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Summary

This reloet covers research performed under sponsorship of

NASA/Langley Grant NAG-1-157 during the period 1 November 1984 through

30 April 1985. An analytical model of a 3-D airfoil was used to study

an optimization procedure formulated to enhance staLility of an airfoil

through integrated structural and control synthesis. This procedure is

3iscussed in this report, together with preliminary results. These

results show that a sensitivity derivative approach utilizing structural

parameters, weighting matrix parameters and optimal control parameters

(in this case, the design airspeed) is effective in determining the

"best" structural/control design.

No trips were taken during this reporting period. The first trip

was taken 28-29 January 1985 tc visit Langley Research Center to present

a research progress report. The second trip was taken from 1 April to 3
	 a

April 1985 to attend the Second International Conference of Aeroelasti-

city and Structural Dynamics in Aachen, West Germany. A paper was

4»
presented at this conference. A trip to MBA Aircraft in Munich was also

included from 4 April to 5 April 1985 to discuss common research

efforts. A trip summary is included in this report.

Discussion

The objective of the current work was to develop and to demonstrate

a procedure to ensure aeroelastic stability of an airfoil up to and

including a target airspeed. To accomplish a portion of this objective,

optimal control techniques were used to design the active control sys-

tem. In addition, sensitivity derivatives were computed to assess how

changes in system parameters affect the optimal control law design. In
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addition to control parameters such as the elements of the state weight-

ing matrix (the [Q] matrix) and the design speed at which the control

law is formulated, denoted as UDes, the position of the shear center,

expressed as a parameter a e , was used as a design variable. U is a non-

dimensional airspeed, while a e is a ncndimensional coordinate described

below.

The objective of the new procedure is to define a control law such

that the aeroelastic system is stable at all speeds below a certsin

airspeed, called Ua . A problem that arises with the use of optimal con-

trol techniques to define such a control law is that the system may be

stable at the airspeed at which the control law is formulated, but may

be unstable at lower airspeeds. As a result the design airspeed for tha

control law does not necessarily correspond to the maximum airspeed to

be reached before aeroelastic stability is encountered. Conversely,

UDes may be used as a parameter in the stability augmentation problem.

Similarly, the elements of the state weighting matrix [ Qij l used

for optimal control synthesis are arbitrary. However, the choice of

these Qij elements affects the control law and the off-design perfor-

mance of the active control. Setting these parameters in an "optimal"

manner is also advantageous. Therefore, the Q ij elements become design

parameters.

The structural design affects the behavior of the flexible struc-

ture. The example chosen for the current research is a 3-degree of

freedom, typical section model as shown in Figure 1. The degrees of 	
1I
I

freedom are airfoil pitch, a, airfoil plunge, h, (bending) and control 	 i

surface rotation, B. In particular, for this 3-DOF model, the position

of the shear center affects the aeroelastic stability of the airfoil.
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Figure 1 - Three-degree--of-freedom typical section airfoil.

In reality, the airfoil skin thicknesses, span areas and locations all

affect the shear center location. A parameter, a
e

, is used to denote

shear center position. The parameter a  is the nondimensional position
i

(position divided by semi-chord) of the airfoil shear center with

respect to the airfoil midchord. As a result, a
e 
= 0 represents the

shear center position at the airfoil midchord, while a e = -0.50

corresponds to a shear center placement at the airfoil quarter chord.
f	 -

For this study we have assumed that there is no weight variation

(penalty) to be incurred when the shear center is moved. Furthermore, 	 -^

the sectional center of mass is held fixed as a  is changed. These res-

trictions do not invalidate the results to be discussed nor th o pro-

cedure used to generate tiese results.

The shear center location has a substantial effect upon the "open-

loop" aeroelastic stability of the 3-DOF airfoil. The shear center

position also has a substantial effect upon the value of the "cost func-

tion" used to generate control laws using full-state feedback with

optimal, steady-state, linear-quadratic-regulator theory (LQR theory).

1
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Figure 2 - Constant optimal control cost contours for an actively controlled
3-DOF typical section as a function of UDes and ae.

In Figure 2 the effect of the parameter a  upon the standard LQR

cost function J for different values of UDes is indicated. The open-

loop flutter and divergence speeds, as functions of a e , are indicated as

bold solid and dashed lines, respectively, in Figure 2.

If a  - -0.20 and UDes - 6.0 an optimal control law may be designed

such that closed-loop stability is ensured at U - 6.0. As seen in Fig-

ure 2, the cost, J, is approximately J - 10. If UDes is fixed at 6.0,

but a
e 

is changed to equal -0.4 (a forward shear center movement), sta-

bility of the closed-loop system is still ensured at U 	 6.0. However,

the "cost" has increased to J - 20. While the control cost can not be

directly translated into real costs, the implication here is that the

system requires more effort to control. This is due to the close prox-

imity of the open-loop stability boundary when a  - -0.40.

Next, let us examine the closed-loop behavior of this system. To

generate Figure 3, active control laws were formulated, using LQR theory

with UDes fixed at 6.0, and at several different values of a e . Both

cpen-loop And closed-loop instability speeds are shown in Figure 3.

4	 M.
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Figure 3 - Closed-loop stability boundaries for an actively controlled
3-DOF typical section. The design airspeed is U 	 - 6.0 while
control laws are formulated as various values ofDas.

e

With UDes fixed at 6.0 the closee-loop stability behavior may be

degraded for one of two reasons. First of all, the open-loop stability

boundary may be degraded at speeds above UDes m 6.0 when active control

is added. This is seen to be the case when a e is in the vicinity of

-0.30. In a second case, when a  is less than -0.40, a low-speed insta-

bility region appears due to the addition of feedback control.

Notice also, that if one were to fix UDes and maximize the airspeed

I

at which closed-loop seroelastic instability occurred, this maximum	 •

would occur near a  - -0.20. This value is slightly less than the max-

imum obtained using passive means (change in a e only).	 !•^.
i_

In summary, the choice of both a e and UDes has a substantial effect

upon closed-loop system stability. In addition, low values of the LQR

cost function, J, do not necessarily lead to acceptable dynamic response

at all speeds below the instability speed. As a result of these obser-

vations a nodified procedure was investigated to both take advantage of

LQR theory, optimization theory and optimal sensitivity derivatives.

This method was proposed by Mr. T.A. Zeiler who has included work by Mr.

M.G. Gilbert to produce a hybrid scheme for selecting the best

S
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structural/control design.

An Integrated Design Synthesis Scheme

Let us define as our design objective the increase in the aeroelas-

tic instability speed (either flutter or divergence) to a certain value,

Ua . This increase will be accomplished by utilizing two sets of design

variables, those involving structural parameters (in the present case,

only ae ) and those involving active control law parameters. The optimal

control design airspeed UDes does not necessarily correspond to the

design objective airspeed, U s .  We also require closed-loop system sta-

bility at all airspeeds below U .
s

At 
V  

or at any other airspeed below U8 , the closed-loop system

will yield eigenvalues of the form

Ai - of + jwi	(1)

Our design objective requires that all values of o f be negative (in the

left half-plane) at speeds below U s . A function, F., may be defined

such that

1	 N	 poi	 `'±
Fa	

P 
ln[ E e	 ]	 (2)

i-1

F a is called a cumulative constraint function. In Eqn. 2, p is a con-

stant chosen to scale the problem while N corresponds to the number of

distinct values of of obtained from the closed-loop eigenvalue analysis.

It can be shown (see Sobieski, et al., AIAA Paper No. 83-0832-CP) that

F is bounded as follows:
s

vi (max) c F a c a (max) + p 1nN 	(3)

Thus if at a given airspeed, U, F a is negative, then ai (max), the larg-

6
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eat value of 
a  

at this airspeed, U, is also negative and the system is

stable.

What happens if, at U  or some other airspeed U j , the value of Fs

is fcund to be positive? How do we modify the system control law and

structure to reduce the value of F s to an acceptable value in an

"optimal" manner? Certainly we could rely exclusively upon active con-

trol. However, situations such as shown in Figure 3 might arise, for

which "sub-critical" instabilities appear.

Let us designate Fs as being a function of a set of "design" param-

eters, pi , in this case 
Be' 

UDes and (l ij . The functional F s is also a

function of the control, u.

First, we select a finite set of airspeeds at intervals up to Us;

call these airspeeds L1 j . These speeds are chosen to monitor system sta-

bility at "sub-critical" airspeeds. At each airspeed except Us , the

actively controlled closed-loop eigenvalues 
X  

yield functionals F  such

that

Fj<0	 atUj	(4)

where the form of F  is the same as that indicated in Eqn. 2. At our

heroelastic design airspeed U 89 F s > 0. We wish to choosi a new set of

design parameters, pi , in such a way that we minimize F S while keeping

F  < 0. In addition we require that the LQR cost function J be a

minimum with respect to a choice of control, u at 
UDes• 

Changes in the

parameters p i to reduce Fa so as to stabilize the system at U S will, in

general, change the values of F  at the intermediate design airspeeds.

This will occur because of reshaping of the root locus curves for the

closed-loop system.

7
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The procedure to be used to optimize the actively controlled system

is a modification of the multi -level, linear, decomposition procedure

suggested by Sobieski and c^-workers. In the present case the system is

decomposed into a structural subsystem and an active control subsystem.

Let us first discuss the active control subsystem.

At the active control level, the subsystem optimi-ation is the

solution to the optimal steady -state LQR problem,

•	 min J	 f (X*C*QCX + u*Ru]dt	 (S)
u	 o

with

	

X- AX+Bu ,	 (6)

The solution is:

u - GX - -R 1 B*PX ,	 (7)

where P is the solution to the steady-state matrix Riccati equation.

^i
The change in J with respect to design parameters is achieved through

differentiation of the necessary conditions satisfied at the minimum J,

known generally as Kuhn-Tucker conditions. The results of interest are

derivatives of the optimal feedback gain matrix with respect to the

design parameters, (assuming B * B(p))

	

ap 
- -RB* ap	 (8)

That is, the derivatives are constrained to describe how the optimalimal

gains change with changes in parameters. Thus, the control -augmented

state matrix (denoted as A♦) derivatives are written as:

aA+ aA + B aG- 
	

(9)ap	 ap	 ap

Eigenvalue sensitivity derivatives are found from

8
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3A 	
-1 aA+

ap - DIAC[E	
ap
 El

where, Ai - diagonal matrix of system eigenvalues; E - eigenvector

matrix of A+.

These derivatives describe how the eigenvalues of the optimally con-

trolled system change with changes in the design parameters. The real

parts of the eigenvalues and their sensitivity derivatives,

aQ	 aA

api - Re ( api)

._are.then used in the system level optimization. At this point we can

change parameters p i such tl^at we still have an optimally controlled

system, that is, at a r.inimum control "cost".

For LMs example there is no structural cost, that is, no addi-

tional weight is associated with changes in ae.

At the system level, the optimization problem can be written in

linearized form as:

m aF
min Fs	 so- F + g

Ap i	i-1 pi

subject to

m aF

(a) F - F	 + E _1 - Ap < 0	 (13)

j	 Jo	 i- 1 api	 i

(b) J - min J

U

(c) x - Ax + Bu

where m - the number of active design parameters. Note that constraints

(b) and (c), representing the subsystem optimization, are implicitly

satisfied since optimal sensitivity derivatives of the eigenvalue real

parts are used in construction of the Taylor series approximations to



the cost function F s &ad constraints. The derivatives in Eqns. 12 and 	 .'

13a are given as:

N	 poi 3ai
1 e

2Fs - i- 1 	 ^P

8p	 N	 pal	
f,14 )

E e

i-1

To test this procedure a "simplex" algorithm adapted from linear

optimization was used. The parameters p 1 - a  and p2 - UDes were chosen

as design parameters. An initial design with a  - -0.4 and U
Des n 

6.0

was chosen. In this case the closed -loop system was unstable at U -

7.0. The objective was to stabilize the system atU - 8.0 in an

optimal manner. To do this, the functional associate

s

 d with 'U 	 7.0 was

first reduced. Then the functional associated with U  - 8.0 became Us

and it was reduced.

Figure 4 shows the history of a  and UDes versus number of design

cycles, together with the values of Fs and F j . After seven iterations,

no meaningful stability improvements were possible. Figure 5 shows the

system root locus for the final design. The final design appears to be

a compromise between flutter of the closed-loop system in two different

modes, that is, a cusp in the flutter boundaries such as shown in Figure

3.

Figure 6 shows a plot of pole -zero "migrations" with airspeed for a

fixed value a  - -0.4. At this value of a  there is close pole-zero

proximity (not exact cancellation) for an unstable mode. This may

account for the fact that the control designed at this point does not

pro •'uce superior stability boundaries. However, the process of reducing

Fa moves the system away from this divergence region.

10
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Figure 7 shows the pole-zero migration as a function of U for a

configuration close to the final design. This figure shows that the

problem of unstabilizability (uncontrollability of an unstable mode) is

avoided by stabilization of the unstable mode through structural modifi-

cation. There does appear to be some additional pole-zero separation,

representing enhancement of controllability (as opposed to avoidance of

incontrollability).

In addition to the above study, an investigation was made of the

effects of changing the diagonal elements of the output weighting

matrix, Qij . All previous studies had taken [Q ij ] to be an identity

matrix. Figure 8 shows stability boundaries versus a  for UDes - 6.0

and airfoil pitch weighting of 0
. 

- 100. With this weighting, the

closed-loop divergence region for large negative vall!cs A a  that

exists when [Qij ] is an identity matrix is eliminated. (Compare Figure

8 with Figure 3.) However, the flutter boundaries and the divergence

boundary when a  is near zero are unaffected by this change. The

closed-loop divergence boundary appears to be associated with the con-

trol deflection and, in fact, merges with the flutter boundary just

above it. Figure 9 shows stability boundaries for the control deflec-

tion weighting, Q S - 100, with all other diagonal elements equal to

unity. The divergence boundary for large negative a
e 

is again elim-

inated while the main flutter boundary is only slightly affected. The

divergence and flutter boundaries fora
e 
near zero are shown to be more

heavily influenced by changes in QS.

Summary of Results and Future Work

During the past six months a procedure has been developed to

14
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redesign the structure and the control system to augment the aeroelastic

stability of a idealized aeroelastic system. A number of problems

remain to be resolved and some procedures need to be formalized. How-

ever, it appears that a major step toward the integration of the

structural/control optimization has been accomplished.

Future efforts will be directed towards exercising the method

further on the 3-DOF model as well as the 4-DOF model with "fuselage"

pitch freedom.

Work will also begin on more realistic models that incorporate

multi-mode, laminated composite structures. A Master's degree student,

Mr. V.J. Sallee will begin a 10 week residency at Langley Research 	
i

Center in mid-May 1985 to learn to operate the ISAC code so that these

new thrusts can begin.

I
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Trip Report

Second International Conference on Aeroelasticity and Structural Dynam-

ics, Aachen, West Germany, 1 April through 3 April 1985.

A trip was made to this conference to present a paper entitled

"Tailoring for Aeroelastic Stability and Lateral Control Enhancement".

The conference was well-attended by European specialists in this area of

research and technology. In the field of aeroelastic tailoring the

presentations were for the most part not state -of-the-art as we know it

in the USA. Personal discussions with engineers from the German air-

craft establishment lead one to believe that their capabilities and

interest are much greater than conference presentations would indicate.

Some mention was made of the aeroservoelastic tailoring problem although

ideas about how to approach the subject were not forthcoming. The

Israeli aircraft engineers and researchers seem also to have a submerged

interest in tailoring.

A visit to MBB, Munich was made on April 4 and 5. Mr. Otto

Sensburg was the host for this visit. During this visit there was a

4: 4

keen interest expressed by the Germans in innovative technology. I was 	
^. a

briefed on their design for a tailored composite vertical stabilizer and

planned scale-model tests. They also plan active control testing. A

lasting impression was that of a highly trained and qualified group of

German engineers with many new ideas, not all of which they were willing

to discuss.
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