing k.

In Pigure 2 the exact Torit obtained by the numerical solution of

Bguation (4) for given sets of parameters characterizing the beam has been



plotted as a function of kvb/upe B llxo. The agreement with the

expression for ; . given in (2B) is satisfying. The rapid fall-off

cri
with increasing wavenumbers or decreasing phase velocities is evident. By

comparing with the relatively slow k'2 decrease of v(b)

max one EBEIS

that, even if the small k modes with the supposedly largest growth rate are

for larger k the

.. (b)
stabilized because, for those k, rcrit >*max'

inequality may be reversed so that the beam instability ie then only partially
stabilized. Two important points are worth stressing about those "residual"
unstable waves. As compared to the fastest growing k-mode with phase velocity
Up/k B V-6V and @ = 0, they have a smaller growth rate given by Equation

(26) ant are obligque, coge = ¥y < 1.

Let us now turn to the role played by the nonthermal tail. In the first

(T

place, the associated damping «~ increases quickly with increasing wave

number (cf. Equation (Bb)). Due to that, the stability boundary, rcrit‘
takes a V-shape as plotted in Figure (3). The second effect caused by the tail
is less transparent. It may be understood however following the same line of
reasoning as before. On a sphere of radius k the nonthermal tail reduces both
the energy source region and the strength of the source; correlatively the
energy sink region as well as the strength of the gink is inecreased. Thig
gives rise to a greater peaking of the spectrum. The flux of energy from the
source area to the sink area can then be more important. Therefore, the input
of power can be raised, so that T.ri¢ i5 upshifted. Por the plot we have

used a diffusion coefficient D = 3-10'12kan)'3; it corresponds to

a8 fluctuation level of gn/n = 5.10°% in the range q"1=100 km, which is

low compared to levels measured by ISEE. The parameters of the tail have been

titted from the non-Maxwellian component observed by Lin et al. {(1981),

anvT,vels = 20. In that situation a beam of parameters nb=5-10'7,

ik




Vb/veaso. av/v, =20, is completely stabilized (cf. vég; in dashed

line). VYet, were the beam 40% denser, nb=7.10“?, a small range of k

would be unstable (dotted line).

In general, three different regions of k-space must be considered. 1In the

small k region, k<k,, +B) is stabilized by the diffusion. ky may be

expressed by using Bquation (2B) for evaluating r ¢ in the condition

ori

- (b)
Terit(ky) = vpax(ky)

Let Xy = wa/klvb; by means of Equation (26) one may obtain the implicit equation
for *y
. 2 3 1/2
Kl =1 - ./Zav/vh {Ln[l + 0,58 DOIUPEVbAV/Ve I/nb xlfl+xl)] } (29)
In the high k region, k)kz, y(b) is stabilized by T(T]. k2 is defined
by ‘
(T) (b)
Y (k2) ® “Ymay ‘“2’
or, using Equations (Bb) and (26)
5 5 w2/ Al 177
ky Ap = (0.10 npvg/Rgvy vg/ave) (30)

In the intermediate region, k,<k<k,, there might remain weakly unstable modes
50 that the beam instability is only partially quenched and therefore slowly

growing electric fields are present. Then, either the instability saturates

-
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because of some weak nonlinearity such as decay off ions, or simply because

after a mhile (t % 10 min) the waves enter in Cerenkov resonance with the
negative slope of the beam due to the advection of the latter. Depending on

the actual parameters, the relative position of the two curves_rcti

végi may change so that various growth rates, and therefore levels

& and

of measured electric fields, are expected. In Pigure 4 we display the change of
rcrit brought about by: a) an increase in the level of density fluctuations;
b) a downshift of the beam velocity and c¢) a decrease in the strength of the

tail. For comparison the 1 t ©f Pigure 1 is indicated with a dashed line.

cri

We are now ready to write a sufficient criterion for linear saturation by

letting k1>k2 and using Equation (29)

Kov, +w
—_—2hne 1/2
kov,-v2k, v {131[1+0.58 (Dy/upe ) (8V/V,) TR ] } Cupg
pe'b' "2D (313

where k2 may be computed via Equation (30).

It is important to note that when the strong level of density
fluctuations actually measured by ISEE is used to evaluate the coefficient Do
(D, = 1078 "pe)' the above inequality is satisfied for any conceivable
beam associated with Type IIIl bursts. Thus, the instability is definitely

saturated linearly by the diffusion process.
3.4 Anisotropic Density Fluctuations; the Quest for Instability

At the end of Section 3.2 it was shown that the level of electric field is

hardly raised above background when dealing with steady state solutions to the
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diffusion aquation. On the other hand, it has just been claimed that the
density fluctuations measured by ISEE were B0 strong that a steady state
solution iz justified. Therefore, we are faced with a dilemma: either the 3
hour measurements on September B, 1978 by ISEE were quite exceptional and net
at all representative of the vsual solar wind, or something is basically wrong
in the model developed. We suspect that the difficulty lieg with one
assumption which is not supported by observational evidences: the assumed

igotropy of the density fluctuations.

Let us assume that the density fluctuations split into two regions (cf,

Figure 5a)

Icosal > a

Cl |cose! ¢ a 0<a= cos50 <1l
Then Equation (6) may be easily integrated to yield

Q(8) = H(x-5ine) Cin/2
. \ X P i 2..1/2
+ H(Bine-u) {C”n/2+(C_L-CH) [ Arcsin(a/sine)-u/sine(l-u"/5in"8) ] }

In case of isotropic density fluctuations with the same energy one obtains
aiso = ﬂlz [cl' + q(cl'cl‘)]

Therefore, the relative reduction of the diffusion coefficient are)/uiso

may be evaluated at some angles.

"
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Let us imagine for example that the fluctuations are concentrated in a
plane perpendicular to the beam axis, C|| z 0, a <¢ 1 (cf. Figure 5c). Then
ﬂfn/2)/niso = 2u2/3 <¢ 1, namely the forward propagating modes are
nearly isolated from the backward ones. The forward modes are generally
destabilized by the beam whereas the backward ones are always damped-so that
the unstable domain of phase space is cut off from the one of absolute
damping, and the beam instability may not be expected to be completely
quenched. On the other hand, if the fluctuations are concentrated along the
beam axis, Cl =0, o £1 (cf. Figure 5b), one has af°)/niso = 0, namely

the parallel modes do not experience any diffusion at all and growth pursiste.

Of course, from a physical point of view, since the beam axis coincides with the

magnetic field axis and because the diffusion of the plasma particles is
inhibited by the magnetic field, the inhomogeneities in density are more

likely to be oriented across rather than parallel to the axis,

in view of that we introduce the following model of anisotropic density

fluctuations

C(q,8) = plq) a/v (cos2e+a2)™l a <¢1
(32)

where p(q) is determined from the ISEE 1-2 experiment {(Celnikier et al., 1983)

p(a) = 2.5 1076 (@ 7% 9.107% < oy < 7207

D
By substituting Equation (32) inte Equation (6) one obtains

ace) = 7.6 10710 assin?e [1 - a/(a’+sin®e)l/?]

Thus the diffusion coefficient (Equation (5)) reads

-

e i -
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-9 3 2 2, yn2qy1/2
D(k,0) = 6.4 1077 w__ (1/kn)° a/sin®e [1 - a/(a“+sin®e)
pe (3/kMp [ ] (33)

The Fokker-Planck equation has been solved numerically using this diffusion
coefficient. In Pigure 6 it may be seen that the anisotropy in the density
fluctuations leads to a concentration of the Langmuir energy in the forward
propagating modes. Now, if the anisotropy is pronounced enough, the flux of
energy at large angles between the source and sink regions may be too small to
balance the power generated. The largest angle we have to consider is given
by cose = wp/kzvb where kj is defined in BEquation (30). On the other hand,

it has been shown in Sec. 3.2 that with the parameters, n, = 10”6,

vy = 90 v, av = 20 v, and nglvp/v,)° = 20 a diffusion coefficient

el

D 0o = B-lO'lszkD)'a is too small to provide enough diffusion to

is
guench the instability. Therefore, we may expect to recover this situation
for a < 8.10"12/6.4 10'9-(1-(up/k2vb]2) = 1073, The numerical

integration of the Fokker-Planck equation indeed shows that for a ¢ 5.10™4
the fluctuations are unable to quickly remove the Langmuir energy from the beam
unstable region of the phase space, and the wave develops unstably in spite of

the strong general level of density fluctuatiens. Only in this case, may

electric fields in the mV/m range be expected (conszistently with observations).
Thus, although measurements of both electric fields in the mV/m range and electron
density fluctuations in the 1':)"2 range have not been obtained simultaneously,

our results strongly suggest that such density inhomogeneities of the solar

wind must be elongated along the magnetic field.

¥)
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4, Conclusion

This study of the role played by the large scale density fluctuations of
the solar wind i{n relation to TIIl electron streams leads to the following

conclusions.

1) 1t is possible to understand the rather low level, intermittent
character of the beam-excited Langmuir waves observed in situ, by considering
the background density fluctuvations., 1In an environment where the latter are
strong and isotropic, the growth of Langmuir waves is quenched and the
electric field is hardly raised above its background value. However, when the
density fluctuations are smaller, slowly growing Langmuir waves are present,

which may result in an electric field in the mV/m range.

2) Another explanation for the mV/m Langmuir fields observed is as
follows: 1If the relatively small scale density inhomogeneities of the solar
wind (sn/n ~ 10’2, q"1 - 102 kms) are assumed to be highly anisotropic
and elongated along the magnetic f£ield in a way consistent with the large
inhomogeneities (sn/n ™~ 1, q"1 ~ 104 kms) invoked for ducting the radiowaves
through the corona, then we have shown that they are relatively ineffective in
scattering (diffusing) unstable Langmuir waves into stable regions of k-space.
In this case, one may turn to nonlinear and/or quasilinear processes for an

explanation of the saturation mechanism.

-
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Appendjx: Evaluation of o, Pin' Pout with a model of spectrum

a) Flux of energy

Substituting the ansatz (23) into Equation (21) one obtains

¢ = 2n/ve DO (vbve)3 (1+x°) xg &,

b) Input/Output of power P P

in' “out
In order to simplify the integrals in Equations (18)-(19) we replace the

Maxwellian shape of the spectrum by a box with the same area:

ai) = Nm +0.85 W  for wx,

Wm for x<x°

(A2)

The integrals are then straightforward,

2

+ 3/2 wvir2avi(l-
P, = ot & vand/?n upe/(k sy {1-exp[ vb/26v (1-x) ] } (W +0.856W)

_ 32, 2 ~v¢/2a 2r1+ Wy,
pout ® -0 4+ V20 b pe/(k AVV ) [1 “Kp[ vb/ v x ) J } (Aa)

Using these expressions, the condition (20} may be rewritten in the limit
vp/avarl, x50,
(1+0.85 aW/Wp, {1-exp[-v§/2w2 (1-x )2] 1
1 - (o*407) k2avv,/(v2n3/2 v ge b
Bence the inequality (24) where the equality is reached when the spontaneous

emission terms hecome negligible. The other inequality (25) may be

G
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obtained in the same way by using Equations (Al) and (Al).



Figure Captions

Fig._1 Langmuir spectrum when the diffusion is sufficiently strong to quench
the beam instability by diffusing tae waves out of the unstable
regions of phase space into stable ones, yet not strong enough to
prevent a pronounced peaking of the epectrum in the energy source area.
a) Contours of Nk (unit Te) in the k-6 plane; the Langmuir energy
piles up in the forward propagating damped modes (e6<n/2) which
are in Cerenkov resonance with the positive Elope of the beum and
diffuses into the backward damped propagating modes (edn/2).

b) W fe) in unit of T, at kvp/uge = 1.62; note the substantial
angular gradient for exn/4.

The parameters used are: Dy, = 5‘10'7, vy ® 90 vy, av = 20 Vas

nT(vT/ve\S = 20, angd i{sotropic density fluctuatjons with

sa/n = 5.1074,

Fig. 2 Marginal stability boundary of the beam growth rate Tepit 25 8

function of kvb/w = x;l {cf. Bguation (28)). 1If, at a given

pe
the growth rate of the Langmuir waves maximised over

() 5
max

kvb/upe,

the angle o, « 0.38 nb/(kav)z, is smaller than

rcrit (kvb/wpe), the instability at that wavenumber is quenched.
In the plet chouwn, the density fluctuations are chosen isotropic
with tn/n = 5.10™" and the electron distribution function consists
of a Maxwellian background without tail and of a beam with varying

parameters (solid line: v, = 890 v, av = 20 v ; white circles:

Vb = 90 Vg av = 30 Voi CLOSBEE: Vi = 60 Vg, &V = 20 ve).




- B

The rapid fall-off of T_... is contrasted with the slow k™2

cri

decrease of végi indicated in dashed line for a beam of '

ny, = 5-10'7. Vp = 90 v,. &v = 20 v,. Thus, due to the diffusion,

e'
waves with the fastest growth rate may be stable while waves with bigger

wavenumbers and slower growth rate are unstable.

Marginal stability boundary Torit 85 in Figure 2 except that a
nonthermal tail in the electron distribution is considered. The
parameters of the tail have been fitted from the nonthermal component
observed by Lin et al., 1981, ny(vp/v,)> = 20. In that situation,

a beam of parameters n, = 5-10'7. Vp/ve = 90, av/v, = 20,

is completely stabilized (cf. végi in dashed line). Yet, were

the beam 40% nmore dense, n, = 7-10'7, a small range of kX

D
would be unstable (dotted line).

crit for various parameters. The marginal stability boundary
rcrit of Figure 3 is indicated in the dashed-line for comparison
purposes.

- . 5 _ -3
a) v, = 90 v, &V = 20 v,. dp(Vp/v,) 20, s&n/n =1.5 10

el
b) same as for a) except vy = 60 vy

c) sameg as for a) exoept nTrvT/ve]5 = 2,

A simple model of anisotropic density fluctuations. The function

G(o) (cf. Equation (6)) is assumed to be at twe levels.

Spectrum of density fluctuations a) and corresponding spectrur of
Langmuir waves b). On panel a) the equilines of Log (q2 (sn/n]21q1

are plotted in the qg-¢ plane. The density flurtuations are assumed



to be strong and highly peaked in the plane perpendicular to the

beam or maghetic field axis (cf. Equation (19) with a = 7.107%). ;
On panel h) the equilines of Langmuir energy are plotted in the

k-6 plane for the “nominal" beam-tail parameters (nb = 10'6,

Yy, = 90 v, &V = 20 Vg, nplvp/vg)® = 20). Note the substantial

concentration of energy in the forward propagating modes.

o g



"nominal" parameters
for the beam and the tail

Table for Detalled Balance

n, = 10'-6 Av = 20 v, vy = 90 v n.v 20 v:
kAL Yé:i/mpe (T)/wpe 7‘bbm%e E(b)/Tem S(T)/Tew W, /T

1.11 1072 0 -1.310°% ~1.410%  6.4107 351070 2.2 10°
1.3 1072 —2.9107° 831207 5.910° 5710° 3.410°
1.5 1072 3.910° -6.0120° -3.91077 4.51077 &.910° 5.1 100
1.7 1072 3.010° -1.11077 181077 3.2100 13100 6.0 100
1.9 107° 2.410° -1.9107 -s.a10° 25100 1.8107% 4.7 103
2.2 1077 1.810° 41107 -3.010° 1.610% 281070 2.2 10°
2.5 1007 1.410° -7.7107 -1.210°% 1.1107% 4110 970
3.0 107 9.8107 -1.910° -3.5107° 6.4 10 7.0 1079 350
3.5 107° 7.31077 -4.1107° 1310 411070 1.1 1073 185
4.0 1072 5.61077 -8.010° 5510 1.710% 27107 121
6.0 10° 2.510° -6.110"> -5.810 "' 8.110°° 5.6 107 47
8.0 20°° 1.410 «2.6107% 15107 34100 1.4 2072 26
1.0 100 9,110 <7.910% -s.8 1072 1.7 1070 2.6 1072 17

DR g R




RUNNING HEAD: Quenching of the Beam-Plasma Instability by Density Fluctuations

MAYLING ADDRESS: L. Muschietti
Department of Astrophyical, Flanetary & Atmospheric Sciences

University of Colorado
Campus Box 391
Boulder, CO B80309 USA



¥

MARGINAL STABILITY BOUNDARY

7~
/
[
-6 |
iI0 — (b}
: ~ ,\th:'x/mpe
I ™ -
UNSTABLE
O S
16"
X
STABLE
-8
10
1 I
0.9 2.0 3.0




POLAR ANGLE 8

T [
(a)
3dm/4 |— ]
gl 28
o9 Slo
Oim mle
T/ 2 -
m/4— -
O
oL ITJJJ;\ |
1.0 1.5 2.0
kvb/“’pe
BOO0OO
70000
60000
50000
40000

)



S,

0.9

2.0

3.0 kVb/wpe



MARGINAL STABILITY BOUNDARY

1-'t:ritl“'pe
UNSTABLE

7™~

/

|
-6 |
10 |

|

|

Yﬁ,?c),x/wpe
STABLE T~
0 -
-8 e
0]
| |
0.9 2.0 3.0 |
ka/wpe !



7 %1074

dm/a

(S k-
8 319NV dVv10d

i T T . _ _ _

e 0 0
e e Jn/m

o

~<

O

o

E —

m

* =

-

oz

Ll

| i

3 3 | &
g 2@% 3 o
W Jj— MY @O w _— —_—]
U\K\\\aﬁ//}r o _ m _ =

»
Ry N ©5 F N Ny N ©
E k k

6 319NV HV10d



- =
&

AHLIWWAS TTVHLNWIZY




"

L

MULTIPLE RAMAN UP-CONVERSION OF RADIATION FROM
PRE-EXISTING LANGMUIR TURBULENCE

D. Russell, M. Goldman, and D. Newman

September 1984



WLV &

bstract

We consider the egquilibrium states described by a damped and driven
kinetic equation governing the evolution of the spectrum of radiation in a
stationary Langmuir-turbulent plasm2. Both Langmuir and transverse spectra
are assumed to be one-dimensional in wave-number space., A source of radiation
at the plasma frequency and a uniform rate of dissipation at the higher
harmonics are assumed. The radiation is characterized by an effective
temperature, 2z, proportional to the Langmuir energy density and inversely
proportional to the dissipation rate of the transverse waves, If z < 1 the
equilibrium photon spectrum decreases with increasing frequency as a power law
inz. If z > 1, photons scattered out of certain regions of phase space may
return at a significnat rate, and the spectrum is found to have a global

maximum above the plasma freguency, The location of this maximum is

o’
proportional to z!/3 Y which may be many times the plasma frequency,
Applications to a laser-plasma experiment and to the solar-wind environment

are discusged,



I. Introduction and Model Kinetic Equation

Although there a number of important applications, little is known about
mechanisms for producing radjation at frequencies much higher than the maximum
plasma frequency in non-magnetic plasmas. Radiation at high multiples of the
plasma frequency has been observed in laser~-pellet experiments.l in
relativistic beam-plasma interactions,2 and in low-energy beam-plasma
interactions.3'4 It is also thought to play a role in astrophysical

phenomena.5

In relativistic beam-plaszma systems, it has been suggested2 that the
high energy of beam electrons could be tapped by Compton-ronversion of a
besam-slactron and a plasma wave into a high-energy photon togother with a
lower-energy electron.© Recent work shows that the growth-rate for this

process is vory low for a wide variety of Langmuir spectra.7

Radiation at twice the plasma frequency can be produced by coalescence of
two Langmuir waves, and the process appears to be well-documented by examples
of radio-wave emissions from the solar corona.® Bowever, the emissivity is
proportional to the square of the intensity of the Langmuir-wave spectrum, and
the process is therefore not very efficient unless the Langmuir turbulence iz
quite intense {(Langmuir energy-density on the order of the particle
energy-density). Emission at the n-th harmonic of the plasma freguency by
n-plasmon roalescence is proportional to the n-th power of the Langmuir wave
intensity, so that this process would be still less efficient at weak levels

of Langmuir %‘srbulence.
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Another alternative is to begin with radiation near the plaema freguency

or its second harmonic, produced by instability or by external sources, and to 1
allow it to Raman-scatter repeatedly from pre-existing Langmuir turbulence,

At each step such srattering will produce frequency upshifts (anti-Stokes

process) and downshifts (Stokes process--which is permissible as long as the

shift does not go below the plasma frequency). The resulting radiation

spectrum may exhibit frequency components significantly above the plasma

frequency.

This is the process we shall consider in this paper. Por sufficiently
weak photon damping rates, we £ind that multiple Raman Ecatter to the n-th
harmonic is not proportional to the n-th harmonic of the Langmuir intensity,
80 this process can be more efficient than the multiple plasmon toalescence

mechanism under certain conditions.

The multiple Raman scatter process works best in a hot plasma, with the
radiation in contact with the turbulence for a sufficiently long time. This
could be expedited in various ways: 1In astrophysical applications the spatial
extent of the turbulence may be considerable. 1In laboratory plasmas there may

be multiple reflections from chamber walls,

Consider the scattering interactions of two species of waves illustrated
in Figure 1. In a plasma, for example, the waves labeled by k ceuld be
transverse waves scattering off ion acoustic waves labeled by q. This process
is commonly called Brillouin scattering. If, instead, the waves labeled by g
are Langmuir waves then the scattering is termed Raman. In addition to

higher-order wave-wave interactions not depicted in Figure 1, Brillouin and
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Raman scattering generally compete in determining the evolution of a
transverse spectrum. (Wave-particle interactions are ignored in this paper.)
We assume the presence of an enhanced background of Langmuir turbulence,
(rather than ion acoustic turbulence), and focus our attention on the effect
such turbulence has on the evolution of an externally produced electromagnetic

(transverse) spectrum.

We take the Langmuir waves to be statistically stationary: 1If HL(g)
denctes the ensemble-averaged energy dencity of Langmuir waves at wave-vector
k then HL(E) is assumed not tuv change in time. For example, the Langmuir
waves may be maintained in steady state by a sovurce such as an electron beam,
In any casze, we ignore the back~reaction of the transverse spectrum on the
Langmuir spectrum. We are justified in doing so provided the transverse
spectrum is far less energetic than the Langmuir spectrum responsible for the
scattering. To summarize, we are considering a plasma in which the
ion-acoustic, transverse, and Langmuir wave energy densities are ordered as

follous.
wid ¢ Wt < wb

We also rely on the second inequality to justify our neglect of the
ptimulated scattering of transverse waves in Sections Il and III. This
process is described by terms in the kinetic equation that are propertional to
(HT)Z. whereas the terms that we retain in the equation are proportional to
wal, general, if stimulated scattering must be included in the
evolution of the transverse spectrum then so must the evolution of the
Langmuir wave spectrum, since in this case W~ ok {We briefly describe
equilibrium and temporal evolution in the presence of stimulated scattering in

Secs. IV and V.)

o
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The scattering that we consider here {5 resonant, that is,

Krkira (2a)
a

and

0(k) = w(k’') % v
P (2b)

are enforced in the kinetic equation (see Fig. 1). Here up denotes the plasma

frequency and we neélect the thermal dispersion of Langmuir waves.

Our final assumption is that the Langmuir spectrum is confined to only
one direction in g-space, i.e., that it is maintained by a narrow source.
With our source of radiation taken to be in this same direction, the kinetic
equation describes transverse-wave evolution in a one-dimensional k-space and

therefore ignores effects such as angular diffusion.
From the dispersion relation for transverse waves
(k)2 ﬁ'ug + c?k2

and using Eq. (2a) and Eq. (2b) it is easily seen that only Langmuir waves with

wave numbers in the interval

pELgevaip
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contribute to the scattering. We ignore any variation of HL(qJ on this

interval (see Fig. 2), and simply assume a flat spectrum.

According to Equation (2b), only transverse waves whose frequencies
differ by a multiple of the plasma frequency will interact with one another.
Thersfore with a source of radiation at the plasma frequency, the transverse
spectrum (i.e., the ensemble-averaged energy density) will evelve only at the
harmonics of w_, Let n be the harmonic number,

p

ne u(k)/wp.

Then the usual "Golden Rule™ kinetic |quation9 describing this scattering may

be written in the following form. (We outline a derivation of this equation in

Appendix A.)

Un oy (a3 , n3

at - W (A, ¥ By Up/n
3 2 3 2

+ W (A n/(n+1)° ULy 4 By n/(n-1)" U, 13

$V (U /m) (2 U, /(ee1)2 = B U,y /(n-1)P)

-2+« U +5
n “n n (3a)

Bere, Un is the transverse-wave energy density at the n-th harmonic normalized
to the ambient thermal energy density of the electrons, 4ﬂn°Te (ng is the
average plasma density, and Te iz the electron temperature), and time is
measured in units of the plasma frequency, w_. The coefficient W is

P
proportional to the Langmuir energy density, and is defined as

We i (v/e)lamwl ,
Bn e (3b)




where V. i5 the thermal velocity of the electrons; c is the speed of light in i
a vacuum; NL is the total energy density of Langmuir waves normalized to

4ﬂn°Te;
general Langmuir spectrum, that portion of the spectrum which is contained in

and « i a numerical reduction factor that selects, from a more

q-space between v, /¢ and {3up/c and therefore active in the scattering

considered here:

Bquality holds if all of the Langmuir energy is contained between up/c angd J3up/c
{see Fig. 2}.

The scattering coefficients are defined as follows.? (See Appendixr A.)
A e vI(ne1)? = 2] = v(n®-1) i
(3c)
(3d)
Equation (3d) expresses the result of detailed balancing. Using it one can

easily show that in the absence of sources and dissipation (vn n sn = 0)

the total energy density, E L is conserved.

The coefficient of the terms which describe stimulated scattering is

L. 2 ca
Ve T (ve/c) . .

= T
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Therefore, roughly speaking, the ratio of the stimulated to the linear

scattering rate (“WU) is

o v VUM

When this ratio is much less than one, the stimulated scattering is ignorable,

and the evolution of the spectrum is linear in U.

For simplivity, we assume a source term for radiation at the fundamental

only,
Sp =8 8).n

Throughout this paper we take the source at ”p only, but it is straightforward

to generalize our results to include different source configurations.

An independent source of radiation at Zup (n=2) is the coalescence of two

Langmuir waves into a transverse wave. An important question is whether or not

the coalescence process produces a stronger source of radiation at Zup than
does Raman scattering of a given source at up into that second harmonic. In
fact, multiple Langmuir wave coalescence into radiation at the nth harmenic of

the plasma frequency generally should be compared to the nth-ordet radiation

produced by multiple Raman scattering. Bowever, in the one-dimensional k-space
we are assuming the matrix elements for coalescence vanish so that this process

is absent. (See Ref. 9 pg. 354, for example.)

We take all harmonics to be dissipated at a constant rate, Ya:

oY 1]
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Y E vy ‘n= 2,3, ...
n d ' (4a)

Loss of energy at nw_ by convection out of a bounded plasma occurs at a rate

P

equal to the group velocity at nv divided by the size of the plasma, s0 the

P
dimensionless radiation dissipation rate is taken to be:

£
v, &

4 opR (4b)
where R is the characteristic length of the plasma., We have approximated the

group velocity by the spead of light, ¢ (appropriate for the higher harmenics);

and, again, all rates are measured in units of the plasma frequency.

With this scenario of injection at the fundamental, Equations (3) predict
a cascade of energy up to higher harmonics via Raman scattering. Our primary
concern in this paper is with the equilibrium spectra that result from this
cascade. Clearly such equilibria must exist if the damping rate at the
fundamental, v, is positive (incoherent source of fundamental radiation);
in this case all harmonics are dissipated exponentially fast, whereas the
injection of energy at the source proceeds only linearly with time. If the
damping rate at the fundamental is assigned a negative value, to simulate a

linear instability at w_, then the cascade either culminates in a stationary

pl
state or else tha energy in the spectrum diverges with increasing time. 1In
Sections I1 through IV we assume that a stationary state is eventually reached
by the sclution of Bquation (3a) for the particular choice of vi. In

Section Il we restrict our attention to equilibria for which

ol »> U,n=1.2,...
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g0 that the linearized kinetic equation (i.e., Eq. (3a) without the stimulated
scattering terms proportional to V) adequately deeribes the stationary state.
Under this assumption it is possible to find analytic approximations to the
equilibria using a continued-fraction representation. That analysis is carried
out in Section III. In Sectior IV we present examples of equilibrium spectra,
including a case in which the nonlinear terms (stimulated scattering) are not
ignored. Unbounded behavior is considered in Section V. Concluding remarks

appear in Section VI.

> o
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I1. Equilibrium Spectra

With 8,U, Bet equal to zero for all n {n the lipearized verison of
Bquation (3a), we are faced with the task of solving an inhomogeneous system
of linear, algebraic eguations. The number of these equations is, irn
principle, infinite, although we expect the spectrum to fall off rapidly at
sufficiently large n to permit a truncation. Rather than impese an a priori
truncation, we proceed, inmtead, to solve the equations recursively, writirg
each Un as a product of unending continued fractions. This will yield the r
exact solution for all n. With one very good approximation to the scattering
coefficients, the continued fractions are summable in terms of Bessel
functions (cf. Sec. Ill). This method is applicable to other discrete
systems enjoying linear nearest-neighbor interactions, although summability

depends crucially on the form of the coefficients. '

For sufficiently weak photon dissipation rates, certain solutions we ..i
obtain clearly demonstrate scattering to high harmonics of up with | L
efficiencies well above uvnity (see Fig. 3). Thiz ix contrary to the popular
belief that the spectrum should in any case fall off as (NL)n. The
reasoning which leads to that conclusion ignores the scattering back down to
Jower frequencies described by the A" coefficients in Eq. (3a). The
scattering down results in an accumulation or “bottle-necking" of transverse
energy at intermediate frequencies that is responsible for the observed

extremum in the Epectrum that we %ill approximate analytically in Sec. III.

o! g ———



For convenience, we introduce

pA
F g U /n
n n (59

and write the stationary, linearized version of Equation (3a) in the following

form. (We suppress the exponents on the scattering coefficients.)

[2n-rn + NAn + NBn] P, - NAn Fn+1 - WBF, 4 =5 Bl,n (6)

For illustrative purposes, we truncate the system to only the fundamental, Fl'

and its first harmonic, F,, Than me can easily solve Bquation (6):

1
F1 = §
1
2?1 + NAl 4
- (412_+ wAl + NAz)
2 ,2
W Al
and
Pan.‘ . 1
Yy + WA, 4 wﬁg_
WA



%
Retaining three modes, the solution iE: ORIGINAL PAGE IS
OF POOR QUALlTY B
Fl = 5 . 1
1 -
- (4"2+ml+NA2) . 1 . ;
2 d
AzlAl !
1
Fp=Fp v
41'24-1%14-“}\2 i
+ 1 o
ml - (6?3+HA2+NA3] :
2
mz/al ,
and
3 I
P3 = Fz p i
T3+NA2+NA3
WA ‘
2 (7) |
As we increase the number of modes retained in che truncation, the following hy
pattern emerges.
Let Ea be the continued fraction,
. 1
fe E £ 1
+
Ll i
+
L2 " ¢ . 1
£3 I f
gt ,
{Ba)
K F'



with elements defined by

X

fe 4 2ft+j)ve+j+HA£+j+WAz+j_1

e 4 v (Ay & O) (8b)

. and

Gy - WiGisa1 /9 5 1
WA, £>0, 3=l
, 1 ez0, =1
(Bc)
Then
<
k .
fn =81, (9)

;

Equations (8 and 9) are the exact solution of Eq.(6) and give us, using
Eq. (5), the exact stationary states of the linearized kinetic equation,

s Writing the solution in this form is particularly useful because of the slow
variation of An with n for n 2 3. (Notice from Eq. (3c) that An ig
approximatly equal to one if n 2 3.) We were careful to factor this slow

p dependence out of the scattering terms in the kinetic eqguation for the following
reason,

P With our assumption that the v,'s are constant (= *d] for n 2 2 and
the approximation of the An's by unity for all n, we tan find simple
closed-form expressions for all Fn with n 2 2 in terms of Fl. Therefore, we

» will have approximations to all Unlul, c.f. eq. (5), and, hence, to the

efficiency of thé net up-scattering in the stationary state. Notice from Egs.

S T

g —
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(8 and 9) that we do not need to specify Y, or € in order to determine this
efficiency. These parameters serve only to determine the overall size or

total energy density of the spectrum and do not effect its shape. Of course we
assume that the particular choice of Y leads to a stati{onary spectrum,
although for sufficiently large, negative values of Yy the behavior is

unbeunded in time, See Section V.

I3}
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I11. Analytic Approximations

With all A 's approximated by unity and, for the case of a constant :

dissipation rate at the higher harmonics,

|
A, =l nl }
n " v n22 , :
we £find from Eqs. (Ba thru c) that the continued fractions have the following |
simple form if ¢ > 1.
]
-~ 1 ;‘
fz ®
2({p4142) - 1
z
2(84242) = 1 .
z 2(24342) - ,
Z i
(e 2 1) 3
(10) ¥
F
with {
- N/vd —
10 !
This continued fraction is summable az a ratio of Bessel functions, .
£,20,,,..(23/,,,(2) . -
2 z+841 Z+8 (1) §
}
where Jvr:) denotes the Bessel function of the first kind of order v,ll
It follows from Eq. {9) that a
F =P, 3, (2)/),.(2), i
n 1 “z+n 2+ (12) !
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and thus from Bq. (5) that
Uy = n? . 3 (205,102
Notice the recursion relation implied by, and implying, ®q. (10):
f = 2(8+2)/2 = 1/E

1f we multiply this equation through by Ft and use Bg. (9) we digcover tha*

F glﬂiﬂp

e+ * Feoy )

This familiar three-term recursion relation is just Eq. (6€) (n>l) and is

satisfied by Pi(g) B J£+z(g), among a great many other choices.11

Bowaver, the continued fraction expansion, Eq. (10), specifies Fe exactly |

as Eq. (12).

Using simple properties of the Bessel functions it is easy to see that |

0 < Jz+n(z)/Jz+1(z) <1lifz>0,

Therefore, Eq. (13) makes sense (i.e., U a5 positive for all n) provided
only that Ul is positive. Requiring Ul to be positive, in the presence of
a linear instability at the fundamental (vl ¢ 0} enables us to locate the
threshold for saturating the instability using onr oxact eupression for Pl,
Egs. (B and 9). We have observed that negative -zlues of Pl imply that the

numerical solution of the kinetic equation is not bounded in time. We discuss

unbounded behavior in Sec. V.
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We will assume that "1 is positive snd confider some physically
{
interesting limiting forms of our expression for the equilibrium radiation
spectrum. The accuracy of our formula, Eq. (13), will be tested by comparing

its predi=tions with numerical solutions of Eqs. (3).



el VL A 1, N N T

A e *.
PV SR TS *

Psoe 20

IV. Examples

1t is noteworthy that largar values of z result in more efficient
up-scattering. When the scattering rate exceeds the dissipation rate at the lower
harmenics (2 > 1) significant up-srattering occurs, producing an extremum in the
spactrum at a harmonic of the fundamental. When z ¢ 1 no such extremum

occurs, and most of the total energy resides at the fundamental.

We now consider the two limits:

A. z > 1: Stropng Up-Scattering

Here we assume that most of the energy in the spectrum resides at n << z.

Then using Debye's asymptotic formula for the Bessel f.unctionsll

and retaining
only leading terms in the small parameter, n/z, we obtain the following

expression for the equilibrium spectrum in this case.

Un X Uln7/4 exXp [% Jé (1_n3/2)] (1s)

In Pig. 3 we plot the equilibrium spectrum obtained by solving the
linearized Egs. (3) numerically, in the limit of long time, with z = 103 and
MEE Notice that the energy densities are small enough to justify our
neglect of the stimulated scattering. (Here, as in Cases B and C below, we
take the dissipation to be due to convection, g = c/nup, and ignore

collisional damping, for example.)

- S

-—
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Agreement between the numerical solutions and the predictions of our
formula, Eq. (15), is quite good and improves at the highar harmonics. In
particular, we call attention to the maximum in the spectrum at n = 12, The

formula predicts a maximum at

7,273 173
nm = (4J2) z
which is equal to 11.5 if z is 103,

Certain of the parameters used in Fig. 3 are characteristic of the solar
corona, although it is important to note that Langmuir wave energy densities
as high as those we are assuming (uWL = 0.7) have never been observed in
the solar wind, where ank K4 1072 is the rule. Such low levels of
background Langmuir turbulence will not produce the strong up-scattering

fllustrated in Fig. 3, in a plasma the size of the solar corona.

It may, however be worth noting that larger (hypothetical) stellar coronas
could demonstrate strong up-scattering of fundamental radiation, even at weak
levels of Langmuir energy density. To produce Pig. (3) with uNL = 7310'6

014 metres in radius, or 105 times the size of

we would require a corona 1
the solar corona. (See the caption to Fig. (3), and recall that z ~ uNLR,

where R is the spatial extent of the plasma.)

Similar conclusions have been reached in a study of the diffusive limit
(i.e., the high frequency limit) of the kinetic equation by Colgate and his
co-workers.12 As noted by them, the discovery of a maximum in the radiation
spectrum at a harmonic of the plasma frequency may have important consequences

for the theory of radio emission from guasi-stellar sources.
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B, z << 1: Laser-Plasma Ipteraction

When z << 1, we may ignore it in the order of the Bessel functions.

Expanding Jn(z) about z = 0 and keeping only leading terms in z we obtain the

following power-law formula for the equilibriom spectrum in this case.

(16}

For a physical example of this limiting form of the spectrum we consider the
observations of ba;k-scattered light in a laser-target interaction reported by
Burnett and his cowotkers.13 In this case a strong source propagates through a
plasma of small extent. A typical photon remains in the plasma for a relatively
short time and so i5 not likely to be up-scattered. The result is a spectrum
that is strongly peaked at the plasma frequency. A value of z equal to 10'1

is appropriate for their experiment, and we have taken Y E vg.

in Fig. (4a) we plot the equilibrium spectrum obtained by solving the
linearized kinetic equation numerically. In Fig. (4b) we plot the
corresponding result for the full kinetic equation, inrluding the stimulated

scattering. Crosses indicate experimental results reported by Burnett et al.

Notice that efficiencies oberved in the laser experiment are greater than
those predicted by either the linear or nonlinear kinetic equations at high
frequencies. The scattering at these high frequencies is off Langmuir waves
with wave vectors clustered about up/c, Thus, enhanced levels of plasma
turbulsnce near this wave number (i.e., that wave number excited by the laser)

would account for the observed enhanced efficiencies, in the context of Raman

up~-scattering.

L)
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The nonlinear theory predicts smaller efficiencies than the linear
theory. The effect of stimulated scattering is to suppress up-scattering and
to concentrate a greater fraction of the total energy at the fundamental,
wp, compared to the predictions of the linear theory. This result may be
inferred by comparing the signs of the two nonlinear terms in the full kinetic
equation (3a): radiation at n+l causes Un to increase with time; radiation

at n-1 causes Un to decrease with time.” Thus, stimulated scattering

transfers energy te low frequencies, and so supresses up-scattering.

Our numerical results are compared with the prediction of our formula for
this case, Bg. (16), in Table I. Agreement with the linearized kinetic equation
{s excellent at the third and higher harmonics, as it should be, since sur

approximation to the scattering coefficients is very accurate at these harmonics.

In the experiment, the laser-source is so energetic that the stimulated
scattering cannot be ignored, and this implies that the back-reaction of the
Langmuir spectrum to the transverse waves ought to be considered as well, as
discussed earlier. However, the stationary spectrum, obtained by integrating the
nonlinear kinetic equation (3a) numerically, is reached very quickly. Starting
from no radiation initially, we £ind that a stationary spectrum is reached
within five pico-seconds, which is much shorter than the duration of the laser
pulse (two nano-geconds). This means that the predicted equilibrium Raman
spectrum is observable during the experiment. But it also suggests that the
back-reaction on the Langmuir spectrum may be ignorable, at least for times

of interest in this particular example.

AT
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C. 0 t ragdiation from relatjvistic ctron beams

Recently, radiation has been detected at high harmonics of the plasma
frequency during intense, relativistic beam-plasma laboratory axperiments.2
The reported spectrum is relatively flat, continuous (i.e., no =pikes), and
extends from up out to at least 7 Wp-

The lack of spikes in the spectrum may result from a broadband jnstability
and/or source of radiation excited by the electron beam, having a range in
frequencies on the Qrder of Vo The theory could be genralized easily to
include such a mechanism for injection near up. He expect the beam to excite
a linear instability at the fundamental, for example, via the parametric decay

of & Langmuir wave into an ion-acoustic and a transverse wave.

However, to explain a flat spectrum out to at least 7 up in the context

of the present theory, we require a value of z at least on the order of unity,.

The Langmuir energy density, NL. is not measured in the experiment, so the
parameter W {s undetermined. To ensure the validity of the weak turublence
theory used in this paper, W' must be less than one. Therefore W is bounded
above as follows (cf. Eg. (3b))

W< %; (ve/c)zu )

where o is less than 0.7, as explained in Sec. I.

———




1f the dominant dissipation mechanism is assumed to be absorption at, or
transmission through, the chamber walls, then Yq ® c/upR, where R is the
effective length of the chamber., 1In this case we estimate the following upper

Typical measured values of (Ve/c)z and v are 1079 and 1019 s'l,

respectively, It follows that R must be at least 4x10‘ mte give us a value of
z that is greater than one and so to admit the present theory as an explanation
of the observations; The value of R depends on the rate at which radiation ig
reflected by the chamber walls. 1f the walls do not reflect the radiation at
all, then R i{s the actual chamber length {1 m in the experiment). In the

limit of perfectly reflecting walls, R diverges (”d*o)i the plasma is
infinitely long, in effect, and efficient up-scattering is possible. In fact

Ya is bounded away from zero by other dissipation mechanisms, such as

collisional losses,

It is unlikely that the effective length of the chamber is as large as 108
times the actual chamber length, so it is doubtful that Raman scattering is
responsible for producing the observed high-frequency radiation. It would be
interesting, however, to compare experimental results for a variety of chamber

wall coatings differing in reflectivity.



V. Unbounded Beahavior

Here we briefly consider some interesting properties of unbounded
behavior resulting from linear instability at the fundamental. With the
addition of a growth rate at the fundamental (vl ¢ 0) it is possible for the
energy density of the radiation to diverge in time, eventually reaching the
nonlinear regime where the stimulated scattering plays an important role. As
mentioned in Sec. IV, stimulated scattering tends to push the transverse
spectrum back down to low frequencies and thus to decrease the net rate of
dissipation. As the energy density diverges (Fig. (5a)) it does so faster !
than exponentially (Fig. (5b)} with an increasing fraction of the total i
energy at the fundamental (Fig. (5c)).

Bowever, it is important to emphasize that even though the long-time O
behavior is unbounded, the spectrum may be acceptably stationary for some 4
finite time of interest, depending on the particular problem. For sxample, 1

if the source is pulsed (along with the growth rate) it may shut off before |

the stimulated scattering is activated.

There is a very interasting short-time behavior that is generally observed
in these “unbounded" examples which dramatically illustrates the effect of the
stimulated scattering on the evolution of the spectrum. In Pig. (5d) we see the
linear evolution responsible for up~scattering the radiation to a mean frequency
of just under SUP after about 0.7 seconds. (Except for the growth rate at
the fundamental, parameters are similar to those in the corona example of Fig.

(3).) At this point, the spectrum is as shown in Fig. (5e) and is on the
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brink of activating the stimulated scattering. When it does 50, the nonlinear
terms push the radiation back down into the fundamental so that the average

freqeuncy swings back down toward wp,

A growth rate at the fundamental does not necessarily produce unbounded
behavior. The growth rate must be larger than a certain threshold value above
which the linear instability cannot be saturated. The case depicted in Figs,
(5) lies just above threshold. Of course the equilibria reached in spite of
linear instablility may lie well within the domain of the linearized kinetic
equation. In this case, the linear analysis correctly predicts the
characteristics of the spectrum. We emphasize that the shape of the spectrum is
independent of the source and growth rate at the fundamental (see BEg. 12, for
example), these serving only to determine the overall size (total energy

density) of the spectrum.
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Iv. Concluding Remarks

We have obtained the stationary states of a linear kinetic equation that
describes the scattering of a source of radiation by a Langmuir~turbulent plasma
of finite spatial extent. Because the scattering proceeds via nearest-neighbor
interactions only, it is straightforward to write the solution in terms of
unending continued fractions. These fractions provide an efficient algorithm
for calculating the equilibria as well as accurate approgimations to those
equilibria in terms of simple analytic functions. The generalization of this
method to include the effects of nonlinear nearest-neighbor interactions

(stimulated scattering) is currently under investigation.
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Table 1
n a) Formula
1 1.00
2 1.43
3 1.65
4 1.81
3 1.92
6 2.01
7 2.09
8 2.15
8 2.21
10 2.26
11 2.30
Table I:

Fage 10

b) Kinetic Equation

1.61
1.78

2.00
2.08

(% ]
=
in

-loglo[un+1/Un] vs n for a) the approximation to the spectrum given

by eq. (16), and b) the long-time asymptotic solution of linearized Eg. (3a).

z = 1071 and physical parameters are given in the caption to FPig. 4. The

absolute error in both columns iz + 0.005.

£
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Pigure Captions:

1)

2)

K

4)

5)

Diagrams ¢ Aaman scattering., k denotes photons; q denotes Langmuir waves.

The {one-dimensional) Langmuir wave spectrum that we assume, N: s (energy

density of Langmuir waves at q)/(4nn°Te),

Un vs n for parameters appropriate for a hypothetical stellar corona with

a higher level of Langmuir turbulence than is observed for the golar corona.

2

T, = 10% eV, v = Gxl0’/sec, 4nn T, = 2x107° erg/cm®, R = 107 m,

P
z = 103, vy sx10°2, 5 = 100, oWt = 0.7.

L°910{Un/01] vi n for the parameters of the laser-target interaction

experiment of Burnett et al.13 crosses indicate their results, Te = 104

5 Joules/cm3. T w 10'1.

eV, v = 1.78x10"/zec, Ann 7, = 2210
R = 3x107% em, v, = 5.6x1073, 5 = 638, ol = 0.7,
a) Linearized Kinetic equation prediction.

b) PFull kinetic equation predfction, including stimulated srcattering.

Unbounded behavior resulting from linear instability at ap,
a) Total, dimensionless energy density (E: nly) vs. time,

b) The logarithmic derivative of the total number density, Un ¢ n, vs,

time, i.e., an effective growth rate.
¢) The fraction of the total energy density that is at up vs. time,
d) The average frequency, Z Un/[z U, /n], vs, time.
e} The spectrum at the time at which the up-scattering is greatest.

[oT T
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Te = 10° eV, oy = 6x10" /m2r, aup T, = 2210 erg/cm”, 1
Re1ndn, z =102, v = -37.5540.79, vy = 541072, § = 10, |
mNL = 0.7.
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Appendix A: Reduction of the Golden-Rule Kinetic Equation to One-Dimension

In terms of number densities for the transverse and longitudinal spectra,

<|ef|%
Bnﬁukv =
and
L2
<
5gl™> _
8nhae VT !
p q
the well-known kinetic equation9 for the scattering processes described in
Fig. 1 is
3
. - .
] L5
- ® 0 6
-2 L L
. S (w - - -n, n"+ - +
{hd | (w, Yy g wp) [-n, o k-g"y nknk_q]
+ 2 L L
8 (w, = - + + }
+ M (wk wk+q+wp) [ nknq nk+qnq nknk+q} , (1)
where
In*|? = %° (1)2——3—%“J q?
Ma wkmkiq

Here we neglect the thermal dispersion of Langmuir waves in using mp alone for

their fregquency. The polarization factors usually present in the matrix elements,

+

[M |‘, have been taken to be a constant and are suppressed., That is, we assume
an unpolarized scivce. In Eg. (Al) we are also suppressing the vector notation
on the wave vectors k and g. Terms@through @give us the linearized kinetic
equation; teﬂns@ and@provide the stimulated scattering. (Notice that we have
defined Fourier transforms in an arbitrarily large cube in x-space of volume V
L|2
=

so that iE:|2 and |E have the dimensions of energy*volume.)

ontarr o0
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We assume that both the Langmuir and transverse spectra are strongly
peaked about a single direction in k-space and calculate narrow-angle
averages of the number densities about that direc .n. The result is expressed
in terms of the transverse wave number density as a8 fu.ction of frequency,
3
= d”k
N(.uk) H J

"k EE
K

For example, consider term@in Eg. (Al). Integrating over A.’?k, we

have
3 ¢ L Tkag
J ko @mj d’g q nq Jdﬂk o G(mk-wk+qﬁup) .
A0 AR 4

k k
To perform the integration over A.’?k, define
£% kg
and assume that the only contribution to the integral comes from a very narrow
neighborhood of Bg = 0, see Pig. 6. Then, ignoring the wvariation |£| that
results from a varistion in Bk, we have

Ly
d = 8
£ (cosBE) kd{cos k}
from g_-_E__ = q2+.1_-:_-_g. So the integral over AQk is approximated by

£

kwg G(wk-mgmp) J dﬁg ne '

AQE

and we have

kw, w

kg
a9,

Jdgk@"’JﬂBE Ex]® == “E_—lc_“‘g"““’k‘“’g*“’p’ :

Here n(E) = J dQEnE and is a function of [£| only; 535 = qu, now, with k
AR
2

fixed. Ihtegrating over the é-function in mg; and using
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A3
6 (w K Yg, ) = §(E-E™) __P,'__ IRIGIMAL PACC b
= E* IF POOR QU."\LI?Y

where cz(E*)2 E (wk+wp)2 - w; ¢+ leaves us with

2 L
J dQC* I_E_*-El Mrw
kmk -

J@d’Z N T(ER) g

From

(k*£™) cosb

2
£e k =k|§.*-£|c059£*_k ‘

and neglecting d(|£*—£|), we have

" IE*-..k_I
d(coseg*) = £ d(cosBEf_E)
or
a, IE*_.}.‘_[
dQE* = -—g-;—' dQC*'}E .
Thus

J@d'ﬁ('\: n(g*) (;*) J ng* k IE* k] E* k

c km &*

The contribution to ﬁ(wk) is obtained after multiplying this expression by

2
k/Vg(k) ’
where vg(k) = dwk/dk.
Using
W, w
X L _EE_ 2
Vg(k) " Vg(E*J A

we have finally

2
. (E*) (E*) 3
Niw ) ™~ M__Jdg |€i k] ,
k szg(ﬁ*)wg* E} ~k Et =k

or
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as the contribution tha: term @makes to ﬁ(wk) .

Using the same tricks to evaluate the remaining five terms and assuming

that

is independent of |£| over
w w
Byl cvs-R
c - =1 - c

we arrive at the following kinetic eguation:

. N _ N{w )
Bw) + B wilk-6¥]3 + k=m0, ~20_)]
k 2 k p
c k
Ni{w +w ) Niw, -w )
3 k -3 k
=_mlkal + |k-£7"H(w ~20 ) —=—B 4
c (w +w) k T p (wk wp)
Niw, ) N {w ) N(w, -w )
k +2 D) 2 R e -
+m— [|x=E" | ) IkEIH(bJ 2“’)'mw)]
k P k
where H is the step function,

221, 2 2% 2_ 24
|k-E,|-c|(mkup) —[{mtw)—w [

and

2 £y woy?
JL.(iiJ‘ﬁw = B (__EL__)
gn m, P Bm 411:1 T

m

N(wk) has the dimensions of (time)/(length)3.

Introducing

a dimensionless energy density

e &
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U(n) = 2w w -N—E’il- ' ORIGINAL PALI &
k'p Bin.T, OF POOR QUALITY,

and measuring time in units of wpnl, the kinetic equation is written in the

following dimensionless form:

Utn) = ~WIAS+HBY) U(n)/n +

+ wins —2 = 0(m+1) + BE® —2— u(n-1))
(n+l) {n~1)
{n+l) (n-1)
where
fﬂe ‘; v, 2w 3
W 8% ann T (T:-) (c)
v 2
=21 (e
v E o (—)
and
A, B zlm?e1) iy Zen?
(+) (=)
Recapitulating:

" " 2
u(n) = _'"E'T""ﬁ“’k“(‘”k’ - J'ﬁ“’k“k ?J“B_(J'c')" 4,
g

- 4'nno R 4ﬂn°Te
AQk
2
<|E >
-2 5™ 2 g
aTn T_ vV Tk
AQ

k
Dissipation will add a term to the right-hand-side of Eg. (A2):
=27 (n) *u(n) ,
where =2y{n) is the rate at which transverse energy is removed from the system,

normalized to the electron plasma frequency. A source of radiation at k will add

g

o I T
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a term to the RHS of Eq. (A2):

Sny = ol fﬁm ¢ X
4nnoT k "k v_(k)
e AQk g

(Note, k = k{n) here.)

Thus, we arrive at Eqg. (3a),

dﬂk

A6

O
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