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I. SUMMARY

The present program was initiated in 1977, and it has been aimed at
solving the fundamental and technological problems associated with "Crystal
Growth of Device Quality in Space'. The initial stage of the program covering
the period 1977-84 was devoted strictly to ground-based research. We felt that
before a successful growth process could be developed and optimized for near-
zero gravity conditions, we should first identify the unsolved problems associ-
ated with the grow;h of bulk GaAs in the presence of gravitational forces. We
felt further that it was equally important to assess, and if necessary develop
reliable chemical, structural and electronic characterization methods which
would permit the direct relation of the salient materials parameters (particularly
those affected by zero gravity conditions) to the electronic characteristics of
single crystal GaAs, in turn to device performance. These relationships are
essential for the development of optimum approaches and techniques.

The results of the ground-based research have clearly surpassed our expec-—
tations: we established that the findings on elemental semiconductors Ge and Si
regarding cr&stal growth, segregation, chemical composition, defect interactionms,
and materials properties-electronic properties relationships are not necessarily
applicable to GaAs (and to other semiconductor compounds). In fact, in many
instances we found totally unexpected relationships to prevail. We further
established that in compound semiconductors with a volatile constituent, control
of stoichiometry is far more critical than any other crystal growth parameter.
Detailed results of our ground studies and their discussions have appeared in
about sixty publications which have provided a fundamental back-up for techno-
logical advancement in GaAs. We have also shown that, due to suppression of
nonstoichiometric fluctuations, the advantages of space for growth of semiconductor

compounds extend far beyond those observed in elemental semiconductors.




-2 -

Having developed the necessary characterization techniques, having identi-
fied the immense importance of stoichiometry, and having assessed the potential
benefits of processing GaAs in space, we proceeded recently with the search
for a suitable configuration for the growth of GaAs from the melt in space.

We have developed a novel configuration for "partial confinement of GaAs in
space" which overcomes the two major problems associated with growth of semi-
conductors in total confinement: volume expansion during solidification and
control of pressure of the volatile constituent (details discussed below).
Development of this configuration for space experimentation has been approved
by the Office of Materials Processing in Space and will be funded in the near
future.

We should point out at this time that our experimental arguments and dis-
cussions on the potential benefits of space processing of GaAs led to an already-
signed Agreement between the National Aeronautics and Space Administration and
Microgravity Research Associates, Inc., for a Joint Endeavor in the Area of
Materials Processing in Space. This endeavor involves the growth of GaAs and
other compound semiconductors employing liquid phase electroepitaxy. For about
the last two years the development of a b;eadboard configuration for space
growth of GaAs with this method has been sponsored in our laboratory by Micro-
gravity Research Associates and is distinctly separate from our work supported by
NASA.

In the proposal of our space experiment, its development and assessment,
we assumed that our present program will evolve into its logical stage whereby
the ground-based research is carried out simultaneously and in direct correlation
with, and in support of, the space growth experiments. This ground-based research

is designed to provide a fundamental guidance and back-~up for GaAs space growth.
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It combines three elements: crystal growth, device-related properties,
and characterization on a micro- and macro-scale. We believe, based on our
several years of experience, that the research along these lines is now
critical for ensuring a successful growth of device quality GaAs in space.
During the last three years significant improvements in GaAs crystal
quality have been made on earth having an immediate impact on GaAs electronics
and opto-electronics devices for governmental and commercial applications. We
believe that significant improvements will continue to be made on earth. How-
ever, we are convinced that the quality and findings potentially attainable in
space can under no circumstances be obtained on earth, as discussed later on in
this renewal.
II. PROGRESS TO DATE

II.1. Introduction

Since the initiation of this program in 1977 our ground-based research has
led to disc¢overies and significant developments in three areas which are funda-
mental for engineering of semiconductor materials: (a) crystal growth, (b) macro-
and microscale characterization, and (c) phenomena and processes relevant to
device applications. The scientific results of our study have been reported to
NASA annually in seven consecutive Annual Progress Reports starting in April 1978.
The major developments are summarized in Table I. Detailed discussions of the
results are also given in about sixty sé¢ientific publications. (The 1list is
attached.) Thus, in the '"Progress to Date'" section of this proposal only
selected results which bear directly on GaAs growth in space will be presented,
so that the forthcoming stage of our research correlating ground-based and

space experiments can be viewed in a better perspective.
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I1.2. Relationships between Stoichiometry and Properties of GaAs Crystals

We have discovered that the stoichiometry variations in the GaAs melt
during growth constitute the most critical parameter regarding defect formations
and their interactions. This defect structure determines all of the relevant
characteristics of GaAs. Thus the control of stoichiometric variations caused
by thermal and solutal convection in the melt is the key problem for improvement
of the quality of GaAs crystals.

Stoichiometry and Semi-Insulating Behavior. Semi-insulating GaAs of

enhanced thermal stability is commonly used for production of low and medium
scale integrated circuits for governmental and commercial applications.(63‘65)
Control of the melt stoichiometry is the key to reproducible growth of "undoped"
semi~insulating GaAs. The very high resistivity of this material is achieved
due to the balance between ionized acceptors and deep donors commonly referred

to as the "EL2 family".(66)

Our experimental studies have shown that growth from
arsenic-rich melt increases the concentration of the antisite defects which act

as deep native donors. The results of the Rockwell (ref. 68) and Westinghouse
(ref. 69) research groups reinterpreted using our theoretical analysis of trans-
port phenomena are shown in Fig. 1. 1Indeed, high resistivity (02108 cm) is
obtained only for a narrow arsenic atom fraction range 0.47<[As]<0.52 (Fig. la).
The major segment of this range yields low Hall effect mobilities (Fig. 1lb) which
correspond to mixed conductivity or to p-type conductivity. High quality crystals

with high mobilities (>5000 cmz/Vs) are obtainable only from melts slightly

enriched with arsenic [As]>0.505.

Stoichiometry-Controlled Deep Levels and Dislocations. Results of our
research on horizontal Bridgman (HB) growth of GaAs where the melt stoichiometry

is varied by changing the temperature of the arsenic source, T have shown

As’
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Figure 1. The results in this figure confirm the importance of
our discovery of stochiometric effects. Hall mobility data
for LEC-grown GaAs with p to n transition induced by enrich-
ment of the melt with arsenic.

o - results of Rockwell group (ref. 68)
e - results of Westinghouse group (ref. 69)
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(see Fig. 2) that the concentration of the dominant midgap level EL2 decreases
with decreasing arsenic atom fraction in the growth melt (Ref. 36). This depen-
dence is consistent with the assignment of EL2 to the arsenic antisite ASGa’
and it explains the stoichiometry-induced n- to p-type transitions shown in
Fig. 1.

Our group has also demonstrated the relationship between stoichiometry
and density of dislocations (Ref. 43). As shown in Fig. 3a and 3b, the disloca-
tion density in HB GaAs crystals responds to the changes in melt composition in
a way which is very similar to the behavior of nonstoichiometry, p, defined as

the difference between the concentration of arsenic and gallium atoms (Ref. 70).

Stoichiometry-Controlled Inhomogeneities. The first indication of the

effects of stoichiometry on the properties of GaAs on a microscale was provided
by our analysis of the carrier concentration variation in melt-grown crystals
(Ref. 17). 1In elemental semiconductors electrical inhomogeneities are caused by
variations of the growth velocity. 1In GaAs, however, carrier inhomogeneities
can develop even when impurities are distributed homogeneously throughout the
crystal. Exﬁerimental results illustrating such behavior are shown in Fig. 4a
and b. It is seen in Fig. 4a that the total concentration of impurities [Ge]
remains constant, whereas the concentration of free electrons exhibits dramatic
fluctuations. This effect, which cannot be explained in terms of standard segre-
gation kinetics, stems from stoichiometry-induced amphoteric behavior, i.e.,
impurity incorporation into Ga or on As sites, which leads to donor or acceptor
behavior, respectively. Indeed, we have proven that effects similar to those

of Fig. 4a are produced by intentional stoichiometry changes during crystal

growth, as shown in Fig. 4b.
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Figure 4.

Electron concentration and ionized impurity
microprofiles of-Ge-doped melt-grown GaAs
obtained with scanning IR absorption
spectroscopy. Note corresponding varia-
tions in the concentration of donor and
acceptor impurities showing that ampho-
teric doping does not obey standard
segregation kinetics.
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I1.3. Advantages of GaAs Growth in Space

The advantages of zero-gravity conditions in solidification in general,
and ‘semiconductor crystal growth in particular, stem primarily from the
suppression (or virtual elimination) of thermal and solutal convection in the
melt (Ref. 30). Furthermore, growth in space is a promising means for over-
coming constitutional supercooling, which on the ground limits the yield of
crystal growth of alloys and heavily doped semiconductors. As demonstrated in
early experiments; elimination of thermal convection causes impurity segregation
to proceed under ideal diffusion-controlled conditions and leads to a uniform
dopant distribution and enhanced homogeneity of the crystals (Ref. 30).

Regarding the growth of compound semiconductors, and especially GaAs, the
potential advantages of space extend far beyond the effects of impurity segre-

(61) They relate to the profound role

gation and constitutional supercooling.
of the melt stoichiometry and stoichiometry fluctuations discussed above. The
effects of stoichiometry were discovered only recently, and thus are not yet
fully appreciated by many researchers.

The potential advantages of space for growth of GaAs crystals predicted
from our ground-based research are summarized below in Table II. Stoichiometry
and its control are the overwhelmingly important factors involved, as clearly
indicated by our ground-based studies. For comparison, the advantages of space
for the growth of elemental semiconductors, as deduced from previous space

experiments, are included.

II.4. Direct Impact on Space Growth Programs

Our ground-based research has had a direct impact on crystal growth in
space. Our developments in liquid phase electroepitaxy and in melt growth
have evolved into two unique programs on GaAs growth in space which are

currently being carried out under sponsorship of Microgravity Research
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Associates and NASA, respectively. These two programs are briefly outlined
below.

Electroepitaxial Growth of Bulk GaAs in Space. Liquid phase electroepitaxy

(LPEE) is the only known growth process which has yielded thick GaAs crystals
of ultra-high structural and electronic perfection. We have been developing
this method and have established that implementation of this technique on the
ground is impeded by the detrimental effects of thermal convection and of
solutal convection in the liquid pahse.

In 1983 under the sponsorship of Microgravity Research Associates, we
initiated an extensive study on the fundamental and practical problems related
to the adaptation of the LPEE process to the microgravity space environment.
The long-term goals of this work include: conceptual development of electro-
epitaxy apparatus compatible with space environment; analysis of processes and
phenomena limiting the quality of material grown in space by the LPEE process;
optimization of hardware design and related interaction with the hardware manu-
facturer. Electroepitaxy growth experiments carried out under MRA sponsorship
have shown tﬁat this technique indeed makes it possible to achieve thick GaAs
crystals of outstanding electronic and structural characteristics. Thus, we
have grown GaAs up to 3 mm thick with free electron concentration of about
2 x 10]'40.:m.3 and electron mobility u300 = 7000 cmz/Vs. Furthermore, we have
discovered that dislocation density decreases during prolonged LPEE growth,
which opens the possibility of achieving virtually defect-free GaAs.

These developments we consider striking. It is now evident that the suc-

cessful realization of the LPEE process in space carries the promise of a major

breakthrough in GaAs and related compounds.
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Growth of GaAs Crystals from the Melt in a Partially Confined Configura-

_tion. As pointed out earlier, our ground-based research has demonstrated that
stoichiometry is the single most important factor in the melt growth of GaAs
(see Table II). It is, thus, imperative that in order to benefit fully from
the space environment a new growth configuration must be developed which permits
the control of melt stoichiometry during the growth process and accommodates
volume expansion during solidification.

Under zero gravity, melts acquire a shape corresponding to the minimum
surface energy. Unconfined melts, generally preferred to avoid contamination,
would acquire a spherical shape which is not suitable for directional single
crystal growth. In previous space growth experiments cylindrical containers
were employed. This confinement cannot accommodate the volume expansion upon
solidification, and furthermore, it leads to major problems in controlling the
melt stoichiometry during growth.

In 1984 we proposed to NASA's Office of Materials Processing in Space that
we undertake the development of GaAs growth from the melt in a novel "partially

n(61,62) which we believe offers a unique solution to the

confined configuration
problems outlined above. 1In this novel growth configuration a triangular prism
is employed to contain the growth melt (see Fig. 5).

Under zero gravity the melt in a triangular prism acquires a cylindrical
shape with a circular cross section of Fig. 5a, which corresponds to a minimum
in surface energy. It can be readily shown, on theoretical grounds, that in
the absence of wetting, the circular cross section is energetically more stable
than the cross section of Fig. 5b. The empty spaces between the cylindrical
melt and the edges of the prism provide the necessary room to accoﬁmodate expan-
sion during solidification. Furthermore, they constitute three channels through

which a vapor phase of controlled pressure can be in contact with the melt during

the growth process. In Fig. 5c GaAs crystal growth is considered in a
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Bridgman-type configuration. An arsenic source is used to provide the arsenic
vapor pressure desired to control themelt composition during growth by means
of an arsenic source temperature. This aspect is of fundamental importance
for the reasons pointed out above.
III. PROPOSED RESEARCH

ITI.1. Motivation and Objectives

As pointed out earlier, considerable progress has been made in recent
years in the growth of GaAs single crystals for IC applications.(az’ 63-65)
In situ synthesis of the compound combined with the use of BN crucibles increased
the purity of single crystals to the extent that semi-insulating "undoped" GaAs
became available in contrast to Cr-doped material previously employed. Undoped
SI GaAs exhibits higher electron mobility and enhanced thermal stability. Only
recently, isoelectronic impurities have been found to reduce dislocation density
making it possible to achieve dislocation-free SI GaAs (see e.g., ref. 58).

These features are, of course, very important for device applications and have
stimulated a rapidly growing interest in understanding the growth-property
relationships relevant to device applications.

Our research has led to the identifi;ation of two factors of key importance:
the stoichiometry and the post-solidification interactions of defects. We have
also concluded that under zero gravity the stoichiometry effects can gain a
high degree of controllability unattainable on earth due to interfering effects
of the solutal and thermal convection. From our ground-based research we have
deduced specific potential advantages of the space growth of GaAs crystals
relevant to improved device quality. These advantages (see Table II) extend
far beyond those projected for elemental semiconductors which are associated
primarily with impurity segregation phenomena. It is for that reason that we

now believe GaAs growth in space has to offer to our fundamental and applied
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knowledge on electronic materials much more than has been realized.

Our research and development ground-based program has been thus far
designed to develop a crystal growth process compatible with space environ-
ment experimentation and to establish a facility for reliable structural,
compositional, and electronic characterization of GaAs. These tasks have been
largely completed. We have designed two space growth configurations for
electroepitaxial growth and for melt growth. We have also set up a comprehensive
characterization faéility.

From now on, our ground-based research program will be polarized towards
the optimization of the space growth experiments. It will, thus, evolve into
the next logical stage aimed at the fundamental guidance and back-up for the
space growth experiments which will be pursued in parallel. This stage will still
combine three elements pursued in the past, i.e., crystal growth, device-related
properties, and characterization on a micro- and macro-scale. However, emphasis
will be shifted from establishing the fundamental relationships to answering
crystal growth and characterization problems directly related to space engineering
of GaAs crystals of improved device quality.

We believe that significant improvement in GaAs quality will continue to
be made on earth. However, we also believe that the quality and findings
potentially attainable in space can under no circumstances be obtained on earth.
I1I1.2. Scope

A timetable of the proposed research is given in Table III. This timetable
includes important new elements which reflect transition of our program into
the next logical stage. Consistent with the previous study our program involves
extensive GaAs crystal growth from the melt. The proposed research is subordinated
to various aspects of engineering of electronic materials in space. Thus, the

crystal growth includes GaAs growth by Horizontal Bridgman and by Liquid
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Encapsulated Czochralski techniques, however, both experimental systems will

(67)

be equipped with magnetic field generators in order to achieve the control
of convection in our ground-based crystal growth experiments. We consider the
growth in a magnetic field extremely important for studying the fundamental
aspects of space processing. Growth-property relationships are focussed on
control of point defects and dislocations, and they include phenomena taking
place during the solidification and post-solidification defect interactions.
Defects in GaAs can be either detrimental or beneficial to GaAs IC technology.(sg)
The main objective of our study is to achieve GaAs crystals with improved device
quality, i.e., crystals in which detrimental effects of defects are suppressed
or virtually eliminated, and the beneficial effects are enhanced. These objectives
are explicitly defined under "property-device relationships' of Table III.

Our characterization techniques are designed to determine the salient
materials parameters and to relate them to the electronic characteristics of
single crystal GaAs, and in turn to device performance. We propose to enlarge
our micro-scale characterization, which we consider of key importance for GaAs
processing in space, by setting up a photoluminescence scanning facility. This
technique is being introduced in industrial organizations as a standard in the

assessment of the homogeneity of GaAs wafers.

I11.3. Ground-Based Research Guiding and Backing Up Space Growth Programs

II1.3.1. Crystal Growth

Approaches and techniques employed in the growth of GaAs from the melt are
summarized in Table IV. They include Bridgman growth system, which provides
a high precision means for controlling the melt stoichiometry during the crystal
growth, and two LEC systems with provisions for in-situ systems of GaAs. One

LEC system is equipped with a generator and a magnetic field. The study is in
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progress on a design of the electromagnet for the Horizontal Bridgman apparatus.
We expect this study to be completed in early 1985. It should be emphasized
that the HB system with a magnetic field would be the very first apparatus
permitting the in-situ control of the stoichiometry and of the convectional
flow. We consider this apparatus extremely promising for studying the funda-
mental aspects of crystal growth in space.

Bridgman Growth of GaAs. Our Bridgman-type apparatus (see Fig. 6) with

unique control features has already proven to be most effective for the study
of growth-property relationships. Utilizing this system, we have established
the critical role of As pressure in the structure and electronic properties
of GaAs. Furthermore, we defined the optimum As pressure conditions which repro-
ducibly yield low dislocation density crystals. These optimum melt-growth con-
ditions ﬁave already been adopted by commercial producers of GaAs. We have
identified and explained the effects of oxygen doping on GaAs properties. We
have found that the major electron trap EL2 (0.82 eV below the conduction band)
is not solely responsible for the semi-insulating behavior of the so-called
"undoped" GaAs. An oxygen-related deep level, ELO, is also present in such
material. We have also found (see Fig. 7) that Ga-vacancy coalescenee controlled
by the Fermi energy is the key factor in formation of deep levels and dislocations
‘in GaAs.

These scientifically and technologically important results have been achieved

through the close coordination of growth studies and extensive characterization.

We propose to continue our crystal growth-materials property relationships studies

with emphasis on problems important for obtaining dislocation-free semi-insulating

material of improved homogeneity and thermal stability. This etudy, initiated

only in 1983, has already led to the discovery of a new fundamental process
controlling dislocation density. Further growth-property relationship study in

p-type GaAs is needed in order to understand post-solidificatin defect interactions
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and their role in creating dislocations and electronically active complexes.

We have completed the technical analysis of the feasibility of incorporating

an electro-magnet into our Bridgman growth system in such a way that the thermal
characteristics of the furnace are not disturbed. A construction of the magnet
will be initiated by Varian Associates in early 1985. We also plan to modify
the temperature controlling system of the HB apparatus in order to realize
magnetic field-controlled Bridgman growth of GaAs.

Czochralski Growth of GaAs. In 1983 we completed the construction of our

first liquid encapsulated Czochralski system for in situ compounding and growth
of GaAs. In 1984 we completed construction of a second LEC system equipped
with a DC magnetic field generator. The system shown in Fig. 8 has been

assembled, tested, and is currently used for the growth of GaAs under conditions

of "suppressed convection" in the melt.
We propose to utilize the LEC growth system in 1985 for the growth of

dislocation-free GaAs doped with isoelectronic impurities and for the growth

of semi-insulating GaAs doped with vanadium.

Fundamental Aspects of GaAs Growth in Space. 1In our ground-based work

towards space experiments we plan to utilize magnetic fields in order to
decrease the magnitude of convection instabilities in the growth melt (magnetic
field increases the kinematic viscosity of electrically conductive melts), and
thus, to determine relationships between convection and crystal properties.

In Fig. 9 we show microscopic inhomogeneities in an undoped crystal grown in

our laboratory by the Liquid Encapsulated Czochralski method in a magnetic field,
H. It is seen that in thé portion of the crystal grown without magnetic field,
very pronounced striations are revealed by '"depth profiling" of differentially
etched crystals and by cathodoluminescence scanning. The magnitude of inhomo-

geneities decreases with increasing magnetic field, and the microscopic




Figure 8. L. Pawlowicz (graduate student) checking the LEC
system for GaAs growth in a magnetic field.
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inhomogeneities are reduced by as much as one order of magnitude at
H = 1500 Oe. 1t should be emphasized that inhomogeneities in undoped GaAs
crystals are most likely due to native defects (lifetime killing recombination
centers) and not to standard segregation of chemical impurities. Accordingly,
the results of Fig. 9 provide experimental evidence that suppression of
convection during GaAs growth has highly beneficial effects on the native
defects and on their spatial distribution.

We propose to continue GaAs growth in a magnetic field using originally

(in 1985) our LEC system and later on (in 1986) our HB system with a magnetic
field which should permit us to assess simultaneously the effects and relation-
ships between convection and nonstoichiometry.

I11.3.2. Properties and Phenomena Related to Device Application

Studies of device-related properties and phenomena constitute an integral
part of our research. In previous stages of the present program we have
successfully investigated such problems as, for example:

. solar cell limitations provided by Auger recombination

. defeét formation due to acceleration of the growth

. elimination of deep traps by hydrogen in plasma treatment
. electrical properties of GaAs-oxide interfaces

. fundamental limitations of high electron mobility transistors

We plan to pursue this device-related research, however, we also plan to
focus our investigation on materials-related aspects in order to define GaAs
material with defect structure optimized for IC processing.

It has recently been recognized that native defects can be not only
detrimental, but also beneficial to GaAs IC technology. Detrimental effects
originate in the high dislocation densities, while beneficial effects are
encountered in the compensation mechanism in undoped semi-insulating GaAs.

In order to establish the means for controlling native defects, we plan to
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investigate defect evolution during crystal growth. As shown in Fig. 10,

for LEC growth of GaAs the formation of defects and their state in GaAs
crystals is governed by disorder generated during solidification (1238°C)

and by post-solidification processes taking place at temperatures below 1000°C.
Post-solidification processes can be identified and distinguished from pro-
cesses concurrent with solidification due to their dependence on the Fermi
energy. We propose to use this approach in order to explain the mechanisms

of dislocation generation, the effects of impurities (see Fig. 11), and
especially the role of isoelectronic impurities in achieving dislocation-free
semi-insulating material.

I11.3.3. Characterization

The first stage of our electronic characterization facility was essentially
completed in 1980. Since then it has been used for evaluation of grown crystals
on a macro- and micro-scale, for the study of growth-property relationships
and for quantitative investigation of device-related phenomena and properties
of GaAs. Our characterization approaches are of course being continuously
upgraded experimentally and theoretically in accord with the state-of~-the-art
knowledge. Most recently we have refine& electronic transport techniques for
electrical and optical characterization of semi-insulating GaAs. 1In 1984 we
have completed a new DLTS system for computerized measurements of deep levels.
In accord with recent trends in GaAs characterization we propose to set up in
1985 a photoluminescence scanning system.

A brief summary of our characterization facility is given in Table V.

It combines standard techniques with novel methods or approaches which we

have developed in order to enhance the reliability of our studies. Our tech-

niques listed in Table V make possible a comprehensive characterization
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Fig. 11. Schematic diagram of the effects of impurities on the
dislocation density in GaAs.
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of the essential electronic properties of compound semiconductors on a
macro- and micro-scale, and the study of the properties and phenomena related
to device applications.
We propose to pursue further our research on the refinement of our charac-
terization techniques with respect to sensitivity, spatial resolution, and
specialized applications involving high-resistivity materials.

Photoluminescence Scanning Apparatus. The proposed photoluminescence (PL)

apparatus will be based on the computer-controlled mapping of photoluminescence
intensity developed only recently by Sumitomo Electric€7l) This system is
shown schematically in Fig. 12.

Light emitted by an excitation source travels along the X axis and passes
through a small hole in a mirror (Rl)' It is then reflected by two mirrors
(R2 and R3) and focused on the surface of the sample by a condenser lens (Cl).
PL 1light is collected by the same lens, transmitted as parallel beams long
the Y2 axis, and reflected three times.by the mirrors R3, R2 and Rl' It is
finally focused by a condenser lens (C2) on the entrance slit of a monochromator.
When stage M1 is moved horizontally by driving unit Dl’ the excitation light
can be scanned horizontally on the surface of the sample, and when stage M2 is

moved vertically by driving unit D,, the excitation light can be scanned ver-

2°
tically on the surface. If both driving units are controlled propertly, the
excitation light can be moved over the sample's surface in any pattern with no
change in the collection efficiency of the PL light.

The PL measurements are performed at 4.2 K with the sample immersed in
liquid helium in a metal Dewar. Luminescence is excited by 5145 Z emission
from an Ar laser. One- and two-dimensional distribution maps of 1.49 eV

photoluminescence obtained with this technique are shown in Fig. 13 a and b

for a SI-GaAs wafer prior to and after the 'whole ingot anmnealing' at 800°C




Excitation
source

Figure 12, Schematic representation of photoluminescence
scanning system developed by Sumitomo Electric
Corporation.
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for 6h. The efficiency of the method in assessing inhomogeneities is evident.
It is also evident from Fig. 13 that annealing decreased the magnitude of
spatial variations by as much as one order of magnitude. This remarkable
homogenization of GaAs upon ''whole ingot annealing' has attracted a great
deal of interest. The photoluminescence scanning apparatus will be employed
for detailed investigation of this phenomenon in GaAs crystals grown under

precisely controlled stoichiometry and microscopic inhomogeneities.
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APPENDIX

Reprints and preprints of papers which appeared in the

literature or were submitted for publication since our last
annual report are attached. They provide a more detailed

account of some of the work discussed in the test of the

present report.






