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P
i	 QUASI NON-INTRUSIVE SAMPLING AND ANALYSIS OF GASES ASSOCIATED WITH

THE BOUNDARY LAYER ON THE TETHERED SATELLITE AND SIMILAR
SUPERSONIC AND HYPERSONIC RESEARCH VEHICLES

By

j1	 Charles Fishel, l Stacie Niederriter, 2 Kenneth G. Browna

INTRODUCTION

The mass spectrometric analysis of the environment surrounding an ob-

ject such as a reentry vehicle or a low earth orbit satellite requires the

removal of some of the atmosphere present at the surface of the object. It

is necessary that the sample removal be as non-intrusive as possible since

there will be other instrument packages on the vehicle, some downstream of

(i	
the sampling site. The opening in the surface of the vehicle, acting as an

L^	 inlet to the mass spectrometer, should either have no effect upon the compo-

sition of the sample or any affect that might occur should be well-charac-

terized beforehand under the physical conditions that a test object might

encounter upon reentry or in earth orbit.

This report considers the effect that one candidate inlet, an assembly

of capillary openings in a thin glass plate (a multichannel plate), might

y}	 have on the overall sampling process. 	 The flow characteristics of the

plate, under a variety of conditions of external pressure and mass flow,

f	 will be evaluated. The first part of the report is a review of capillary
t;s

n	
flow theory with some development of the pertinent equations. The predicted

^l

1Research Technician, Chemical Sciences Department, Old Dominion University,
Norfolk, Virginia 23508

2 Undergraduate Research Assistant, Chemical Sciences Department, Old
Dominion University, Norfolk, Virginia 24508

a Associate Professor, Chemical Sciences Department, Old Dominion University,
Norfolk, Virginia 23508.
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mass flow will be compared to that determined experimentally to assess the

effect that mass flow through one capillary might have upon a neighboring

capillary. The second section of the report is concerned with mass spectro-

metric measurements of gas mixtures flowing through the multichannel plate

	

l	
(MCP).	 In the first part of the experiments, the flow was in a direction

normal to the surface of the plate. The experimental gases were Argon and

i
mixtures of carbon dioxide in air. The resultant ratios of carbon dioxide

to nitrogen and oxygen were determined and compared with the original sample

to determine when separation by molecular weight occurred. 	 In the third

section, ongoing experiments are discussed which are conducted with the flow

parallel to the surface of the plate, a simulation of the kind of flaw that

a flight vehicle would experience. We are initially interested in determin-

ing the pressure drops that will occur across the plate as the external

pressure is varied, and the resultant flow rates that will be attained.
^r

Eventually the mass separation that will occur, at the inlet, as the pres-

sure is lowered will also be determined. The fourth section of the report

(	
summarizes the results of calculations which attempt to emulate the expected

environment at the surface of a reentry vehicle as it descends. The physi-

cal conditions that would exist at the surface of the vehicle and in the
	ll!!	

boundary layer are predicted. In addition, the gas composition at the stir-

	

{	 face and in the boundary layer will be estimated assuming that the only

species present are N atom, 0 atom, 02 , NZ , and N0.

	

{	

EXPERIMENTAL

In the first set of experiments a multichannel plate fashioned from

leaded glass and furnished by Galileo E1eci;ro-optics was used as the model

	

^

J	effusive inlet. A magnified view of the MCP with an accompanying reference

tJ

	

U	
2
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scale in units of .01 mm is shown in Figure 1. The holes were determined

to average 9.6 um in diameter with the plate having a thickness of 400 um.

There are, in this particular plate,	 7.48 x 104 holes/cm2 resulting in

4pproximately 58% "empty space" in the plate. For the experiment, the plate
I

was mounted on a Teflon mask which had a hole in its center of approximately

l	 1.6 mm in diameter. The Teflon mask reduced the effective open area of the

MCP and provided a seal to ensure that no gas leaked around the MCP. The

plate and mask were held in a flange with the whole assembly being connected

j	 to the experimental apparatus represented schematically in Figure 2. In all

of the experiments described in this section, the gas flow was normal to the

k^	 surface of the plate. The pressure drop, AP, across the flange, and thus-

ly across the MLP, the upstream pressure, P 1 , and the pressure at the gold

leak inlet to the mass spectrometer, P
GL
, were monitored by barocel pres-

sure transducers. The mass flow m was monitored by Haysting:s mass flow

meters with flow ranges of either 0-20 or 0-100 sccm/min. All flows were

corrected for actual conditions of pressure, temperature and nature of the

gas. The flow in the system was established with the use of a mechanical

l forepump connected to the line in front of the gold leak entrance to the

t

C.1	
mass spectrometer. In addition, the sample was pumped through the gold leak

using another mechanical forepump and the 'ion pump on the mass spectrometer.

The mass spectrometer was calibrated for the particular gas involved in this

experiment by direct injection of a sample of a gas of known concentration

into the mass spectrometer ion source.

The net effect of the multichannel	 plate, or effusive inlet,	 upon the

flow can be seen in Figure 3.	 The measurements in Figure 3 were made with

Qthe apparatus shown in Figure 2 with the mask, by itself, in the flange and

U

° with the mask and effusive inlet in the flange. At higher pressures the

U	
3

^rj



multichannel plate p roduces a considerable pressure drop, although the down-

stream pressure,	 P29	 is	 still	 relatively	 large. For example,	 at an ap-

plied pressure of 20 torr the pressure drop is 15 torr resulting in a down-

stream pressure of 5 torr which would be too large for a mass spectrometer

ion	 source.	 As	 the	 app lied	 pressure	 is	 loweredpp	 p the	 pressure drop falls

precipitously. An	 extrapolation would	 indicate that at	 low	 pressure,	 al-

though still	 unreasonably	 high	 for	 a	 typical	 MS ion	 source,	 P 1	and	 P2

would become	 approximately equal,	 indicating that this	 particular plate	 is

	

(]	 not a barrier for the gas. It should be emphasized here that this is data

from one plate with a particular hole density and length. The concept of

the plate itself is promising and with some modification, particularly in

hole density, would produce pressure drops that would enable the operation

of the mass spectrometer over a variety of pressure ranges. Such modifica-

tions are currently under study. The effect of capillary size upon the com-

position and physical nature of the.flow will n tilus(,u evaluated.

	

1	 Figures 4 and 5 show the effect of the upstream to downstream pressure

ratio on the flow through the multichannel plate in comparison with an empty

	

t^	 flange. For both the case of pure Argon (Ar) and 15% CO 2 in air, the flow

	

(	 reached a maximum at a Pj /P2 of about 3. For both gases the flow through

	

L^	
the MCP attains a plateau at a flow rate that is approximately 50% lower

	LI	 than the empty flange case. The extent of flow reduction is a consequence

of the plate having approximately 58% free space, as stated earlier.	 In

both experiments the upstream pressure, P 1 , was 4 torr.

The downstream pressure as a function of mass flow is shown in Figures

	

î	 6 and 7.	 Again the applied pressure was 4 torr. As P 2 decreases mass

discrimination effects begin to appear. At low P 2 the extrapolated flow

is higher in the 15% CCz in air mixture than for pure Ar.

A

0	 4



n
The	 effect	 of	 the	 multichlnnel'plate	 on the	 composition	 of	 a	 given ,

sample was determined using a mass spectrometer developed for gas 	 analysis

i".
(1)	 which was placed	 in the system as shown	 in Figure 2.	 The gas mixture

was 7% CO2	in air purchased from Scott Specialty Gases. 	 The concentration

of the mixture was	 verified by gas chromatography.	 The observed CO2 	and

Oxygen	 (OZ )	 peaks	 were	 ratioed	 to	 the	 observed	 Nitrogen	 (N 2 )	 peak.	 The

dependence	 of	 the	 ratio	 upon	 the	 downstream	 pressure,	 P21	 at	 constant

l.^ upstream pressure, 	 P 1 ,	 for flow through the multichannel plate is shown in I

(«j Figures 8	 and 9.	 The resultant curves may be compared to data taken when

the flange was not in the system and the gas was flowing through a piece of !

6'	 long 1/8" diameter copper tubing.	 In the latter experiment, 	 P2	is the

pressure at the gold leak,	 PGk,	 The copper tubing data is shown in Figures

10 and 11.	 At equal	 applied pressure there is not a discernible difference

ffh between	 the multichannel	 plate	 and	 the	 tubing	 for	 the	 02/N 2	ratios	 in

Figures 8 and 10.	 In the case of the	 CO02	ratio differences do occur at
is

l^
low values of	 P2 .	 For example,	 at a	 P2	of 2 torr and a	 P l	of 12 torr

the	 CO2/N2	ratio is	 .168 for the MCP while it is 	 .16 for the copper tub-

^^ ing.	 The difference is experimentally real	 and is expected to become more

significant at lower	 Pl.

In Figures 12 and 13 the mass flow for Ar, 15% CO 2 in air, Ne and He as }

a function of	 AP	 is presented for the empty flange and the multichannel

plate,	 respectively.	 In both cases, the mass flow exhibits a linear depend-

Ila 1ence upon	 AP	 .'c constant	 P 1 .	 Except for He the mass flow is considerably

diminished for each gas, when the MCP is present. I

4.

5



6

l_1

4	 FLOW MODELING
i^

The nature of the flow through an opening can be separated into three

L;	 regions of differing behavior. These three flow regions, viscous, transi-

tional and molecular exist in different pressure ranges with overlap for the

'^	 differing types of flow. Using the mean free path, defined as:

	

a = 16u	 RT	 (1)

(	 5 P 1 	2TrM
J

rough limits for the existence of these three types of flow can be estab-

lished (2). At a value of r/a less than 1, where r is the radius of the

capillary opening, molecular flow should dominate. For r/A values between

1 and 100 the flow should be transitional and above 100 it is viscous. For

the array of capillaries used in this experiment, with a radius of 4.9 um,

rA is always below 100 and becomes less than 1 at pressures below 10 torr.

C^	

The above is simply a rough guide to establish a background for the more

extensive flow treatment an analysis discussed below.

L.^	
The measured mass flow can be compared with what might be expected for

L)	 free molecular flow by determining the ratio ;/; fm , where m is the meas-

ured mass flow and ;fm is the calculated free molecular mass flow at the

temperature and pressure of the measured mass flow. Free molecular is de-

fined by the following expression:

em
= k,rr2p, (i - 

PL)(2)Py	 2aIT

where k is the Clausing constant determined from tables in reference 2.

For the capillaries in this experiment the L/d was approximately 40 and

I



C

	

^
'	 the corresponding value of k was .0613. The molecular weight, M, in

	

t	 equation 1, is an average molecular weight in the case of gas mixtures.
i

The nondimensionalized mass flow ;/; fm as a function of the pressure

ratio P1 /P2 is shown in Figures 14 and 15 for the 15%-0O2 air mixture and

pure Argon, respectively. At low P 1 (less than 5 torr) the observed ratio

f
is approximately 1 for the limii:ed pressure ratio that was accessible in

this experiment. At slightly higher 11.89 torr, in the case of the CO2

Il ai r mixtures, the non-dimensional flow is observed to pass through a maximum

	

,3 

I

-^	 as the pressure ratio is decreased. The maximum in the flow has also been

observed by Sreekanth (3,4) for the case of flow through one capillary

	

s ^(	 opening. Sreekanth's studies were for a lower external pressure than avail-
f:	 f

able in the current experiment. As the external pressure is raised the mass

	

!i	 flow ratios converge at a limiting value indicating the onset of choked

flow. It is possible to define a Knudsen number, K n , for the current

experimental situation as

I^

Kn = d

	

(3)

	

lJ	
The range of Knudsen numbers is from approximately .8 to 2.5 which is pre-

	

{J	 cisely the range covered by Sreekanth's experiments.

To further'characterize the flow through the multichannel plate, the

discharge coefficient (the ratio of actual mass flow to one-dimensional

	

L1	 isentropic mass flow for choked conditions) can be determined. 	 The dis-

charge coefficient is defined as:

U

0

0	
7



mmeas

Y+1

Y	 2 1/2 P , A

R (Y+1)	 T

D = 
mmeas =
,

misen

(4)

5

The dependence of the discharge coefficient upon the Reynolds number is
i

shown in Figures 16 and 17. The Reynolds number is defined as:

Re = 22 m
	 (5)

V rrr

As the applied pressure increases the values of the discharge coefficient

begin to converge as choked flow is approached. At low Reynolds number the
i!

flow approaches that expected for free molecular flow.

Willis (5) has evaluated the mass flow through a circular orifice at

high pressure ratios. He was able to derive an expression for the nondimen- 	 +y

sionalized mass flow using an expansion in Re. The resultant expression

is:

m	
= 1 + .083 Re + 0 (Re)	 (6)

;fm

This expression was found to fit a variety of existent experimental data at

suitably low pressures. For the one experimental case in this report, where

there is sufficient data, the observed ; v alue of the linear coefficient was

.095, in reasonable agreement with that predicted in equation 6. However,

8



r.

there is not, as of yet, sufficient data available for any firm conclusions

about the multichannel plate.

There have been two previous studies of capillary arrays similar to the

one described in this report (6,7). In both cases the primary objective was

1	 the production of molecular beams with an analysis of the shape of the beam

and peak intensity. Giordmaine and Wang (6) were able to calculate the peak

beam intensity and beam width assuming that their is limited Knudsen flow

near the low pressure end of the capillary source. 	 Johnson, Stein and

(	 Pritchard (7) were able to express the flow rate in terms of plate param-

eters and the nature of the gas. Their resultant expression is given below:

A - 3 (3̀)	 (7)^Q2^ ^^^ ^^^ ^^^ 

	t-1	 The above expression will be utilized in studies conducted upon the appara-

tus described in the next section which will be able to achieve pressures

where free molecular flow can exist in the multi-channel plate.

	

(+	 LABORATORY MODELING

	

I^f	
The redesigned multichannel plate holder is shown in Figure 18 a,b.

	

{	 The holder is designed to allow for flow parallel to the surface of the MCP.

The MCP is mounted on a teflon disk which is between the MCP and the various

	

i	
masks that will be used.	 The teflon disk provides a sealing surface to

insure that the gas flow will occur through the MCP and not around the

edges.	 In addition, the metal mask is held against an "D" ring seal to

	

I	 facilitate the achievement of a low external pressure as well as to further

reduce the chance of leakage of the flow to the mass spectrometer. The

U9
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array of MCP, teflon disk and mask is firmly clamped in the holder. At this 	 s

point in time we have been able to achieve a pressure reading of 10-3 torr

with a mechanical pump on the external side of the MCP and a turbomolecular
a

	

j,	 pump downstream of the MCP.

The experimental apparatus, with the MCP holder in place, is shown in

the schematic in Figure 19. The pressure measurements, P i and AP, will	 j
d!

be made by either thermocouple gages or Barocel pressure transducers depend-

	

I_	 ing upon the pressure range of the particular experiment. The flowmeter is

a Hastings mass flowmeter as before. 	 The mass spectrometer is different	 {

from that used in previous experiments, a quadropole mass spectrometer pur-

chased from Extranuclear Corp., their model C-50. 	 The MS is capable of	 I

being placed under computer control. 	 However the data described in this

section was obtained by recording the signal on a strip chart recorder. The

inlet to the MS was purchased from vacumetrics and contains a micrometer

valve in addition to a bypass for efficient pumping of upstream lines. The

entire system is pumped by a turbomolecular pump with the pressure monitored

by an ionization gage.

	

^`-	 The MCP . used in these experiments has been coated with a metallic coat- .f

i
ing. As a result the average diameter of the holes has been reduced to 5.7	 ^•

l
um.	 This MCP is, then, only approximately 30% open space.	 For example,

	

•^	 when the MCP is used with the mask with the 1/8" diameter hole there are	 j.	 }

approximately 2.7 x 103 holes in the MCP through which gas could flow. The 	
S

	

-^	 thickness of the new plate is 400 um, as before. 	 !

In the initial experiments, the admission of gas to the MS was con-

trolled by the micrometer valve. As a result the flow through the lines

downstream of the MCP was effectively throttled. The pressure drops across

l
the MCP are not the pressure drops that might be obtained in a vigorously

710
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II pumped system.	 The data obtained with this configuration is presented in
1	 ,

Table I-III for the three masks used. At this point in time, the only firm

f' statement that can be made is that at pressures below 5 torr mass separation

!	 will begin to occur, as observed previously. 	 Any firmer conclusions of

!l	
greater generality will have to await further experimentation.

(( ^i
{' 1	 REENTRY MODELING

The gas chemistry that is occurring at the shock or at the surface of a

E	 proposed test vehicle (either satellite or reentry) can be modeled utilizing

a program developed by Shinn et al. (8). The expected reaction products can

be estimated assuming certain initial freestream conditions and the extent

of surface catalysis. The information thus obtained will provide guidelines

for the eventual construction of an onboard mass spectrometer with an inlet

system.
t

In this section the results of a calculation for a particular reentry

ll	
vehicle are presented and discussed. The calculations were performed by D.

^.7 Eide ( g ). The assumed vehicle shape is a combination of a 55° cone with a

{1	 spherical blunt nose. The angle of attack is 35°. The physical conditions

f(,J

	 and the concentrations of 0, N, NO, NZ , and 02 are calculated from the

u surface to the shock boundary, assuming the free stream conditions given in

Table IV at the four altitudes under consideration: 84 km, 73 km, 65 km,

fl	 and 55 km.	 The calculations were performed at various stations along the

vehicle centerline.	 All results presented in this report are at stations

l	 which are downstream of the point at which the geometry of the sphere is

mathematically merged with the cone to generate the shape of the vehicle.	 {

The nondimensional coordinates of the various stations selected are shown in

0

N
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f

Table V. These coordinates are defined in reference 8. The reentry path of

the vehicle is that for a typical shuttle reentry.

The dependence of some of the important physical parameters, pressure,

temperature, density and viscosity, upon altitude and distance from the

vehicle surface are shown in Figures 20-30. All of the parameter values are

normalized by their value at the boundary layer.	 The distance from the

surface is normalized by the boundary layer thickness. The values for the

boundary layer thickness and the parameters at the boundary layer edge are

shown in Table VI.	 The largest variation in the nondimensional physical

parameters with altitude is at station 12, the closest site to the stagna-

tion point. Further downstream on the centerline there is little variation

as the vehicle traverses a flight path from 84 km to 55 km.

The temperature varies more slowly across the boundary layer than any

of the other physical parameters. At the two lowest altitudes, at station

1.2 shown in Figure 20, the boundary layer edge value is attained at a Y/Ybl

of approximately .5. At the two higher altitudes the boundary layer edge

value is not attained until Y/Yb1 = .9. For the two other stations consid-

ered, shown in Figures 21 and 22, the variation is across the entire bound-

ary layer and at the same spatial rate at all altitudes.

o

f	

The density decreases across the boundary layer rather than increasing

^.	 as does the temperature. The decrease to the boundary layer edge value is

accomplished at a Y/Ybl = .4 at all altitudes at station 12, as shown in

Figure 23. At station 12 the density at the wall is less than that at the

C^	
boundary layer edge at an altitude of 84 km. At the other stations the

density is always greater than the boundary layer edge value at all alti-

tudes as shown in Figures 24 and 25.

H

H
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1

1
The increase in viscosity is almost as slow as that of the temperature

and as shown in Figures 26-28. As in the case with the temperature, the

viscosity tends to attain the same spatial rate at all altitudes at test

stations that are further downstream from the stagnation point.

The pressure remains relatively constant within the boundary layer at

all altitudes, as shown in Figures 29 and 30. The variation in pressure is

also fairly small along the surface of the vehicle. The highest pressure

that will be attained, for this flight path, is approximately 7 x 10 2 atm	 i

(53 torr) at 55 km.

The chemical composition within the boundary layer, at the four chosen

altitudes, is shown in Figures 31-45. The mole fractions are normalized by

their values at the boundary layer edge as were the physical parameters.

The values for the mole fraction and the number density, at the boundary

layer edge, of each species considered in the calculation, 0, 0 2 , N, N2 , and

NO are shown in Table VII-X. At the altitudes considered in this report the
i

predominant molecular species is N 2 followed by 0 atom and N atom. Sever-

al of the species reach values within the boundary layer which are higher

than their values at the boundary layer. Molecular oxygen is always higher 	 I '

than or equal to its boundary layer value. Again the greatest variation in

composition with altitude occurs at station 12, the site nearest the stagna-

tion point.

13
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Table I. Flow of
with a

7.55% CCZ in Air through the
1/8" diameter hole.

Coated MCP with a mask

P1 flow AP I Co 10- I Co

(torr) (sccm) (torr)
IN2) I(N2) I(02)

0.10 0.3 0.00 0.13 0.193 0.68

0.17 0.3 0.01002 0.14 0.198 0.70

0.18 0.77 0.02003 0.14 0.198 0.705

1.15 0.3 0.00 0.14 0.201 0.72

1.10 0.70 0.01 0.140 0.192 0.732

1.17 3.5 0.05 0.14 0.196 0.73

1.54 7.06 0.10 0.147 0.203 0.723

5.16 0.3 0.00 0.15 0.200 0.76

5.15 0.70 0.00 0.15 0.198 0.76

5.09 3.5 0.01 0.15 0.200 0.75

5.17 7.00 0.03 0.15 0.199 0.76

9.96 0.3 0.00 0.155 0.2015 0.769

9.97 0.70 0.00 0.15 0.2015 0.76

9.88 3.6 0.01 0.15 0.201 0.765

10.04 7.06 0.01 0.155 0.202 0.77

j
i

f

I

1
i

i
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Table II. Flow of 7.55% C(12	in Air through the coated MCP with the mask
with a 1/16" diameter hole.

PI flow AP I CO,zj I	 05, I CO

I (torr) (sccm) (torr)
IO2) I(N2) I(02)

4?
<0.10 0.3 0.02 0.12 0.187 0.66

k$ 0.17 0.3 0.01 0.13 0.196 0.67

i^

0.18 0.70 0.02 0.135 0.197 0.69

1.11 0.3 0.01 0.145 0.201 0.72

1.05 0.70 0.01 0.15 0.201 0.73

Ĵ

1.12 3.0 0.06 0.15 0.201 0.73

1.51 7.06 0.10 0.147 0.204 0.719

I1 4.91 0.3 0.00 0.15 0.203 0.76

( 5.04 0.70 0.01 0.155 0.203 0.76

l 5.01 3.6 0.02 0.155 0.202 0.77

[ 5.09 7.06 0.04 0.16 0.203 0.77

t

9.97 0.3 0.00 0.16 0.205 0.77

9.79 0.70 0.01 0.16 0.205 0.76

9.84 3.6 0.01 0.16 0.204 0.78

r^ 9.91 7.00 0.02 0.16 0.205 0.78

4
1

k^

i

i Lf
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Table III. Flow of 7.55% CO2 in Air through the coated MCP with the mask

with a 1/32" diameter hole.

P1 flow AP I CO2 j(121 I CO2

(torn) (seem) (torr)
(IN2) I(N2) I(02)

<0.10 0.3 0.02003 0.132 0.1965 0.673

I ± 0.17 0.3 0.01 0.14 0.196 0.70

'r}
0.18 0.70 0.03 0.14 0.194 0.70

it

1.04 0.3 0.01 0.14 0.197 0.73

((`
tf 1.04 0.70 0.02 0.14 0.198 0.72

1.08 3.5 0.06 0.14 0.198 0.73

1.53 7.00 0.10 0.15 0.203 0.729

E
4.95 0.3 0.01 0.15 0.2025 0.75

t

5.00 0.70 0.00 0.15 0.2025 0.75

5.08 3.5 0.02 0.15 0.203 0.76

5.09 7.06 0.03 0.15 0.203 0.755

9.88 0.3 0.01 0.16 0.204 0.77

((
9.88 0.70 0.01 0.16 0.205 0.775

l 9.86 3.6 0.01 0.16 0.203 0.78'

9.88 7.13 0.02 0.16 0.203 0.77

a

d
18

1
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Table IV. Free Stream Parameters.
	 I	 r

Alt(km) T(K) POW M(amu) V(Km/s)

84 190 5.2410-6 28 7.75

73 213 3.2410-5 22 6.98

65 233 1.08x10-4 18 5.51

55 265 4.13x10-' 13 4.24

Table V. Non-dimensional Shuttle Coordinates* of the Test Stations.

Station X Y

12 .013 .017

24 .069 .030

30 .159 .052

*Described in reference 8.

i



Table VI. Physical Parameters at the Boundary Layer Edge.

Alt(km) Station YBl (m) TM/104 P(atm)/10-2 P(kg/m3 )/10-4 u(N2s)/10-3
m

84 12 .069 1,25 .39 .968 .239

84 24 .043 .81 ,40 1.28 .193

84 30 .064 .73 .40 1.36 .182

l

73 12 .018 .83 1.49 5.1 1.87

73 24 .019 .63 1.53 6.8 1.54

65 12 .019 ,67 3.35 14.6 .157

65 24 .012 .53 3.45 18.8 .133

((t
l^

65 30 .015 .48 3.44 20.6 .125

55 12 .019 .49 6,79 44.7 ,122

[ 55 24 .008 .40 6.97 54.2 ,107

55 30 .009 .36 6.96 59.3 ,101

l

U	 ,

W

Ltl
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Table VII. Number Density and Mole Fraction of Atomic and Molecular 
Species at the Boundary Layer Edge at an Altitud~ of B4 km. 

Station Species PN/1015 Xn 

12 0 .462 .19 

O2 .lB4 .076 , 
" 
I N .146 .06 

N2 1.54 .64 

NO .OB7 .036 

24 0 1.11 .29 

02 .005 .0014 

N .852 .22 

N2 1. 73 .456 

NO .10 .026 

30 0 1.24 .29 

Oz .002 3.7x10-4 

N 1.16 .2B 

N2 1. 76 .42 

NO .048 .01 

21. 



Table VIII. Number Density and Mole Fraction of Atomic and Molecular
Species at the Boundary Layer Edge at an Altitude of 73 km.

Station	 Species PN/1015
Kn

12	 0 3.81 .276

02 .105 7.65x10-3

N 1.37 .1

N2 7.67 .557

NO .81 .06

24	 0 5.98 .32

02 .03 1.72x10 -3

N 1.67 .09

N2 10.7 .57

NO .45 .02

L •Y'^

t't

e

`1q
Y
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Table IX. Number Density and Mole Fraction of Atomic and Molecular
Species at the Boundary Layer Edge at an Altitude of 65 km.

Station Species PN/1011
Xn

12 0 10.8 .28

O2 .29 7.5x10-3

N 1.89 .05

N2 23.2 .6

NO 2.29 .06

24 0 15.7 .32

02 •28 5.6410-3

N 1.14 .02

N2 31.1 .62

NO 1.69 .03

30 0 1.24 .29

02 .002 3.7x10-4

N 1.16 .P8

N2 1.76 .42

NO .048 .01

1

y
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Table X. Number Density and Mole Fraction of Atomic and Molecular
Species at the Boundary Layer Edge at an Altitude of 55 km,

Station Species pN/1015

12 0 17.7 .165

02 8.4 .08

N .221 2.06x10 -3

N2 73.3 .684

NO 7.58 .07

24 0 31.6 .23

02 6.00 .04

N .13 9.7x10-4

N2 90.1 .67

NO 7.35 .05

30 0 34.8 .23

02 7.53 .05

N .07 4.58x10-4

N2 99.00 .67

NO 6.7 .04

I

6

r
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Figure 3. The pressure drop across the multichannel plate, AP, as the applied pressure P1
is varied. G with effusive inlet.	 O without effusive inlet.
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Figure 14. The non-dimensional mass flow through the multichannel plate as
the ratio of the upstream pressure to the downstream pressure is
varied at four values of the upstream pressure for the 15% CO 2 -
air mixture. O P 1 = 4.39 torr, a P 1 = 11.89 torr, q P 1 =
15.6 torr, v P1 = 20.4 torr.
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