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INTRODUCTION - -

The Rotor Systems Research Arrcraft (RSRA) has a set of ceven load cells connecting the main rotor
transmussion 1o the fuselage Their purpose 1s to mahe high accuracy measurements of the net rotor loads
as resolved at the rotor hub from flight data 1. The use of these load cells to estimate applied rotor
forces and moments at the hub requires an accurate mathematical expression relating rotor loads. inertial
loads and load cell readings Both the structure and parameters of this model must be specified Previous
apprudaches v processing ground test data have not yielded an acceptably accurate relationship for the
ca~c¢ of high frequency dynamie loads

The previous approaches have utihzed empirical technmiques ba<ed on experimental data to obtain the
desired model The approach presenzed in the first phase of this study 1> to develop the model analy ucally
and vahdate it from experimental data using modern techmques of model structure determination and
parameter 1dentification  This approach provides a level of physical insight that has been mussing in
the purely experimental approaches and the resulting anals tical relationship provides a4 unified basis for -
utthzing both static and dynamic calibration data to vahlidate and upgrade a common madel

The second phase of this study develops and demonstrates a technique for identifying the parameter
values of the model directly from flight data thereby eliminating a costly ground test procedure and
potentially providing more accurate results than could be obtained from ground based calibration The
capability to provide "active sensor calibration™ 1n an operational environment has potential applications.
beyond the RSRA load cell problem
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Symbols

NOMENCLATURE
u . . Input
7 .. Output
Ny ... . Number of rotor blades
1. . .Rotorrate {rad «ec)
i . Vector of 6 applied hub luads
i-? .Esumates of applied hub loads
T. .. Vector of 7 load cell measurements
J . Vector of 6 inertial loads
e . Set of unknown parameters
6. . A-prioriest.mate of parameters i
6 Post-calibration estimate of parameters
a Set of 11 load cell deformatio + angles
a Pre-identification esimate of @

a ... Po~t-identification estimate of &

. .

it Longitudinal rotor shaft tilt
S . Transfarmation matrix for load cells

R . .. Transformation matnx for hub loads

EY} Expected value operator
U Vector of meesurement noise components
Q. . Co-vanance of measutement noise components

7o Vector of process noise components

@,. - Co-vanance of process nose components
PN Vector of states to be estimated
2
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I.

F
¢

Estimate of state vector
Dy namic couphng matrnix for states

. . Transition matrix for states

n ... Index of measurement update times

At Time between measurement updates

J: .. Partial derivative of 1nertial loads wrt states

Ja Partial derivative of inertial loads w r t deformation angles
P.. Co-vanance of state estimation error

K Kalman gains

V. Maximum Likelihood cost function

W, . \iedﬂurement error weighting matrix .

N, Number of samples used for :dentification

€s. Error in estimate of nertial foads

€y Error 1n estimate of apphed hub loads

“ . Frequency

A,B,C,D,E,F.C Individual load cell outputs (Fig A1)

X Y. Z, LM N .

h

o

Force and moment components (Fig A 2)
Position of C G from shaft attach point
. Position of hub from C G
Posmon. of CG from aft load cell attach points
. Lateral offset of forward lateral load cell from centerine
. Lateral offset of aft lateral load cell from centerhine
Lateral distance between vertical load cell attach points

Longitudinal distance between vertical load cell attach points

Load cell deformation angles about r.y and z axes respectively
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Linear acceleration at C G

a . ..
I . Moment of inertia about CG
m . ... Effective mass of rotor/transmission engine system
M . Mass magrxx
p-¢.r . . . Rotational rates about z.y, and z axes
i Q. . Total applied engine and tai rotor drive torques
T... . Gyroscopic coupling coefhcients ) L
Subscripts
A Accelerometer
) t,J Row and column indices respectively for vectors and matrices
‘ o Low frequency component
1 One rev component
A . N rev compunent
m \Measured data
I.y,z Component for z y,z axis
. | Inertial load ' -
H Hub load
C “Total load
T Load Cell )

a.bcde f.g

Superscripts

Attach point of ezun load cell

Pre-measurement estimate

Post-measurement estimate
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PHASE I: DEVELOPMENT AND VALIDATION OF AN ANALYTICAL
MODEL OF THE ROTOR/TRANSMISSION/LOAD-CELL SYSTEM

Background
Previous Methods

The mmtial attempt to determine the load cell response to the apphed rotor loads involved applying
static loads at the Lhub and measuring the resulting load cell response A least squares regression approach
was used to tdentify 2 coefficient matrix relating the seven load cells to the six hub loads A six element
bias vector was also estimated It was found 2! that the coefficient matrix varied as a function of the
applied multiple axis load This indicates either a nonlinear dependence of the load cell response to the

applied rotor loads or an unmodeled independent variable 1n the regression

The next calibration was a ground based shake test in which a pair of inertial shakers were mounted on
the rotor hub to apply dynamic loads at specified amplitudes and frequencies '3, During this experiment,
the RSRA was suspended from the hub, so the static loading was the same for all tests As a result, the
nonhnear variation of the relationship with static loads, as observed :n the static test, should not have
been present in the shake test The Force Determination Method 4 was utilized to estimate apphed
rotor loads from a variety of sensors around the aircraft. This method first identifies the transfer functions
between the applied rotor loads and sensors at various potnts on the aircraft and then identifies the apphed
rotor load from a least squares fit to the transfer functions and measured sensor responses The results
were unacceptable because the identified transfer functions varied with the magnitude of the applied load.
hence they could not be used to estimate the applied load without some estensne calibration procedure
Again. the vanation with applied rotor load indicates either a nonlinear dependence or an unmodeled load
source

Proposed Method

Since the sensors utihized in the Force Determination Method included numerous accelerometers and
strain guages mounted on the fusclage, transfer functions of these sensors wiil be affected by any nonhnear
.. dynamic bekavior in the fuselage. This effect complicates the use of sensors on the fuselage to determine
apphed rotor loads The RSRA was designed to use load cells to isolate applied loads from different
sources, such as the main rotor, tail rotor, engine and wings The proposed approach tahes advantage
of this concept by treating the rotor transmission as an isolated system with externally applied loads
from the load cells and the rotor (Fig 1) The 2pplied rotor loads are then measured from a force and
moment balance using measured load cell loads (T} and nertial loads (J) as derived from transmission
accleration measurements In order to utilize this approach a model 1s required that relates applied
external loads on the rotor/transtmussion sy stem to the resulting forces and moments at the center of mass
of the system This model 1s derived analytically from physical principles using the known geometry of
the rotor/transmiesion system Potentially uncertain parameters in this model are explicitly represented
to provide the capability to calibrate the model

The advantages of this approach predomunantly arise from the phyvsical insight obtatned in using au
analytically derived model With such a model, sensitivity analysis and physical judgement can be used
to select the most appropriate set of available parameters for calibration Consequently fewer parameters
need be calibrated than when no physical insight 1~ used In addition. the parameters to be calibrated
now have a physical interpretation so the validity of the calibration results may be assessed The model
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should initially be derived to be as simple as possible If 1t can not adequately explain the observed
experimental behavior with a physically reasonable set of parameter values, 1t may be expanded toinclude
additional effects as required It 1s importany that all major effects be identified and incorporated into the
model before calibration of the parameters 1s attempted. or the parameter values will compensate for the
unmodeled effects as best they can and achieve physically unrealistic values 1n the process

Objective and Approach

The abjective of this phase of the study 1s to derive a simple ds namic model of the isolated ro-
tor; transmussion system and test its accuracy with experimental data The approach 1s to first dernve
a simple model of the rotor transmission system. treaung 1t as a hnear, rigid isolated body Known or
assumed values are used for all parameters of the derived model The model 1s then applied to test data
to determine 1ts accuracy ' 1t appears that cahbration can further improve the accuracy. the appropriate
parameter set will be selected and calibrated If the accuracy appears imited by an unmodeled effect, the
model will be expanded to evaluate potential sources of the unmodeled effect

Rotor/Transmisssion Model

The arrangement of the load cells below the rotor transmission system 1s shown in Fig 2 A detailed
description of this system. including all inertia contributions 1> given 1n Reference 2 There are seven load
cells, four of them mounted vertically at the corners of the transmuission mounting plate, two mounted
laterally along the fore and aft edges of the mounting plate and one mounted longitudinally at the for-
ward edge of the mounting plate  An inertial load vector, J. 1s located at the center of gravity of the
rotor/transmission system and the applied rotor load vector (/) is located at the rotor hub {Fig. 3) The
rotor hub is located at the end of the rotor shaft which 1s tilted forward at an angle of 2 degrees The
load cells are connected to the transmission and the fuselage by spherical bearings

¢

The proposed approach 1s to estimate the apphied hub loads from a force and moment balance of the
external loads and the inertial loads In order to accomphlish this all externally applied loads must be
transformed to the center of mass, where the inertial loads act By treating the rotor transmission as an
1solated system, the load cell force= are considered a measured. externally applicd load on the system A
6x7 matnix (§) s derived that transforms the vector of ~even load cell loads (i) at their attach points
to a set of 6 load components at the center of mass A 676 matrin (R) 1s dernved that transforms the
vector of apphed rotor loads (/) at the hub to the center of mass An mertial load vector (J) at the
center of mass 1s derned from measured accelerations and assumed 1nertial parameters. Using the derived
matrices,a force and moment balance at the center of mass results 1n a set of siv simultaneous equations
which may be written 1in matrix form as

J~ST~-RH =0 (11)

A detailed description of these ve~tors and matrices are given 1n Appendiy A

The assumptions used in deriving the matrices and Eq 11 are that the rotor/ transmission system
1s a rigid body and that there 15 no friction 11 the load cell bearings These assumptions were made to
stmphify the imual approach Both non-rigid bady effects and [riction 1n the load cell bearings could be
added to the model if that appears to be required in arder to match the experimental data
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The transformation matrices § and R and the mertial load vector J were all derived to expliaitly
contain all potentially uncertain parameters of the system so that any subset of parameters can be selected

. for cahibration. as required to improve the model accuracy The parameters explicity defined in the model
- are
. ’ a) All distances and angles required to define the resultant moment arm from the center of mass to load

application points

8]

b) All angles and magnitudes required to define load cell load components acting on the rotor; trans-
mission system

¢) All mass properties required to determine 1nertial loads from measured rates and accelerations

) Test Conditions

Having derived a model, the next step is to evaluate it with experimental data Both static and
dynamic ground test data are avaiiable The dynamic data generated by the shake test were chosen since
it would provide a more rigorous test of the model structure than the static test data The dynamic
data are not, however, sustable for testing the calibration procedure This 1s because the same static load
condition exists for «ll dynamic tests and parameter variations are mostly dependent on variations in the
static loading Once the model structure has been validated with the dynamic data the model zan be
applied to the static test data to evaluate the calibration procedure

The test data set selected was a frequency sweep from 15 to 18 5 Hz 1n the apphed rotor load. This
frequency range was cho<en because it contains the .V, rev frequency, and 1dentification of applied rotor
o loads at this frequency 1< of special interest Transfer function data were generated from the raw test data
by a harmonic analyzer for four levels of applied load in each of the threce aves Eq 11 was then used to
generate the applied load estimate from the transfer function data Eq 11 was processed with the values
of all of the model parammeters set to their design specifications

Error Analysis
Total Estimation Error . . . -
In a controlled ground test environment, the actual values of the applied rotor loads are known so
the total error in the estimate is readily obtained Given the vector of measured load cell readings T,

and the vector of inertial loads derived from accelerometer measurements Jn, Eq 11 may be used to
estimate the applied rotor loads as

-
e
1
)
=]
]
«
3
t
3
a

(12)

The total error in the estimate is obtained by subtracting the known values of applied rotor load from
the estimate of Eq 1 2 to get

“ &y =-R'Jn - ST - RH (12)
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The available shake test data was in the form of transfer functions that had been generated from the
raw data by a harmonic analyze: In order to utilize this data with the proposed model 1t was necessary to
transform the model to the frequency domain and write 1t in terms of the transfer functions Transforming
Eq 13 to the frequency domain gives.

En(w) = —R™ T n(w) = STm(«) ~ RALL) (14)
If only a y-axis rotor load. H(+), 1s applied, Eq 1 4 may be written 1n terms of the transfer functions
as
- o1 Imls) Tom (=) .
()= -R"! Y =S¢ -~ R H,(~ 15)
where :,%i—:—; and %‘:{—:—} are vectors of transfer functions of the tnertial and load cell loads with respect to the

y-axis rotor load Eq 15 was used to evaluate the total error 1n the estimate using the available transfer
function data for y-axis excitauon Corresponding expressions were used to evaluat~ \he estimation error
for r and = axs excitations. The effect of applied moments at the rotor hub was not evaluated in this
study

Numerous potential sources of error are present in this system The evaluation procedure was to
examine the total error and attempt to categonze 1t into the potential sources Once 1dentified, the
sources would be modeled and included 1n the system Most of the error will probably be atttributable to
one of five sources

1) Systematic errors in data collection
2) Unmodeled static end dynamic effects .
3} Unmodeled external loads

1) Random errors 10 sensors

5) Incorrect parameter values
Systematic Errors in Data Collection

One source of error 1s the use of transfer function data Since this is treated as raw data in this study
any errars n the identification of the transfer functions would propagare through the proposed approach
The recorded time domain data should be reprocessed by the harmontc analyzer to provide only Fourier
transformed data. not transfer functions

Angular accelerometers and rate gyros were not available on the rotor transmission system for the
shake test Since there 1s no way to obtain angular acceleration data. the approach taken 1s to assume
its values are negligible and see how good the estimates are with this assumption  Some justification
for this assumption comes from comparing the response of two linear accelerometers that are mounted
on the transmission with a two foot vertcal displacement between them The difference 1n the y-aus
components divided by the vertical 1splacement should give the roll avis angular acceleration The average
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value of this derived roll acceleration over the frequency range was found to be 09 rad sec <ec. supporting
the low angular acceleration assumption The derived angular acceleration data was v ot used with the
model because the errors 1p the linear accelerometers are such that the accuracy of the derived angular
acceleration 13 6 rad. sec sec, The derived values are therefore (n the notse level The anguar acceleration
affects the translational equations since the hinear accelerometer 1s not mounted at the center of mass and
will therelore be affected by angular accelerations The moment equations are affrcted since the angular
inertial loads are dependent on the angular acceleratons  The errors associated with neglecting a 09
tad <ec sec roll angular acceleration are 12 Ihs 1 the y foree and 27 ft Ibs in the rolling moment <o the
assumplion appears justified

Uninodeled Static And Dynamic Effects

The model derived for this study was kept deliberately simple to facilitate the analysis It can be
expanded 1f necessary to account for the observed error  Unmodeled effects with potentially significant
tipact on the model include friction in the load cell beanings Hexvibihity 1n the rotor- transmussion system
and nonhinearity 1n the dynamic response to apphed loads The nature of the error signal should suggest
which of these effects are present  Friction and deadbands will be characterized by hysterests in the
re<ponse  This effect 1s mare readily obsersed in static data than in dynamic data  Flembility walf show
up a< a resonance at some frequency and will result in a phase and amphtude shift between the input and
output signals Nonhinear dynamics will be readily detected by a frequency shift between the taput and
output data Static nonlinearities re~ult 1n parameter varations and are corrected by cahbrauon rather
than by expanding the maodel

Random Errors In Sensors

Both load cells and accelerameters have measurerrent notse which produces a lower bound on the
accuracy of the apphed load estimiates It is posaible to obtain accuracies 1n exep<agl Shis himut but ths
requires the uce of statistical processing techniques such as Kalman Filtering and Smoothing This effect
czan not be reduced by any modifications to the model The effect of accelerometer and load cell noise
on the apphed rotor Joad estimate 15 derived in Appendin B and used to generate the errors given 1n
Table I This table compares the esuimation errors 1n each avs for four levels of applied load with the
predicted standard dernation of the error based on instrumentation notee  These numbers were based on
the assumption of independent random errors for each sen~or with accuracies of 1 percent of full seale for
the accelerometers and 0 1 percent of full scale for the load cells The toral in~trumentation ercor 1s shown
along with the components ddue to lvad cell and accelerometer noise

Table I .
Estimation errer Instrumentation noise .

Load 2001b 4001b GCOolb seolh Total Lozd cells Accel

X 34 6 < 73 214 309 25 308

Y 10 23 33 . a6 312 33 303

Z 12 v 23 o9 a2 20 2038

L 502 1618 1732 2477 446 179 168

\M iy 17 24 47 136 147 112

hY 51 706 173 214 51 61 3t

Load cell full scale = 25,000 1b , err = 1% )

\ccelerometer full scale 7 G's |, err = 19

Mass = 1400 1b

¢}




[ » (R .

Unmodeled External Loads

The derived model will be in error if any externally applied load 1s not included  If the levels are low,
then this can be the most difficult source of error 1o 1dentify  This is because it can tahe on strtually any
charactetistics and will blend in with other error sources. The onlv possitulity for detecting this type of
error 15 1f 1t 15 sufficiently large that 1t can not be logically explained by any of the other error sources.
Once the presence of an unmodeled load is suspected. the error data mav assist in 1<olating 1ts soutce, but
a thorough examination of the test conduions 15> usually required to resolve this effect

Incorrect Paratueter Values

Once the model structure has heen validated to the fullest extent posaible, the remasning errors should
be due only o ingorrect values for the parameters At this point calibration may be applied to reduce
this error source. I calibration s attempted before the model structure 1s adequately determined | the
parameters will take on whatever values are required to compensate for the model structure errors Ths
w11l result in physically unrealistic values for the parameters and evtld, in fact, be a test for whether the
maodel <tructure 13 accurate

The conventional approach to calibration has been to apply least squares mumimization of the error
with respect to the paraineters to be calibrated Since the parameters are now imbedded 1t a model, the
least squares mimimizatton of the error must be done subject to the constraint that the model equations
are satisfied This s refered to as a constrained least squares approach 3, and the algonithm 1s derived in

Appendix C for the con-tramt of Eq 11

Stnce the avatlable data 15 1n the frequency domain, the calibration must be performed 1n the fre-
ouency domain This s 2ctually an advantage since the frequency domain transformation has concentrated
infeemation for the required frequency range into fewer data points than required for a time domain tepre-
sentation Calitbration may then be perforined with less data in the frequency domain. The least squares
minimization mey be applied io frequency domain data in the ~ame way as 1t 153 applied to time domain
data ' ‘The only modification 1s that the data s organized with the real and imaginary parts stacked
end to end rather than using the data in complex form  This insures that the idenufied parameter values

.

will not be compley
Results

Eq 13 was apphied ta transfer function data for the load cells and the main rotor gear box accelerom-
cters to generate the estimation error of the derived model in the frequency domain The values uced 1n
the design specification for the reometry and mass properties were used for all parameters 1n the model
Fig's 4 and 3 show the magmitude of the transfer function data for the 7 load cells and 2 acceleraneters
for an 300 1b  y-axi< excitaticn The location of the load cells mav be seen by fnding the correspondingly
labeled load cell in Itz 2 The accelerometer transfer functions have been multiplied by the system mass
to produce neruial loads The streng coupling in the system s apparent from the large vertical load
cell values for a y-asis excitation The strong correlation in the z-axis 1s particularly apparent from the
sudden drop 1n r-avis acceleration at the same {requency (16 6 Hz) where two verucal load cells (A and

B) suddenly assume equal and opposite values

Figurss 6 through 11 show the siv avis estimation errors for y-axis excitation at 200, 400, 609 and 300
pound levels to demonstrate the effect of load level on estinrstion crror, The fight values of the applied the
apphied rotor load at the Ny, rev {requency <hould fall sathin thic range Tigures 12 through 17 <how the
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s\ axis estimation errors for 1. y. and = axts excitation at the 400 pound level to demonstrate the effect
of excitation axis cn the estimation etror  The errors plotted in {Figures 6 through 17) were obtained
from Eq 13 uning nominal parameter values. Table | shows the average error over the frequency range
as compared to the accuracy limut set by the instrumentation nowse  With the exception of appled rolling
moment due to y-axis excitation and r-axis force due to r-awis excitation, the average error shown in
Table | and the frequency plots comparing the three axes of excitation shown in Fig's 12-17, demonstrate
that the nigid body madel of the tsolated rotor transmission system produces applied load estimates with
crror levels comparable to the instrumentation noise level -

The pronounced roll moment error from y-axis excitation (Fig 13} 12 too great to be explained by
parameter etrors, sensor errors or angular accelerations  The demonstrated lack of sigmficant angular
accelerations about the roll axis indicates that it is not due to a noti-rigid bodv effect It can also be seen
that there is no frequency shift (the hump at 16 6 Hz in the error signal matches the hump in the load
cell data at that frequency} so the error 1s not a nonlinear function of the modeled variables The anly
rematting cxplanation is that the error 13 due to an unmodeled exteral load with predomunant effect 1n
the roll axis A potential candidate for the source of this load 1s the drive train since 1t would affect only
the roll moment Measurements of the shaft torques from the engine and the tail rotor are required to
verify this and could be used to compensate {or this effect.

The unknown roll torque may be reconstructed from Eq 13 to give further insight into its source
Fig 1813 a plot of the phase of the unmodcled torque relative to the apphied excitation as a function of
[requency for four levels of applied y-axis load It can be ~een that the phase 13 sufficiently close to 120
degrees to indicate that the torque 15 due to elastic rather than damping effects This ts consistent with
the possibility of a binding in the drive train rotauen

The pronounced r-axs force error from r-axis excitation {Fig 12} 1s also too great to be explained
by parameter errors, sensor errors or angular accelerations and no frequency shift 1s present between
mput and output, so the effect 1s not due to a nonhneanty Again the only remaining explanation 1s an
upmodeled external load A potential candidate for this load source ts possible binding of a translational
couphng, on the drive train that 1s designed to prevent transmission of r-aws loads from the rotor through
the drive tram to the fuselage Measurements of the tension in the drive tramn shaflt will be required to
confiin this and to properly account for this effect 1n the model

Out of eighteen estimates (six axes of estimates for each of three axes of applied loads) nomunal
parameter values produced estimation errors within the instrumentation nowse level for all but twa cases
Roll moment due to y-anxis excitation and z-asis force due to z-axis oxcitation had errors too great to
be eaplained by parametcr uncertainues. so calibration 1s not needed 10 improve the accuracy n the
other sixteen cases and would not help in these two cases The source of these unknown loads must be
determined and either be measured ot modeled as 2 funcuon of the measured loads before the model can
be used to estimate roll moments and fongitudinal furces

Conclusions For Phase I
Concluding Remarks
An analytically derived model with nominal parameter values has been used to estimate applied rotor
loads from measured load cell and accelerometer data. This approach has also provided a check on the
con<istency of the measured input output data The presence of an unmodeled roll torque due to y-axis

apphed loads and an unmodeled z-force due to apphied r-avis Juads have been detected Reconstruction of
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the unmodeled loads shows that they have a phase lag close to 180 degrees from the applied load and are
therefore predominant]y elastic in nature. Rotational and translational binding 1n the drive train appears
to be the most likely source of these unmodeled loads Shaft torsion and tension measutements will be
required to confirm this and to incorporate these effects in the model

Specific Conclusious
The following conclusions are drawn from th.s study

An anabyucally derived hnear, nigid body model of the 1solated rotors transmission system with
nominal parameter values provides estimates with errors within the level of the senscr nowse for all cases
but roll torque due to applied y-axis load and z-force due to applied r-awus load

Non-nigid body effects or nonlinear behastor can not explain the large errors present 1n these two cases
The error must be due to an externally applied. unmodeled load The presence of such an unmodeled load
could also account for the apparent nonlinearities detected by the previously attempted transfer function
wentification  If there are unmodeled load sources the transfer functions will assume whatever values
are required to reproduce the load cell readings given the measured load< I the unmodeled loads are
elastic, and therefore dependent vn the apphed loads then different transfer functions will be 1dentified
at different applied loads This 1s priciselv the effect ob<erved in 1dentifying transfer functions from the
shake test data

Reconstrucuon of the unmodeled load from the errar signal indicates 1t 13 predomunantly elastic
in nature If o, 1t was probably present 1n the static cahbration and could account for the apparent
nonhineanities detected 1n the statie calibration  Apphing a regression fit to input/output data wn the
presence cf an unknown input sall result in the 1dentified coefficients taking on whetever values are
required to account for the unkeown nput. \s in the shake test case, if the unhnown loads are elastie.
they will be dependent cn the applied loads and the idenufied coefficients will vary with applied load
This effect was observed 1n 1denuifying a model from the static test data

Cahbration of the parameters is unnecessary at this point since the design values appear to give
satisfactory results when the external loads are zll properly included.

Recommendation For Further Research

The following recommendations are made

If the unmodeled loads are elastic, rather than damping. as the phase lag appears to suggest, then
the-e loads were probably prezent in the static test and could account for the apparent nonlinearnty in that
cahibration The analyvtical model should be applied to the existing static calibration data to determine if
the same unmodeled loads appear to have been present

The upcoming static calibration should be sufficsently instrumented to detect the suspected sources
of unmodeled loads from the drive train and the analhtical model should be used to process the data
with scfliciently fast turn-around that newly identified effects can be investigated before the tests are
completed
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The approach should be applied to static test data to evaluate the cahibration technique Nominal

parameter values have done surprisingly well 1n allowing accurate hub load estimation for the speafic

- «stauc load condition present in the dynamic data Static test experience suggests that this will not be

" true under all static load conditions Once the model structure 1s fully vahidated 1t should be applied to

static tes} data to determine which parameters to calibrate and to determune the range of vaniation of the
parameters through cahibranon -
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PHASE II: IDENTIFICATION OF ROTOR/TRANSMISSION/LCAD CELL
MODEL PARAMETERS DIRECTLY FROM I'LIGHT TEST DATA

Background
Overview

Phase | of this study concentrated on the development of an” analy tical moael of the rotor. trans-
mussion load cell system and on the validation of that model from ground test data It was determined
that under ~ome loading conditions, unmodeled external loads are present and these loads must be ac-
counted for before the model can be further improved Once this 15 accomphished. the next step will be
to vahidate the model parameters over a range of operating conditions The available data in Phase |
tended to confirmi that parameter values obtatned from the design specifications were adequate but this
«~et of data included only one static load condition and the parameters of the model are more Likely to be
dependent on the high magnitude static loads than on the lower magnitude dynamic loads It 1s possible
that the parameters waill vary with flight condition and must therefore be calibrated against static load
If the dependencs 1s a simple one. then this may be readily accomplished by ground based calibration.
If the dependency 1s complicated. however. the required ground testing could be costly and the resulting
cahibration curve may be inaccurate over some regions of the operating regime

VModern parameter 1dentification techniques provide an alternative to laboratory calibration by allow-
ing direct identification of the parameters from input, cutput data in the operational environment This
has the advantage that there 1s no need to characterize a comphcated functional dependency in order to
determine the parameter values The parameters are 1dentified that provide the best fit of the model to
the input output data over a specified data recerd If the parameters vary slowly relative to the length of
the data record. the 1dentification mav be more accurate than could be obtained from a caltbration curve
of limited order The high cost of generating comphicated calibration curves from ground testing 1s also
ehiminated

Phase 1] of this study examines the use of moarrn parimeter identification methods 1n wdentify'ng the
parameters of the RSRA rotor transmission load cell model directly from available fight data In order
to faciltate the study. the data set was geperated by a computer sunulation using a model with the same
structure assumed by the parameter 1dent:fication method but with different parameter values Since this
approach only identifies parameters and does not questton the model structure it can only be used with
models v hose structure has been adequately validated from ground tests

Identification and Calibration
Identification methods can be classified wito three categories

1} Equation Error Method In this method a set of measured inputs, u , and outputs y ., ar~ assumed
related by a known mathematical model f(u y) =0 and the parameters of the model are identified
by aleast squares minmimization of the equation error f{u.y) 7 This technique s comrmonly referred
to as regression and requires accurate measurements of both the input and output
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2) Output Error Method In this method. the parameters of the assumed mathematcal model are
identified by a least squares mimimization of the cutput error. determined as the difference between
the autput of the model of the system. and the output of the actual system 8 This approach also
requires measurements of both inputs and outputs.

3) Mazimum Likelihood Method In this method. a Kalman Filter 1s constructed using a dynamic systemn
model and an algebraic sensor model The parameters of bath models are then 1dentified by a weighted
least squares minuumization of the vutput error of the Kalman Filter (innovations sequence) 8. Note
that 1f only the parameters of the sensor mudel are to be identified the Kalman Filter can be used
to estimate the inputs to the sensor model therefore, only the sentor outputs need be measured
This feature makes the Maximum Likelihvod appraach parucularly relevant to sensor calibration 1n
an operational environment

Calibration methods can be categorized based on the parameter identification technique used The
following definitions are proposed

1) Off-line Calibration. This refers to calibration using either the Equation Error Method or the Output
Error Method 1n a test environment where both the sensor input and output are hnown Once
the sensor parameters have been identified, they are used with the sensor model 1n the operational
cnvironment to estimate the sensor input {s)stem states) from measurements of the sensor output
Since the parameters are not identified from data obtained in the operational envirenment, this
method 1s referred to as "off-line calibration ™ This 15 the most commonly used approach to sensor
calibraticn

2) On-hne Calibration This method uses the Maximum Likelihood Method to estimate sumultanesusly
the parameters of the sensor model and the input to the sensor (system states) Only the measured
output of the sensor and a model of the dy namics of the sy stem driving the sensor are needed  Since no
knowledce of the input 1s required, the parameter 1dentifiction mav be performed using data obtained
in the actual operational environment hence the term “on-line calibration  Note that “on-line”, as
used here. does not imply “real-time™ Cahibration by post-experiment data processing stll fits the
definition of on-hne cahbration
Off-line calibration 1s well suited to situations where the parameters are constant or sumple {functions

of the environment Under these circumstances, 1t 1s the preferable approach because it provides a simple
means cf applying the idenufied parameters to the sensor model to estimate the states 1n an operational
environment Vhen the parameters of the sensoer model become complicated functions of the system
states, however. the off-line calibration procedure becomes more involved It 1s then necessary to relate
the paranieters to raezsurable uantities, such as the sensor output, through additional mathematical
models (usually polynomuals) the cahbration then involves idenufying the coefficients of these additional
models

On-line cabibration 15 1deally suited to handle situations where the sensor model parameters are
complicated functions of time or the system states Since the parameters of the sensor model are directhy
identified in the actual operational environment, there is no need to further characterize the parameters
as functions of measurable quantities Thus far, on-line calibraticn has been used principally in support
of parameter i1dentification of dynamic system models This paper will address on-line calibration as a
techmique for obtaiming more accurate cahbrations of sensor models with variable parameters
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Objective And Approach

The objective of this study 1s to apply the on-line calibration method to the problem of calibrating
the RSRA load cells The rationale 1s that by directly 1dentifying varniable parameters of the load cell
model 1n the operating environment. the need to model their functional dependence on applied loads 1s
eliminated and a more accurate estimate of the applied loads at the hub may be obtained The techmque
was evaluated by using computer simulations of the load cell response to applied loads ta generate data
for the on-line calibration algorithm The emphasis was on calibrating the load cells for high frequency
applied loads {17 Hz ), because a major objective of the RSR.\ program is to use the load cells to evaluate
couphng of rotor loads at the .Ni/revolution blade passage frequency (the number of blades, Ny , times
the shaft rotational rate, )} The simulation discussed here 1s necessary to refine the on-line method befure
commuttment te flight tests or other experiments.

Design Of The On-Line Calibration Algorithm

Approach
The design of the on-line calibration algorithm for the RSR.A Joad cells includes the following steps

1) Define the load cell madel In this step a mathematical model relating apphied rotor loads to load
cell readings and 1nertial loads for the 1solated rotor transmussion system s derived The model must
be formulated so that i1ts variation with applied loads can be represented by a set of identifiable
parameters L.

2) Define a model of the dynamics of the applied rotor loads Since knowv.ledge of the rotor load dynamics
15 used as an alternative to knowledge of the actual loads 1n on-line cahibration, 1t 1s essential that an
accurate representation of these dynamics be derived The derived model must have sufficient degrees
of freedom to allow 1ts transient response to be fit to the experimental data

3) Design a Kalman Filter to estimate the applied rotor loads The dynamic model of the rotor loads
and the mode: of the load cell response to rotor loads are combined 1n a Kalman Filter to estumate
the net applied loads at the rotor hub The accuracy of the estimate depends on the accuracy of the
parameters 1n the load cell model

1) Design a Mavumum Likelihood estimator for the parameters of the load cell model The Maximum
Likehhood parameter identification algorithm uses the measurement error generated by the Kalman
Filter to estimate the parameters of the load cell model The updated parameters are then used in
the Kalman filter to obtain improved estimates of the applied rotor loads

The interaction of these four modules with measurements obtained from the aircraft is shown in
Figure 19 The Kalman Filter consists of the dvnamic model and the sensor model linked together by

feedbacl loops with Kalman gamns. &' The function of the Kalman Filter 1s to generate an estimate, H
of the system states, H , using available measurements T and J, to be described below These estimates

are based on assumed values, ©. for the paramet 1s of the models, & The \Maximum Likelthood Method
then uses a gradient algori:hm on the sequence of Kalman Filter measurement errors | €, to generate new

16 T




estimates, © of the parameters of the models 8 , For purposes of this study, the RSR.A measurements were
simulated using computer models that were independent of the models used 1n the calibration algorithm
The success of the algorithm was then determined by observing the convergence of the models in the
calibration algonithm to the models in the RSRA-measurement stmujation

The Load Cell Model

The load cell model used for this studv is the model derived in Pha<e | and described 1n detail in
Appendix A The parameter set to be identified will be hmited to the load cell deformation angles for
purposes of this studs, although any of the geometric or mass properties parameters included in the
dernation in Appendix A could be identified The parameters will be identified from the error between
the measured inertial Joads, as obtained from the accelerometers and mass properties, and the estimated
inertial loads, as obtained from Eq 11 as a function of the parameter set and the applied rotor lpads

The model. as given by Eq 1.1, 1s therefore solved for the tnertial loads. J , to give an equation of the
form

J=-8(&)T - RH ~ 7. 5= N(0.Q,) (21)

where J 1s the vector of the six components of inertial loads acting at the center of mass, T 1s a vector
consisting of the seven resu .ant load cell loads, and H 1s a vector of the six components of applied loads
at the rotor hub. The measurement noise vector, & . 15 3dded to characterize the stochzstic nature of
the inertial loads measurement. The noise 1s assumed to be normally distributed with zero mean and
power spectral density @, The S matrixis a 6 « 7 geometric matrix that transforms the seven load cell
resultant loads at the load cell attach points to a set of six component Joads at the center of mass Note
that this matrix 1 a function of the fourteen arbitrary load cell deformation angles &. that we will use
as the parameter set to be idenuified The R muatrin is a 6 v 6 geometric matrix that transforms the six
components of applied loads at the hub to six components of applied loads at the center of mass of the
rotorytransmission system A detailed description of these vectors and matrices 1s given in Appendix A

’ : v

Equation 2 1 will be used as the sensor model, relating load cell measurements. T to appled roter
loads, # We have therefore derived a sensor model where the effects of fuselage deformations can be
represented by the sct of 14 load cell deformation angles Calibration of this model consists of identifying
these angles Either off-line or on-hre calibration techniques can be used to accomphsh this, but since
the angles are complicated functions of the applied rotor loads, an off-line calibration procedure would
require modeling and calibrating this functional dependency The on-line calibration procedure allows
direct 1dentification of these angles tn the operating environment in which they will be used to estimate
the hub loads, consequently, there i1s no need to model their functional dependency on the applied loads

The assumptions used in the derivation of this model are

1) The rotor/transmussicn sy stem 1s a rigid bods. therefore. all changes in the load cell geometry are due
to relative fuselage deformauions Thrs assumption allows the net effect of the fuselage deformation
on the load cell geometry to be completely characterized by a set of two orthogonal rotations of the
load cell axis about each attach powmnt The relative geometrs of the applied loads at the hub and
inertial loads at the center of mass do not change
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2) Applied loads at the load cell attach points are directed along the load cell axis and no moments
are supported at the spherical bearings This essentizlly assumes no friction in the bearings and 12
contrary to experimental evidence A significant level of hysteresis has been observed due to bearning
friction Thus effect can be incorporated 1nto the model at a later time but will be neglected here for
purposes of evaluating the on-line calibration procedure

A third assumption not inherent in the mode! but u<ed in the on-line calibration algorithm. 1s that
the load cell deformation angles vary slowly so they may be treated as constant parameters over the data
<ets used for identification

A Dynamic Model of the Applied Rotor Loads

A key element in on-line calibration 1s the use of a dy namic mode! of the system dnving the sensors,
It 15 this model, 1n connection with the time varying data record that allows calibration with specific
knowledge of the sensor input, The application addressed here requires the modeling of the dynamucs
of the applied rotor loads since this 1s the input to the lead cells  Modeling the rotor load dynamics
across all frequencies would be a formidable task. requiring accurate knowledge of the dynamic load
respanse to ptlot inputs and changing flight environment There are frequencies. however, at which the
dynamucs of the rotor loads are well known. In a rotorcraft. strong vibratory loads are present at the one:
revolution {requency and at the .Vy ‘rev frequency and its harmonics. where .V, 15 the number of blades
of the rotor {currently .y = 5 for the RSRA) These vibratory loads may be modeled using second order
systems with zero damping and resonant frequencies at the prescribed values By fltering the load cell
and accelerometer data to pass only these frequencies, the dynamic content in the filtered data will be
accurately represented by the <pecified models This dynamic content is essential to the 1dentification of
even quasistatic parameters since there are more parameters than equations and the problem 1s therefore
statically indeterminate

By filtering the data to pass only setected frequencies with vibratory loads. the pilot input 15 eliminated
from the data Pilot input 1> normally used 1n parameter 1dentification to insure that the parameters are
identifiable by providing sufficient degrees of freedom 1n the dynamic response and by exciting all modes
of the dynamic system Since the parameters to be 1dentified are all in the algebraic sensor model there
are no specific modes to excite, but the input to the load cells must have at least as many degrees of
freedom as there are parameters to be 1dentified In this case there are fourteen unhnown parameters If
we model the vibration at one frequency as a second order svstem for each component of hub load, the
dynamic response will contain 12 independent components (a sine and a cosine component for each of the
stx hub loads) We therefore need to pass two frequencies with vibratory loads so that the dynamics will
contain 24 degrees of freedom and insure 1dentifiability for the 14 parameters Using this approach makes
the parameter identification process independent of the pilot input allowing the cahibration to proceed n
parallel with any chosen {light maneuver

Since two vibration frequencies must be passed for adequate sensor excitation. the two lowest frequency
vibration modes associated with the rotor will be used These are the one rev and the .V,/rev frequencies
The dynamic models for the one rev and the .NVu, rev vibrations are given by the following equations

H -0 H = m=MO0Qu) - (22
Hye ~(NQ)Hx = 74, ny = N(0.Q,.) (23)
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where (2 1s the rotational frequency of the rotor and n, and n2 are normally distributedrandom varables
with zero mean and power spectral densities Q,, and @, respectively Both H, and H> are s1x component
hub load vectors and the total hub load vector present in the filter=d data s given by

A=4-H,\ (24)

\While Equations 2 2 through 2 4 are not physically based models of the vibratory loads, they provide
a mathematical representation that can be used to fit the dynamic content of the filtered data By
specifically characterizing the frequency characteristics, a more accurate fit to the data can be obtained
for a model of given order

Equations 2 2 and 2 3 may be written in state vaniable form as

H, 0 1 0 0'] Hy 0
g | _|-0% o 0 ot Ay | _ | W o=
dattg 11 o o 0 Iy | s 0 (23)
i 0 0 (N1 ol g, i\
Defining a state vector, £. by
-_Ts s = - 17 2
I=\H, H, .\ H\} (26)
we may write Equation 25 as
FeFieq, 7= N(0.Q.) (27
The value of F at ume n £(n) mav then be computed from Z{n - 1} by
At
I(n) = ®(At)T(n - 1} — | $(At - 7)n{r)dr (2 ”)
iy
where the time interval from n - 1 to n1s At and )
O(AL) = eF (29)

Design of the Kalman Filter

Having defined a dynamic model of the rotor loads and a geometric model of the response of the load
cells to applied rotor loads and inertial loads a Kalman Filter to esumate the rotor loads may be derived
The senscr model Equation 21 will be used as the measurement equation but the load cell readings.T".
cannot be used as the measurements This is because Kalman filter must estimate the measurements from
its state estimates and use the error between the estimated and actual measurements 1o update the state
estimates There are seven load cells but only six mea- surement equations in Equation 21 As a result
a umique set of estimated load cell readings, T. cannot be generated from the si\ state estimates using the
sIX meusurement equations The solution to this problem 1s to use the inertial Inads because they niay
be uniquely estimated from the six estimated rotor loads and the seven hnown load cell loads using the
six measurement equations of Equation 21 It should be noted that the inertial loads cannot actually be

directlv measured but must be computed from available accelerometer measurements and assumed mass
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properttes The accuracy of the assumed mass properties and accelerometer responses could significantly
affect the results
Equations 2 1, 2.4, and 2 6 may be combined and written 1n the form

J=-8(&T-RH-H\ =J(&.T,3) (2 10)

The Kalman Filter 5 may now be written using Equation 2 10 as the sensor model and Equation
2 7 as the dynamic model Between measurement updates the state estimates, 7, ate propagated by the
determuimstic part of Equation 2 8 as

F(n)=9F (n-1) (211)

where the superscnipts - and — refer to estimates before and after the measurement update at the specified
time

The post-measurement estimates may then be obtained from apriori estimates at the measurement
update time, n, by

- - -

Z (n)=7 (n) = K(n) Jm(n) - J(&.T(n) ¥ (n)); (212)

where J 15 a vector of 6 inertial loads derived from measured accelerations Note that the stochasuc
part of the dynanmic model. Equation 2 8, 1s simulated by the measurement error feedback in the Kalman
Filter. Equation 2 12 The Kalman gains K{n), are gien by-

K(Tl) = P—(")JxT JzPJI"Qv} (2 13)
where
J;:=- R 0 R O (214)
P (n)=¢P~(n- 1)o7 -Q, o (213)
‘and |
P~ (n)=.1- K(n)J: P {(n) (2 16)

P and P~ are the apriori and post measurement variables of the state estimation error, respectively

Since J, 15 constant and K 1s independent of the 1dentified parameters, &, Equations (2 13) through
(2 16) will reach a steady state condition that 1s independent of the identification process The algorithms
can be greatly simphfied by using the resulting steads state value of the Kalman gains, &. in Equation
2 12, thereby eliminating the need to use Equations 2 13 through 2 16 The use of a steady state Kalman
filter where the gain is independent of the parameters to e 1dentified insures a globally stable Masimumr
Likelihood Idenrification Algonithm ‘9
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The Maximum Likelihood Estimation Algorithm

The accuracy with which the Kalman Filter can esumate the applied hub loads depends on the
accuracy of the esuimate of the load cell deformation angles & In the proposed approach these values are
updated on-line using Maximum Likelihood parameter esimation The Maximum Likelthood estimation
algorithms are derived by minimizing a weighted sum of the squares of the measurement error of the
Kalman Filter. (the innovations sequence} with respect to the parameters over a data set of .V, samples
The cost function 1s defined as

lv-
V=1/2) &(n)TW e (n) (217)
n=1 :
where
€y =dwm - J(aT.5) (2 18)
and
Vs
W= 1/N,D_&s(n)eT y(n) (2 19)
n=l

Dencting the apriori estimate of the vector @ by &. and the post-measurement estimate by &, the first
partial of 17 with respect to the deformation angles 1s expanded about its value at & to give

av(a) avia) 3%V (a)

- -{a - a o9
3a - aa %5 (220)
Setting the desired value at & to zero corresponding to an extremum, gives
. (&))"t yov(a)\T - (99
—a- (921a) o i) 271
a=a ( FEE ) ( 8& (221
Taking the first partial of 17 with respect to o grves
V(G) = der(n a)
= 2 2) T 1 (————-) 222
& & sn &) da (
where
déy(n a) _ R R - a-‘}:_(n!d) 0 0o
= = Ja (6T F (na)) - Ja | T (2 23)

The dynamic behavior of the partial derivatives of the apriori state estimates, £ , with respect to the
angles, @ 1s obtained from Equanions (2 11) and {2 12) as

E8 g g, (9_..%_1_2) G E v -

where

et ey o oo e e
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The partials of the estimated 1nertial loads with respect to the angles J,, are given by
r(Jl)a 7
Jola, T 5 (n &) = | (J,)8] (2 26)
L(Jo)o ]
where
1. 95,,(6) 5 -
(J)a=- » 5z (") (227)
The second paruial, to first order, 1s then
OW(E) & 885(n, &) 1, BEs(n.&)
= . ot 28
R e

The parameter estimates are obtained from Equations 2 21 through 2 28 using the measurement error
sequence, €y, generated by the Kalman Filter

.

Operational Approach

The data is first filtered to pass only the two specified frequencies The Kalman Filter 1s then applied
to the data and allowed to reach steady state before the Maximum Likehhood algorithm begins operating
on the measurement errors generated by the Kalman Filter The reason for waiting 1s that the error in
the initial rotor load estimate will bias the estimates of the load cell angles By waiting until the transient
due to this imual error decays we can eliminate this source of bias without having to add the mmitial
conditions to our set of parameters to be identified This delay 1s necessary only on the first data used for
identificaticn I subsequent data sets are contiguous, the initial estimate of the hub load can be set to the
final estimate of the hub load on the previous data set and the initial error will be small The statistics of
the process and measurement nowse. @, and @, . are chosen to generate steady state Kalman gains from
Equations 2 13 through 2 16 that provides a high filter bandwidth (short time constant) compared to the
frequencies of the vibrations being tracked 10,

The Kalman Filter designed for use i cahibrating the load cells will estimate only the onesrev and
N4 ,/rev components of the hub loads If t*c low {requency response is also desired, 1t 1s necessary to pass
the unfiltered data through a Kalman Filter that utilizes the updated parameters An additional 6 degrees
of freedom dynamic model must be included in this Kalman Filter to track the low frequency components
of the hub loads This additional states can be modeled by the VWeiner process

Ho = 1 To = M(0.Qn.) (229)
and the total hub loads are then given by

99

e
3
X}
‘

N

- Mo g AT il b
— e

e s Ay | e e TR

N



! =f;('—}?|—.’?\' ) {2 30)

Simulation Results

The algorithms were implemented as shown 1n Figure 19, and a computer simulation of the applhied
hub load« and the measured load cell respunsm was used to generate simulated measurement data for the
RSRA Agamn the problem of having to generate seven unique load cell readings nsing the specified hub
loads and ertial foads with the six measurement equations was encountered For purposes of simulation,
the prodlem was <olved by adding a seventh constraint equation which essentially minimized the stram
energs an the load cedls This approach yielded reasonable simulation values of load cell readings for the
appited hub loads The physical basis for this constraint equation was too questionable to allow 1t to
be utilized 1n the dentification algonthm, o 1t was only used to generate simulated data with which to
validate the algurithm. The defornmistion angles 1n the losd cell simulation vere set to arbitrary constant
values and a different <et of values were used with the Kalman Filter to initiate the identification process
Values of zero degrees were used for the simulation and four degrees for the Kalman Filter

No tnertial loads were simulated for the test since this represents a worst case for the identification
pracess .Any input to the system [rom the incrtial loads would have added additional degrees of freedom
to the input o the load cells and thereby improved the identifiability of the load cell angles Nute that the
presence of such additional measurement inputs would reduce the required number of degrees of freedom
1 the vibration model

As explained 1n the previous section the imtial values of the hub loads and the load cell deformation
angles were set differently 1n the imulation medel and in the calibeetion algonthm to evaluate the abilin
of the algozithm to converge 1o the values used 1n the simulation  Transients re<uluing from the mual
state error 1 the Kalman Filter estimate will bias the parameter estimates  In order to asoid this problem,
tne filter was allewed to reach a steady state condition before the Maxmum Likelihvod dgorithm was
imbiated

The tune constants chosen for the Kalman Filter were all at 0 1 seconds <o a delay of about 0 5 seconds
was necessary to tnsure that the response had reached a steady state condition Two {requencies, one rev
and Ny /rev, were included in the simulated hub load dynamics driving the load cell sunulation. This was
to insare that the load cell input had cuffictent degrees of {reedom to permut wdentification of the 14 load
cell angtes It alzo effectivels stmulated filtering all but those frequencies in real test data A sampling rate
of 26 samples:second was used to insure adequate reconstruction of the 17 Hz, Vo revolution frequency.

Figure 20 15 a plot of the c<rror 1n the estimate of the lengitudinal deformation angle of one of the
vertical load cetls A delay of <eventy snmples in implementing the identification was used to allow the
filter to reach steads state A sequence of 10 samples was then used to perform the esumation Due to the
nonhinear nature of the measurernent equation, multiple sterations over a data >t vere required to obtan
comvergence for the parameter esttrates  On each iteration the sevenrs sample delay was repeated and
the last 10 samples were used to estirate the load cell angles Excellent convergence was obtamed within
four iterations over the same data set Figure 21 15 a sumnlar plot for a latera! load cell deformatiod angle

Figure 22 zompares the actual y-anis hub load with estimates obtataed using the mmual and final
parameter estinates The estunates were ebtained from a halman Filter with a Weiner process mode} of
the additional low frequency states The Kalman Filter used a simulated unfilterea data set that contaned
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a low frequency component in addition to the two vibratory components The hub load estimation error
1s significant for the imual parameter estimates but 1s considerably improved when the final parameter
estimates are used A simlar result 1s seen tn Figure 23 for the applied roll moment at the hub  The
computer simulation demonrstrates clearly the potential for performing on-line calibration of the load cells,
using data obtained in the flight environment to simultaneously cahibrate the load cells and estimate the
hub loads Figures 22 and 23 demonstrate the seasitivity of the load estimation to errors sa the load cell
angles  The load estimation error 1s significantly reduced when acurate estimates of the parameters are
used

Identification From Ambient Vibrations

The demonstrated capability to identify parameters from ambicnt vibrations 1« sigmficant in that it
allows identification to proceed 1n an operational environment without the need to superimpose specially
designed input signals to facilitate the 1dentification  The method mayv be applied 10 other problems
beyond that discussed here For any such application the condivions for implementing this approach are
as follows.

I} All parameters to_be tdentified must be included 1n an algebraic repre~entation of the system since
dynamic models would require excitation at specific frequencies This does not present a problem since
any dynzmic model can be treated as a set of algebraic equatians if all states and their denivatines
are explicitly measured or estimated at each paint 1n time

2) Ambient vibrations must include as many degrees of freedom 2s there are parameterts te be identified
and the dynamic model of the vibrations must 2lso include these degrees of freedom  This can he
accomphlished by modehing only the required number of degrees of freedom and filtering the data to
pass onlv the modeled frequencies ’

o

Potential apphcations of this approach include the tracking of timie varying stability dematives of
a fight vehicle duning maneuvers that were designed to investigate performance This would provide a
direct correlation between design parameters and obsersed handhing quabities A real-tume implementation
of this identification technique would also facilitate adaptive control appheations.

id

Conclusions For Phase 11

n s % A ————— iy =

Concluding Remarks

The purpose of Phase II of this study was to anzalytically demonstrate the feasibility of an on-hne
calibration precedure  Rather than use experimental data, the investigation was conducted using data
generated by a computer simulation of the load cells to allow 3 compar'son ¢f the 1dentificd model with
the known stmulation model The structure of the mode! to be identified. as implemented 1n the Kalman
Filter, was the same as that used to generate the simulated load cell data, but the states and parameters of
the two models were imtialized differently The unknowan model parameters (load cell deformation angles) .
were then identified successfully by applying the algorithm to the simulated load cell data The resuluing
estimate of the states (applied rotor loads) also converged to the values generated by the curulauion. Th
model structure assumed for this investigation has not been validated «ith experimental data and the .
effect of using a model structure 1 the Kalmuan Filter that does not match the simulation model has not
been investigated
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Specific Conclusions

1)

The following conclusions can be drawn

For the assumed model. the dyuamic rotor-load estimates were found to be very sensitive to static
load cell geometry deformations The rotor-load estimates were greatly unproved by using identified
geometric parameters

Calibration of all model parameters was successfully accomplished using only mneasured load cell and
imertial loads data

The identification of the model parameters was accomphished using only rotor vibrations at the two
lowest frequencies {one rev and M, rrev) as the source of excita- ion, No specially designed external
inputs were required

The 1dentification was accomphshed with the nertial load data set to zero This represents a worst
case situation since any independent degrees of {reedom 1n the inertial loads would provide excitation
that would enhance the dentification

Recommendation For Further Research

The following simulation-based investigations will be recessary to fully qualify the on-line cahibration

procedure for application to thght data

1)
2)

3)

The capability to track time-varving deformation angles must be tested using simulated load cell data
The effect of sensor nuice and maodel structure error on the identification must be determined

The effects on performance of varying the modeled vibration frequencies, the sampling rates and the
Kalman Filter ime constants should be investigated

A practical implementation of this methodology will require a validated mathematical model of the

load cell response to applied rotor loads The accuracy of this technigue 1s al<o dependent on the accuracies
of the assumed mass properties and accelerometer responses. All of this must be deternuned from suntable
ground tests before the on-hine calibration approach can be applied to fhight data
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APPENDIX A: LOAD CELL MODEL DERIVATION

A diagram of the undeformed load cell geometzy is shown 1n Figure A 1. The load cells are mounted
to the fuselage and to the transmission base by spherical bearings It 1s assumed that the transmission
base does not warp so all changes in the load cell geometry are due to deformations in the load cells
themselves or in the fucelage mounting points With this assumption it 1s possible to completely model
the load cell response using a general three component repre<entation of the reaction force at each attach

point on the transmission base. no knowledge of the fuselage deformation 1s required

- ]

Three plane views of the load cell geometry with the three component reaction force representation
are shown 1n Figure A 2 Inertial loads including gravity and the drive ~haft torque, are assumed to be
concentrated at the transnussion center of gravity The rotor loads are concentrated at the hub Taking

the sum of the forces and moments about the certer of gravity gives

Ne=X;=Xy=Gy=Ey~Fi=A;=B,~C,=D,=0
Y. =Y =Yy -Gy -Ey~F, -4, =B, -Cy~D, =0
Z,=22-2Zy-Gy~Ey=Fi=-A, =B, ~C, - D, =0
Le=Ly~Ly~Yyhz=(A,~DJu 2= Eye = (B;~Cy)w 2~ Fof
(By~Cy=Fy~Gy~E,~ Ay - Dbz =0

(A1)

M =M= My-Xyh:—=Zpyhz - (B, -~ A, ~E, -G )d-0~(Cr =D, ~F.:~B,~ Ay~ E,~G.)b:z

~(Cs+ Dy~ F)=0
Ne=Np=Ny—(4, - E, ~G, - B)d~£) - (C, - F, - D)
—(A; =D w2 - E;e~ (Cr =B )us2-F.f =0

Using the transformations.

Az = Acos(o,)si1n{0,)
Ay = ~Astn(oa)cos(d.)
A, = .1;—os(og)cos(9,)

= Beos{ds)sin(8y)

By = - Bsin(os)
B; = Bcos{os}cos(64)
C: = Ccos{o,)s1n(8,)

C, = —Canlo.)

C, = Ccos(o.)cos(8,)
D, = Dcos{o)ain(6;)
D, = -Dsaimloy)

D, = Dcos{o)cos(9)

-
29

(42)
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E; = —Ecos(o,)sin{v,)
E, = Ecos{o.)cos(L,)

E; = Esin(o,)
Fy = ~Fcos(os)sin(vy)
Fy = Feos{og)ecos(v )

Fy= Fsinlog)
G, = Geas(8,)cos(v,)
G, = Geos{8,)sin(v,)

G, = -Gsin(d,)

the equations become

J~RH~ST=0 (42)
where B
JT = Xo Y0 2 Ly M N (44)
and
.\'1 -MmMgel,
Y7 -mya, -~ yg
Z, -Mm,d, -
= A
Ly |~ |~1p-Qi~Teg (43)
\ -I,9~-Tq
.\] ‘I,l’

In equation A 3, a;.oy . and a, are linear accelerations tn each direction measured at the rotor:
transmission system center of gravity and p qy and r are rotational accelerations Because of the nonnigid
engine mountings the engine contributions to inertial forces are not equal in all directions when measured
at the system center of gravity  This effect can be adequately modeled by assigning different values to the
total effective mass of the combined roter transnussion engine system in each direction. mz, my. and
m. There are also a fev. minor ciror terms not given here that are discussed fully 1n Reference 4 15, /.
and I, are moments of inertia. related terms 1n the cross-products of rotational rates are neghble Qg 1
total apphied enzine and tail rotor shaft torque Gyroscopic coupling forces due to engine and transmission
rotational moments of momenturn are represented by the coefficients I'. wath subscripts for the appropriate
ais

The hub forces (H) and load cell readings (T) in Eq A 3 are gnen by

H= Xy Yyu.Zu Ly Mu. Ny . (A 6)
T=.4.B.C.D E.F.G (A7)
The geometric transformations from the applied loads to the center of mass (R and 8) are given by

1 0 0 0 0 0
0 1 60 0 0 0
0 0 1 0 0 0
R = 0 : 0 1 00 (-18)
~hz 0 h: 0O 1 O
) 0 0 0 0 1
and equation (A 9) (on the next page) in which C and S denote cosine and sine functions, respectively
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APPENDIX B: THE EFFECT OF SENSOR NOISE ON LOAD ESTIMATION

The analytical mode! of the rotor/transmission system derived tn the text has the form

J-ST-RH=0 . (B.1)

Gn_e_n the measured load cell regdmgs, Tm. and inertial loads derived from accelerometer measure-
ments J,,. the apphed rator loads, H, are estimated from Eq. B 1 as

H=-R'J.,~-5Tn (B2)
The measured Joad cell and accelerometer values may be written 1n terms of their true values and a
random measurement nase component as follows

dm = a="Uy, V4 = N(0.Q4) © (B3
T =T = vy, vr = N(0,Q7) (B4)

Writing the derived inerual load vector.J,m, as the product of an inertia matrix, M, and the ac-
celerometer measurements dp, gives

Jm = Man = Ma~Miy=J~ Mo, (B3)

where J 1s the actual inertial load vector
Substituting Eq’s B 4 and B3 into Eq B2 gives

. H=-RYWJ-ST ~vy (B )
where
Fy=-R VM5, - Sir < (B7)
Substituting Eq B 1 into Eq B 6 then gives
i =H-0y U = N0 Qy) (B 8)

From Cq B 81t s seen that vy, as given by Eq {B7) 1s the combined effect of the instrumentation

errors on the apphed rotor load estimate,§ This error represents a lower bound on the accuracy of the
estimation that 1s attainable without applying staustical processing, such as Kalman filtering or smoothing
The covariance of this error. @y , may be computed from Eq (B 7) using the known covariance of the
instrumentation errors, @ 4 and @Qr , as followns

Qu=Euil} =E{ ~R' M5~ Sir,
-RVW\ME, - S5r T (B9)

Ou =R ME{GSTIMT(RYT = sE{orsTIMTRT
-~ RIIME{(5461)ST(R™YY - RTISE{5r5R}S'R? (B 10)

The sensor noise components are assumed independent so the term E{v 11T} 1s zero Substituting the
known covariance matrices of the sensors for the other expected value terms gives

Qu =R MQAMT - $Q7ST (R YT (8 1)
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APPENDIX C: CALIBRATION ALGORITHM
The applied rotor load estimation error 1s given by Eq 1 3 1n the text as
= ~R Y Jn=~STm-RH (c1)

The coefficient matrices, R and S contain geometric parameters of the model and the derived 1nertial
loads vector, J,,. includes inertial parameters of the model A subset, @, of the parameters 1s selected for
caltbration and the error is treated as a function of those parameters A cost function 1s written 1n the
forny:

A\
V@) =123 ey(0.n)TH tey(e n) (C2)
n=l
where W 15 a weighting matrin given by
N.
W=1/N.) éenl(®n)ein(0.n)7 (C3)
n=1

Denoting the aprion estimate of the vector © by © and the postmeasurement estimate by O, the first
partial of V" with respect to the parameter 8 1s expanded about its value zt the aprion1 parameter estimate
O to give

- V(€ V(& . 9V(é
WIO) L O) (5. 6)2X(0) (1)
ae 380 80
Setting the desired value at © to zero, corresponding to an extremum,gites
6-6- L0 N0, (Cc:3)
962 a0
Taking the first partial of ¥ with respect to © at © gives )
(o) N s T —10€H(© n)
— = en(On}' 7 ———e— C6
35 ; 1(0.n) Y (Co)
The second partial to first urder is then
- \ - -
N L 9¢ F(O.
a-\ (e) - T(ae,,(? n))TH' _18€1(O.n) (1)

30 86

Once the parameter set has been chosen. the partial cenivative of the errors, €y, with respect to the
parameters must be generated analyucally from Eq (C 1) The parameter estimates are then obtained
from Eq» (C3) to (C7) using the measurement errors sequence, €5 generated by Eq (C 1)
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Figure 4

Figure 5

Magnitude of load cell transfer functions for 800 Ib applied lateral force
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Figure 22 . Comparison of actual and estimated y-axis hub loads

/ .
/!‘ /"
74
i
2 H
-, , ‘ )
1//’/ .
/
~——— ACTUAL HUB LOAD
.« « « ESTIMATES USING INITIAL
PARAMETER VALUES
3000 ——— ESTIMATES USING FINAL
. PARAMETER VALUES
2000
;
, 1000
— 2
. / ~
4 Q
, < 0
. o
-— -t
! [aa}
, / S5 -1060
x
/ |
// 2 » .
'/ % ~2000f et e
7 O .
/ = .
: g 3000} .
i
J .
@) '
< 4000} .
~5000 . .
—6000 . L L "
0 .15 .30 45 60
TIME, sec
)

47

7]

PUS——

eegpm i i e et AT Smios o et v o 4 o AR . i
> 7 ¥ ]

by

- ———— e
g



/ ) s
- . .
x -
Fq*g«; TAES T NN TN ey 1 bries — o - - awa = e g
e e 3!! I N OO S S NSRS L ItT e mpTy v oo s -

2
— ACTUAL HUB LOAD
« « » ESTIMATES USING INITIAL
PARAMETER VALUES
) of ——— ESTIMATES USING FINAL
o PARAMETER VALUES

e -1000

2 -2000
o
g
Q
r]

@ 3000
X
@
X
<

> 4000

—5000

-6000 ' . ' :
0 .15 30 45 .60
TIME, sec
- Figure 23 Comparison of actual and e<timated rolling moment hub loads.
48
e

*

-

ol A nD (B .-u.ua.au..-....-,

LRl S TLP PPN



1

Figure A1 Undeformed load cell geometer; with generalized reaction force
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