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ABSTRACT

These proceedings report the results of a workshop on identification and control of
flexible space structures held in San Diego, CA, July 4-6, 1984. The workshop was
co-sponsored by the Jet Propulsion Laboratory and the NASA Langley Research Center,
and preceded the 1984 American Control Conference held at the same location. The
main objectives of the workshop were to provide a forum to exchange ideas in exploring
the most advanced modeling, estimation, identification and control methodologies to
flexible space structures. The workshop responded to the rapidly growing interest
within NASA in large space systems (space station, platforms, antennas, flight
experiments) currently under design. The workshop consisted of surveys, tutorisls,
contributed papers, and discussion sezsions in the following general areas: missions of
current interest - space platforms, antennas, and flight experiments; control/structure
interactions - modeling, integrated design and optimization, control and stabilization,
aud shape control; uncertainty management - parameter identification, model error
estimation/compensation, and adaptive control; and experimentsl evaluation - ground
laboratory dewnonstrations and flight experiment designs. Papers and lectures on these
topics were presented at a total of fourteen sessions, including three panel discussions.
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A STUDY ON THE CONTROL OF
THIRD GENERATION SPACECRAFT*

E. J. Davison and W. Gesing
University of Toronto
Toronto, Ontario, Canada M5S 1A4

ABSTRACT

An overview of some studies which have recently been carried out in [1]-{3]
on the control of third-generation spacecraft, as modelled by the M_AT space
vehicle configuration, is made. This spacecraft is highly non-symmetrical and
has appendages which cannot in general be assumed to be rigid. In particular, it
is desired to design a controller for MSAT which stabilizes the system and satis-
fies certain attitude control, sh2pe control, -and possibly station-keeping re-
quirements; in addition, it is desired that the resultant controller should be
robust and avoid any undesirable '"spill-over effects'. In addition, the control-
ler obtained should have minimum complexity.

The method of solution adopted to solve this class of problems is to formu-
late the problem as a robust servomechanism problem [5]-[7], and thence to obtain
existence conditions and a controller characterization to solve the problem.

The final controller obtained for MSAT has a distributed control configura-
tion and appears to be quite satisfactory,

INTRODUCTION

This paper summarizes studies carried out in [1}-[3] on control system
structures known as third-generation spacecraft. Such spacecraft have:

(1) Large mass

(2) High power

(5) Large non-symmetric flexible appendages

(4) Precise communication RF beam control requirements.
In particular, the class of spacecraft represented by the Mobile Communications
Satellite (MSAT) is used as a reference for these studies. This spacecraft has
non-syumetric appendages which cannot be assumed to be rigid (see Figure 1).

There are a number of control problems associated with'the attitude-control,
shape-control anu possibly station-keeping control for such third generation
spacecraft (referred to as LFSS), which may be listed as follows:

A. Tie LFSE Control Problem
Problem 1: Lightly Lamped, Oscillatory Plant

A LFSS has eigenvalues either at the origin or approximately disiributed a-
long the imaginary axis. One of the basic objectives that a controller must ac-
complish in this case is to stabilize the rigid body modes of the LFSS, and at
the same time to stabilize the elastic modes of the LFSS, This is called the
LFSS stabilization problem.

*This work was supported by the -Department of Communications, Ottawa, Canada under
contracts DOC-CR-SP-82-007, DOC-CR-SP-83-002, DOC-CR-SP-84-002.
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Problem 2: Modelling

In modelling a LFSS,expcrience has shown that dynamic analysis may provide a
framework for the model'ing of the low frequency elastic modes of the LFSS in a
reasonably accurate way, but that the high frequency elastic modes cannot be ex-
pected to be determined accurately, i.e. there will always be errors present in
modelling the high frequency elastic modes of the LFSS. In addition, the calcul-
ation of dampening effects on the LFSS can only be done with great uncertainty.

Problem 3: The Infinite Dimensional Plant - The "Spill-Over Problem"

The classical modelling of elastic stvuctures as continua results in the well
known "infinite dimensional" system repr. :ntation of a LFSS. Whether or not one
adopts this infinite dimensionality representation seriously from an engineering
standpoint, there is no question that the number of system elastic modes present
in a LFSS is always larger than the number which any design model of a LFSS can
accommodate. In trying to control the modelled rigid and elastic modes, it is
essential that the controller should not cause these unmodelled high frequency
clastic modes to become unstable. This is called the "Spill-Over Problem'.

Problom 4: The Sensor/Actuator Placement Problem

The LFSS is intrinsically distributed, and the configuration of control bhard-
ware is not in general specified. Thus, unlike many conventional control pr.blems,
part of the LFSS control problem is in determining the number and location of
sensor/actuators on the LFSS.

Problem 5: Requirement for Mu!tivariable Control Theory

The concept of '"third generation'" spacecraft, unlike the first and some
second generation spacecraft, precludes single-input, single-output control design.
Some type of multivariable control design method is mandatory to deal with the
severe intcraction occurring in the system.

Problem 6: Minimization of Number of Sensors/Actuators

Th. : is a practical limiation on the quantity of hardware that can be dis-
tributed over the LFSS vehicle, This implies in particular that one cannot assume
full state feedback is available, and that the number of actuators/sensors used

must be limited, i.e. one must minimize any unnecessary sensor/actuators required
for LFSS control.

The following problem definition is now given:

B. The LFSS Robust Servomechanism Problem

Assume that a LFSS can be exactly described by the following finite dimen-
sional linear time invariant modsl:

i = AX + Bu + Ew
y = Cx + Fw (1)
ym = me * mem



T
n . m . .
where xeR™ is the state, ueR" is the control (actuator inputs), ymeR M are the

r
measured (sensor) outputs, and yeR are the outputs to be regulated. Here weRQ
are assumed to be constant unmeasurable disturbances applied to the structure,

wmeR M are assumed to be constant unknown measurement errors and eé)hy&?f is the

error in the system where Yref is a constant set-point. Thus, it is assumed that

(1) may include an arbitrarily large number of elastic modes (but not infinite).
Assume now that an approximate model of (1), called the design model for (1),

is given by:

X =

Ax + Bu + Ew
y =Cx + Fw (2)
Ym = me + mem

where xeR" is the state of the design model, and where n<<n. It is desired now
to find a controller based on the design model (2}, such that when it is applied
to (1), the system is asymptotically stable, i.e. no spill-over occurs, and such
that:
n 2 Qm
lim e(t) = 0 ’ Vx(0)eR™, YweR, Yw_e€R (3
o n
This is called the LFSS Robust Servomechanism Problem, which includes the follow-
ing subproblems:
(1) Stabilization
(2) Station-keeping
(3) Attitude control
(4) Shape control.

THE MSAT CONTROL PROBLEM

The MSAT spacecraft is illustrated in Figure 1. It consists of four compon-
ents, one of wich is rigid (the bus) and three of which are flexible (the solar
array, the tower, and the reflector). The tower-reflector-hub hinge point is
assumed to have a gimbal (see Figure 2).

The coordinates assumed for each of these substructures are as follows:

(1) Bus - three rigid rotations (ex,ey,ez)'
(2) Tower - relative displacement of tower tip to tower root
(£716,,6706,,676 )

- relative angular displacement of reflectcr with respect to
frame fired at tower root (with zero gimbal angiles)
]
(3) Reflector - two gimbal angles at tower-reflector-hub hinge point (BI,BQP

The actuators which are assumed to be available are as follows:
(1) Eight thrusters f., i=1,2,...,8, four from thrusters on the bus and four
from thrusters at the reflector hinge point, aligned as shown in Figure 2.



(2) ‘Two torquers at the reflector hub, one about each gimbal axis (g, ,g, )' (see
Figure 2). Bl BZ

In this case, a design model and an evaluation model was developed in [4],
in which the design model has 18 states consisting of 5 rigid body modes (corre-
sponding to the three rigid rotations of the bus and two gimbal angles of the
reflector) together with 4 elastic modes, and the evaluation model has 32 states
consisting of S rigid body modes and 11 elastic modes. Table 1 gives the eigen-
values of the open loop system for the two models. The models used in this study
included the effect of dampening terms D, DE (see Table 1).

TABLE 1: Open Loop Eigenvalues of MSAT Vehicle

Standard Design Model Evaluation Model
With Damping| With Damping {With Damping| With Damping
Term D Term D Term Dg Term Dg
Excluded Included "Excluded Included
ﬁ;ﬁ;? 0 (repeated 0 (repeated 0 (repeated 0 (repeated
y 10 times) 10 times) 10 times) 10 times)
Modes
0+j0.124 |-0.000923*j0.124} 0%30.124 |-0.000923%j0.124
0+xj0.239 |-0.00170 +30.240{ 0%j0.151 |-0.000853+j0.151
Elastic 0+j0.556 |[-0.00856 *j0.556| 0+j0.239 [-0.00171 +j0.239

0+j0.780 !-0.0211 #j0.779| 0%j0.556 |-0.00856 *j0.556
Body 0£j0.690 |[-0.00553 *j0.690
0+j0.780 |-0.0211 %j0.780

Modes 0%j1.55 [-0.0751 *j1.55
0:j3.14 |-0.0280 +j3.14
0%j3.96 |-0.0528 +j3.96
0¢j9.95 |-0.524 1j10.1

i 0j14.0  |-1.17  +j13.8

It may be noted that the elastic modes of the evaluation mcdel interweave with
the elastic modes of the design model.

A. Description of Problem to be Solved

I, this case it is desired to solve the LFSS Robust Servomechanism Problem
for the MSAT vehicle. In particular, there are two separate requirements for the
controller to be designed for the MSAT vehicle:

Requirement 1

Find a controller, based on the MSAT design model, which solves the following

problems:
* Stability: stabilize the 5 rigid hody modes and the 4 elastic modes of the
system, ref
* Attitude control: regulate ex, ey, 62 to desired constant set points ex ,
G;ef, ezef respectively, in the presence of unknown constant disturb-
ances.
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* Shape control: regulate B +a,, B,+0,, f'ldl, £ 8, f 85, a5 to zero, in

the presence of unknown constant disturbances.

Spill-over problem: it is desired that the controller should satisfy the
above requirements, and not cause any instability to occur with respect
to any of the vehicle's elastic modes which are not included in the
design model.

* Controller complexity: it is desired to minimize the number of sensors and

actuators which are required to solve the problem.

* Discrete controller implementation: it is desired that the controller, when

implemented digitally, should nct require an excessively large sampling
rate to maintain stability.

Requirement 11

Apply the controller obtained, based on the MSAT design model, to the MSAT
evaluation model, and verify that all objectives above are satisfied.

The outputs to be regulated in this case are given by:

A 1, -1, -1
Y = (8,,8.,0 ,Byv0,Byray, 78, F 78, f 85,04 ()

B. Assumptions Made in Problem Formulation

In this problem, it is assumed that there s no requirement for controlling
the w wy’ w, rigid body modes. (Note: this assumption is not essential, e.g.

(2], [3] also deals with the case of station-heeping.) It is also assumed that
there i1s no need to include any gyroscopic terms in the design and evaluation
nodels.

METHOD OF SOLUTION ADCPTED TO OBTAIN
A CONTROLLER TO SOLVE PROBLEM

The method of approach adopted to solve this problem was based on using the
results of the "robust servomechanism problem™ [5]-[7], in conjuncticn with a
parameter optimization method [8] to determine the controller's rarameters, e.¢.
see [9] which solves a special case of the above problem when the sensors and
actuators are collocated, using a decentralized control configuratien. In this
case, existence conditions for a solution to the problem were sbtained, and a
necessary controller structure developed. In particular, it was found that any
conitroller which solves the MSAT problem specifications must consist of a "servo-
corpensator" [S] (unique), together with a stabilizing compensator (non-unique).
In this study, the simplest possible stabilizing compensator, i.e. a stabilizing
compensator consisting of only proportional and rate feedback terms, was used.

In this case, in order to satisfy the existence conditions obtained for a
solution to exist to the problem, it was necessary to choose the following inputs
(actuators) and measurable outputs {sensors) for the controller:

Outputs (sensors):

é -1 -1c '
ym - (eX’ey’eZ’Bl’BZ’al’QZ’f 61)f 62) (S)



Inputs (actuators):
A x ii*t'
u = (gcs,gﬁl,gsz.fl.fz,fs,fs) 6)

* *
where 8. > fl’ fz, fs, fg correspond to various combinations of the thrusters

-

fl,fz,..?,f7,f8 (see Figure 2), as described in Appendix I.

FINAL CONTROLLER CONFIGURATION OBTAINED

In this case, tue following distributed controller was obtained as a solu-
tien to the MSAT robust servomechanism problem, based on the MSAT design model:

(g* (0_-6_] (0] (6 -6 ]
s X x x X X
) 8 -8 8 8 -8
s Yy y Yy -1
1 - K3 a K4 f 61
£ = -K,|f_-6 - K,s{6 | - —{6_-6 | - (7)
8, 17z "2 2 z sl z "z S f-l6
* 2
f) By 8 By
f; J L Bz LBZJ L82+0'24
*
(o ) ( -1 3
fsj . KS f 61
] Y S |
f6 f 62‘
where s denotes the Laplace Transform operator, where
5 eref
( X 5| %
6 é [_Y_J‘ eref (8)
y S+Y y
3 eref
z z )
4 s 1 .
and where Kl’ K2, KS’ K4, ks, Y are given as follows:
1.43 0.500 24.7 1.34 -0.0460
0.0255 4.64 1.12 15.6 - -0.000439
K1 = {-6.81 -0.000957 0.00981 -0.000483 18.6
0.00326 38.0 -0.231 14.5 -0.00955
59.0 -0.00916 0.0216 0.0127 -2.40 ]



— 28.5 10.0 494 26.7 -0.920
0.510 92.8 22.3 312 -0.00877
K,=1{-136 -0.0191 0.196 -0.00965 372.2
- 0.0653 760 -4.63 290 -0.191
1180 -0.183 0.432 0.254 -48.1
T 7.1ax10°Y 2.50x1074 1.24x1072 6.68x10°%  _2.30x107°"
1.28x107°  2.32x1073 5.58x10%  7.s0x10"3 ~2.19x10"7
K, = -3.41x1073  -4.79x10"7  4.90x10°® -2.41x1077 9.31x10°3
1.63x10°®  1.90x107% -1.16x107%  7.26x1073 -4.78x107®
| 2951077 -4.58x10°%  1.08x10°  6.34x107® _1.20x1073
-0.464 0.0433]
-0.0144 0.0536
-0.00438 0.201
K,= | 0.136 0.0461
-0.000753 1.13
0.0268 0.225
| €.0273 -0.226 |
K _[o.0268  0.225
57 ]0.0273  -0.226
y = 2.0x107°

This controller is just a multivariable generalization of the classical
three term controller used in classical control. The controller has minimal com-
plexity ° . the sense that it has minimum order feedback dynamics and has the
minimum number of actuators/sensors required in order to solve the problem. It
is to be noted that no a priori assumption On the distributed structure of (7)
was made — the distributed structure of the controller (7) arose from the
analysis automatically.

PROPERTIES OF PROPOSED CONTROLLER

The mzin features of the proposed controller vhen applied to the MSAT design
model - .1 evaluation model will now be described. The main features of interest
are:

(1) The stabilization properties »f the proposed controller.

(2) The steady state regulation pcoperties of the proposed controller.

The following results are obtained:

A. Eigenvalues of Closed Loop System Using Proposed Controller

Table 2 gives a listing of all eigenvalues obtained by applying the proposed
cortooller (7) to the MSAT design model and evaluation models.



TABLE 2:

Listing of Closed Loop Eigenvalues Using Proposed Controller (7) When

Applied to MSAT Design and Evaluation Models

Standard Design Model Evaluation Model
-0.00047:j0.0085 T -0.00047+3j0.0085 T
-0.0024:j0.016 .. -0.0024+30.016 .
-0.0051130.022 r‘i;g body -1.00511;0.023 rigid body
-0.0097+50.030 les -0.0097+30.030 modes
-0.¢10£j0.031 -0.010j0.031 !
-0.00014+j0.124 4 -0.00014+j0.124 1

R lastic body 4
-0.0061%350. ¢ -
g Oagi.%o 240 modes 0.00020+;0.151
-0.017£j0.557 -0.0061%3j0.240
-0.029:j0.780 -0.0174j0.557
-0.0079+30.690 .
-0.0029230.780 e1as:;§ 2°dy
-0.129%j1.35 ¢
-0.067£j3.16
-0.069j3.95
-8.5+j8.88
} -0.51%j11.3 +
-5.0x10"" 1 -1.7x10"3 0
-s.0x10': -5.0x10""
_ - _ -4
_2'3:;8-5 servo-coripensator _g'g:ig_u servo-compensator
-5.0x10"" modes  |_s.ox10-" modes
-5.0%x107" l -5.0x10""
-5.0x10"* -5.0x10""
-2.0x10-: -2.0x10-:
- - ] -
_3‘8zig-3 feedforward _5’3:}8_3 feedforward
_5’0x10_3 controller _2'0x10_3 controller
-2.0x10"? modes | 5 ox10-3 modes
-2.0x10"°3 -2.0x10"2

It is observed that the resultant closed loop system is asymptotically stable
for both the design and evaluation models, i.e. no undesirable spill-over effects

occur,

It is also observed that the dominant time constant of the system is
mainly associated with the servo-compensator modes.

This implies that one would

expect for the case of tracking, that the dominant time response of the system

would be associated with the feedforward controller modes, i.e. TC

dom * 500 sec

7 8 min., and for the case of disturbance rejection, that the dominant time of

the system would be associated with the servo-compensator modes, i.e. TC

2000 sec 0.6 hrs,

dom?

This result is verified in the simulation studies to follow.



B. Steady-State Values of Outputs Using Proposed Controller: Tracking Case

Table 3 gives a summary of results obtained for the case of unit step func-
tion tracking, when the proposed concroller (7) is applied to the MSAT design and
evaluation model. It is observed that all 9 outputs of the system are asympto-
tically regulated to their correct values as desired.

TABLE 3: Steady-State Values of Outputs Using Proposed Controller (7) When
Applied to Design and Evaluation Model - Tracking Case

eief=1 e;ef=1 e;ele
o, 1 0 0
o, 0 1 0
6, 0 0 1
Bita [ O 0 0
82+a2 0 0 0
f‘lal 0 0 0
£, o 0 0
£, o 0 0
ag 0 0 0

Note: Any Inumber|<10.16 is assumed to be zero.

C. Steady-State Values of Outputs Using Proposed Controller: Disturbance
Rejection Case

Tables 4 and 5 give a summary of all results obtained for the case of dis-
turbance rejection, when the proposed controller is applied to the MSAT design
and evaluation models respectively. In this case, it is assumed that a unit step
function change occurs for different disturbances corresponding to écl’éc seees

fy,fg defined in Table 6. It is observed that the first 7 outputs of the system
are asymptotically regulated to zero, and that the remaining two outputs are
approximately equal to zero in all cases, as is desired.

D. Sampling Rate Requirements for Digital Implementation of Proposed Controller

If it is assumed that the proposed controller (7) is to be implemented
digitally, then it is necessary that the sensor outputs and actuator signals be
updated at a fast enough rate so as to guarantee closed loop stability, when the
the controller is applied to the evaluation model. In this case, on assuming
that the sensor and actuator signals are updated at the same rate, it was found
that a sampling rate of at least 0.1 Hz must be used to implement the proposed
controller. This requirement is not demanding. '



TABLE 4: Steady-State Values of Outputs Using Proposed Controller (7) When
Applied to MSAT Design Model - Disturbance Rejection Case

ic =] Ecz-x g =1 EBI.-I iez-l el | 2 fssx Bl | Ee1 | B2
| e, 0 0 0 0 0 o | .o 0 0 0. 0
e 0 0 0 0 0 0 0 0 0 0 0
| s, 0 0 0 0 0 0 0 0 0 0 0
‘71+a1 9 0 0 0 0 0 0 0 0 0 0
Sz:az 0 0 0 0 0 0 0 0 0 0 0
£l | o |0 0 0 0 o | o 0 0 0 0
el 1o 0 o | o 0. 0 0 0 0 0 0
15, | 2107 8107 o 0 o | 3400|310 o o | 3x107%}-8x10"
oy -2x107% 8x107% o 0 o |10 07| o | o |-0 1070

Note: Any |number|<10-16 is assumed to be zero.

TABLE 5: Steady-State Values of OQutputs Using Proposed Controller (7) Vhen
Applied to MSAT Evaluation Model - Disturbance Rejection Case

§c1=1 icz-; §c3-1 §81=1 532-1 fl-x fz-l £5-1 £6-1 !0-1 fgal
0 0 0 0 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0
s°a, | 0 0 0 0 0 0 0 0 0 0 0
8,00, | 0 0 0 0 0 0 0 0 0 0 0
£ls, | o 0 0 0 0 o | o 0 0 0 0
£, 1 o 0 0 0 0 0 o | o 0 0 0
£ls, | a0 -3ae”8| o 0 0o | ax10”|-ax10°| o 0 |-3x107%|-8x107
o, |-3x1077] sx107%] o 0 o |-7x10"8} 7x10°%| o o 1x10°%] 3x107°

Note: Any |number|<10_16 is assumed to be zero.
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SIMULATIONS OBTAINED USING PROPOSED CONTROLLER
TO SOLVE MSAT PROBLEM

This section gives some typical simulations of the closed loop system ob-
tained by using the proposed controller (7) applied to the MSAT design and evalu-
ation models. Additional simulation studies are given in [3].

A. Example No. 1 (Attitude Control: Oief=1)

In this example, it is assumed that the system has zero initial conditions,
that there are no disturbances present, and that a unit step function change of
ref_ ref ref
x =1, 0.°"=0, ez =0.

Figure 3 gives a plot of all 9 output variables y given by (4) when the con-
troller is applied to both the design and evaluation model in this case. It is
observed that the system's response is almost decoupled, i.e. the output 6_ is
approximately equal to its desired value of +1 at t 350 min, and that all other §
outputs are barely excited. .

+1 occurs in the set point for ex at t=0, i.e. ©

Figure 4 gives a plot of the 7 control variables u given by (5) for this
example.

B. Example No. 2 (Disturbance Rejection: fs=1)

In this example, it is assumed that the system has zero initial conditions,
that all set points are identically equal to zero, and that a unit step function
change of +1 occurs at t=0 corresponding to a disturbance thrust fg=1, where fg
is defined in Table 6. This example would correspond to a misaligned thruster
associated with the proposed controller.

Figure 5 gives a plot of all 9 output variables y when the controller is
applied to both the design and evaluation model in this case. It is observed
that the elastic modes of the vehicle are now excited, and that the output vari-
ables are asymptotically regulated to zero in approximately 2.7 hours, which is
consistent with the closed loop eigenvalues of the system given in Table 2.

Figure 6 gives a plot of the 7 control variables u for this example.

C. Example No. 3 (Disturbance Rejection: ?g=1)

This example is similar to Example No. 2 except that it is assumed that a
unit step function of +1 occurs at t=0 corresponding to a disturbance thrust f,=1,
where f. is defined in Table 6. This disturbance is representative of an arbi-
trary constant disturbance which may affect the system,

Figure 7 gives a plot of all 9 output variables y when the controller is
applied to both the design and evaluation models in this case. It is observed
that the elastic modes of the vehicle are now also excited as they were in
Example No. 2, and that the output variables are satisfactorily asymptotically
regulated with the same time constant as in Example No. 2.

Figure 8 gives a plot of the 7 control variables u for this example.
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TABLE 6: Definition of Disturbances Assumed

F FEFFEE Disturbance forces corresponding to the thrusters
1°7°2°°5°6’70 fl’fz’fs’f6’f0’f9 respectively of Figure 2
2 é Disturbance torques corresponding to g8, ,88
By778, respectively about the gimbal axis BI’B% 2
- 5 B Disturbance torques in the bus about the x,y,z
gcl’gcz’ Cs axis respectively

ROBUST PROPERTIES OF CONTROLLER DESIGN METHOD

A study of the robustness properties of the proposed controller design method
was carried out [3]. This was done by comparing the controller designs obtained
using the proposed method to different design models of MSAT. It was concluded
that the proposed design method appears to be quite insensitive to the type of
design model used, e.g. all controllers obtained, when based on MSAT design models
which had at least two dominant elastic body modes included, produced stable
closed loop systems and give satisfactory tracking/regulation, when applied to
the MSAT evaluation model. Other studies showed that the controller is robust
with respect to evaluation models of arbitrary complexity.

CONCLUSIONS

This paper gives a brief summary of the work performed in [1]-[3]. In these
studies, the control system design of a third-generation spacecraft, as modelled
by the MSAT space configuration is studied. This spacecraft is highly non-
symmetrical and has appendages which cannot, in gen2ral, be assumed to be rigid;
the elasticity of these appendages makes the control system design particularly
demanding. In particular, it is desired to design a controller for MSAT which
stabilizes the system and satisfies certain attitude control, shape control ard
possibly station-keeping requirements. In addition, it is desired that the resul-
tant controller should be robust and aveid any ''spill-over effects'", i.e. it
should satisfy the problems' specifications based on only an approximate design
model for MSAT being available. In addition, the controller obtained should have
minimum complexity, i.e. a minimum number of sensors/actuators should be used.

The method of solution adopted to solve this class of problems was tc formu-
late the problem as a robust servomechanism problem and thence to obtain existence
conditions and a controller characterization to solve the problem. In this case,
the controller obtained must contain a servo-compensator together with a stabiliz-
ing compensator,

The final controller obtained for MSAT has a distributed control configura-
tion, and appears to be quite satisfactory, i.e. extensive testing of the con-
troller shows that the controller is indeed robust with respect to the choice of
the design model, and that it satisfies all specifications of the problem state-
ment,

12



ACKNOWLEDGEMENTS

The authors are grateful to P. Hughes, A.H. Reynaud and M. Stieber for their

valuable assistance in this work. This work was sponsored by the Department of

Cormaunications, Ottawa, Canada under the Scientific Authorities: H. Reynaud and
i..F. Stieber.

i1]

[6]
7]

18]

(9]

REFERENCES

Lavison,E.J., liughes,P.C., "A Study to Determine Control Techniques Applicable
to Third-Generation Spacecraft', DOC Report No.: DOC-CR-SP-82-007, March 19C2.

bavison,E.J., "A Study to Develop Control Techniques Applicable to Third-
Generation Spacecraft', DOC Report No.: DOC-CR-SP-83-002, February 1963.

bavison,L.J., "A Study to Develop Control Techniques Applicable to Third-
Generation Spacecraft - Part III", DOC Report No.: DOC-CR-SP-84-002,
lebruary 1964.

lLiughes,P.C., Sincarsin,G.B., "MSAT Structural Dynamics Model for Control
Cystem Design", DOC Report No.: DOC-CR-SP-82-054, August 1982.

bavison,E.J., "Robust Control of a Servomechanism Problem for Linear Time-
Invariant Multivariable Systems', IEEE Trans. on Automatic Control, Vol. AC-21,
lo. 1, 1976, pp. 25-34.

Davison,E.J., Goldenberg,A., '"Robust Control of a General Servomechanism
Problem: The Servo-Compensator', Automatica, Vol. 11, 1975, pp. 461-471.

bavison,E.J., '"The Robust Decentralized Control of a General Servomechanism
FProblem", IEEE Trans. on Automatic Control, Vol. AC-21, No. 1, 1976, pp. 14-Z4.

Dpavison,E.J., Ferguson,l.J., "Design of Controllers for the Multivariable
Robust Servomechanism Problem Using Parameter Optimization Methods', IEEE
Trans. on Automatic Control, Vol. AC-26, No. 1, 1981, pp. 93-110.

l/est-Vukovich,G., Davison,E.J., Hughes,P., ''The Decentralized Control of

Large Flexible Space Structures', IEEE Trans. on Automatic Control, 1984 to
appear.

13



APPENDIX I

*
Definitions of g_ ,f;,f;,f;,fg
3

*
g  1is defined in terms of thrusters f., £, £., f, as follows:
Cq 12 722 73 74

£]  {8.66] .
= g if 8. 20
£, 18.66) 3 3

r 9

£) 8.66) ,

2 *
= 8. if g. <0
\f,) 18.66) °3 3
* * . N
fs, f6 are defined in terms of thrusters fS’ f6’ f7, f8 as follows:
) 3 p'
£] . . £ . .
= f if f,20 ; = f if £, 20
£ 0f > 5 £] o) ® 6
7/ VY 8 )
L A L
= fS if f5<0 ; = 56 if f6<0
f?/ \14 f84 \14
* %
fl’ f2 are definea in terms of thrusters fl’ fz, fS’ f4 as follows:
(e ) (1 1)(.%)
f1 11 f1 . .
£, = (1 0ff & if f. 20 and £f,20
2 £ 1 2
3 ( Y[ .*)
f1 1 1 f; . .
fo| = |1 0]} if f. 20 and £,<0
2 £ 1 2
f34 \0 lj \ 2J
4 3 4 4 r )
f3 1 0 fl . .
f.1 =11 1l & if f. <0 and £,20
4 £ 1 2
Lf]_; LO 14 \ 24
r 3 3 Y
£, 0 1 rf: . .
fol = |1 il & ir f. <0 and f,<0
3 £ 1 2
ty) W1 0jLg
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SENSOR/ACTUATOR SELECTION FOR THE
CONSTRAINED VARIANCE CONTROL PROBLEM

M. L. Deloreazo
Air Force Academy, Colorado Springs, CO 80901

R. E. Skelton
School of Acronautics and Astronautics
Purdue University
West Lafayette, IN 47907

ARSTRACT

This paper considers the oroblem of designing a 1in=a~ controllc ‘o sys-
ters subject to inequality variance constraints. 8 quadratic penalty function
2 proach is used to vield a lirear controller. Both the weights in the cuadratic
nanaltv function and the locations of sensors.and actuators are selected by
successive annroximations to obtain an ootimal design which satisfies the input/
output variance constraints. The method is applied to MASA's 64 meter Hoop-
Column Space Antenna for satellite communications. In addition the solution for
the control law, the main feature of these results is the systeratic determin-
ation of actuator design requirements which allow the given input/output perfor-
mance constraints to be satisfied.

I. [INTRODUCTION

Consider the task of controlling the linear, stochastic syste.:

(1a) x = Ax + B(utw) , XGRn, ueﬂp, yeﬂk
(1b) y = Cx
(1c) z=M+v, zeP*
x(9) x(0) x, 0 0
elwit) |=0, & wt) ] (x"(0), wi(x), vI(x)) =| . We(t-1)
v(t) v(t) 0 0 vs(t-t)
W = diag (... "ii ...), V =diag [... vii ...3,

such that these four control desian goals are met:
(I)E"Z(t)éh'rE 2(4) < 0.5, i =1 k
ri t y,i - 'i’ $ oeey
-0

A - _
Eul() =timeal(t) <ulii=1, 0

to

"
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(I1) only & < & sensors are used
T
2 mx+v
(2) z=1 : = : = Mx + v
T
Zi I!li X + Vi
from the admissible set of & sensors described from (1c)
T
z; mx + vy
(1c) z = : = : =Mx + v.
T
Zz m!' X + Vl
(II11) Only m < m actuators are used
. m
(3) Blu+w)= § b.(u;, +w,)
LoPVY i
i=1
from the admigsible set of m actuators described from (la)
: n
(4) B(u +w) = J b.(u, +w,)
jop 10 i

(IV) ZThe control u(t) is a linear function of the present and
past measurements Z(t), t < t.

Many encineering control design problems can be stated with performance
constraints of the form (I). For example, large space telescopes are feasible

only if the RI'S pointing errors (Emyiz)ll2 are within certain bounds
(Em,yiz)l’2 5-°i) so as to achieve diffraction-1imited performance (°i) of the

optics. The designer may also have the freedom to choose from a number of
ditferent tynes of sensors and actuators at a number of different locations. The
}ogation? a?d the types of actuators (sensors) determine the vectors b, (mi) in

4) and (1c). :

A straight-forward approach to accommodate the bounded input/output problem
(I) vields nonlinear controllers §1-2], viclating goal (IV). A straight-forward
aporoach to accommodate gcals (IV) and (I) is to use a penalty function method
[3-5], minimizing
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G vee g Ulig il . 1l = Yoy
0

while adjusting Q and R until (I) is satisfied. These successive approximation
schemes [3-5] presume a fixed measurement/control structure, and hence do not
satisfy goals (II) and (III). It is important to unify the treatment of all
four goals (I-IV) since it has been shown [6-7] they are inherently interdepen-
dent problems. In particular, for the isolated problems; [6] has shown the
optimal sensor and actuator selection for LQG problems (5) with fixed (Q,R), and
[3-5] have adjusted Q@ and R to satisfv the constrained-variance problem (I) with
fixed sensors and actuators (i.e. fixed B, R).

Unfortunately, the optimal answer for the simultaneous solution of both
nroblems turns out not to be the juxtapositioh of results [6] and [3-5], due to
the interdependence of the two problems.

The purcose of this paper is to present a unified treatment of the entire
problem (I-IV), which we call the Constrained Variance Sensor/Actuator Selection
(CVSAS) problem. SectionII describes the approach. Section III gives the formu-
las for sensor and actuator effectiveness to deal with goals (II) and (III).
SectionIV presents the numerical algorithm for iteratively dealing with goal (I).
Section V gives the algorithm for solving the entire nroblem (I-IV). Section VI
illustrates th2 aoplication to the Hoop-Column Antenna.

IT. APPROACH

The solution of the nroblem with inequality constraints (I) is generally
not unique. To be a bit more specific than statement (I) we define two variations
of the problem. The first is called the "Constrained-Input Variance" option of
the CVSAS. In this option the input constraints in (I) are binding and the
output constraints in (I) are : zlaved.

CIVSAS: The Constrained-Input Variance, Sensor/Actuator Selection Problem

Satisfy (11), (111), and with all input-constrainte binding,

2. 2 _ -
(6) u,l Emu,i 1’ i - 1, ssey m ')
minimige (recall ¥i = ciTx),
_ -2 2 . -2 2
(7a) Vy = ; o Euy1 ¥ i o [:'c"y_i > 1.

If however, there is no i for which oi—szyiz > 1 then minimize
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K 2
(7b) v = Z o5 EY;

with all input constraints binding (6).

Definition: The phrase "minimal achievable output performance” for the CIVSAS
will mean the minimm constraint violation in the sense of the minimum value of
Vy in (7) with input constraints binding (6).

The CIVSAS nroblem is useful when one wishes to determine the best perfor-
mance achievable for a given power limitation on the input devices (actuators).

That is, for a given set of My the CIVSAS finde the minimum achievable output
performance.

The second variation of the CVSAS problem is called the Constrained Output
Variance Sensor/Act:ator Selection (COVSAS). -

COVSAS: The Constrained-Output Variance, Sensor/Actuator Selection Problem

Satisfy (11), (111), and with all output comstraints binding

(8) o 2Ey2=1, =1, .0k,

(ca) Vu = g “1-250,"12 V i: u_i-zEwui2 > 1.

2

If however, there ie no 1 for which “1-25mui > 1 then minimize

m
Mo 2

with all output constraints binding, (8).

Definition 2: The phrase "minimum achievable input performance"” for the COVSAS
will mean the minimum constraint violation in the sense of (9), with all output
constraints binding (8). .

The COVSAS s useful when one wishes to determine the necessary capabilities
(design requirements) of the actuators in order to achieve the specified output
performance. That is, for a given set of a4 the COVSAS finds the minirum
achievable input performance.
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ITI. SENSOR/ACTUATOR EFFECTIVENESS

In this Section we temporarily assume that Q and R in (5) are specified

diagonal matrices Q = diag [... Q; ...}, R=diag [... rs «..], and wé wish to

determine a ranking of the effectiveness of the admissible set of sensors and
actuators for the LQG problem described by (1) and (5). To help with this task
a price or "cost" is assigned to each input and output by decomposing the total
system cost function (5) into contributions from each input and output. This
task is called "input or output cost analysis" and from [6] we have the results

VV

5 |

m k m
(10) AN S A A
i=1 i=1 i=1 i

fl 3

where Vi", Viy, Vi", Viv is the contribution in V of, respectively, the ith

control Uss outnut Yo noise Wi, OF noise Vis and

{11a) Viu = ri||gi||§ i=1, ..., m
(11b) vy = qi||<:1.|ifu)2 P21, .00, k
(11c) Viw = Hiillbi||§+L i=1, oo, m
(11d) A v11||f1||f f=1, .00y 8

where P, K, i and L satisfy

-A
(12a) 0=PA" + AP - PPV 1ip + BuBT, [fys ion £ =F= puly-1
(12b) 0=xa+ ATk - kar8Tk + cac, [gqs ... 9] = 6" = -kBR™L
(12¢) 0=X(A+86)7 + (A+BG)X + FVF

T

(12d) 0=L(A-FH) + (A-F)TL +G'RG

The effectiveness of the ith sensor is measured by
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(13) v Sens _ ¢y v

i i

and the effectiveness of the ith actuator is measured by
act A u W

(14) Vi = V]. - Vi
sens

These terms vi and V].aCt represent the particular comhinations of the input/

output costs Viu, in, Viv which are involved in the performance of each sensor
and actuator. (The distinction here is that the effect of the imput w; can be
calculated by Viw, but the effect of an actuator involves both Viu and V1w since
the actuator is noisy, and this dependence is accounted for in (14)). To see
that v, 5" and ViaCt gives the appropriate measure of the effect of deleting

the itA sensor or the ith sensor or the ith sensor or the ith actuator, refer

to the numerical work in [7].

Two results from [6] add insight into the use of (13), (14).
Theorem 1, [6,7]:

For a specified (Q,R), the optimal value of the LQG performance metric (5)
cannot be reduced by the deletion of any of the admissible sensors 255

T=1, ooy L.
Theorem 2, [6,7]:

For a specified (Q,R) the optimal value of the LQG performance metric (5)
can possibly be reduced by the deletion of some of the admissible actuators

Uss i=1, ..., m

These theorems partially expiain why the sensor effectiveness Visens is a
much simpler ca1cu1apion than UiaCt. Since the magnitude of the gain on the ith
sensor signal ||f1||z = ||m1|I§p vii-z + 0 as V;; - =, an extremely noisy sensor
simply will not affect the optimal LQG controller. Hence, the effectiveness of
the ith sensor can be calculated by the input cost Viv. Section V will show how
to use (13) and (14) in the solution of the COVSAS problem.
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IV. THE COVLQG ALGORITHM

Now we cite an algorithm (COVLQG) to solve the COVSAS problem under the
temporary assumption that 2 = 2 and m = m. That is, all admissible sensors and
actuators are used (8 = B and R = M). The COVLQG algor1thm will first be stated
and then its theoretical properties will be discussed.

The COVLQG algorithm (i.e. the COVSAS with £ = 2, m = m):

Step A:  Compute P from (12a). If 01—2||Ci||§ > 1 STOP. No solution to
the COVLQG problem exists. Otherwise initialize

qi(o) = 01-2 » ri(o) =

Discussion of Sten A: The lower bound on Emyi'2 in an LQG oroblem is
Ewy12 3 ||C1!|§ (from the well known lower bound tr CPC! on V in (5)), and this

result is independent of the choice of ¢ > 0, R > 0.

Step B: Compute

oo § i
2 _.-1,u
-2 2

using (11), (12). If 0,2 Ey2 =1V i:q >0 and if
w2 Eu>1 Vi=1,...m STOP. The COVLG solution has been found.

Discussion of Step B: In the COVLQG option all necessary control effort is
applied to force the constraints Emyiz 5.012 to be binding. A formal broof that
the stopping criterion of Step B indicates a solution of the COVLQG problem is
given by Theorem 5 of [7].
Step C: Q and R update equations: Let the iteration index be J and set
0 (341) = [0y 2 £, Play(8)s 1 = 1y vy ke 27 (o027 < q(341) < oo},
(e < 0 smaZZ specified constant) then set g (J+1) O If
Emy1n 1¥1i: q; >0, then set ry (j+1) = [u1 Eu ]1/2r1(J), Vi
1 E u_i <1, For aZZ other i, set ri(j+1) ri(j) Return to Steo B.

Discussion of Step C: The ri(j+1) of Step C are clearly adjusted toward the
stopping condition of Step B (”1-2 E'mui2 > 1), since a reduction in ry causes
Emui2 to increase. The justification for setting qy = 0 when either qi(j+1) +0
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or when qi(j+l) + = js as follows: The tendency of 9y toward zero indicates a

lack of output controilability due to a degenerate rank of C (rank C < k). 1In
this case, the algorithm ceases to attempt the impossible (i.e. to force two
dependent outputs to arbitrary values) by removing this particular ¥y (the least

critical one as indicated by the smallest q; > 0) from the cost function by
setting its coefficient a; = 0. Now let rank C = k. The tendency of q; toward

©» can result only when a stabilizable, detectable system is not output controll-
able, (even though C = k) and an uncontrollable output converges to a value which

violates its constraint (Emy,;2 » 0%2). The constraint is violated the smallest
arount nossible since in this case the corresponding q; + = on successive

iterations of the update equations. When this condition is determined, such
yi's are removed from the cost function on future iterations (by setting q; = 0)

since it now has been established that they cammot be brought within specifica-

tion‘Ewyiz'i oiz.

A similar algorithm exists for the Constrained Input Variance LQG problem
(CIVLQG) and details are given in [7].
V. THE COVSAS ALGORITHV
The sensor/actuator effectiveness formulas (13), (14) derived in Section III
and the COVLQG algorithm of SectionIV are now integrated to solve the COVSAS
problem posed in Section II.

COVSAS Algorithm:

Step 1. Specify {A,B,C.!'I,V,i,ﬁ,cz,uz}. Run COVLQG algorithm using 2
actuators, M sensors,

Step 2. Compute Visens’ U,iact from (13), (18) and rank sensors and
actuators according to their effectiveness:

sens sens . 4 Sers
(15a) AN A/

(15b) v, 36t Ly

act act
1 2V 2. 2V

Delete the sensor and actuator with the loweet effectiveness values

visens’ UiaCt, provided such deletion does not cause loss of
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controllability or observability.Jf Unlese & < % + 1, reset i 10 2-1.
Inless m <m+ 1, reget m to m-1. If oi—z Ewyiz =1 ¥i=1, ..., k

o2 2 arl o2 2
ad ¥ i up "t BT > 1, dif [ 1Z1ui Eli ) j41)iteration ©

£
1 -2 2 .
[2 izl W By ](j+1)iteration return to Sted 1. Othemwise STOP. A
solution to the COVSAS has been found.

Piscussion of Sten 2: HNumerica. experience with this algorithm suggests that
more than one sensor and rore than one actuator may be deleted on each iteration.
In fact, tur many cases the same result can be obtained by reducing ¢ to % and

m to @ on the first iteration. However, this quicker convergence can sometimes
converge only to suboptimal answers, and the algorithm above is written in its
most conservative form (deleting only one sensor and/or actuator per iteration)
where convergence to optimal values is more reliable [7].

VI. CONTROL OF A SPACE ANTENNA

Fig. 1 depicts the Hoop-Column Antenna arrangement for a proposed NASA
comunications satellite. Stationed in a geosynchronous orbit, the objective of
the antenna control system is to regulate the orientation and focus of the
satellite antenna relative to its muitiple feed horns (at node 10). Table 1
lists the 24 linear and angular displc.ements which make up the outputs Yis

i=1, ..., k, where k = 24, Table 2 lists the 39 admissible sensors and Table
3 Tists the 12 admissible actuators. Note that ARX2 stands for angular rate
about the x axis at node 2. AX2 stands for angular displacement about axis x at
node 2. Z10-Z2 stands for a rectilinear displacement between nodes 10 and 2 in
the z direction. The specifications for the outputs are oy = 22.8 are seconds

fori=1, ..., 6, and oy = .158 om for i =7, ..., 24. The specifications for

the inputs u; are y; = 10 dn-cm, 1 = 1, ..., 12. The actuator noise is described

by W = diag [... wii veels uii = .1 (dy-cm)z, ¥Vi=1, ... 12. The sensor noise
s V = diag [.o. Voy oouds Vg = 7.615x10"7 rad®, i = 1,2,3,13,14,15, Vg =
2.5¢10°7 m, i=4, ..., 12, 16, ..., 27, vy = 4.76x107° (rad/sec)?, i = 28,

.vvs 39. It is des:ved to limit the number of actuators to 6 = m and the number
of sensors to 12 = 2. The dynamics of the antenna structure were described by
10 elastic modes and 3 rigid body modes. The square of thé freguencies

+0bservabi1ity, controllability checks are particularly simple for flexible
space structures using the tests in [8]. That is, rank tests of matrices

[8; A8, ... A™1g], c”, ATcT, ... AT™1cT] can be avoided.
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-

-
]

1, ..., 10 of the elastic modes are

2 ., wyo”) = (40579, 7.2090, 7.2362, 13.27/,

44.834, 132.14, 147,66, 445.01, 448.69, 775.86) (rad/sec)z.

(wlza wz

More complete information for the antenna model may be found in [7].

The results of the CNVSAS aigorithm applied to the Hoop-Column Antenna are
summarized in Table 4. The 6 actuators deleted from the admissible set of
Table 3 are (listed in order of deletion): 12 Ugs Ugs Upgs Ugs Uy The 27

sensors deleted (in order of Jeletion) are: 215, 235 Zgs 2195 Zs Zygs Zpy Zys
224 227° %4> %5 2180 221 Z30° Z39° %33 %70 g0 Z31* %23+ <20° Z35° Zp50 %220
16" . Notice that even though the outnut constraints are still binding the total

control effort is less using only 6 actuators, (6x5.021 = 30.12) than using 12
actuators (12x3.275 = 39.30 > 30.12). Thus, better performance is possible with

fewer actuatcrs, since for several actuators the noise effecc v.® is greater

than the signal effect Uiu in (14) (note th.. negative values of ViaCt in Table
4).

Perhaps the mmost important information from the ("4"AS is the determina* -
of the minimum achievable actuator specification .+ from Table 5 ihat all
of the 24 outputs are held within their desian conscraini. (o; = 22.8 are secs.

for angles and o = .158 mm for rectilinear displacements) by actuators which
must be design. 1 for the canabilities of TABLE 5. Thal is, the given nutput
specifications, 012 are nossible to meet if M is changed ’‘=> actuators are
redesigned) (from Table 5) to up =73, uy = 26, uy = 105, uy = 26, ug = 32,
ug = 39.

VII. CONCLUSIONS
Presented is an algorithm COVSAS which integrates the following tasks:
Selects sensors and actuators from an admissible set.

Designs a linear feedback controller which satisfies output variance
constraints.

Determines actuator design requirements which allow the output variance
constraints to be satisfied.
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Numerical nroperties of the convergence of this algorithm are given for NASA's

Hoop-Column Antenna. Additional theoretical properties of convergence of this
algorithm are given in [7].
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Figure 1: Hoop Column Antenna
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Output #

O 20 SN OO WA

Sensor
Number

WSO EWRN =

Table 1: Hoop Column Output Description

Tyne Nodal Location Direction
Inertial Angle 2 X
1] 2 Y
11 2 Z
Relative Angle Between 10 and 2 X
" " Y
Inertial Angle 10 z
Relative Linear Disp. Between 6 and 2 X
n " Y
" 9 and 2 X
un " Y
“ 10 and 2 X
" L] Y
" 101 and 10 X
" ! Y
n n Z
" 107 and 10 X
L] " Y
n u Z
" 112 and 1C X
L] n Y
n ] Z
X
Y
2

Table 2:

Label

AX2
AY2
Az2
16-X2
¥6-Y2
16-12
X9-X2
Y9-Y2
79-722
X10-X2
Y10-Y2
210-72
AX10

Hoop-Cclumn Sensor Labels

Sensor Sensor _

Number Label Number Label
14 AY10 27 7119-710
15 AZ10 28 ARX2
16 X101-X10 29 ARY2
17 Y101-Y10 30 ARZ2
18 7101-210 31 ARX6
19 X107-X10 32 ARY6
20 Y107-Y10 33 . ARZ6
21 1107-21C 34 ARX9
22 X113-X10 35 ARY9
23 Y113-Y10 36 ARZ9
24 2113-710 37 ARX10
25 X119-X10 39 ARY10
26 ¥Y119-Y10 39 ARZ10
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Table 3: Hoop Column Actuator Description

Actuator torque aboit
axis at
Node location
u = TX2
u, = TyY2
Uy = TZ2
Uy = TX6
ug = TY®6
ug = TZ6
u, = TX9
ug = TY9
ug = TZ9
Uig = TX10
up= TYI10
Uyp = T1Z10
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Iteration
Number

Table 4:

Identified
Sensors (V? eny

AZ10{.0004116)
AZ72(.000297)
26-22(0)
29-722(0)
210-22(0)

AY1(.0C3362)
AX10(.003358)
AY2(.00226)
AX2(.00226)
2113-710(.001942)
7119-210(.001884)

X6-X2(.01457)
Y6-Y2(.01455)
7101-710(.0110)
21€7-710(.0108)

ARZ2(.02844
ARZ10(.02232)
ARZ6( .02238)

X9-X2(.0986)
Y9-Y2(.0839)

ARX6( . 07648)
ARX2(.07648)

Y107-Y10(.13395)
XRY9(.1098)

X119-X10(.1557)

X113-X10(.1555)
X101-X10(.1551)

Identified
Actuators

t
(9

T210(-1.362)
T29(-1.369)

T26(-2.1405)

TX10(-1.2055)

TX3(-1.2917)

TX6(-1.4793)

35

Ave Input
Value
(7.6)

3.275

3.592

3.699

3.997

%.829

4.857

4.905

5.021

Hoop Column Output Constrained COVSAS Results

Number of
Sensors/Actuators

39/12

34/10

28/9

24/8

2177

19/6

17/6

15/6

12/6



OQutput #

1(AX2)
2(AY2)
3(Az2)
4(AX10-AX2)
5(AY10-AY2)
6(AZ10)
7(X6-X2)
8(Y6-Y2)
9(x9-X2)
10(Y9-Y2)
11(X10-X2)
12(Y10-Y2)
13(X101-X10)
14(Y101-Y10)
15(2101-210)
16(X107-X10)
17(Y107-Y10)
18(Z107-210)
19(x113-X10)
20(Y113-Y10)
21(7113-210)
22(X119-x10)
23(Y119-Y10)
24(2119-210)

Table 5: Output-constrained Specifications

Actuator #

1 TX2
2 TY2
3 122
4 TY
5 TY9
6 TY10

36

2
Emu,i

(minimum achievable)

72.91 dn-cm
26.145 dn-cm
105.47 dn-cm
26.138 dn-cm
31.750 dn-cm
38.812 dn-cm
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EIGENVALUE PLACEMENT AND STABILIZATION
BY CONSTRAINED OPTIMIZATION

S. M. DeCaro* and D. J. Inman**
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State University of New York
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ABSTRACT

A pole placement algorithm is proposed which uses constrained non-linear
optimization techniques on a finite dimensional model of a linear n degree of
freedom system. Low order feedback control is assumed where r poles may be
assigned; r being the rank of the sensor coefficient matrix. It is shown that by
combining feedback control theory methods with optimization techniques, one can
ensure the stability characteristics of a system, and can alter its transient
response.

INTRODUCTION

One common method of approaching the problems of controlling the vibration
cf a structure is ' employ eigenvalue (pole) placement methods. Such solutions
have attracted the attention of numerous authors over the past twenty-five years,
including W. M. Wonhem [6], E. J. Davison [3], S. Srinathkumar [5], A. ¥. Andry
et al [1], [2] and many others.

In exploring pole placement in dynamical systems, an inadequacy of stability
considerations in contemporary algorithms was noted and thus motivated this work.
It appears that the problem has not been solved or even addressed in many
approaches,

If a system is controllable, one has the ability to place a predetermined
number of poles. Thus, when pole placement techniques are employed, there is a
limit on the number of poles that may be assigned. As is well known, the rank of
the sensor coefficient matrix determines how many poles may be placed exactly.
These poles may be noted as the contrcllable eigenvalues of the system, while the
remaining may be labelisd uncontrollable.

#Present Address: Member Technical Staff
ATE&ET Bell Laboratories
Whippany Road Rcom 3C-2L49
Whippany, New Jersey 07981

##Research supported by AFOSR Grant Number AFOSR 82-0242
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Thus, due to restrictions inherent to every system, every pole may not be
desirably placed. Therefore, one does not have control over the full order of
the system. Wnen moving the allowable eigenvalues, those which are not placed
will also be affected, with the possibility of generating an unstable state.

Since an unstable system is undesirable, the ability to place a pre-
determined number of poles, while forcing the system to remain stable would be
quite desirable to the designer. Many pole placement methods yield satisfac-
tory assignment of the desired modes, but unfortunately can drive the remaining
eigenvalues unstable., Thus, requiring iteration of the algorithms, compromising
the desired choice of eigenvalues or eigenvectors, until a stable response
results. With the large number of modes required in modelling flexible struc-
tures, these methods become costly and time consuming.

Hence, a pole placement method is proposed which constrains the unspecified
modes to be stable by taking advantage of constrained optimization techniques.
It appears that no previous work has guaranteed stable unplaced poles or has
assured the magnitude of relative stability.

Several numerical examples will be presented, and results will be compared
with those of Srinathkumar [5].

PROPOSED SOLUTION
The systems studied in this paper are of the mechanical type, which are
second order by nature, incorporating mass, stiffness and damping parameters,

vhere only the class of discrete systems shall be investigated.

Assuming small motions about the equillibrium point implies linearization
of the equations of motion, which become

[(M]d(t) + [D+clg(t) + [S+H]a(t) = F(t) (1)
The forcing function vector, Eﬁt), may then be desciibed as
E(t) = [Vlg(t) + [Plg(t),

where [V] and [P)] are the velocity and position feedback matrices, respectively.

q(t) is the conrdinate vector, while é(t) and i(t) are the first and second time
derivatives of this vector.

[M] is known as the mass or inertia matrix, [D] is called the damping matrix,
and [S] is the stiffness matrix. The matrix [G] may be referred to as the gyro-
scopic or Corioclos matrix, and [H] is the circulatory matrix.

The [M], [D], {S], [G] and [H] matrices are assumed to be time-invariant,
and therefore are represented by constant values, all be’ng of nth order, where
n represents the number of degrees of freedom of the system.

Using normal stuate space methods by letting



a(t)
_)&(t) = R ,
g(t)

the n-dimensional system becomes the following 2n~dimensional model:

-M’l(D+G) i -M'l(sm)

x(t) =

I

0
n

B

B
x(t) + | 2 | u(t)
2

y(t) = [cli C,lx(t) (2)
B

1
B

where [M] is assumed to Lave an inverse and l:
2

] u(t) is a representatior of
the system's forcing functiorn, F(t).

" More simply, equation (2) may be expressed as follows:

x(t) = [a']x(t) + [Blu(t), x(0) = x,
x(t) = [clx(t)
vhere u(t) = [K]y(t)

y(t) is “he output vector, [C] Is a constent sensor coefficient matrix, and [K]
is the feedback gain matrix. [B" may now be described as the constant coeffi~
cient matrix of actuator dynamics, and u(t) is the control vector. The following
conditions hold:

i) £€R2n, ueR”, yeR®

ii) A', B, C are real, constant metrices of appropriate dimensions.
iii) rank B=m# 0, rank C=r ¢ 0

By block diagram representation, the system described by equation (3) may be
expressed as in Figurc 1.

u(t)
—$ B + > [ A

1%
‘x

C P—>yl(t)

FIGURE |



And a more revealing representation is shown in Figure 2.

IR

Kk fe—]c

FIGURE 2

8 +

Equation (2) may be rewritten as follows:

x(t)

Qr

%
ct
~

a7l oio) | i (sem) | x(e) +
B
n | .
-M‘l(mc) E -M'l(s+H) i
i x(t) +
I i 0
n | _

y(t) = [Cl§ c,1x(t)

B, | [Kl[cy | Cylx(t)

(3)

By comparison of equations (1) and (3), one may note that this implies:

thus

1%«
ot
S

If we define

(A]

LB2] - [0]9
ML (D+o) ! M (s+) lslxcl= B.KC
| x(t) + | 2272 | ()
I i 0 0 ! 0
x(t) = [c !Celg(t) (4)
~M'1(D+G) + R_KC i-M-l(Sﬂ{) + B_KC ‘l
17710 1772
; ! 5
| 1

n
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and describe equation (4) as follows:

L
x

[Alx
[clx

pA

Then, the set of equations must satisfy the eigenvelue problem, i.e.,

[A]zi =gy, (5)
2n
where {;l} = the 2n eigenvalues
i=1
2n
and {!i} = the corresponding eligenvectors.
i=1 .

. By substitution of equation (4) into equatiomn (5),

- H - [
7 (De) | M 1 (s+m) B KC, |BKC,
C-v- = = 'Y‘j_ + e S =———-- -'v1
i SO o ! o
1 |

Xi mey then be defined to correspond to the above partitioning as follows:

yielding
-1 o | B
z. M (D+G) | M (s+8) z B.KC. |B.KC z
51 :l = = -:i + ..'..L.__l =--—-g ——
W, I i 0 W, o | o W
ot 3 n -1 ]
which implies
L
substituting,
t;2w = -M"l(m); w, - M"l(s+H)w + B.KC.g,w "+ B.KC.w (6)
i~ i = 177174~ 172

If we define {2.} i =1,2,...,r a8 the r eigenvalues to be placed,
equation (6) may be expressed as
A2

WAS = -M-l(D+G)WA - M"l(s+u)w + B_KC.WA + B_KC.W

11 172
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= ! I 1
Where W— [y‘lz H‘Q{ -o.c-} _w_r]
and A= diag(kl,ke,...,kr)

By taking advan’age of the generalized left inverse theorem,
(K] = [BiBl]_l[Br.f][WA2+M_1(D+G)WA + M‘l(sm)w][clwmcgw]'l,

which is the equation describing the gain matrix needed to obtain those eigen-
values desired.

A single otjective function was then determined from the set of equations
described by equution (7), where the values of [K] were determined by minimi~ing
that objective function. The constraints impoged on the system were that the
real part of the eigenvalues of the closed loop system were all negative. These
constraints were also modified, as was desired, to inc: ease the stability .aargin.

NUMERICAL EXAMPLES

Exarple 1:
, 909 , 9292
) S s I
ﬁ I - 2 1
f—‘WVT m, e AAA my
4 d d
4 | 2
FIGURE 3
Specifications: 2y = m2 =1
5, = ¥
52 =1
dl = 2
d2 =1
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Eigenvalues of unforced system:

~1.666207
- .333783

(c]

[B]

Desired eigenvalues:

Resulting eigenvalues using the
relative stability:

-4,000006
-1.335420
- .249608
-2,000000

Resulting eigenvalues using the
stability:

-l . 000000
~2.999999
- 572543

1.413344
-.832651

00
J 0 0

1+ I+

OOHO

N + 0i

+ 01

proposed method with no additional factor for

+ 01
+ 0i
+ 0i
+ 01

proposed method witii added fector of relative
+ 01
+ Oi
t 0.743531

Resulting eigenvalues using Srinathkumar method:

9,1256 +
- .81k1 +
-4,0000 +
-3.0000 +

01
1034
01
01

Note that the method propcsed here yields the desired eigenvalues und that
the unspecified eigenvalues remain stable, wrereas .a the' Srinathkumar method
an unspecified eigenvalue is moved into the right half plsre,
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Example 2:

AN YA YA Y N B N W n . - .

; ] q'tql
7/ H . q2'q2 Q3OQ3
/ ' — —
/ sl i 52 I 53 '
A
: 777 777777
m 1
A dj | sS4 li—-—’ . dp
’+~} —vWW\— q4‘q4 1
/ M4 —1F
A Y QIY G S (v GV S G GV (i GV S G A G S A (N G SN S G (NF (N S (Y G G SV &V oy 4
FIGURE 4
Specifications: m = L
m2 = m3 = ml4 =1
Sl=82=S3=Sh=l
dl = d2 = 05
Eigenvalues of unforced system:
-.00k055 + 1.6479531
-.170649 * 1,.131L418i
-.062364 * .35567hi
-.075432 £+ ,7304b411
c]=[1 00002300
10 0 01 006 0O
1 0 0]
0 1 0
0O 0 1
(Bl =10 0 0
0 0 O
0 0 O
| 0 0 0]
Desired eigenvalues: X =-4 .5
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Resulting eigenvalues using the proposed methcd, where a factor for relative
stability was added:

-.289342 + 1.378583i
- 145453 + 1,1713454
-.400007 + .500003i
-.197840 * . 4259iki
Example 3:
) q'oq‘ 1 q .6_
> — e
ﬂ‘|‘-_A¢\Af- nnz
S 2
FIGURE 5
Specifications: oy = m2 =1
S1 =3
82 =1
Eigenvalues of unforced system:
+2.0743131

+ .835000i

[cl=[1 1 0 0]

[1
0
{B] = 0

Lo

Desired eigenvelue: .5 + 0i

COHO

Resulting « igenvalues using the proposed method, where factor for relative
stability was added:

- .170373 * 1.8090971
-1.81T7157 + 04
- .50000C + 01

CONCLUSION
A pole placement algorithm has been proposed which used constrained non-

linear programming techniques for a finite dimensional model of & linear n degree
of freedom system. It has been shcwn that by constraining the eigenvalues of the
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full order system while simultaneously placing those allowabie, one can encure
the stability characteristics of a system, and can alter its transient response.

Results of the Srinathkumar metnod were presented for Example 1, and showed
how this metnod yielded the desired eigenvalues guite accurately, yet unfortu-

nately forced the originally stable system unstable, therefore resulting in an
undesirable response.

No previous work has guaranteed stable unplaced poles or has assured the
magnitude of relative stability.
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MATRIX TRANSFER FUNCTION DESIGN FOR
FLEXIBLE STRUCTURES—AN APPLICATION

T. J. Breanan, A. V. Compito, A. L. Doran, C. L. Gustafson, and C. L. Wong
A :

~space Corporation
Lo> ~ngeles, CA 90009

ABSTRACT

The application of wmatrix transfer function design techniques to the
prchlem of disturbance rejection on a8 flexible space structure is demonstrated.
The design approach is based on parameterizing a class of stabilizing
compensators for the plaat and formulating the design specifications as a
constrained minimization problem in terms of these parameters. The solution
yields a matrix transfer function represeatation of the compensator. A state
space realization of the compensator is constructed to investigate performance
and stability on the nominal and perturbed models. The application is wmade to

the ACOSS (Active Control of Space Strucztures) optical structure.
I. INTRODUCTION

The problem of flexible space structure control has motivated a great
deal of research for theoreticians and practitioners of multivariable control
design. In spite of the efforts directed ia this area there still remains a
significant gap between the multivariable theory and the control design
implementation. This gap stems from two sources. The first difficulty is one
of problem specification. Translation of complex system requirements and
constraints into the specific mathematical cost functionals required by wmost
design methods may be impossible in many cases. Free parameters in the chosen

design methodology may not be traceable to the parameters which describe the
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system in terms of desired performance, plant uncertainty, hardware
limitations, etc. A second roadblock to the implementation of modern control
design techniques is the lack of reliable algorithms and software to perform
the sophisticated mathematical manipulations required by these techniques.

Recent vears have shown very considerable advances in this field (see [1]) but

much remains to be domne.

Most of the MIMO (multi~input/multi-output) compensators which have
actually ief. the textbook and been calculated in computers are based on state
space methods, and, in particular, LQG (Linear-Quadratic—Guassian) design
theory. This is due in part to the long history of development of these
design techniques as well as the availability of reliabie algorithms to solve
matrix Riccati equations and the ease of performing most state space
manipulations. Frequency dowmain techniques for calculating MIMO feedback
systems have been avoided. The exteunsions of classical frequency domain
concepts to MIMO systems have not been totally satisfying and calculations
involving matrices of transfer functions present an entirely new set of
problems. Nonetheless, frequency domain design is still appealing and certain

feedback notions cannot be adequately expressed without reference to transfer

functioas.

We have carried through a compensator design for a flexible structure
based on transfer function parameterization techniques. General theories of
feedback control system parameterization have been developed by several
authors ([2}, [3], and [4}). The goal of a parametric approach is tne
selection of a set of numerical quantities, along with an acceptable range of
values, which span a class of possibly acceptable compensators and, wi -
which, one is able to adequately express the system requirements in terms of
costs and constraints. A particularly simple parameterization for stable
plants was introduced by Zames, [4], and exploited for the unity feedback
configuration of Figure 1 bv Desoer and Chen [5]. This is the
parameterization we will implement here. The details are in section IV.

Previous examples of this design approach can be found in (6] and [7].
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II. ACCSS STRUCTURE

The ACOSS optical structure was developed by the Charles Stark Draper
Laboratcries as a control design test specimen to evaluate the design
approaches devaloped for the DARPA ACOSS program, {8]). It was designed to
exhibit the closely spaced, low frequency mode distribution expected on some
future space systems. The structure is provided as a finite element model
having 84 dynamic degrees of freedom (see Figure 2). In addition to the
nominal structure, two perturbed structures were defined to represent plant
uncertainty. The perturbed models represent mass and stiffness variations of
approximately 10Z. The nominal model 1is denofed PO, the perturbed wodels are
P2 and P4.

The performance goal is expresszed in terms of a line of sight error on a
focal plane on the lower section of the truss as shown in Figure 2. The error
has two angular components and a defocus component resulting from deviations
in the optical path due to structural vibrations. Three rigid mirrors
determine the optical path. Theae are asesumed to be rigidly mounted to the
structure. Two disturbances are defined ou “he structure as shown in the
figure. For our design problem we are only considering the disturbance
propagating from the equipment panel snd we assume it has a flat PSD out to
5 Hz. The equipment panel 1s isolated from the structure by a spring-damper
system. The residual disturbance propagation through this isolation system
into the line of aight is still unacceptably high. The control problem is to

further reduce this residual with active siructural control.

III. MODEL SELECTION AND ACTUATOR PLACEMENT

Far the current design problem we chose a 5 mode model of the structure,
selecting those modes having most significant influence between disturbance
and line of sight. The modal influence was determined based on ideas from

internally balanced coordinates. For a description of internally balanced
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coordinates see [9] and for an application to modal coordinates see [10].

Glven a second order model description,

ai + 2 ;iwiai + wizqi = g} w , i=141,...,n (1)
n
y = 1 h.a, (2)
i=t "t *t

¥g%h natural damping { , frequency W , inputs w, and outputs y, an index
i i
ranking the modes can be calculated as the approximate "second

ovder modes,” ([10]) by

Y
2 (g;gy)(hh;)

0.° = (3)
i 4 Cimi

Using the modal disturbance influence matrix for the gi's and the line
of sight measurement matrix for the hi's the 5 highest rank modes are
tabulated in Table 1. Agreeing with our intuition, these turn out to be two
isolator rotations, two isolator translations, and the first bending mode of

the upper truss. A description of the modes of the structure can be fouad in

[8].

Mode 7 8 12 13 21

Frequency (Hz) | .15 .26 .58 .58 2.3

Table 1. Design Modes

The line of sight measurement matrix is a function of 21 nodal degrees
of freedom. Ffrom among these 21 degrees of freedom we chose to locate three
force actuators (assumed to be of the momentum exchange or proof mass type) to
control the three line of sight measurements. To make this selection an

appeal is again made to the approximate second order modes of equation (3).
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If the forcing function on the right of (1) is PR where 83 is the
influence of the jth actuator, j =® l,...,21 on the ith mode, 1 = l,...,5,

then we denote the corresponding second order mode by oij and define

(4)

P
"
~—

N

Here, aj is a measure of the influence of the jth actuator on the
line of sight for the selected 5 mode model. We chose three actuators whose
force directions span the three spatial directions and have large aj with
respect to the total 21 possible actuators.- Two of the actuators selected are
located on the corners of the primary mirror and the third is on the lower

truss.

To complete the description of the design plant we assumed the
availability of direct measurements of the line of sight. No other sensors
were used for the control design. We now have a stste space description of

the design plant in modal coordinates,
x = Fx + Gu + Dd (5)
y = Hx (6)

wvhece a 1z ke actuator command and d is the disturbance input.

Fcr calculation of the compensator we need a transfer function
representa .ion of the design plant. The convenient representation for
constructiig state space realizations of the compensator is a polynomial

1 where N and D are

matrix coprime factorization [11,12', that is, P = ND
coprime polynomial matrices. An algorithm to construct a coprime

factorization from a state space description can be found in [13].
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IV. DESIGN PROBLEM

The feedhack configuration used for the design is shown in Figure 1.
The closed loop system is referred to as 44. P is the open loop design
plant, a 3x3 transfer function given from the state space equations by
H(sI—F)-lc. The inputs are u, and u, with the reference input, Uy,
identically zero. The outputs are A and Y, with the line of sight
represented by ¥ye The disturbance propagates into the line of sight
through the transfer function P = H(aI-F)-ID and may thus be represented as

an additive disturbance, 33, at the plant output.

The closed loop system transfer function is defined to be

u y.\
H . 1 > 1 . (7)
Y Y2 Y2

Stability of Hyu can be taken to be closed loop stability. Hyu may be

expressed in a simple parameterized form as

Q -QP
H = (8)
yu
PQ P(I-QP)
where Q is referred to as the Zames parameterization, [4], with
-1
Q = c(I +pPC) " . (9)

We state here the fundamental result from {5] which is the basis of this design

approach.

Fact: For P exponentially stable and strictly proper, Q is exponentially

stable and proper if and only if
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(i) C is proper and

(ii) Hyu is exponentially stable and proper.

When this is the case the compensator is given by
-1
c =Q(I - PQ) (10)

In other words designing stabilizing compensators for,gd is equivalent to

specifying exponentially stable, proper Q.

From (8) we sce that the I/0 map, that is, the transfer function from
u) toy, is

H=H = PQ (1)

Given an invertible plant transfer function, P, one can see from the
relation (11) that a parametrization of the closed locop aystem by Q is
equivalent to a parameterization by H. Moreover, for P exponentially stable,
Q exponentially stable implies the same for H. But since

Q=p (12)

it becomes clear that exponential stability of H only implies exponential
stability of Q when P has no u~stable zeros. However, by imposing an
additional condition on H, namely that H has the same right haif plane zero
structure as P, then parameterization by such H is equivalent to parameteriza-
tion by exponentially stable Q. If a proper compensator is desired the
additional constraint of properness of Q is required agd_will result in an

excess pole over zero constraint on H which depends on P.

Parameterization by the I/0 map, !, may simplify the dewsign problem and
allow the designer to more directly specify his design objective. For
example, for a disturbance attenuation problem, the closed loop disturbance to
output map, or sensitivity map, is simply given as (I - H). In addition, in

some applications, a decoupled I/0 map is desirable and one is directly able
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tc parameterize a viagonal H. This is the approach we take for this design.
Calculating the transmission zeros of cur design nlant using the QZ algorithm
[14) we find that there are no zeros in the right half plane so we may freely
specify H as diag(hi, i=1,2,3) with each hi of the fcrm

g p“(s)
)
by () by (2) (13)
1 2
where g is a gain and
2 2
p(s) =8 +2Luws+w (14)
n nn n
p, (8) = 32 +20. 0, 8+ W 2 (15)
d. d. d. d.
] ] ]

This parameterization has 21 parameters consisting of the gains, and

second order damping and frequency terms.

We set for ourselves a design goal of minimizing closed loop response to
the disturbance over a low frequency band of 5 Hz. To achieve this we define

a constrained optimiz.tion problem as follows:

Minimize

J = (1 -~ H(jw)) P(jm)ll2 . W= 107 (16)
subject to
0.01 < Cn' Cd. :Stability
]
< : i
0.04 < wn. wd. wb :%andwidth
]
hi(O) = ] :Low frequency rcise rejection
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The matrix under the norm of J is diagonal so we simp'v take the
Euclidean vector norm of the diagonal. The minimization 5. .ae cost at 5 Hz
and the DC unity gain constraint will result in disturbance rejection across
the 5 Hz band. The P term in the cost veights the diagonal terms in (I - H)

according to the way the disturbance propagates through the structure.

In general (I - H) is the ratio of the relative uncertsinty in the 1/0

map to the relative uncertainty in the open loop plant. More nreciselv

(At = (r-mae)pt (17)

whgre |
& =3 -p {18,
M=H-~-H (19)

for a "perturbed" plant P uhich results in a perturbed I/0 wap H. In effect,
minimization of J reduces the impact of plant uncertainties on closed loop

system performance.

Having specified the opiimization problem one can use numerical or
analytical means to solve it., Omitting the details, we calculated a local
miniaum to this problem analvtically. The achievable performance is clearly
dependent on the bandwidth, w, ., For a given u5 the local minimum

b
satisfies

wd‘ =, (20)
J
p, (s) = p, (8) (21)
4y d,
2 w
_.-E - .——!l- (ZL)
L4, Wy
J ]
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Given this solution we can adjust the bandwid.h of cach of the three
loops to achieve a desired performance level. To achieve 0.04 reduction in

each channel we have the following parameter values:

“h. cd. wn Cn g
i j
h, | 300 1.5 10* | 100 | a1
S—
h, | 600 8 | axi0*| w07 | 81
hy | 300 5 %103 | 290 | 25

V. COMPENSALOR REALIZATICN

Having arrived at parameter values we have specified tae desired 1/0

map, H. The compensator which will produce this I/0 ma> is
-1
C = Q(1I - PQ) (24)
1

ap lyr -l (25)

Since the I/0 map is given by diag(hi ) with each hi of the form

> (26)
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the compensator hecomes

-1 i
C =P diag (d.- n.) . (27)
i i

We have already expressed P as a polynomial matrix coprime factorization,
P = ND-I. Thus (27) becomes

-1 oy
C =DN diag i—a ) (28)
1 i

Since the degree of cli - o, is 4, we can factor this polynomial into two

quadratics as

d, ~n. =4d. d. , i=1,2,3. (29)
Heance (29) can be rewritten as

- o,
C =D { diag(d. N y! diag(al—) . (30)
! i,

By inspection, diag(di IN is column-reduced [12], and has column c2grees
1 -~
equ ..ing those of D. Consequently D {diag(di N} 1 is proper and has a state
1 ~
space realization [12, Sec. 6.4]. Now, since diag(ni/di ) also has a state

?

space realization, the twc realizations can be cascaded to yield a realization

for .
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VI. RESULTS

Having computed a state space description of th. compensator we are now
able to determine closed loop stability for various versions of the plant
simply by extracting the eigenvalues from the closed loop state equations
derived from Figure 1. We find that for 21l three versions of the plant (PO,

P2, and P4) the five mode description remains stable under feedback by our

compensator.

To investigate the robustness of the desﬁgn with respect to unmodeled
dynamics we appended additional modes to the plant model and found that the
closed loop system became unstable in almost all cases. Upon investigation of
this problem we discovered that though the 5 mode design plant was minimum
phase, the addition of almost any other mode or set of modes resulted in a
nonminimum phase plant. Information about these uns*3ble zeros was not
available in the design plant so the resulting compensato- tended to place
closed loop pcles at these zeros. Thus the stability problem experienced is
one of modeling or model reduction. In general, any control design approach

must have information about the righ. h=lf plane zeros of the plant.

The performance of the closed loop system remained very consistent with
the predictions made during the design stage. The steady state RSS response
at 5 hz of the two anguler components of the line of sight is given as a

fraction of open loop response for the three models by:

PO P2 P4

4.3 X 107 5.1 X 102 4.6 X 1072

The broadbaad disturbance attenuation is illustrated on the Bode plots
of Figures 3 and 4 which compare open and closed loop response. Across a
significant portion of th 5 Hz band the performance improvement is 3 to &

orders of magnitude.
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VII. CONCLUSIONE

We have demonstrated the applicability of a transfer function parameteri-
zation design approachk for problems of broadband disturbance attenuation on
flexible space structures. This methodology provides the control designer
with a great deal of flexibility to meet system requirements by the choice of
parameter set and selection of cost function and constraints. Although the
implementation of this technique requires difficult numerical calculations
involving matrix transfer functions, algorithms and software for these types
of problems are aiready emerging. The success of this approach is dependent
on an appropriate parameter selection in which to express the problem
specifications. This suggests research, probably application specific, which

addresses the issues of problem description and requiremeants interpretation in

the control design process.
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INTRODUCTION

Tne control design problex for the class of future spacecraft referred to as
large space structures (LSS) is by now well known [1-3]. The issue is the re-
duced order control of a very high-order, lightly damped system with uncertain
systen parameters, particularly in the high frequency modes. This paper pre-
sents a design methodology which incorporates robustness considerations as
part of the design process. Combining pertinent results from multivariable
systems theory and optimal control and estimation, LQG eigenstructure assign-
ment [#4] and LQG frequency-shaping, [5-7] were used to improve singular value

robustness measures in the presence of control and observation spillover.

Tne design technique is summarized as follows. A low order LQG compensator is
synthesized using the technique of recursive eigenstructure assignment to
place closed-loop eigenvalues where desired. This design is evaluated for
Singular value performance margin and for singular value.gain margin with
respect to plant uncertainties (e.g., modeled dynamics). The compensator is
then resynthesized using frequency-shaping concepts to improve the singular
value robustness measures. The recursive eigenstructure assi{gnment technique
allows regulator close-loop eigenvalue placement at the desired locations for

the plant and as required for frequency-shaping. Furthermore, the frequency-
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Shaped compensalor elgenvalues can also be assigned, thus assuring LQG com-

pensator stability, as well as estimator stability.

This procedure using robust frequency-shaped compensation was applied to the
design of the controller for a representative large space structure. Results
are presented as singular value Bode Llots. Comparisons are made to a recent

study8 utilizing the same large space structure model.
LQG CONTROL DESIGN FOR LSS

Control design plant modelling for LSS utilizes a high-order structural model,
typically obtaiuned by finite-element programs such as NASTRAN. The limita-
tions of computer implementation require that the finite-element model be
reduced to a design model. One approach is to truncate the high-order model
into primary and residual modes, where the primary modes are to be used for
control design. The modal truncation can be based on engineering judgement or

on a selection criterion such as modal cost analysis [9].

The system model has the form
i
xp = Ap Xp + Bpu

"‘R = AR Xg + BRu (M

y = Cp xp + CR xR
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where Xp are the primary modes and xg are the residual modes. An ob-

server-based control design for *he primary modes then has the form

A A

Xp = Ap Xp + Bpu *+ G(y - Cp Qb) (2)
u = —Ki‘p

Using LQG design, the gains (K, G) are selected to minimize quadratic perform-

ance indices. The terms BRy and CR xR were identified by Balas [3] as control

spillover and observation spillover respectiQely. These terms have the poten-

tial fur interacting through the observer (2) to produce instability.

LQG theory guarantees that the reduced-order closed loop system is stable with

eigenvalues of (Ap-Bpk) and (Ap~GCp). However, no such guarantee holds for

the compensator,
u = Hy (3)

which has the eigenvalues of (Ap-BpKk-GCp). This fact can be fatal for LSS

reduced-order control, unless measures are taken to ensure system robustnass.
ROBUSTNESS MEASURES FOR LSS

For multivariable feedback systems the emerging singular valt * robustness
theory can be used to develop measures for stability and performance. Kosut,

et al,8 applied this theory to the large space structure control design prob-

lem, treating the residual dynamics as a perturbation. For a system with a
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stable nominal feedback system (based on the reduced model) and stable pertur-
botions (due to the residual dynamics), sufficient conditions for stability
are obtained when the singular value stability measures exceed the maximum
per.urbation due to model uncertainty. Fig. 1 defines the terminology for a
large space structure control systen. For an additive perturbation, rig. 2a,

the sufficient conditions for stability are

SM1 = o [I + H(Jw) Ge (yw)] > T [H(jw) GR (Jw)]

(4)

o~

-.)M2

!}

o [I+ Ge (juw) H{je)] > 7 [GR (Ju) H(jw)]

where T (+) indicates the maximum singular value and o (<) indicates the mini-
mum singular value. (Singular values of the complex mat.ix i are the positive
square roots of the eigenvalues of A*A, where (-)* indicii"s conjugate
tran-spose.) If Go(s) 18 minimum phase and invertible, a multiplicative per-
turbation can be formed, Fig. 2b, and the sufficient conditions for stability

are then

SMy = o [I + (HG)™11 > G [Ge™'GRl

(5)

\n

N
[}
<

o [I+ (GeH)™1] > & [GgGe™')
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where the jw arguments have been supressed. Good performance within the oper-

ating frequency region (i.e., the "control bandwidth") is provided when the

performance measure
PM = o [I + GgH] (3)

is large. The stability measures (4) are generalizations of Nyquist polar
plot analysis; the measures (5) are generalizations of Nyquist inverse polar
plot analysis. The need for large performance measure (6) ‘s a generalization

of the desirability of large loop gains.
ROBUST COMPLNSATION DESIGN

The stability and performance measures presented above raequire stac lity of
the nominal feedback system. In a previous work [4], the authors presented a
recursive design procedure which assigns the closed-loop eligenstructure in
linear quadratic regulators. At each stage, the requirad solution for the
steady state kiccati matrix which shifts a pole or pc.e pair to specified
values is obtained. For pole pair placement, a free parameter in tie solution
rermits selection of closed-loop eigenvectors. This design procedure is sum-

marized in Appendix 1.

Jsing duality, the procedure also applies to estimator design. By extension,
the procedure can be used to design stable compensators by considering the
closed-loop rzgulator dynamics matrix (A-BK) as the open-loop system and pick-

ing the estimator gain to place the compensator eigerstrurcture of (A-BK-GC).
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Compensator robustness can be enhanced through the use of frequency-staped
control and estimation [5,6]. In frequency-sihaped estimation, a fre-

quency-domain performance index is considered,

4

Jet 3 S [WRGWM ¢ vt RGWV] de (7)

where w is the disturbance and v (s the sensor noise. Sensor roise fre-
gquency-shaping is realized by treating v as an auto correlited noise source of

the form

/
vGw) = R 8w vi(iw) (8)

where v'(jw) is a white noise process. In the approach used here, Q(juw) is
determined by pcle placement, equivalent to iajecting fictitiou: process
nois:. R'/2(jw) must be proper (not strictly proper) to maintain sensor noise

weighting over the entire spectrum. Then define a pseudo-measurement

z' = R™1/2 (juw) z = R-1/2(Ju) Cx(Juw) + v' (jw) (9)
R-1/2 (ju) can »e realized in state space as

L/

Xy = AV Xy + Bvi

Yy = Cy xy + DyCx (10)

z' = CVXV + DVCX + v!
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This dynamic model is appended to the system dynamices to form the frequency-

shaped estimator,

X = AX + G(z' - CV’X\V - Dy cX) + Beu
(11)

.

;(‘v = Av.;(\v + BvC? + Gy (z' - CV/X\V - Dvc,)?)

where z' is obtained from (10). The gains G.and Gy «an be ,icked to pla.: the

cigenvalues of (11) at those of the frequency-shaping filter (10) and the oth-
ers as required for performance. A dual result can be used to develop fre-

quency-shaped gains for the regulator.

Because frequency-shaping ada. states to the compensator, an efficient choice
of the loops to be shaped is cesirable. Kim [7] has developed a procedure for
loop selection based on the singular vectors or the return ratic mairices G,H
or HG,. He conjectured that ar input vector y in the direction of q;, the
singular vector corresponding to 0(A) will get the largest amplificavion by A.
Similarly, a vector in the direction of q,, the singular vector correspcnding
to g(A) will get smallest amplification. Therefore, if the component of y in
thc direction which is closest to qq, is reduced by a filter before it enters
A, 9(A) is effectively reduced. o(A) increased by increasing the compor-
of y nloset to qm vefora it enters A. It ..n be shown that frequency-shaping

introduces transmission zeros into the compensatce transfer function.
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DESICN METHODGLOGY

The discussion which niz been presented above suggests the following design

methodoiog: :

-b

Compensator design for performance of the recuced order system.

2. Eva..ation of the stability margins (4,5) against the perturbation due to

the residual dynamics.

3. Selectiocn of frequency-shaping filters to enhance stability robustness.

4, Synthesis ¢ . equen.cy-shaped ccmpensator to incorporate performance and

stability margins.

The recursive eigenstructure design algorithm can bo used for the designs.

EXAMPLE.

Tne design methodology was applied to a contrcl design for the ACOSS-1 model,
als.> used in the comparis~n study [9]. The model is illustrated and the
state-space data are listed in Appendix 2. As in the comparison study *he
first eignt structural modes were retained. A regulator was designed with
ciosed-loop poles at 20% dumping; a compensator was designed with poles at
ritical damping. Fig. 3 illustrates stability measure (5) for the loocp
broken at the ~uunut. Perfcrmance s adequate at low frequencies but stabil-
ity robustrne: .8 inadequate above 1 Hz.
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To improve stability robustness, frequency-shapea estimation was incorporated
in all three output loops using second-order low-pass filters. Fig. 4 illus-

trates the recovery of stability robustness while still retaining good low

frequency performance, Fig. 5.

DISCUSSION

In the comparative study by Kosut, et al [8], both LQG modal control and a
frequency-shaped control were investigated (along with others). LQG control
was found to have pcor periormance as well as poor stability robustness. Fre-

quency-shaped control was found to have adequate stability robustness, but

poor low frequency performance.

The methodology presented here addresses both of these issues. Performance is
achieved by pole placemenL design of the compensator, achieving good loop
gains at low frequency. Stability robustness is achieved by adding fre-
quency-shaping without sacrificing low frequency performance, since the gain

of the frequency-shaping filters is one at low frequencies.

CONCLUSIONS

A design meth dology for control systems for large space structures has been

proposed which incorporates both performance and stability robustness concerns



as an integral part of the design process. Performance was achieved by plac-
ing the poles of the compensator. Stability robustness was achieved by fre-

quency-slaping the compensator to satisfy a frequency domain stability

robustness test.

An example was [! :sented which applied the methodclgy to a system with the
loop broken at the output. A full design study wculd also require examination
of the system with the loop broker at the input, using regulator fre-

quency-shaping to enhance robustness.
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APPENDIX 1

Recursive Eigenstructure Design

The steady-state optimal control law for the linear, time-invariant,

controllable system:

= Ax + Bu

e

which minimizes the quadratic performance index,

J =1/2 J7 1xT Qx + uT Ru] dt

is linear state feedback

u = Kx = - R-1 BT gx

where S is the solution of the steady-state Riccati equation,

-SA - ATS + SBR-1 BTS - Q = ¢

(A.1)

(A.2)

(A.3)

(A. W)

In this appendix we summarize an interaccive design technique which solves

(A.U4) to provide specified eigenvalues of the closed-loop system dynamics

matrix A+BK and which also permits some freedom in selecting closed-loop
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eigenvectors. The method is reported elsewhere [4] in detail. It extends the
procedure of Soiheim [1G] in which, for fixed R, the elements of Q providing

the required pole placement are calculated directly.

The desigr. technique is recursive; at each stage, the system dynamics matrix A

in (A.1) incorporates previous state feedback. We then implement the follow-

ing eigenstructure calculation:
X"1A - HSIX = & (A.5)

where A = T™1 AT is block diagonal, T is the real eigenvector matrix of A, and
A = T71BR™IBTT-T is symmetric and positive semi-definite. X is identical to A
except for a block of shifted poles. X is the transformation from open-loop
eigenvectors to closed-loop eigenvectors; it is defined as the "stage"
eigenvector matrix. & is the Riccati matrix in the open-loop diagoralized
coordinate system; S is chosen Lo shift a single poie or a pair of poles. The
corresponding gain matrices, K, de .ermined for each stage are subsequently

added to cbtain a final gain which achieves the same closed-loop pole loca-

tions.

To provide the required pole shift, the only non-zero elements of S correspond
to the entries of A which are to be shifted. With this ghoice of S, the char-
acteristic equation factors into the product cf terms for the unshifted poles

and a term for the desired shifted poles. Thu-,

ls1 - al = D(s) 1 (s - ap) (4.6)
iel
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where I is the index set for the unshifted poles, and D(s) contains explicit
elements of S, H, and the block of A which is to be shifted. Matching the
coefficients of powers of s in D(s) to the equivalent terms in the clcsed-loop
characteristic equation provides a set of equations in the required elements

of S. For the single pole shift Ajj = A to x, the only non-zero element of s

satisfies

3 .=
PRy
For double pole placement it can be shown that the three required elements of
lie on the intersection of two quadric surface in a mathematical space hav-
ing the three S elements as coordinates. (It can also shown that a direct
solution for Q has & similar geometric interpretation.) If the corresponding
submatrix of H is positive definite, the surfaces are a plane and a hyper-
boloid of one or two sheets; the inters2/ ..nn, if it exists, is always an el-
lipse. If the relevant submatrix of & is singular, the surfaces are planes,
and the intersection is a line. The different points comprising the solution

all provide the desired eigenvalu- placement, but with different eigenvectors.

In ref. 4 a solution for S is presented which takes advantage of the quadric
surface geometry tvo define a free parameter that allows deaign freedom in the
cholce of closed-loop eigenvectors., The solution for the stage eigenvector X
partitions into two sets of equations. The first is a homogeneous Lyapunov

equation for the submatrix corresponding to the shifted pole block in A. For

> rnle pair shift, the submatrix is 2x2. Hence, depending upon the nature of
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the closed-loop poles (real or complex), one or two elemeats of the submatrix
may be chosen arbitrarily; the remaining elements then depend =n the choice of
elements of S. The other equation {s a non-homogeneous Lyapuncov equation in
the remaining elements of the columns of X containing the 2x2 submatrix; its

solution depends upon the 2x2 submatrix, the elements of S and T. and certain

elements of H.

The closed-loop system eigenvector matrix is then Tg¢p, = TX. The sclution of X
depends upon §, which varies with the choice of the free parameter. There-
fore, by recursively shifting pole pairs, design freedom exists to select

closed-loop eigenvectors while providing required pole placements.

The procedure outlined above lends itself to a recursive procedure for prac.i-
cal multivariable regulator design. The steps in the procedure are as fol-

lows:

1. System (A.1) is placed in modal formf

2. The designer seiects the control weighting matrix R, Fhen H is calculated.

3. The designer selecta a real pole or pair of poles to be shifted and their
des.red location; - a pair, he also selects the frée parameter which

determines the cloused~loop eigenvectors.

4, The stage gain is calculated and the closed-loop system is placed in modal

form.
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5. Steps 3 and U are repeated for other poles until the designer is satis-

fied.

Z

6. The total system gain is obtained by adding the stage gains.

Clearly by duality, the same process can be applied to estimator design, per-

mitting the development of multivariable compensators.
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APPENDIX 2.

The ACOSS-1 flexible spacecraft model was developed by the Charles Stark
Draper Laboratory.l0 It is representative of many radar and optlcal control
problems, but is small enough to be tenable for research studies. The struc-
ture is a tetrahedral truss supported by three right-angl= bipcds. The truss
members are flexible in the axial direction only. The mocel has 12 modes; for

control design, only eight are assumed to be known.

CSOL SPACE STRUCTURE I
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ABSTRACT

Robustness properties are investigated for two types of controllers for
large flexible space structures, which use - collocated sensors amnd actuators.
The first type 18 an attitude controller which uses negative definite feedback
of measured attitude and rate, while the second type is a damping enhancement
controller which uses only velocity (rate) feedback. It is proved that collo-
cated attitude controllers preserve clogsed~loop global asywptotic stability
when linear actuator/sensor dynamics satisfying certain phase conditions are
present, or wonotonic increasing nonlinearities are present. For velocity
feedback controllers, the global asymptotic stability is proved under much
weaker conditions. In particular, they have 90° phase margin and can tolerate
nonlinearities belonging to the [0,») sector in the actuator/sensor character-
istics. The results significantly enhance the viability of both types of
collocated controllers, especially when the avagilable information about the
large space structure (LSS) parameters is inadequate or inaccurate.

INTRODUCTION

Large flexible space structures are infinite-dimensional systems with very
small inherent energy dissipation (damping). Because of practical limitationms,
only finite-dimensional controllers and point actuators and sensors must be
used for controlling large space structures (LSS). In addition, considerable
uncertainty exists in the knowledge of the parameters. For these reasons, the
design of a stable controller for a large space structure (LSS) 1s a
challenging problem.

A class of controllers, termed “collocated controllers” [1], represents an
attractive controller because of its guaranteed stability properties in the
presence of plant uncertainties. Collocated attitude (CA) controllers are
designed to control the rigid-body attitude as well as the structural wodes,
while collocated direct velocity feedback (CDVFB) controllers are designed only
for enhanceament of structural damping. Both types of collocated controllers
guarantee stability regardless of the number of wmodes in the LSS model and
uncertainties in the knowledge of the parameters {1}, [2]. A CA controller
basically consists of compatible sensor/actuator pairs placed st thc same
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locations, and utilizes negative definite feedback of position and velocity
(e.g:, LSS attitude and attitude rate). A CDVFB controller [3] is a special
case of the CA countroller where only rate feedback is used for damping
enhancesent without affecting the rigid-body modes. It has been proved in
references [1], [2], [3] that, the closed-loop system is always stable in the

sense of Lyapunov, and 1s also asymptotically stable (AS) under certain
additional counditions.

Although collocated controllers have attractive stability proper:ies with
perfect (i.e., linear, instantaneous) sensors and actuators, the seusurs and
actuators available in practice tend to have noniinearities and phase lags
associated with them. In order to be useful in practical applications, the
controller should be tolerant to nonlinearities (e.g., saturation, relays,
deadzones, etc.), and to phase shifts (e.g., actuator dyvamics and/or computa-
tional delays). Uncertainties usually exist in the knowledge of the nonlinear-
ities and the phase lags. For these reasons, this paper investigates tne
closed-loop stability of collocated controllers in the presence of unmodeled
sensor/actuator dynamics and nonlinearities. The situation is mathematically
described by including an operator ’( in the feedback path. The actual input
v’t) ‘s given by:

u(t) = Fuc(t) m

where u. is the ideal (desired) input, /€ is a nonanticipative, linear or
nonlinear, time-varying or invariant operator. FPor CA controllers, it 1is
proved that the closed-loop system is globally asymptotically stable if

1) k is linear, time-invariant (LTI) and stable with a rational transfer
matrix H(s) which satisfies certain frequency-domain conditions, or

2) If % consists of time-invariant, strictly wmonotonic increasing
nonlinearities belonging to the [0, *) sector. (A function #(0) 1isg said
to belong to the [k h) sector if $(0) = O and koZ < of(0) < ho? for all
o *0).

For CDVFB controllers, 1t is proved that global asymptotic stability is
preserved when

| ) k is a stable nonlinear dynamic operator and satisfies certain passivity
conditions, or

2) f(‘ is a stable LTI operator with phase within 190"
3) fe consists of aor .inear gains belonging to the [0,®) sector.

These analytical i _ults significantly ecnhance the stability and
robustness properties of collocated controllers, amd therefore increase their
practical applicability.
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PROBLEM FORMULATION

The linearized equations of motion of a large flexible space structure
(using torque actuators) are given by:

- . » T
Ax + Bx + Cx= ) T,u (2)
i=1 i1
where
T
X = (‘8' 98’ "8’ ql. qz' . e qnq) (3)
A= diag (18,. Inq x nq) (4)
B = diag (o3 x 3 D) (5)
C = diag (o3 <3 M (6)
Fy= 1y 430 8] (7)
T
u = (uxi’ L uzi) (8)
where ¢g, 6,, Vg denote the three rigid-body Euler angles, is the

number of structural modes, q; denotes the modal amplitude of ith structural
mode (1 = 1, 2, . . , ng), I; denotes the 3 x 3 moment of inertia watrix,
¢; is the 3 x mode-slope matrix at the ith (3-axis) actuator location.
It is assumed that m, 3-axis torque actuators are used. I, , ; denotes the ¢
x £ identity matrix, and diag( ) denotes a block-diagonal matrix. D i3 a
symmetric positive definite or semidefinite matrix which represents the
inherent structural damping. Since some damping, no matter how small, is
always present, we assume D > 0 throughout this peaper. A 1is am ngy X ng
diagonal matrix of squared structural frequencies

2 2 2
A = diag (wl, Wys o e s "'nq) 9)

Assuming that m, 3-axis attitude and rate sensors (e.g., star trackers and rate
gyros) are placed at the locations of the actuators, the wmeasured 3-axis
attitude Ygi and rate y,; at actuator location i (ignoring noise) are
given by: N

Yoy * l'ix (10)

Yoy * Pix (1)

denoting

T T T, T
us= [ul, Ups o o s u-] (12)
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rTo T T T

la 2: e * rn] (13)
T T T,T
ya [yali yazr A yan] (14)

T T T, T
yr [yrl) yrzl A Yrﬂ] (15)

where u, y;, yr are 3m x ] vectors, and I is a 3m x (n, + 3) matrix. The
control law for the collocated attitude controller is given by:

u, = u‘? +u, (16)
uCp = -pra (17)
Uep = —Gryt (18)

where u. represents the command input, u., and u., represent command
attitude and rate inputs, and Gp, Gy are 3m x Jm feedback gain matrices.

For CDVFB controllers, the rigid—-body rates are removed from the feedback
signal by subtracting attitude rates at two locations. Consequently, the model
used for damping enhancement has the form:

a+Da+Aq~$Tu (19)

where ¢ consists of appropriate differences between the mode-slopes. The
control law is given by:

u. = Gy, (20)

where

Y, = q (21)

The control laws given above for CA and CDVFB controllers have very
attractive robustness properties. It was showm in [1], [2] that, if D > O,
Gp = Gp'r > 0, and Gy = GtT > 0, then the closed-system is
asymptotically stable (AS)- The stability result holds regardless of the
number of modes in the model, and regardless of inaccuracy in the knowledge of
the parameters. In real life, however, nonlinearicies and phase lags exist in
the sensors and actuators, which invalidate these robust stability properties.
The real problem then is to investigate the closed-loop stability for the case
where the actual input is given by Eq. (1), where is a nomnarticipative,
linear or ronlinear, time-varying or invarisnt operator. The situation is
shown in Figure 1. Our approach is to make use of input~output stability
concepts and Lyapunov methods. We assume throughout the paper that the problem
is well-posed, and that a unique solution exists. We start by defining the
terminology and the concepts, which are adopted from [4].
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MATHEMATICAL PRELIMINARIES

Consider the linear vector space an of

real square-integrable
n-vector functions of time t, derined as:

12 - fg: w, g"lj: gT(t)g(t)de < =} (22)

where R is the linear space of ordered n-tuples of real numbers, and R,
denotes the interval 0 { t {( . The scalar product is defined as

* T
<g;» 8> = [ g (t)g,(t)de (23)
For gean, its norm is defined as

gl = <g,g>1/2 (24)

Define the truncation operator Py such that

A g(e) 0<t<T
g.(t) = P g(t) = (25)
T L 0 t> T

Define the extended space LneZ:

L2 = {g: (R, + & | g c12 Y13 0] (26)

Thus Lpe? is a linear vector space of functions of t whose truncations are
square-integrable on [0,T) for all T < =, Por g, 8 € Lnez’ define
the trunca%ed inner product

T 1
<8), 807 = &) & = [ B (£)8,(t)dt (27)

0 1/2
The truncated norm is defined by: Iglyp = <g,g>.r .

Consider an operator 16 :Lnez-'bl.nez. ;( is said to be strictly
passive if there exist finite constants B and § > O such that

<ﬂ(s.s>.r38+6lsl§ Vr?_o,’v‘geLn: ©(28)

;{ is passive if § = 0 in (28).
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ROBUSTNESS OF COLLOCATED ATTITUDE CONTROLLERS

Stability With Dynamic Operator in the Loop

We consider the case where the operator }e is linear and time-invariant
(LT1), and has a finite-dimensional state~space representation. We denote ﬂg

by Kz, 8) where z, is the initial state vector of # , and assume m = ]
for simplicity (i.e., one 3-axis actuator).

Theorem 1. Suppose % is a non-anticipative, strictly sgable, completely
observable, LTI operator whose transfer matrix is H(s) = cI+H(s), where € > 0
and H(s) is a proper, minimum-phase, rational matrix. Under these conditions,

the closed-loop system given by Eqs. (1), (2), (10), (11), (16)~(18) is
asymptotically stable (AS) if

~ -~
H(jw) (wcr - jcp) + (wcr+ jcp) H*(jw) > 0 for all real w. (29)
where * denotes the conjugate transpose.

Proof - Define the function

V(E) = xTCx + x'A x (30)

Since C > 0, A> 0, V(t) > 0 for all t > 0. Differentiating V with respect to
t, and using (1), (10), (11), (16)-(18),

V=—2xB; liC[z,ul (31)

where j( also depends on its initial state z,. Since ’( is linear,
Hiz; u) =0+ Hio; u] (32)

where hy(t) is the unforced response of k due to nonzero initial state.
Since f€ is strictly stable, 'hl, is finite for any finite z,.

Substituting (32) in (31) and integrating from 0 to T, since V(T) > O,

-1

0 < V(1) = v(0) - 2<x, BO, - 2 (ucr, . ho>‘1‘

R
- Kug, 6 Hudr (33)

where

K00, = 105 (6, + 66 uy) (36)
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In (34), "s” denotes the derivative Opetaior. (5” is technicaliy noncausal;
however, this difiiculty can be overcome QJy defining the derivative of & trun-

cation at T to be equal to that of the untruncated function.) Using Parseval's
theorem,

- 1 * -1 ‘
<u s G pucp>,r- — I_., "ch (Jw) 6 " H(jw) [cp + Jug ) UcpT(ju.)dw

o G
-5 | ug G el uge 52

—00 ch

+ Gr] Ucr,r(j w)dw

- —2——‘ Iw v Gy 62 Bjw) (¢ % +6G)
n — ch r r

jw

cp . _1
+ ( + Gr) H (Juw) 6, ] U, (Juw)dw
T

_jw

The matrix in the brackets is positive (from Eq. 29), and we have

-1 2
er* p ;(pucp>'l'->- € tu 17 (35)

which yields (from (33)

-1

1} 3 2
0 £ V(o) -2 <q, Dq>T 2 € 'ucr.'r 2 <ucr’ Gr ho>T (36)

wherein we have used the fact that §T

Bx = a Da. Therefore,
2

).m(D) IqIT

2 -1
+ elucrng v(o)/2 + '“cr"rlcr lslhol (37)

where 1 [Ig denotes the spectral norm of a matrix, and A, denotes the
smallest eigenvalue. Eq. (37) can be written as

.2 2 |2 2
Am(D) lql.r + (cl'ucr"l‘ - -2—‘:-1— ) £ v(o)/2 + c2/l-.cl (38)

where ¢} = V€ and ¢y = Thyl Therefore, 11&@’1 (¢) = 0, and é‘-{a‘? Uor
(¢) = 0. penocting the rigid~body attitude a = (¢g, bs, ¥5)T, this
implies that lim a (t) = 0. Taking the limit of the closed-loop equafion as

t
Cro,

- (39)
A; OT K u.
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zhere the overhead bar denotes the limit as t+*>. From (39), ﬂ“cp = 0 and
q = 0, which yields a = (. Since 4&:'18 observable and its output tends to

zero, its state vector tends to zero as t*o, and the 'system is asymptotically
stable.

The following corollary essentially states that, for di~zonal G, Gp»
and H, it is sufficient that the phase lag of ﬁ(jw) is less than the phase lead
introduced by the controller.

Corollary 1.1. Suppose Gp, Gy and H are diagonal and satisfy the
assumptions of Theorem 1|. Then the closed-loop system 1is globally
asymptotically stable if
-1 O o Y
-tan  ——— < Arg {H;(jw)} < 180° -tan™ — for all real w (40)
pi pi

where Arg( ) denotes the phase angle of a complex variable.

For the case where Hj; (8) = kj/(s + ay), with ki, a; > 0,
condition (40) becomes

Gri

e 2 l/a, (41)
pi

Thus, for the case of first-order sensor/actuator dynamics, the system is
asymptotically stable 1if the ratio of rate~to-proportional gain is at least
equal to the magnitude of the actuator pole.

In Theorem 1 and Corollary !.1, the transfer function of,ﬂf was assumed to
be of the form: H(s) = €I + H(s), where € > 0. That is, a direct transmission
term, no matter how small, was present. From Theorem 1, the closed-loop system
is AS for any € > 0. Therefore, the closed-loop eigenvalues are all in the
open left half-plane (OLHP). Beecancz oI continuity, 1. is obvious that, when
€ = 0, the eigenvalves will not cross the imaginary axis. That 1is, the eigen-
values =iii be in the closed left half-plane (CLHP). Theorem 2 given below
considers the case when ¢ = 0, It essentjally shows that, if the closed-loop
system with no elastic modes is AS with in the loop, then so is éhe system
with elastic modes, provided that (29) is satisfied with H replacing H.

Theorem 2, Suppose /€ is a non-anticipative, strictly stable, completely
observable, LTI operator with rational transfer matrix H(s) which is proper and
minimum-phase. If the closed-loop system for the rizid body model alone (i.e.,

Eqs. ‘1), (2), (1¢), (11), (16)-(18) with mg = 0) 1s AS, then the entire
clos. loop system (i.e., with ng # 0) is AS provided that

H(jw) (wcr - jcp) + (wcr + ij) H* (Jw) > 0 for all real w (42)

Proof. Considering the rigid-body equationms,

Is; - ;(“c - %(“a + uq) (43)
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where g = =-Ga - Gr& and Y = -Gp0q—cr0i. Thus the. transfer
function from q to d is given by

M(s) = [I + H(s) {cp + cr-}l"l H(s) {cp + Gr‘} ®

Since the closed-loop rigid-body system is strictly stable by assumption, M(s)
iz strictly stable and finite-gain, which implies

lal, < vigl + th b, (44)

where Y is the gain of M and h, is its free response. Proceeding as in the
proof of Theorem 1, we can arrive at Eq. (37) wherein ¢ = 0 and n, 1is
replaced by h,. Since u,, = <G (a + #q), we have from (44),

fueely £ glaly + cfb ly (43)

vhere c) and c¢; are positive constants. Completing squares as in (38) and
noting that thy! is finite, it can be proved that 1qly 1s bounded for all
T > 0, and that lim g(t)=0. From (45), u,, also tends to zero as t+=, The
remainder of the proof is similar to that of Theorem 1. '

Corollary 2.2 With the same assumptions as in Theorem 2, if Gp, G, and B
are diagonal, then the closed-loop system is AS 1f (40) is satisfied with H
replacing H.

From Corollary 2.2, for the case where Hyj(s) = ki/(s + a;) with
ki, 8 > 0, the closed-loop asymptotic stability is assured if Gpt £
846Gy for 1 =1, 2, . ., n,

The significance of the results of this section is that the stability can
be assured by making the ratio of the rate-to-proportional gains sufficiently
large. One has to know only the sensor/actuator characteristics, and the
knowledge of the plant parameters is not required. This result is eoqictcly
consistent with the result obtained in [5 or single-impyt, single-output
systems, for emall Gp and G, using a root-locus argument.

The next section considers the case where nonlinearities are present in
the loop. :

Stability in the Presence of Nonlinearities

Suppose Eq. (1) is replaced by
u= ¥u c) (46)

where V is an wm-vector, one-to-oune, time-invariant function, y: RE+ER o
foilows:
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wo) = lwl(cl). ¢é(02). o oy wm(om)] (47)

For this case, the stability of the closed-loop system can be investigated
using Lyapunov methods. A function #(v): RI+Rl 18 said to belong to the
(0, ») sector if H(0) = O and vH(Vv) > O for v # 0. @ is said to belong to the
(0, =) sector if #(0) = O and v#(Vv) > O for v # 0. [Fig. 2] Many nonlineari-
ties encountered in practice, such as saturation, relay, dead-zones, belong to
the [0, =) sector. As in the previous section, we assume that the problem is
well-posed, and that a unique solution exists, and we consider the case with
one 3-axis actuator for simplicity.

Theorem 3. Consider the closed-loop system given by Eqs. (2), (10), (11),
(16)-(18), and (46), where G, and Gy are positive definite and diagonal,
and each ¥; is in the (0, =) sector and is strictly monotonic increasing for

i=1,2, ¢« ¢« ¢« , m. Then the closed-loop system is globally asymptotically
stable. )

Proof. Define

. T .T,* 2 -1 Vept
V(x, xX) = x Cx + X AX + 2 ) Gpi / P wi(v)dv (48)
o

i=]

where G,j and wu.,; denote the iith and ith elements of G and
ucp» respectively. This form 1is the well—k¥oqp "Lure'-type" anpunov
function {6). From Eqs. (4) and (6), xTcx + xIAx = O only when & = O,
q=q= 0. That is, this quantity can be zero when a # 0, However, when q =
0, Uep, = Gpi@, which 1is nonzero whem a # 0. Thus the third term on the
right haand sgde of (48) is positive (since y4; is8 in the (0, =) sector) for a
# 0. Therefore, V is positive definite. From (48), wusing (2), (46),
(16)-(18),

3
. I -1 -1 *
Ve -2xBx -2 ] u GobiCe o ug ) = Gpb (e du (49)
i=]
. -1
Since ucp1 GpiG {Yeri® “© have from (49):
. oT o 3 -l
V= -2xBx - Zﬁl“cri‘;u [byCuopy + ugpy) = ¥ylugyy)] (50)
Since Y4 is strictly monotonic increasing,
3 [ T .
V< -2q9°Dq (51)

V=0 only when 0 and uep; = 0, which implies & = 0. Considering the
closed-loop equation,

0 I

Aq - of W(ucp) (52)
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whicn yields y; (ucps) = 0 and q = 0. Since y;(v) = 0 only at v = 0,
this implies that @« = 0., Thus V = 0 only at the origin, and the system is
globally asymptotically stable.

Thus the collocated controller is guaranteed to be globally asymptotically
stable in the presence of wmonotonic increasing nonlinearities. This » - .-
of the nonlinearities is also called "incremental passivity.” As se’ n ti
previous section, if the nonlinearities are replaced by dynamic operat 3, mere
incremental passivity is not sufficient for stability.

ROBUSTNESS OF VELOCITY FEEDBACK CONTROLLERS

Stability with Dynamic Operator in the Loop

Consider the case where a nonlinear dynamic operator JQf(zo; v) is

present in the loop. Suppose is represented by the following state-space
model:
z= f(z, v, t), 20) = z_ (53)
w(t) = p(z, t) (54)

where v and w are 3m x ]l vectors which are the input and the output of,ﬁz'.
Define the operator

3;( (z; 8) = ff(zo; g) - ff(zo; 0) (55)

We define ,i%? to be internally stable if | ;‘2: (zo; 0)V is finite for any
finite z,.

Theorem 4. , Consider the system given by Eqs. (1), (19), (20) (21), where the
ogerator Jﬂf has the state-space representation given by ..3), (54). Suppose
d}%@ is pasgive and $¢ 1is uniformly observable, finite-gafn, internally
stable, continous operator. Then the closed-loop system is globally
asymptotically stable.

Proof. Defining

V(t) = q'Aq + q°4 (56)

v(t) > 0 for all t > 0. Differentiating V(t) with respect to t and using Eqs.

V= -ZaTDa - 20T 7t ;ﬂszo; u.) (57)

cr r

Integrating from 0 to T , eince V > O,
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. . -1
0 < V(D) = V(0) - Kq, D>y ~ Ku_, 6 z; u M. (58)
which yields (after manipulation)

° 2 . ~
2 2,(D) NqUp < V(0) - B + 21q1_ 191 1 /{(zo; o)t (59)

where B is a constant (see Eq. 28).

By using a procedure similar to that in the proof of Theorem 1, it can be

proved that Ial is bounded, and that the system is globally asymptotically
stable.

The following corollary is an immediate consequence of Theorem 3.

Corollary 4.1, If 34’13 a strictly stable, completely observable, LTI operator
with rational, mimimum-phase. transfer matrix H(s), the closed-loop system of
Eqs. (1), (19), (20), (21) is asymptotically stable provided that

*
H(jw)Gr + GrH (jw) > 0 for all real w (60)

Note that the above condition is equivalent to passivity of Gr‘IJQf .

Corollary 4.2. Under the assumptions as in Corollary 1.1, 1if G, and
are diagonal, the closed-loop system of Egs. (1), (19), (20), (21) is
asymptotically stable if

Re[Hi(jw)] > 0 for all real w

As a result of Corollary 4.2, CDVFB controllers can tolerate stable
first-order dynamics in the loop. 1If Hy(s) = e‘Jn;; we have
Re[Hi(jw)] > O for -90° < By < 90°; tnerefore, CDVFL controllers have 90°
phase margin.

Stability in the Presence of Nonlinearities

Suppose the operator f( in (1) 1is replaced by an w-vector nonlinear
function ¥ as in Eq. (47), except that ¥ is allowed to be time-varying. The
following theorem gives sufricient conditions for global asymptotic stability.

Theorem 5. Consider the closed-loop system given by Eqs. (i), (19), (20),
(21), where G, is diagonal and positive definite, and each y; belongs to
the [0, =) sector. Then the closed-loop system 1is globally asymptotically
stable.
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Proof. Starting with V as in Eq. (56),

2 L ] L ] 3‘ -
V= —ZqTDq - 21): ct;ucrivi("cri’ tJ (62)
=]

®
Thus V < 0, and Vo only if ('1 £ 0, which can happen (from the equations of
motion) only when q = 0. Therefore, the system is globally asymptotically
stable.

The next theorem considers a special case when nonlinearities and
first-order dynamics are simultaneously present in the loop, as shown in Fig.
3.

Theorem 6. Consider the closed-loop system ,given by Eqs. (1), (19), (20),
(21), where Gy > 0 is diagonal. Suppose fé- diag ( 1> ;Cz, « oo .
.., m), where

K= v (o (63)

where each y3: RI+Rl is a time-invariant, dJifferentiable function
belonging to the [0, =) sector, and there exists_a constant K < = guchk that
'\Pil < K over the interval (-«, =), Suppose { is an LTI operator whose
transfer function is: Gy(s) = aj(1 + pis)‘l, ag > 0, pj > 0 for 1 =
1, 2, « . ,m. Then the system is globally asymptotically stable.

Proof. Starting with V as in Eq. (56) and proceeding as in the proof of
Theorem 4, we have

3m
. . =1
0 < ¥(0) - 2<3, DP - 2121 6ot <u s ¥l G0 u )+ 8, by (64)

wherc 9,4 is the unforced response of ?1 due to nonzero initial state.
Using wean value theorem, Eq. (64) can be written as:

. . 3||l g
0 < V(0) - Kq, Do>y - 2121 oggr Yyl F1O05 u )Py
1" .
<o Vi(WE 2y (63)

where U lies in the interval bounded by .71(0; Ueps) and '?1(0; Uepy)
+ 8oi+ Noting that the operator ¥y { ?1(0; ucric) is passive [4), and
simplifying, we have

2 - .
A, (D)1l < V(0)/2 + 101 Kiql, ig | (65)
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where

3m
] I = ©
g, 121 tg 1 < (66)

The remainder of the proof is similar to that of Theorem 4.
CONCLUDING REMARKS

Robustness properties were investigated for tw. types of controllers for
large space structures, which use collocated sensors and actuators. The first
type is the collocated attitude (CA) controller, which controls the rigid-body
attitude and the elastic motion using negative definite feedback of measured-
attitude and rate. The second type of controller is t}: collocated direct
velocity feedback (CDVFB) controller for dsmping enhancement. Such controllers
are known to provide closed-loop asymptotic stability regardless of the number
of modes and parameter values, provided that the actuators and sensors are
perfect. This robust stability property was extended further in this paper by
proving that the global asymptotic stability 1s preserved even when seansors/
actuators are not perfect. The CA controller preserves global asymptotic
stablity when the sensors/actuators are represented by (1) lioear, time-
invariant dynamics which satisfy certain simple phase conditions, or (11)
time-invariant, monotonic increasisg nonlinearities belonging to the (0, =)
rector. The CDVFB controller preserves global asymptotic stability under much
weaker conditions. In particuiar, CIVFB controllers have 90° phase margin and
are tolerant to time-varying nonlinearities in the [0, =) sector. These giobal
asymptotic stability results are valid regardless of the number of wodes in tiwe
model and regardless of pesrameter values. Therefore, it can be concluded that
these controllers offer viable methods for robust artitude control or damping
enhancement, especially when the parameters are not accurately known. An
important application of the collocated atiitude controller would bhe during
deploymwent or assembly of a large space structure, when the dynamic character-
istics are changing, and during initial operating phase, when the dynamic
characteristics are not known accurately. A robust collocated controller can
provide stable interim control which can perhaps be replaced later by
high-periormance controller designed using parameters estimated on orbit.
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Figure 2.~ Nonlinearity belomging to the [0,00) sector
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Figure 3.~ Linear dynam.-~s and nonlinearities simultaneously in the loops
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ABSTRACT

Important progress in research and application of Adaptive Control
Systems has been achieved in the last ten years. The techniques which
are currently used in applications will be reviewed. Theoretical aspects
currently under investigation and which are related to the application of
adaptive control techniques in various fields will be briefly discussed.
Applications in various areas will be briefly reviewed. The use of adaptive

techniques for vibrations monitoring and active vibration comntrol will
be em;hasized.

I. INTRODUCTION

The use of adaptive control techniques is motivated by the need of
automatically adjusting the parameters of the conmtroller when plant para-
meters and disturbances are unknown or change with time, in order to achieve
(or to maintain) a certain index of performance for the controlled systea.
While cais problem can be reformulated as a nonlinear stochastic control
problem (the unknown parameters are considered as auxiliary states) the
resulting solutions are extremely complicated. Therefore, in order to obtain
something useful, it is necessary to make  approximations. Adaptive control
techniques can be viewed as aporoximations for nonlinear stochastic control
problems. Model Reference Adaptive Controllers (MRAC) and Self-Tuning
Regulators (STR) can be considered as two approximations among other possible
approximatfons. These two approaches to adaptive concroli problems have
been € :t:nsively studied and they are well understood. These approaches
have be.n proven to be usable in practice and aa important number of success-
ful .pplications have been reported. However, some important theoretical
[ ‘blems still need further investigation and more experience utilizing
these techniques in practice should be gained.

As mentioned earlier the MRAC and STR approaches can be considered
as possible approximations for the solutions of some nonlinear stochastic
control pronblems. However, when making approximations, some hypothesis
should Ye considered which can justify these approximations. The basic
hypcthesis for MBAC and STR is of an algebraic nature: for any possible
vaiues of the plant (and disturbance) paramcters, there exists a linear

_ontroller with a fixed complexity such that the plant plus the controller
has the pre-specified characteristics. The adaptive control loop
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will only search for the values of the tuned parameters of a controller
whose structure has been fixed using a standard control design technique.

The MRAC and STR techniques have been initially developed independently.
Subsequently, connections between these two techniques have been investigated
and emphasized. See Egardt (1980), Landau (1981), Landau (1982), Astrom
(1983). For certain classes of problems these two approaches are equivalent.
It is important to note that the development of these two adaptive control
tecaniques is largely based on the deep understanding of certain types of
linear algebraic control design techniques and of an appropriate interpre-
tation of the controller design strategy.

A brief review of the underlying concepts and configurations used for
MRAC and STR is given in Section II. The linear tracking and regulation
problem is reviewed in Section III and this allows the definition of the
structure of the controller. The structures of various adaptive control
schemes are presented in Section IV, The parameter adaptation algorithms
are discussed in Section V. Applications.are listed in Section VI. Current
research trends are indicated in Section VII.

II. MODEL REFERENCE ADAPTIVE CONTROLLERS AND SELF-TUNING REGULATORS
- BASIC PRINCIPLES.

Figure 2.1 illustrates the basic philosophy for designing a linear
controller. The desired performance is specified in terms of the character-
istics of a dynamic system which is a "realization" of the desired inmput-
output behavior of the closed loop control system. The controller is
designed such that the closed loop control system is characterized by the
same parameters as those of the "desired" dynamic system.

Since desired performance corresponds in fact to the output of the
"desired" dynamic system which is pre-specified, the design problem can
be recast as in Fig. 2.2. The objective is now to design a controller
such that the error between the output of the plant and the output of the
reference model (the dynamic system which has the desired characteristics)
is identically null for identical initial conditions and such that an
eventual initial error will vanish with a certain dynamics.

These two interpretations of the linear control design in the case
of a plant with unknown or varying parameters lead to two adaptive control
schemes, shown in Figs. 2.3 and 2.4. Figure 2.3 is aa extension of the
scheme given in Fig. 2.2 and is called (explicit) MRAC. The difference
between the output of the plant and the output of the reference model is
a measure of the difference between the real performance and the desired
one. This information is used through an "adaptation:mechanism" (parameter
adaptation algorithm) to directly adjust the parameters of the controller.
This is a "direct" adaptive control scheme.

Figure 2.3 is an extension of the scheme considered in Fig. 2.1 in
the sense that a suitable controller can be designed if a plant model
is estimated on-line based on the current input-output data available.
This scheme 18 called STR and it is inspired by the separation theorem
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A. Minimum Phase Plants

Consider the S.I.S.0. discrete linear time invariant plant described
by:

a) deterministic environment:
-1 -1
A(q )y(k+D) = B(q Ju(k), d > 0, y(0) # 0 (3.1)
b) stochastlc environment:

A HyGer) = Bl Hu) + c(q M ulked) (3.2)

where:

A(q_l) =1+ alq-l + ...+ anq'“

B(ql) = bbgt + ... +bq b, #0 (3.3)

C(q-l)- =1+ clq-1 + ...+ cnq-n

Cela™h) y(ktD) = 0 (3.4)
where:

R -1

-1
CR(q ) =1+ .9

R -n
+ [ +qu (305)

is an asymptotically stable polynomial.

In order to design the controller, we will consider two strategies,
one using an explicit reference model as part of the control system and
the other using a l-step ahead predictor of the plant output which together
with the controller will form an implicit reference model.
Strategy 1: Explicit Reference Model

One considers an explicit reference model given by:
cptah) M) = i ™h oo (3.6)

where yM(k) is the output of the explicit reference model. The design
objective is:

Ca™) e(eH) =0 k20 (3.7)
where

e(k) = y(k) = yi(k) (3.8)
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is the plant model error. It is obvious that Eq. (3.7) includes the
regulation objective specified by Eq. (3.4) (for um(k) = 0, e(k) = y(k)).
Equation (3.1) with d = 1 can be rewritten as:

Cela™h) yUerD) = 16, (DA HIykt) + Bla Hu)

= R(q-l)y(k) + bou(k) + B*(q-l)u(k) (3.9)
where
n
-1 -1 -1 R -1+1 -1 -n+l
R(q ") = CR(q ) —A(q ) = 121 (ci—ai)q = r1+r2q -eeT q (3.10)
* -1 -1
B(q7) =B(q")-b (3.11)

and Eq. (3.7) becomes:
C. (@ (k1) = R(QT 1) y(k) + b u(k) + B (¢ Duck) - C.(q Yy (k+l) = 0 (3.12)
r(d q )y o q Crla yy .

which yields the desired control

Cta ™y ae) - R Hyw - 8°(¢H W
u(k) = (3.13)

b
o

Introducing the notation:

¢§(k) = [u(k-1) ... u(k-m), y(k) ... y(k-n+1)] (3.14)
T
60 = [b1 ces bm » Ty e rn] (3.15)

Equation (3.15) can be written:

Ca(a Dy ™aer) - ogeo ()

u(k) = bo (3.16)

or in an equivalent form:

cpla Hytaen) = e%ew) (3.17)
where:
T T (3.18)
2007 = [u(k), o3k
or = b, eg] (3.19)

The resulting control scheme is given in Fig. 3.1.
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Strategy 2: Implicit Reference Model.
This strategy is directly inspired by the separation theorem: one

first designs an appropriate predictor for the plant output, and then a

control will be computed such that the output of the predictor behaves as
the desired output in tracking.

First step: (predictor design). The predictor will be designed such that
the l-step ahead prediction error €{k+l) is defined by:

e(k+l) = y(k+l) - y(k+l) (3.20)

where §(k+1) is the predictor output and will vanish according to:
Ce(@™) Ektl) = 0 k> 0 (3.21)

Using Eq. (3.9), one obtains from Eq. (3.21) that the l-step ahead predictor
is characterized by:

Ca@™HF(eH) = bu(k) + R DY) + b (¢ Duk) = 67 9(k) (3.22)

where R(q-l), B*(q_l), 8, ¢(k) are given by Eqs. (3.10), (3.11), (3.18),
and (3.19) respectively.

Second step: (computation of the control). The control is computed such
that y(k+l) = yu(k+1); where yM(k+1) is the desired output given by Eq. (3.6).
One finally obtains:

Ce(a HIFCr)) = (a7 HyMaer) = 0o (k) (3.23)

and the control is given by Eq. (3.17) as expected.

Because of the output of the predictor is equal to the output of the
explicit reference model, the predictor plus the control will form an
"implicit reference model."

B. Tracking and Regulation in Stochastic Eavironment
We will examine first the behavior of the controller designed in the

previous section when the plant is subject to a stochastic disturbence of
the type considered in Eq. (3.2). For d = 1 Eq. (3.2) -becomes:

A y0e1) = B@H w0 + c@h) wkeD) (3.24)
Using the control given in Eq. (3.13) one obtains:

ce(a™h) yat) = g @™ et + e W) (3.25)
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Neglecting the effect of the deterministic disturbance (which vanishes
with the dynamics defined by CR(q 1)) one can re-write Eq. (3.25) as:

y(k+l) = y“(kﬂ) + —-(9—)— w(k+1)

c (q )
D) M e h
- (k) + Sd—tm u (k) (3.26)
Cr(a ™) Cpla )
Equation (3.26) shows the ptesence of two referznce models: a
deterministic one for tracking by E 2 whose input is the reference
c (q 1

signal u (k) and a stochastic one for regulation defined by —SS—-l—-whose

C(q)
input is the white noise sequence w(k+l).

In general the objective of the design in a stochastic environment is
to obtain a minimum variance tracking and regulation, i.e.:

E {[y(k+l) - yu(k-l-l)]z} = min (3.27)

From Eq. (3.26) it results straightforwardly that the objective of
Eq. (3.27) is achieved if one chooses:

C @) = c(a 1) (3.28)

which leads to:

E {[y(ktl) - y,(k+1)]?} = Blo® (D)} = o (3.29)

For the case d > 1, the control can no longer be computed directly
using the strategies given above since this will lead to a non-causal
controller (future values of the output and input are involved for the
computation of the control at the instant k). This problem can be avoided
by using a polynomial identify which allows us always to express the output
y(k+d) in terms only of y(k); y(k-1)... and u(k), u(k~-1) ...

Consider the following polynomial identity:
- - - -d_, -1
cta™) = a@™) s + ¢7%R@™ (3.30)

which has a unique solu’ ‘on for the polynomials s(q ) and R(q~ ) for
deg S(q~ 1) = d-1 where

108



s =1+sqt .5 T B (3.31)

-1 - -
R(q ) = r1+r2q 1 «ee T 9 utl (3.32)

Using the identity of Eq. (3.30) in Eq. (3.9) for d > 1 one obtains:

Cp(@ Dy (ki) = R@ DY) + bu) + Bg(a Huw) (3.33)
where

By(a D) = BaHs@ ™ - b, (3.34)
Equation (3.7) for d > 1 becomes:

Cpla Dekrd) = R@ Iy () + b uk) + B(a™) uw(i)

- Ca(a7h) yy (k) = 0 (3.35)

which yields the desired control

Cafa D) yHkrd) - R(EHy® - Bga )

b
o]

Cla™) y(erd) - oF ¢_(0)
- 5 (3.36)
[+]

u(k) =

The control has ihe same strgcture as for the case d = 1 except that the
polynomials R(q"") and B (q”) are different, as well as 6, and ¢5(k):

Note that the strategy presented above achieves a poles-
zeros placement.

C. Non-minimum Phase Plants

In this case one can no longer assaun. that B(z 1) is asymptotically
stable and therefore the zeros of the plant transfer function can no
longer be cancelled. The basic control strategy (algebraic approach) is
the poles placement techuique without zeros cancelling. The basic relation
for the design of the controller is the Bezout identity:

- - - - -1 -
a@H s@H + a7 B@™H R =g (@7
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and the controller has the structure:
-1 1 -1, -
ST ull) = % C@™h) y k) - RG@H y(K)

1 if B(1) = 0
B.
B(1l) elsewhere

For a survey of the control strateg.:s for non-minimum phase plants, see
Landau, M'Saad, Ortega (1°"°3).

IV. STRUCTURES OF ADAPTIVE CONTROL SYSTEMS

In adaptive control schemes the fixed controller designed for the case
of knowu parameters is replaced by an adjustable controller having the same
*ructure, i.e., the fixed parameter vector will be replaced by an adjustable
parameter vector which for the case of the design considered for minimum
phase plants is given by:

AT & .. aT
6700 = (B (%), 8;(0)] 4.1)

and the correspondiag control law will be given (either in deterministic or
stochastic environment) by:

-1 . M T
C.(a Hy (k1) = 8-(K)¢_(K)
6(k) = = . 0 © (4.2)
b, (k)

or:

T 400 = ca™H Yiter) 4.3)
See Fig. 4.la.

Note that in the case of schemes using an implicit (prediction)

reference model (STR) the plant predictor will be replaced by an adaptive
predictor gcverned by:

Cy(a™) F(ktl) = 67 (k) $(K) (4.4)
and the control will be computed according to the strategy in the linear
case with known parameters which will lead to Eq. (4.2). See Fig. 4.1b.
V. PARAMETER ADAPTATION ALGORITHMS

Various approaches have been considered for the development of parameter

adaptation algorithms (PAA). A fairly general structure for the PAA is
given by:

8 (k+l) = 8(k) + F, (k) v(k+) (5.1)
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O
AV

v(ktl) = k;I (5.2)
1+ 47 B 08k)

Fol o= a (k) Fob 4+ A (k) 600) ¢(i0T (5.3)

k+1 1 k 2 ) ¢

0<A1(k)11;oi)\2(k)<2;i‘0>0 (5.4)

Using the matrix inversion lemma:

) ARICRICEE N
T3 @ i xl(k) ] (5.5)
T * 40T F 400

F

where 8: k) is the adjustable parameter vector, F(k) is the matrix adaptation
gain, ¢(k) is the measurement or the observation vector and v?(k+l) ard
v(k+l) are the "a priori" and the "a posteriori" adaptation errors respect-
tively. The "a priori" adaptation error is a measurable quantity which
depends on 6(i) up to the instant k, and the "a posteriori" adaptation error
which enters in the adaptation algorithm is not ditectly neasurable (it
depends on 8(k+l)) but can be expressed in terms of the "a priori" adaptation
error as indicated in eq. (5.2).

Different choices for Aj(k) and 12(k) are possible leading to different
types of variations of the adaptation gains. The performances of the
adaptive control systems in various situations depend upon the choices of
these two parameters. For details see Landau, Lozano (1981) and Landau (1983).

VI. APPLICATIONS

There are already a significant number of applications of adaptive
control systems as well as a few commercial products. For references, see
Astrom (1983), Landau (1981), Landau, Tomizuka, Auslander (1983), Narendra,
Mcnopoly (1980), Unbehauen (1980).

The adaptive control schemes can be used in three modes of operation:

1) Auto-tuning of a linear controller in the case of plants with unknown
but constant parameters.

2) Building a gain schedule for unknown plants with dynamics depending
on operating points.

3) Adapting in real-time the controller for plants with unknown and time-
varying parameters.
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An important remark to be made is that adaptive control algorithms
cannot be used in p actice without a priori analysis of the control problem
corresponding to each tentative application. This analysis should give
answers to two categories of questions regarding (a) the need of adaptive
control and (b) specific design requirements.

The main areas of applications are:

- Grinding

- Drying furnaces

- Cement mills

- Chemical reactors

- Distillatinn columns

- Diesel and explosion engines
- Heating and ventilation
- Paper machines

- Power systems

- Electrical drives

- Autopilots for ships

- Rebotics

- Heat exchangers

- pH-control

- Active vibration control

An adaptive active vibrations control is described in Mote, Rahimi
(1983). 1t uses tirst a recursive parameter estimation technique for
estimating in real-time the parametric model of the composite vibration
signal for circular plates (the vibrations frequencies). Then the parameters
of the transfer from control heat to vibration frequency are estimated on-
line and used for computing in real time the controller parameters.

VII. THEORY

The most complete theory is available today for the adaptive control
of wminimum phase plants achieving a poles-zeros placement. For this type
of plant, tracking and regulation with independent objectives can be
achieved both in deterministic and stochastic enviromments. Both MRAC
and STR approaches lead in this case to "direct" adaptive control schemes.

The basic assumptions for the design of adaptive control systems for
minimum-phase plants in deterministic and stochastic euvironments are
summarized next.

- Exact knowledge ofi the plant delay (d).

- Knowledge of an upper bound for the degree of A(q ) which is the
denominator of the plant transfer functiom.

- The zeros of the plant transfer function must lie within the unit circle.

- A lower bornd of the magnitude of the leading coefficient of the plant
transfer function should be known.

- The sign of the leading coefficient of the rumerator plant transfer
function is useful to be known (in order to avoid large adaptation
transients).

- The stochastic disturbances are modeled by ARMA processes.

- Asymptotic type convergence 1is considered.
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However, it practice some of these assumptions cannot be reasonably
satisfied, in particular, the need for knowing an upp:r bound for the
denominator degree (which in many cases simply does nc*t exist) and the
requirement that the disturbance is of ARMA type.

The use of reduced order models in adaptive control design is ore of
the main research topics today, and interesting results have been obtaine.

leading to improved design techniques. See Ioannou (1983), Ortega, lanuau
(1983), Kosut (1983).

The case of disturbances which cannot be modeled by ARMA ; .ocesses has

also been considered. See, for example, Samson (1983), Peterson, Narendra
(1982).

Another aspect is the extension of tLe adaptive control design for
the multi inputs - multi outputs systems. Except for trivial cases, the
extension raises important parameterization problems for MIMO planta. A
survey of the various designs available can be found in Dion, Dugard (1983).
More a priori knowledge on the plant structure than in the SISO case is
required, and the research is directed towards the development of adaptive
control schemes requiring less a priori structural information. The Hermite

form of MIMO transfer matrix plays a key role in understanding the multi-
variable case.

The case of adaptive control of non-minimum phase plants is more
complicated both from the point of view of the complexity of the adaptive
control schemes and of the analysis. A survey of the adaptive control
techniques for this type of plant is given in Landau, M'Saad, Ortega (1983).
Most of the schemes are of "indirect" type, and the major question to be
answered in order to show the convergence of the system is whether the
estimated plant model converges towards the model with satisfactory proper-
ties (stabilizable). Global convergence results have been obtained, but
with the requirement of using an additional persistent excitation signal,
see Goodwin, Teoh, Innis (1982). The robustness of the adaptive control
designs for non-minimum phase plants with respect to model reduction and
ill-modeled disturbances has also been studied, see, for example,

Praly (1983).
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A NONLINEAR DUAL-ADAPT:VE
CONTROL STRATEGY FOR
IDENTIFICATION AND CONTROL
OF FLEXIBLE STRUCTURES*

F. E. Thau
City College of The City University of New York
New York, NY 10031

ABSTRACT

A technique is presented for obtaining a control law tc
regulate the modal dynamics and identify the modal parameters
of a flexible structure. The method is based on using a
min-max performance index to derive a control law which may
be considered to be a best compromise between optimum
one-step control and identification inputs. Features of the
approach are demonstrated by a computer simulation of the
controlled modal response of a flexible beam.

I. INTRODUCTION

A class of indirect adaptive control systems proposed for the
control of large space structures [1] is based on a modal
decomposition of the system dynamics and may incorporate one
or more on-line testing schemes [2] to determine when
successful parameter identification has been achieve. The
control strategy used in calculating the actuator inputs must
achieve adequate regulation or tracking performance and, at
the same time, provide inputs to allow adequate parameter
identification. A on*rol system designer is thus faced with
the problem of “~vising a control strategy to ensure
acceptable system perfurmance even when on-1ine parameter
identifiability tests have failed because the system

* This work was supported by NASA under Grant NAG-I-6.
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configuration has changed or the environment in which the
system operates has changed.

In this paper we formulate and examine the performance of a
nonlinear dual-adaptive control scheme in which a
sampled-data controller is designed to select a best
compromise between an input signal that is optimum for
mean-square system regulation and an input signal that is
optimum for parameter identification. Dual control theory,

originally formulated by Feldbaum [3,4], has been studied in

[5-7] and in the references cited therefn. A key concept

introduced by Feldbaum is the dual control strategy based on

a performance index that takes into account the fact that
future observations on the process will be made. A
controller mav be able to "probe" the system for state and
parameter estimation improvement, which then may improve
future regulation and tracking performance. In many

situations where the dual nature of stochastic control is not

taken into account the controller becomes “cautfous" [5,6]
and tends to “turn-off", This undesirable phenomenon is
avoided by the approach described below.

II. FORMULATION OF AN ADAPTIVE PERFORMANCE INDEX

The discrete-time dynamics for each mcde is assumed to be
described by the ARMA model

yl{t)+tajy(t-1)*azy(t-2) = bju(t-1)+bou(t-2)+e(t)
where y(t) denotes modal displacement, u(t) denotes modal
force, and e(t) 1s a sequence of independent,
equally-distributed, normal (0,02) random variables. It is
assumed that e(t) is independent of y(t-1),y(%-2),...,
u(t-1),u(t-2),... and that the parameters aj,a2,b1,b2

are unknown constants. If we let Yt denote the information
available to the controller at time t,

Yt = {y(t),y(t-n..... u(t-l).u(t-Z)....}

x(t) denote the modal parameter vector and e(t) denote a
modal measurement vector,

XT(t) = (al paZlblobZ);
oT(t) = (-y(t-1),-y(t-2),u(t-1),u{t-2)

where ( . )T denotes vector or matrix transpose, then (1)
may be rewritten as

y(t) = aT(t)x(t)*e(t)
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where the constant parameter “"dynamics" satisfies

x(t*l) = x(t) (5)

It can than be shown, following the analysis of [8], that the
conditional distribution of x(t+2) given Y¢sq is norma)

with mean x(t*+2) and covariance matrix P(t+2¥ where x(t) and
P(t) satisfies the difference equations

R(t+1l) = R(L)+Kk(t)(y(t)-oT(t)x(t)) (6)
K(t) = P(t)e(t)/(o2+eT(t)P(t)e(t)) (7)
P(t+l) = P(t) 4P(t)e(t)or(t)P(t))/

(c2+eT(t)P(t)e(t)) (8)

Furthermore, the control law that minimizes the regulation
criterion

Velu(t)) = E{.Yz(t*l)lYt} )
is given by
u(t) = - ‘2;;x;(t*l)x3(t’1)’P31‘t*l))oi(t+1) (10)
e )

where :E: denotes the sum over i = 1 to 4 with the value 3
excluded.

To provide bounded modal 1nquts that improve parameter
identification accuracy while guaranteeing that the modal
amplitude will not become excessively large, the controller is
designed to optimize, at each sampling instant t, the following

performance criterion:

min max [V(x, u(t))] (11)
u(t) A
subject to the constraints
u(t) <M, 0 <<l (12)
where
Vc(u(t)) vl(u(t))
Y(a, u{t)) = a —_— ¢ (1-’\)—"'—6—— (13)
Vc VI
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V. denotes an acceptable or desired level of regulation cost.

Vi(u(t)) denotes and identification cost function of u(t),

Vi(u(t)) = trace [P(t+zﬂ (14)

VI denotes and acceptable or desired level of identification

cost, The maximization indicated in (11) yields a function
V(u(t)) which, although not convex, is interpreted as
specifying, for each admissible u(t), the most costly linear
combination of relative regulation and relative identification
cost. Minimization of V(u) thus yields the modal input that
minimizes this most costly combination of relative
identification and regulation performance,

III. SIMULATION RESULTS

Since Vc(u(t)) and trace P(t+2) are relatively simple
functions of u(t) the numerical solution of the one-step
optimization problem (11)-(13) at each sampling time is quite
feasible., Results of simulation studies described below
illustrate an interesting feature of this approach: since the
parameters involved in the evaluation of V;(u(t)) and
Vi(u(t)) depend on system measurgments, the optimum
distribution of relative cost, » (u) depends on on-line
measurement data and hence, at each sampling instant, the
weighting between identification and regulation will change
depending on the on-l1ine system performance. This is in
contrast to[9] in which a fixed weighting between absolute
control and identification cost is used at each sample time.

In the simulation study we compare the performance of three
control systems:

a) A constrained adaptive controller that minimizes (9)
subject to the control magnitude constraint,

b) An optimum identification controller that miniuizes
(14) subject to the control magnitude constraint.

c) I??)o?iaitep dual-adaptive controller based on

In Figures 1-3 we present simulated modal response data for the
first flexible mode of the Langley beam experiment described in
[10] where we assume here that a single actuator 1s used. The
accumulated on-l1ine reguiation cost, VT, shown in Figure 1 is
defined as

VT(N) - ﬁ; y2(k) (15)
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and the on-line identification cost, PT, is defined as

PT(N) = trace [P(N)] (16)

where P(N) is calculated on-1ine using (8). Note that for the
first 10 to 15 sampling times the regulation cost of the
dual-adaptive controller is close to that of the constrained
minimum-variance controller and the jdentification cost of the
dual-adaptive control system is close to that of the
constrained one-step optimum jdentification controller.

Figure 2 indicates that the dual-adaptive controller's actuator
signals switch between its limits, +0.5, more frequently than
do the actuator signals of the other controllers. This may be
due to the lack of any energy constraint in the above problem
formulation,.

A future study will examine the performance of the
energy-constrained dual-adaptive controlier in comparison with
energy-constrained minimum-variance and one-step optimum
identification controllers. The relative regulation cost and
relative identification cost defined in (13) are plotted in
Figure 3 where
° 2
Vc (N) = o'N (17)

is the accumulated control cost that would be achieved if the
parameters of the system where known precise.y and if an
unconstrained control law were used; o2 = 10-% was used in
the simulation runs. A constant value Vi’ = 10-4 was chosen
as indicating the acceptable level of parameter
identification, Figure 3 indicates that, depending on on-1ine
measurements, the one-step identification and regulation cost
at one sampling instant can have widely differing shapes from
their respective distributions at other sampling times. This
leads to the on-line variations in the dual-adaptive control
strategy mentioned earlier,

The simulation results indication that the cne-step,
constrained dual-adaptive controller has the feature of
providing, based on measured data, system inputs that result in
parameter identification while maintaining bounded modal

amplitude response.
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LINEAR INFINITE-DIME.SIONAL SYSTEMS USING
A COMMAND GENERATOR TRACKER APPROACH

M. J. Balss, H. Kaafman, and J. Wen
Renssclacr Polytechaic Institute
Troy, NY 12180

ABSTRACLT

We present a commard generator tracker approach to model following control
of linear distributed parameter systems (DPS) whose dynamics are described on
infinite-dimensional Hilbert spaces. This method generates finite-dimensional
controllers capable of expomentielly stabple tracking of the reference trajector-
ies when certain ideal trajectories are known to exist for che open-loop DPS;
we prcsent conditions for the existence of these ideal trajectories. An adaptive
version of this type of controller 1s also presented and shown to achieve (in

some cases, asymptotically) stable finite-dimensional control of the infinite-
dimensional DPS.

I. INTRODUCTION

By a distributed parameter system (DPS), we mean a system whosaz dynamical
behavior with respect to external disturbances is described by partial differ-
ential equations. Of course, everything is a DPS 1f it is carefully scrutinized,
especially if high performance is demanded, e.g., a simple electrical circuit
at very high frequencies. However, lumped parameter {ordinary differertial
equation) approximations often suffice to describe the system behavior of many
engineering systems. Indeed, such epproximations are necessery for DPS control-
ler designs to be implemented with on-line digital computers. Nevertheless,
the distributed parameter nature of control problems should not be discarded
prematurely; otherwise, control approaches can be generated which look good on
paper but are not sufficiently rotust to operate with the ictual system. This
has been illustrated in computer simulation and in even a few laboratory demon-
strations of flexible structures, yet, it continyes to be ignored ir some parts
of the control community. To understand the controller-structure interaction,

a DPS viewpoint is essential.

The most rerious difficulty of the DPS viewpoint is that it requires the
mathematical ideas of infinite-dimensional function spaces aad unbounded oper-
ators on these spaces; for example, see [1]-[2]. Several results in the past
have been posed within this mathematical framework with the required mathematical
rigor [3]. Yet, the necessary practical constraints were interpreted so that
the results would be relevant to structural dynamicists and control system
engineers and would make the maximum use of their experience and intuition.

With these ideas in mind, the concept of model following appears to be a
procedure that yields a useful finite dimensional controller that might be
designed taking into account the distribnted nature of the system dynamics,
whereas early model following control systems required the satisfaction of
certain “Perfect Model Following" conditions which necessitatad thne use of a
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reference model having the same order as that of the process [4], the more

recent output model following controller or Command Generator Tracker (CGT) as
developed by Broussard [5] allows the use of a model of arbitrary order, provided
that the number of controls is equal to the number of outputs being controlled.
This concept in fact served as the basis for a finite dimensional adaptive
controller that was used for controlling large structural systems [6, 7].

Thus since the CGT algorithm makes it possible to use a finite dimensional
reference model which subsequently gives a finite dimensional countroller regard-
less of the process order. This provides the basis for a direct adaptive con-
troller which produces stable closed-loop operation with the class of liuear
distributed parameter systems considered here. The difficulties of stable
adaptive distributed parameter control are detailed in, e.g., [8]-[9] and the
references contained therein. In Sz2ctions 2 and 3 the nonadaptive model
following controller is developed zad analyzed; ia Section 4, the adaptive
version is presented and shown to produce a stable closed-locp. Conclusions
and future cdirecticns are preseated in Section 5.

2. PROBLEM FORMULATION
2.1 Process Description

The distributed parameter systems (DPS} of interest will be modeled by the
following state space feorm:

(2 - () + BED 5 v(0) = v (2.1a)
1 y(t) = Cv(t) (2.1b)

where the state v(t) is in an infinite-dimensional real Hilibert space H with
inner product (+,+) and corresponding norm ||+}|. The bounded input-output
operators B and C have the same finite rank P, and f(t), y(t) represent the

inputs for P linear actuators and the outputs from P linear sensors, respective-
ly. Thus,

Bf (t) = 1§1 by £ (1) (2.2)
and

y() = [y;(6), -..y vp(0)] with

yj(t) = (cj, v(t)) ;1 <j <P (2.3)

wvhere bi and cj belong tc H. 1In infinite-dimensional theory, the operator A

is a closed, linear, unboundad (differential) operator with domain D(A) dense in
H. Furthermore, (2.1)-(2.3) represents some well-posed physical system, which
in mathematical terms is the weak formulation of (2.1):
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t
vit) = U(t) v_ + [ U(t-1) Bf(t)dr

0 2.4)
y(t) = Cv(t) ; £t >0

where v, is any initial state in H and U(t) is the Co-semigroup of bounded

operators generated on H by A. This latter means:

U(t+r) = U(e) C(1) 5 £t >0, T>0 (2.5a)
t(o) = 1 (2.5b)
lim [U(t) - 1] v=0 ;v in H (2.5¢)
0"
Av = [lim LJ—(-t--z-:l]v ;3 v in D(A) (2.5d)
+ ¢
t>0

Ncote that the semigroup U{t) evolves the initial conditions v, forward in time.

When v is in D(A) and f(t) has continuous first derivative, v(t) also is differ-
entiab?e, lies in D(4) for t > 0, and satisfies (® 1). However, any v, and H

and any square-integrable f(t) wili satisfy the weak formulation (2.4) and yield
states v(t) in H for all t > 0. Consequently, (2.4) is easier to work with in
infinite-divwensions and is more likely to represent the actual physical system
being modeled by (2.1). This form, (2.1) or (2.4), models most practical
interior control problems for linear DPS where the actuator and sensor influence
functions are given by bi and cj, respectively.

For example, control of the damped wave equation on a region Q € R" by a
single actuator and senscr is described by (for € > 0):

2
3 u(x,t) Jdu(x,t) -
g + e 0 - Aou(x,t) = b(x) f(t) (2.6a)

P

y(t) = [ c(x) u(x,t) dx (2.6b)
Q

where u(x,t) is the displacemeant from equilibrium of Q and the influence func-
tions b and ¢ can be taken as approximations of Dirac delta functions at the
location of the actuator and sensor. The operator Ao is the Laplacian given by

n 2
A u(x,t) = Z ulx,t) 2.7
o 2

=1 ox 1

on D(Ao) = {u(x,t)eHoiu(x,t) is smooth and u(x,t) = 0 on the boundary of Q}.
The domain D(Ao) is dense in Ho = LZ(Q) with the usual inner product (-, o
This can be put into the form (2.1) by choosing the state v(t) = [u(x,t),
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3u(x!t)]T in H = D(Aol/

3t 2) x Ho with the esuergy inner product:

1
(v,w) = (Ao’/zvl, 1\01/2«»1)o + ("2’ “’2)0 (2.8)

The operator A in (2.1) becomes

A= (2.9)

and the rest follows.

Another important example is the mathematical setting for large structural

systems (LSS) which may be described as a contiruus by the following system of
partial differential equations:

m(x)utt(x,t) + Dout(x,t) + Aou(x,t) = F(x,t) (2.10)

where u(x,t) represents a vector of instantaneous displacements of the structure
Q from its equilibrium position due to transient disturbances and the applied
force distribution F(x,t). The displacements can be translational and rotation-
al, and the forces can be generalized to include torques, as well. The mass
density m(x) is positive and bounded on Q.

The internal restoring force term A u is generated by a time-invariant,
symmetric, non-negative differential operator Ao appropriate to the 1LSS. The

domain D(Ao) of Ab contains all smooth functions satisfying the LSS boungary
conditions and is dcnse in the infinite-dimensional Hilbert space Ho = L°(Q)

with the usual inner product (-,-)o and associated norm ||-||o. In most cases,
the operator AC is assumed to have discrete spectrum, i.e., isolated resonances;

this can be expressed by the following eigen-problem:
_ .2
A°¢k = v ‘k (2.1

where w, are the vibration mode frequencies and ¢k(x) are the corresponding

vibration mode shapes. Of course, exact expressions for this modal data are
rarely known for an actual LSS.

The damping term Dout is composed of a skew symmetric part, which repre-

sents gyroscopic damping due to any on-board rotors or constant spin rate of
the whole LSS, and a small symmetric part which represeniz the internal struc-
tural damping and is thought to provide very low mode damping.

The applied force distribution is

F(x,t) = Fc(x,t) + FD(x,t) (2.12)
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where FD represents the external disturbance forces on the LSS (and possible

nonlinearities) and Fc represents the contrcl forces due to P actuators:

P
F,=Bf = 121 b, (x) £, (t) (2.13)

where the actuator amplitudes are fi(t) and the actuator influence functions

are bi(x) in Ho. These are usually localized or point devices so that they

approximate 6(x—xi); however, they do not have to be point devices.
Observations are obtained by P sensors
y = Cou + Eout . (2.14)
where yi(t) = (Cj’uo) + (ej’ut)o’ 1 <3 <P, with influence functions ¢, for
position sensors and ej for velocity sensors in Bo. Again, these are usually
lccalized or point devices but they do not have to be.

The LSS dynamics are defined by (2.10) and (2.14) can be put into the
infinite-dimensional state space form:

o )
[ 2 vy + BECe) + TE (D) (2.15a)
{
[ y(®) =cv(e) 5 v(@) = v, (2.15b)

with (A,B,C) as in (2.]) and the persistent disturbance term TfD(t) obtained

from FD in (2.12). Impulsive disturbances in the structure are modeled by the

initial condition vo.

The Kille-Yosida Theorem (e.g. {1}, Theo. 8, 9, p. 153), provides condi-
tions under which an operator A generates a Co-semigroup U(t) satisfying:

o] < ke™%, >0 (2.16)

where K > 1 and o real. The necessary_ind sufficlent conditions are given for
the resolvent operator R(A,A) = (AI-A)
HROLOM |« —S—5n=1, 2, ... (2.17)
(A+0)

for all real A > - o in the resolvent set of A, p(A) = ék complex |R(A,A) is a
bounded operator on H}. The spectrum of A, g(A) = p(A) 1is much more compli-
cated in infinite-dimensions, but, in finite-dimensions, it consists only of

the (finite number of) eigenvalues of A. We say that A is exponentially stable
when 0 > 0 in (2.16), i.e., the semigroup U(t) generated by A decays exponen-
tially at the rate 0. There are many other types of stability in fufinite-
dimensions, but no others provide the safety of a stability margia o; therefore,
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this seems to be the kind of stability of most practical interest for cngineer-
ing applications where there is always some uncertainty in the model of JPS.

2.2 Model Following Conttrol Problem Formulation

Given the DPS as defined in (2.1), it is desired to find a finite dimen-
sional contioller so that the output y(t) "follows" a desirable output trajec-
tory ym(t). This output trajectory is to be generated by the finite dimensional

(asymptotically) stable reference model:
q=A4q+Bu (2.18a)

Yo = Cpd s q(o) = q, (2.180)

where
q is the model state vector having dimension N,
u, is a step or reference level command with dimension P,
Y is the output trajectory also having the dimension P,

and Am’ Bm are matrices with appropriate dimensions. It should be noted that
the dimension of beth Ya and u is the same as the dimension of the process

input f and the process output y as defined in (2.1). Usually q, = 0 will be
chosen.

The output model following control problem to be solved is the development
of an algorithm that defines the process input f(t) so that the following two
model following conditions (MFC) are satisfied:

MFC 1) 1If y(tl) = ym(tl), then
y(e) =y (), for t > t,
MFC 2) 1If y(t;) # y (t;), then |
y(t) asymptotically will approach ym(t), i.e.

2im [y(t) - ym(t)] =0

t->
3. DEVELOPMENT OF THE NONADAPTIVE MODEL FOLLOWING CONTROLLER
3.1 Solution Definition

In a manner similar to Broussard's developmegt of the Cogmand Generator
Tracker (CGT) [5], the concept of an ideal state v , control f and output
trajectory y will be introduced. It is required that these tgajectories
satisfy the process dynamics (2.1) and that the ideal output y be identical
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tc the model output Ym* Thus:

*
ov (t) * *
—;;L—L = Av (t) + Bf (t) (3.1a)
* * * *
y (t) =¢v (t) ; v {0) = v, (2.1b)
*
where the ideal state v (t) is (as with v(t)) in the infinite dimension.l
Hilbert space H.
Furthermore
*
y (8) =y (£) =C q(t) (3.2)

*
In a manner similar to that in [5]}, it will be assumed that v (t) and

*
f (t) are linearly related to the model state vector q(t) and command vector
um(t) as follows:

*
v (t) = A11 q(t) + 512 u (3.3)
*
f (t) = 551 q(t) + 822 uy (3.4)
The bounded linear operators Sll’ 812, 521, 822 will not be determined to

satisfy MFC 1.

To this effect, differentiation of (3.3) with respect to t and substitu-
tion of (3.1) and (2.18) gives:

*
av _(t) _ .
5t - 517917 8y; A+ Sy, By (3.5a)
* *
= Av + Bf
where
* oS +5 (3.5b)
Vo T P11 9% 12 Ya :
is in D(A).

* *
Replacing v and f on the right side of (3.5) by (3.3) and (3.4) gives:
511 4a% ¥ 511 Bpta
A(Sllq + S12 um) + B(SZIq + 822 um) = (3.6)

Now since (3.6) must be valid for all q and ups it 1s necessary that:

S11 Am = AS11 + BS21 (3.7
811 Bm = AS12 + B822 (3.8)
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Finally the incorporation of (3.2) yields

*
y (£) = CS5,0q+CS,u =y =Cgq (3.9)
Thus:
cs,; = C (3.10)
cs,, = 0 (3.11)

In summary then eqs. (3.7), (3.8), (3.10) and (3.11) must be,solved in
order to find S and 822 which in turn define the ideal control f of Eq. (3.4).

Recall however, that both MFC 1 and MFC 2 must both be satisfied. In
order to satisfy MFC 2, it is useful to consider the equation for the error

* .
e=v -V (3.12)

*

which is in D(A) when v, and v_ are both in D(A). Differentiation of (3.12)
o

with respect to time gives.

*
3

©
Q@
<

Q
er
@
"t

* *
+ Bf - (Av + Bf )

n
Z

]

Ae + B(E - £7) (3.13)

This equation suggests that tihe actual model following control f be defined as:

f

"

*
f + G(y - ym)

* *
f +GC(v-v)

£ +6cCe (3.14)

[}

Substituticn of (3.14) into (3.13) gives:

= (A+BGCe (3.15)
where G: RP+RP is a bounded linear operator. Thus if G is chosen such that -
(A + B G C) generates an exponentially stable C -semigroup, then the control §
as defined by (3.14) will satisfy the condition8 for model following.

It is important to note that this controller is clearly finite dimensional.
For implementation it is only necessary to ""build"” a finite dimensional refer-
ence model and form the proper linear combination of its state vector and command
vector. The gain operator G is also finite dimensional and should be chosen
such thact the decay of any transient caused by initial plant model output error
is sufficiently fast. We summarize the above discussion as
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Theorem 1: 1f (A,B,C) is exponentially output stabilizable and there exist
bounded linear operators Sll’ 812, 821, and 822 such that (3.7) - (3.8) and

(3.10) - (3.11) are satisfied, then the model following control (3.4) ang (3.14)
satisfies the model followirg conditions MFC (1) and (2) and lim [v(t)-v (t)] =
0 when both v, and v, belong to D(A). £+

From [10], ve see_that (A,B,C) is exponentially output stabilizable if and
only if HN = N(C)L and HR £ N(C) form a pair of stabilizing subspaces for (A,B).

Note that dim ﬁN = P which is the number of sensors (or actuators) used. The

conditions for existence of the ideal trajectories (3.1) will be developed in
the next subsection,

3.2 Existence of Ideal Trajectories

*
The existence of ideal trajectories v (t) for the DPS (2.1) is determined
by solutions Si‘ to the operator equations (3.7) - (3.8) and (3.10) - (3.11).

J
These can be rewritten as

A BI[s S s 0 A B
;L‘ o o [ e
C oL_s?_1 S,s 0 1 C o

p

m
where S1 :RN*D(A) and Slz:R +D(A) are bounded operators with finite-rank and
SZI:PN+R and S,,Z:RP-rRP are matrices of appropriate dimension. Note that

(3.16) describes a kind of aggregation (in the sense of Aoki) for the infinite-
dimensional system (2.1) ingo a finite-dimensional system (2.17). The existence
of the ideal trajectories v (t) in (3.1) guarantees that such an aggregation is
possible, i.e. the DPS (2.1) generates the ideal trajectories which correspond
to those of the finite-dimensional model (2.18).

*
In most situations, the ideal initial condition will be v_ = 0; hence,
from (3.5b) we would choose q, = 0 and 812 = (, which correctly corresponds to

(3.11). This reduces the other operator equations to the following:

= (

S11 A.m A Sll + B 321 (3.17a)
S11 Bm =B 822 (3.17b)
C S11 = Cm (3.17¢)

we have the following:

Theorem 2: If the spectra c¢(A) and o(A_) are separated by a smooth simple
closed curve ' containing O(Am) in its in%erior and 6(A) in its exterior, then,

given any linear operator 821:RN+RP, there exists a unique bounded linear

operator S :RN*D(A) given by

11
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1

S149 = 5oy { R(A,A) B S, R(A,A )qd) (3.18)
for any q in RN.
PROOF: From (3.17a), it follows that for any Aec(A)() o(Am):
S11 R(A,Ah) - R(A,A) B 521 R(A,Am) = R(},A) S11 (3.19)

But integration of (3.19) over the curve T produces:

_1 . o1
0= 2ni }‘ R(%,4) kllq dx = 2ni I [811 R(X:Am)q - R(2,A) B S

R(,A )qldx
T C m

21

- .1
= 519 - 333 é R(A,A) B S, R(A,A )q dh .

because T encloses the finite number of singularities of A and excludes all of
the spectrum of A. C(learly, since R(}X,A):H+D(A), 511 must have its range in

D(A), and this is the desired result. #

Once, we have specified the matrix SZl’ the unique operator S11 is deter-
mined. Satisfaction of (3.17¢) could most easily be done by defining Cm to be

C Sll' The determination of the matrix 822 for (3.17b) could be done from

BPILINES R
822 = (BB) "B S11 Bm (3.20)

as long as Bm is ¢ 3en so that a solution exists. Note that the operator B has
*
full ranxk P and so the inverse of B B exists.
Although the above existence result does not really require the number of
actuators and sensors to be equal, this will be needed in the later sections.
Also, the following alternative existence result requires it:

Theorem 3: Let zero belong to p(A) and C A-l B be nonsingular on RP, then

E\ a‘l"l [“11 912] [A‘l(x-n(m'lz)'lu‘l) :A'ln(m”ln)’l]
= i -1_,.-1.,-1 -1..-1
c o 2, 9, ca™1p) tca )

and 512 = “11 S11 Bm’ 521 = 921 S11 Am + 922 Cm’ and 522 = J21 S11 Bm where
S11 satisfies:
S11 = nll S11 Am + 912 Cm (3.21)

The proof of Theo. 3 can be obtained by straightforward computation using (3.16).
Furthermore, note that
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AS;) = Ay, Sy A YA, Cp

"

(IwBle) S11 Am + (—3922) Cm

Si1 A~ Bl8yy S5 A+ 8y, C ) =5, A -BS,)

which is the same as (3.17a); however, Theo. 3 gives a wider range of solutions
than Theo. 2 since 812 need not be zero. The solution of (3.21) can be handled

when zero belongs to (Am) because we then have the following:
-1 -1
S; A =0, S+, C A (3.22)

which has a unique solution S11 whenever the O(Am-l) and 0(011) are separated

by a smooth simple closed curve (see proof of Theo. 2).

4. THE ADAPTIVE MODEL FOLLOWING CONTROLLER

4.1 Development of the Adaptive Controller

The nonadaptive control law (3.14) requires exact knowledge of the gain
operators G, § 1’ and S 2° These may be known to exist via mathematical structure
of the DPS (A,%,C) in (%.1) (e.g. Theos. 1, 2, 3) but they may not be available
in an explicit form. Consequently, we would need an adaptive version of (3.14):

f(t) = 821(t) q(z) + Szz(t) u + G(t) ey(t) (4.1)

where

*
e =Y - ¥y =Y - Y (4.2)

We assume throughout Sec. 4.0 thaf the hypotheses of Theo. 1 are satisfied
for the DPS (2.1). Take e(t), =v(t) - v (t) and, from (2.1), (3.1),(3.3) and
(4.2), obtain (for Vo and v, in D(A)):

3—2{51 = Ae(t) + BAK(E) £{t)
_ %*
e(o) = e, Vo = Y,

where

A + BGC generates an exponentially stable Co—semigroup Uc(t) and

u

A =
c
e (t
y()']
) M+2P -
r{t) = | q(t) belongs to E and AK(t) = K(t) -~ Ko where
m
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|
K(t) = [G(t) l Szl(t) g 322(t)] and K = [G| s
) |

{

The adaptive gain laws we shall use ar: motivated by [6] and have the form:

's]
21:22

K(t) = KI(t) + Kp\t) (4.4a)
K (t = -T t :
p( )z p ey( ) (r(v),2) (4.4))
. -1
{ K (t)z = -T; ey(t) (x(t),2) (4.4c¢)
. _ 9K o NH2P
where KI = ?ﬁ; » 2 belongs to R , and Pp, FI are both positive definite

matrices on R'. Note that (since Ko is consfant):

SR () = Rp(e) = -1y e (8) (x(e), ) (4.5)
where

AKI(t) = KI(t) - Ko.

The closed-loop adaptively controlled DPS is given by (4.3) and (4.5):

f de(t) _ A e(t) + F (t, 2(v))

{ ”* (4.6)

| o)

®
~~
o
S’
i
o
(1]

where _ e (t) _ A O
e(t) = , A = [- ¢ , and
8k (£) © Lo o
- e (&)
- [BAK(t) x(t) v
F(t,e(t)) = 1 _} with e'(t) = C e{t) and r(t) = {(qg(t)
e (t) (r(t),") ) ‘
y Yy
V+2P

The state e(t) of (4.6) resides in a new Hilbert space H where H = H % B (
R ) with B (h,,H ) representing the Schmidt c'ass of compact linear oporators
from H, into H, with inner product (A,B) = tr A B where "tr" denotes the trace

of the operator; see [11] pp 262-264 for further details. The innec product on
H is formed by summing those of H and B,; we shall use the same symbols for all
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inner products (-,*) and their corrz2sponding norms gl ||. The nonlinear func-
tion F(t,+):H+H is continuous; hence,

e(c) = U(t) e; t >0 .7)

where G(t) is the nonlinear semigroup defined on H by (for any h in H):

Uit)h 5C(t)h + [ Ec(m) F(1,U(1)h)d1 (4.8)

whiere
U_(t) o]

| is the linear Co-semigroup generated on ﬁiby Ké in
0 L

bckt)

(4.6). The above follows from [12] Lemma 5.2 p. 186 where further details on
nonlinear semigroups are a2lso available; consequently, the clcsed-loop infinite-
dimensional system (4.%5) .s well-posed on H.

12

4.2 Closed~-Loop Stability

The stability analysis of the nonlinear infinite-dimensional sy<stem (4.6)
requires the extension of Lyapunov theory to infinite-dimensional spaces. This
has been done in [12]-[13] and we summarize the necessary elements here:

Def: The equilibrium point ¢_is stable for the system (4.6) 1if for everv € > 0
‘there exists 5 > 0 such that 'Ie(o) - ¢, < & implies ||e(t) - ¢|l < ¢ for all
t > 0. 1If, in addition to stability, there is a vy > 0 such that |[e(o) - ¢|| <

Y implies 1im ||e(t)-¢|| = O, then ¢ is said to be asymptotically stable for
t-rx

(4.5). Usually we can take 6 = 0. We say an equilibrium point is unstable

whenever it is not stable.

Yef: A continuous functional V: HR is a Lyapunov function for (4.6) if V(o) =
and V(e) < 0 for all e in H wnere

lim sup !SSXE%):!&EI. (4.9)
0"

where e is in H and e(t) = U(t)T as given in (4.7).

V(e)

lLemma 1: If V:H+»R is a Lyapunov function for (4.6) with the property that
vie) > £,(llel » (4.10)

for all t-such that ||e]| < h (where 0 < h < =) and f1 is of class M (i.e.
[0 h,*R with f (o) = 0 and fl strictly increasing on [0,h], then the :zero
equilibrium point is stable for (4.6).

Lemme 2: If in addition to the hypotheses of Lemma 1, the Lyapunov function V(-)
has tl property:
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( V(e)

| A

-W(e) for all e in ¥ (4.11a)
1 W(e) 1f2(||€H) for ||e|]| <h (4.11b)

where f_ is also of class Hh’ then the zerc equilibrium point is asymptotically
stable Eor {4.6).

The proofs of Lemmae 1 and 2 can be found in [13]. These results constitute
Lyapuncv's Direct Method on infinite-dimenaional spaces.

We now have the following stability result for our adaptively controlled
closed-ioop system (4.6):

Thecrem 4:  Assume the foliowing:
(a) In (4.3), Ac = A + BGC satisfies
(AC V, PV) + (PV, Acv) = -(QV,V) (4.12)

for all v in D(A) where P and Q are symmetric positive operators on H such that
(for some a, 8 pcsitive constants):

[vI1? < upw) < 8 ]2 (4.13a)
L ullvll2 < (Qv,v) (i.e ¢ is coercive) (4.13b)

for 211 v in H,
x

(b) BP=2C, (4.14)
*
(¢) the hypotheses for Theo. 1 are satisfied, and both v, and v, belong to D(A),
e
then V(e) = (e,Pe) + (8K}, Ty 8K )swith AK (t) = K;(t) - K and e = . » is a
ped |

Lyapunov function for (4.6) snd the zero equilibrium point is stable.

PROGF : Recall that
AK(t) = AKI(t) + Kp(t) (4.15)
y = 4.16
AKI(t) KI(t) ( )

Now, clearly V is a continuous furctional from H into R (due to (4.13a) with
V(o) = 0. Furthermore, since V 18 a quadratic functional, it is Frechet
differentiable. Hence, from (4.6) aad (4.12),

V(e) = ~(Qe,e) + 2u (4.17)
where y = [(Pe, BAKr) + (AKI,PI AKI)]

From (4.16), (4.4c), and (4.15), we have
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*
= (BPe, AK) - (8K, ey(r,-))

% *
(B Pe, AKr) - (r, AKI ey)

%* *x *
(B Pe, K 1) + (B Pe, Kpr) - (x, 8K ey)

(KT, (B Pe - e,) + (K r, B Pe) (4.18)

* *
where we have used (A,B) = tr A B = tr(BA ). Furthermore, using (4.14) in
(4.18), yields

2
= (Kpr, ey) = —(Ppey)llr}l (4.19)
trom (4.4b). Consequently, using (4.19) in (4.17), we obtain
V(e)= -[(Qe,e) +2re, e)|lx 112

< - fa]]el]? +za|.e|'2||r||1<o (4.20

where ap = Amin(rp) and we have used (4.13b).

Also, using (4.13a), we have

v > |lel |+ ap |l |i?

- 2 .
In other words, fl(c) = 1+ xmin(rl)]; which is of class Hh. Therefore, the
above satisfies the hypotheses of Lemma 1 and the desired result is obtained. &

Note that the use of a proportional adaptive gain (4.4b) produced the second
term in (4.20): however, this term is not essential and the above argument
could be simplified by omitting (4.4b) from the adaptive gain laws.

The hypotheses (a) and (b) correspond to the Kalman - Yakubovich conditions
in 1nfinite-dimegsional spaces. From [13] Theo. 4.7, if for some real w,
(Av, v) < wl!vll for all v in D(A), then exponential output stabilization of
(A,B> Clwould be equivalent to satisfaction of hypotheses (2); however, there
would be no guarantee that P and Q could be found in (4.12). such that (4.14)
could be obtainei. In finite-dimensional spaces, the Kalman - Yakubovich
conditions are equivalent to the strict positive realness of the transfer

function Tc(s) = C(sI—AC)-lB, i.e. Re Tc(jw) > 0 for all real w; see [14] pp.

115-118. A ruwber of papers, e.g. [15] - [17], have been wricten on this
relationship in infinite-dimensional spaces. For example, [17] asserts that
ReTc(jw) must be coercive,which would be quite a bit stronger than what is

required in finite-dimensions. This 1s an area that requires further investi-
gation.

As pointed out in [9], we cannot immediately conclude asymptotic stability
from (4.20) since it does not satisfy the hypotheses of Lemma 2., In finite-
dimensional space, we could apply the LaSalle Invariance Principle to obtain
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asymptotic stability as is done in [6]; however, in 1nf1nite—dimensiona1 spaces,

it is nct the case that "bounded sets are precompact" and this is essential for
the LaSalle result.

The following result ([13] Theo. 5.4 p. 188) may be helpful:

Lemma 3: Let X. in (4.6) generate the linear C —semigroup ﬁ'(t) on K and F

is any_bounded, contlnuous function such that (4.6) generates a nonlinear semi-

group U(t) on H (as given in {4.8)), then all bounded orbits .f (4.6) are pre-
compact if either

(a) E;(t) is compact operator for all t > 0

or

(b) E;(t) is exponentially stable and the function F is compact (i.e. maps

bounded sets intorpreconpact ones)
()
Due to the form of ACE ¢ » 1t is not possible to satisfy (b); however,
0 (4]
(a) may be satisfied, for example by operators A which generate holomorphic
semigroups. This latter is determined by the form of damping operator in a

flexible structure. Again, this is a topic for further investigation. An
alternative adaptive gain law:

R (t)v = r! (e, (r.v) + Ky (£)V) (4.21)
yields:

V@< -lalle]1? + 2] jakj]? + 208k, K )]

which does not quite give asymptotic stability but might be modified to do so.
5. CONCLUSIONS

In this paper, we have presented a direct adaptive controller for linear
distributed parameter systems (DPS) described on infinite-dimensional Hilbert
spaces. The controller is based on a command generator tracker approach used
in finite-dimersional spaces, e.g. [6] where it is shown to be asymptotically
stable. We have shown here that, under certain conditions on the open-loop
loop DPS, ideal trajectories do exist and the adaptive codtroller is stable,
i.e. the output and gain errors remain bounded. If the further condition that
A in (2.1) generates a holomorphic C -semigroup is impused, then we can also

conclude asymptotic stability which guarantees asymptotic tracking or model
following.

A number of issues have been opened for further investigation:

(1) use of dynamic rather than output feedback stabilization;
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(2)
3)

%)

(5)

generation of asymptotic ideal trajectories by the open-loop DPS;

connections between the Kalman-Yakubovich conditions and the input-
cutput description of the DPS;

development of alternative adaptive gain laws which produce asvmptotic
stability of the ciosed-loop system;

exploration of reas-nable conditions under whichk LaSalle's Invariance
Principle can be used to determine asymptotic stability of the closed-
loop system.
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SELF-TUNING ADAPTIVE CONTROLLER USING
ONLINE FREQUENCY IDENTIFICATION

W. W. Chiang and R. H. Cannon, Jr.
Stanford University
Palo Alto, CA 94304

ABSTRACT

A real-time adaptive controller has beea designed and tested successfully on a fourth order laboratory
dynamic system which features very low structural damping and a mon-colocated actuator-seascr pair. The
controller, implemented in a digital minicomputer, consists of a state estimator, s set of state feedback
gains, and a Frequency-Locked-Loop (FLL) for real time parameter idestification . The FLL can detect
the closed-loop natural frequency of the system being controlled, calculate the mismatch between a plaat
parameter and its counterpart in the state estimator, aad correct the estimator parameter in real time. The
adaptation tlgorithm cam correct the controiler error and stabilize the system for more than 50% variation
in the plant natural frequency, compared with a 10% stability margin in frequency variatioa for a 8xed-gain
controller having the same performance at the nominal plant condition. After it has Jocked to the correct
plant frequency, the adaptive controller works as well as the fixed-gain coatroller does when there is no

parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally,
and can also be proven with simple root-locus methods.

L. INTRODUCTION

A controller using Kalman filter and full state feedback usually has good performance, provided a
very accurate model of the plant is known. But such coatrollers are very seasitive to parameter variation,
especially when the plant has very low inherent damping, and whea the seasor is not colocated with the
actuator.

A two-disk laboratory model, consisting of two inertia disks connected by a torsion rod, which has a
structural damping of 0.004, and with separated sensor and actuator locations was constructed to test several
adaptive controller designs. The form of the equations of motion of the model is known due to the ease of
analysis of the lumped system; but the lack of accurate knowledge about the natural structural frequency
during controller design corresponds to 2 plant parameter uncertainty or variation; and this uncertainty is
what the adaptive controller handles.

It has been proposed by Kopf, Brown, Marsh (Ref.1) and Macala (Ref.2) to use a Phas: ;.ocked-Locp
to implement tuned damping and notch filtered command torque, so that the fredback control force acar the
structural frequency can be adjusted properly according to the natural frequency of the plant. Rosen’.al
and Cannon (Ref.3) have implemented such a kind of controller for the two-disk experimental system.

Under the same research project, a different approach using a Frequency-Locked-Loop (FLL) to identify

the plant frequency was developed. Thi- oaper describes in detail how the FLL identifies the unknown plant
parameter and updates the controller in real time.
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II. DESCRIPTION OF THE TWO-DISK PLANT AND FIXED-GAIN CONTROLLER

The plant to be coutrolled is a mechanical system which consists of two horizental steel disks connected
by a vertical elastic steel rod. The two disks sre supported by bearings which allow rotational motion only.
A low-friction DC motor is attached to the lower disk, and an RVDT sensor detects the angular position of
tke upper disk.

If structural damping is neglected®, the state equation of motion of this system can be expressed as

z) 1 l 0 0 23 0
ig 0 0 0 z3 1 1
x, 0 -wio z4 -1

where z, and z3 are the position states of the rigid body mode and the structural oscillation mode respec-
tively, z; and z, are rates of those states respectively; wy is the natural frequency, J is the total moment of
inertia of the two disks, and u is the control torque from the DC motor.

The sensor output is
y=z+z5 - (2)
A first-order high-pass filter with 100 Hz cutoff frequency is used to differentiate the position sensor output
and provides the pseudo-rate of the top disk.

If all the parameters of the plant are known accurately, an LQG design (Ref.4) will result in a set of state
feedback gains C for regulation and estimator gains L for state estimation. However, if the plant naturyl
frcquency w, is not known by the controller designer, and a value w, is used in the estimator, the stability of
the whole system has to be analyzed by augmenting the system state equations with those of the estimator
states, and finding the modal frequencies and dampings of the system (Rel.5)

Using the same penalty weightings for control effort and state errors, an LQG design produces different
feedback gains C and L for different natural frequencies wy of the plant. Analysis shows that the stability
of the whole system is less sensitive to those feedback gains thar to the parameter w, used in the estimator,
since an error in the latter parameter corresponds to a modeling error, while variations in the former ones
correspond to different weightings in the LQG design process. In the experiment described here, feedback
gains C and L are chosen for the nominal plant frequenc;, and are kept constant in order to demonstrate
the adaptation of the controller by correcting w, in the estimator.

Trom the analysis of the sugmented system state equations, the frequency w. of the most unstable
cwsed-100o mode can be found as a function of w, and w,, if all other parameters are kept constant. This
*aaction.

We = !(Unwu)s (3)

will afe ¢ the closed-loop performance of the adaptation process, and has to be taken into account in the
design jrocess. The two-disk model has a nominal frequency of 13.3 rad/sec, and the function described in
equatic1 (3) can be shown approximately as in Fig. 1, szd can be approximated as

We = wa = (wy — W) +0.6 L. (4)
for [wa — we/ < 1.5rad [sec.

III. FREQUENCY IDENTIFICATION USING FREQUENCY-LOCKED-LOOP

A Phase-Locked-Loop (PLL) was initially proposed to be used to detect the vibration frequency. PLLs
have been used widely in locking onto high-frequency signals in elecirical engineering applications, but it

® It is actually 0.004
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is only beginning to be used in locking onto low-frequency signals in mechanical systems. A PLL has the
sbility to identify the phase and frequency of a signal contaminated by a relatively large amount of noise at
other frequencies. Several signal componeuts at different frequencies can be identifled by using several PLLs.

The traditicoal PLLs are nonlinear elements for which the performance is hard to analyze and predict;
and they bave limited locking ranges due to their nonlinearity. Besides, PLLs are more seasitive to the
phase than to the frequency of their driving signal, which makes them unsuitable for frequency identification
because the identification will be disturbed by the phase in the sensor signal every time a mew position
command or an external disturbance is applied to the system, even though a PLL has identified the correct
plant frequency already.

A modification is made to a PLL to eliminate its sensitivity to phase in the input signal and make the
input/output relation linear in a larger tracking range, so that it works better for frequency ideatification,
while retaining the other virtues of PLLs. The final product, called a Frequency-Locked-Loop (FLL), is
shown schematically in Fig. 2, and its iuput/output relation can be seen from the fanctional block diagram
in Fig. 3, where w, is the frequency of the input signal and w, is the output signal - the frequency detected by
the FLL. Also shown in the same block diagram are w,, the starting osciliation frequency; Aw, the correction
on the output; and w,,, the error of the output of the FLL. )

The character of the block G(s) can be chosen arbitrarily by the designer as long as it can update the
output frequency of the FLL according to its error w,,. If a simple integrator ‘% is chosen as the element
G(s), then the FLL will have a pole at — K where

_Gla-})
K= — (5)

Parameters a and b should be determined with the following restriction
we >a8>b> fwi~w,f. @)

In the present case,
we = 13.3rad/sec, (%)

and the linear searl range is chosen to be

Jwi = wof = 9‘: = 8.3rad fsec. (8)

The pole location s = —K should be determined as the result of a compromise L ctween speed of response
and noise rejection, at the nominal locking frequency range. In this case, the parameters of the FLL are
chosen as

a = 6.0, b= 4.0, G = 20.0, = K =1.67, (9)
to work in the range of 1 to 3 Hz.
With parameters chosen as above, the block diagram in Fig. 3 can be limp.liled to the transfer function

_ (e) K

Qe) = W) - 03K (10)

Fig. 4(a) sbows the test result of the FLL output when the frequency of the inpui signal is changed stepwisely.
The response for small input change (the first change in Fig. 4(a) ) is similar to the step response of a first-
order filter with pole at —K, as shown in Fig. 4(b). The response for a larger input change (the second

147



change in Fig. 4(a) ) experienced some nonlinearity at the beginnirg bec 1use its internal structure is not
linear; however, the FLL still tracked the input signal and provided the correct output in a reasonable time.

IV. CORRECTION OF PARAMETER ERROR IN THE CONTROLLER

Because eigenvalues are properties of the system, they are independent of the instantaneous value of
state variables and are influenced only by changes of parameters. The relation between w, azd w,, as shown
in Eqn. 4, can be expressed as in Fig. 5. Using the difference between (w, — 0.6) and w, to update —
through the integrator '.1 — the parameter w, in the controller, the closed loop dynamics of the parameter
variation, identification, and correction can be expressed as in Fig. 6. The characieristic equation of the
closed parameter adaptation loop is

HK
I avme+n) =" (1)
or,
s(s +K)+ (s +2K)H =0, (12)
which can be written in Evan's form as (s 4 K)
s+ .
(M—Zﬂ =-H. (13)

The root locus of Eqn. 13 vs. the positive value of H with K = 1.67 is shown in Fig. 7, and the value cf
H = 9.9 is chosen obviously to maximize the adaptation rate. The change of the slope in Fig. 1 corresponds
to a variation in the gain in Eqa. 4, and Eqn. (11) csn be modified as

rtHK

AR Py Ty g i

0, (14)

where 2 > r > 0, and the root locus shown in Fig. 8 gsuarantees the stability of the system over the range
of the gain “r".

Any sensor measurement, controller state variable, or linear combination thereof can be chosen as the
input signal to drive the FLL, so long as the signal contains the modal frequency of interest (th- larger the
better!). The error between the sensor rate and the estimate of it is chosen to drive the FLL, since there is
less error signal if all parameters in the controller are correct.

The FLL must be turned off if its input signal is too small, in order to reject the influence from random
noise.

A PDP-11/28 minicomputer was used to implement the controller and the FLL at 25 Hz sample rate.
The test results of this adaptive system are summerized in the following section. -

V. EXPERIMENTAL RESULTS

Fig. © shows the natural oscillation of the uncontrolled disk system. The frequency of oacillation is
2.11 Hz. with 0.004 damping. (The long-period motion is caused because the disk system is bung from the
ceiling with a long steel wire to reduce the axial thrust on bearicgs. This mod: is approximated as a rigid
body mode in the cnntroller design analysis.)

Fig. 10 shows the step response of s nonadaptive control system designed with the LQG method. The
response is very good (Fig. 10) when there is no modeling error in the controller design. However, as Fig. 11
shows, the system becomes unstable when there is 10% modeling error in frequency in the designing of the
nonadaptive controller.
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Whea the FLL is used in the adaptive control, the system can detect and correct a controller's parametez
error of 50% or more iu frequency. Figs. 12 (a) through (f) show the sensor ontput in different tests. The
instability due to the initial parameter error is shown when the control system was just surned on, and the
system was then stabilized after the adaptation algorithm had corrected the controller’s error. The initial

turn on of the control system and the time when position commands are changed are marked on those
recordings.

Fig. 13 shows the comparison of the impulsive disturbance response, between the ponadaptive controller
with no modeling error and the adaptive one after its parameter error has been corrected. The comparison
shows almost no difference between their performances.

V1. DISCUSSION
(A) Frequeney-Locked-Loop

The FLU is a nonlinear element, but its input/output relation is almost linear. It behaves linearly for
40% changes in input signal frequency, and still works for 100% change in frequency in the nonlinear region.
The test recorded in Fig. 4 attests to the discussion above.. The linear range can L. chosen by selecting
parameters properly. )

“The FLL still works when the amplitude of its input signal is as weak as two quantization intervals of
the A/D ccnverter, if it is free of noise and bias; but in real applications it must be turned off at smal! level
of input signal to reduce the effect of noise.

The FLL can identify the plant characteristic in a small window of the frequency spectrum, so that the
effects of other parts of the system dynamics do not have to be taken into account if they are not critical
to the overall performance. It can only detect modes that are either only slightly damped or unstable, since
they can provide oscillatory signals for detection; however, heavily damped modes are usualiy robust to
parameter uncertainty and don't need adaptive control

(B) Parameter Error Correction Loop

The parame:er error correction scheme can be determined by root-locus analysis, or even by the LQG
method, since the FIL has a linear characteristic.

Fig. 12 shows some small-amplitude vibration building up due to the lack of sigral to Jock the FLL, but
the parameter estimate error was soon corrected and vibration suppressed.

By examining the response to command change and to disturbances, it is found that the Sel-Tuning
Adaptive Controller behaved almost the same as the correct fixed optimal controller, except for vhe few
cycles of vibration at the beginning when the parameter error was being corrected.

It is better to use the error of an estimated sensor output to drive the FLL, since it is undisturbed by
the control force during a new command change if the model is correct.

Both the identification and error correction are running in real time while the controller is doing i*s job.
Any change in the plant can be tracked and adapted to rapidly.

VII. CONCLUSION
The use of FLL in identifying system vibration freguency and adapting controller parameters is promis-

ing. All kinds of controllers, such as Kalman Qlter and state feedback, band-pass, or notch filters can have
their parameter errors corrected in a similar way. It is expected that system witk many vibration modes can
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be handled with several FLLs.
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I~out Sigual Alsin(¢, ~ ¢s)
24 sin(¢;(¢)) +sin(¢; + 4,)]
+|other freq.] X +[higher freq.] & r = Asin(g; - ¢, - (252))
ry = Asin(d; - ¢, - (252))
Y,
cos(é(?)) fl::((:; :.))'
L + higher freq.] + 1 = Acos(g; — &, - (UT*2))
|
Vokage L 3 = Acos(d; ~ ¢, - (432))
Conrolied | sim(4a(t) =

Wo

s

initial guess)

Aw Glo)

(= 1w - w.)I

Choosea > b

ATAN2®

Atsin((} - )(wi - wo)) mryom ~pumy
A cos((} ~ 1)(wi ~ ws)) = e1n + rary

*ATAN2 is a FORTRAN arctangent function which keeps tracking the correct quadrast of the angle.

Fig. 2% " Disgram of the FLL Implementation.
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Fig. 5 Block Diagram of the Relation Betwees «,,, w,, and w,.
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Fig. 6 Closed-Loop Dynamics of Parameter Variation, ldestification, and Correction.
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ADAPTIVE FILTERING FOR LARGE SPACE
STRUCTURES—A CLOSED-FORM SOLUTION

H. E. Rauch azdi D. B. Schaechter
Lockheed Palo Alto Research Laboratory
Palo Alto, CA 94304

ABSTRACT

In a previous paper Schaechter proposes using an extended Kalman filter to
estimate adaptively the (slowly varying) frequencies and damping ratios of a
large space structure. The present paper slioys that the time-varying gains for
estimating the frequencies and damping ratios can be determined in closed-form
so it is not necessary to integrate the matrix Riccati equations. After cer-~
tain approximations, the time-varying adaptive gain can be written as the. pro-
duct of a constant matrix times a matrix derived from the components of the
estimated state vector. This is an important savings of computer resources and
allows the adaptive filter to be implemented with approximately the same effort
as the non-adaptive filter. The success of this new approach for adaptive
filtering has been demonstrated using synthatic data from a wo mode system.

I. INTRODUCTION

Adaptive est*mation and control techniques are being studied for their
future application to the real-time control of large space structures, where
uncertain or changing parameters may destabilize standard control system
designs. In a recent paper Schaechter 1] proposes using an extended Kalman
filter to estimate adaptively the (slowly varying) frequencies and damping
ratios of a large space structure. For a system with N states and M (slowly var-
ying) parameters the extended Kalman filter requires integration of an N+M by N#t
nonlinear matrix Riccati equation to determine the covariance and gain for the
filter. Schaechter introduces approximations which allow the integration of
the nonlinear matrix Riccati equation to be replaced by integration of a smaller
set of linear matrix equations. The N states of the system are estimated using
constant gains determined off-line. The time-varying gains for estimating the
(slowly varying) s-+t of M parameters are determined on-line by integrating an
M by N set of linear matrix equations.

The contribution of the work presented here is to show that the time-
varying gains for estimating the (slowly varying) frequencies and damfing
ratios can be determined in closed-form so it 1s not necessary to integrate
the M by N set of linear matrix equations. This is an important savings of
computer resources and allows the adaptive filter to be “mplemented with
approximately the same effort as the non-adaptive filter. In particular,
after certain approximations the time-varying adaptive gain can be written
as the product of a constant matrix times a matrix derived from the components
of the estimated state vector. The constant matrix is determined off-line
just as the constant gains for estimating the state are determined off-line.

161



The success of this new approach for adaptive filtering has been demon-
strated on a computer simulation usirg synthetic data from a two mode system.
Work in progress is applying the new approach to a much larger system using
experimental data. The theoretical development and preliminary experimental
results are presented in the paper.

I1. FORMULATION WITHOUT ADAPTIVE FILTERING

The standard state variable formulation of the dynamic equations of motion
are shown below where the dot indicates derivative, x is the state vector, u is

the control vector, z is the measurement vector, and w and v are dynamic noise
and measurement noise. [2]

X=Fx + Gu+Tw (1)
z=Hx + v

When the dynamic system is precisely known, a state estimator of the following
form may be constructed where x indicates the estimate of the state x and K is
the gain matrix.

3

x = Fx + Gu +K(z - Hx) A (2)
The differential equation for the estimation error X = x - x 18 obtained by
subtracting Eq. (2) from Eq. (1).

X = (F - KH)X + Pw - Kv (3)
The differential matrix equation for the covariance of the estimation error P

follows where R and Q are from the covariance of th: measurement noise v an
the dynamic noise w.

P = EGED
B = (F - KH)P + P(F - KH)T
+ TGIT + KRKY (4)

The optimal gain matrix K is chosen to minimize the trace of the estimate
error covariance to give the usual result

K = PH Tp-1 (5)

Notice that for a precisely known dynamic system, the estimation gains may be
precomputecd, even in the event of a time varying system. The analysis used
with the adaptive filter closely parallels the development without adaptive
filtering.

II1. ADAPTIVE FORMULATION AND SOLUTION
Adaptive control may be required when the model in Eq. (1) is unknown,

uncertain, or dependent upon a changing system configuration. The modifica-
tions that need to be made in Eq. (1) in order to include the effects of an
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uncertair parameter are given below where the vector parameter a has a dynamics
matrix C with dynamic noise W

= F(la)x + Gu + Tw

e e

= Ca + w
a

z = Hx + v (6)

As can be seen from Eq. (6), the system dynamics are now a function c¢f the vec~
tor parameter a. In this formulation, the vector parameter a represents small
changes from a nominal value co the average value of a is zero. These param-
eters are assumed to be slowly varying so that they may be adjoined to the
state vector. An adaptive state estimator may be written so both the state
vector and the vector of parameters are updated using the measurements.

® .

= F(a)x + Gu + K (2 - Hx)
7)

[

= Ca + Ka(z - Hx)

Let the symmetric matrices Py and Py represent the covariance of th= error in
the estimates for x and a, respectively, and let the rectangular matr.x Pyy
represent the cross-covariance of the errors in the estimates of x and a.

It is necessary to calculate these covariance matrices in order to determine
the optimal gains Ky and K;. The optimal gains are selected to minimize the
trace of the covariance of the estimation error and have the following values,

K = PxHTR_l
(8)

-1

K =P H'R
a ax

Proceeding as before, and assuming the estimation error am=a-ais small,
gives *he vector differential equation for the error,

X = (F—Kxﬂ)x+-a-Ex a+r’w-va
a4 (9)

«=-KH X+ d: +w ~-Kv
a a a

The ma.rix differencial equatious for the covariance are:
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. T
dP /dt = (F- X K
x/ (F xxu) P, +P (F K_H)
+Q+KRKT
X X

o T ~ T
+ (Fax) Pax *Pay (Fax)

T

dPax/d‘ Crpy + Pax(F“KxB)
. T

+ Pa(F;x) - KaHPx

+ K RK T
a X

T
dPa/dt cp_ + PaC +q
- T . T T
KaHPax Pax(Kha) K, K (10)

where. Fa = 3F/oa
and R, Q, and Qa are covariances of v, Tw, and w

(without delta function).

The remainder of this analysis will show approximations which can b~ used to
reduce the computational effort needed to calculate the covariance matrices
and the optimal gains when the covariance ma“rix P, is very sm>1l (of

order ¢} and the covariance matrix P,y is also very small (of urder €). The
gain K, will be very small (of order €) because it is calculated from Pg,4.

The differential equaiion for the covariance matrix P, will involve somf cmall

terms, but most of the terms are larger and constant. If the last two terms

in the differential equation for Py are neglacted (because they are small te:ms
of order €), it is possible to calculate the steady-state constant va_ae of the
covariance Py. From the constaut value eof th2 covariance P, the constant gain

Ky, can be determined. As one might suspect, the constant gain Ky has .he same

value as it would have if there were no errors in estimating the parameters =.

Beceuse the covariance matrices P,, and P, are of order €, many of the te

in the differential equation for P, :.-» of order ¢ squared. If the last °
terms in the differential equation for P, are neslecte¢ (because they are v -,
small verms of order = squared), it is p. .sible to calculate the steady-state
value of the rovariance P, (to order €). As one might suspect, the constant
steady-state value obtained for P, is the same valu2 which would have been
obtained 1if K; were zero.

All that remains is to calculate the time-varying covariance ¥, sc iat the
needed gain Kz can be determined. Because the gain K, has been ' ~r.a to
equal PxHTR‘l, the last twe terms in: the differential equation for ., cancel
out. For the remaining analysis it wil) be a=~umed there sre N staie vari-
ables so the first N/2 variables (designated he N/2 length v ~ctor x¥) cor-
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respond to mode position, anc the last N/2 variables (designated by the N/2
length vect- r x**) corre.pord to velocity of mode position. The differential
equatious ‘or the dynamics of the mode variabies without any forcing or dis-
turbing terms are presented below where A* correspondg to the damping terms
(-2tw) and A** corresponds to the frequency terms (-w®). Notice both A* and
A** are diagonal N/2 by N/2 matrices.

dx/dt Fx

L]

dx*/dt

#

x** (11)

du¥t/dt - AkxkAkkyxkk

Let there be W parameters in the vector a and arrange the order of the param-
eters a so that the first N/2 parameters are the same as the elements of the
dirgenal matrix A* and the last N/2 parameters are the same as the elements
of the diagonal matrix A**, Furthermore, assume the N-by~N symmetric co-
variance mutrix P, assuciated with these parameters is diagonal and composed
of diagoral sub-matri‘:es Pg* and Py**, With these assuaptions, the partial
derivative can be w in a particularly simple way where x* and xx»*

\
represent diagonal u. ..ic2s with the diigonal elements equal to the vectors
Xx* and x**

. [0 1 x*
Fx =
LA*A** x**
Fx = 3(FR1/3,
_fo o
[x*] [x**]
—Pa* 0
P =
a 0O P k%
| a
r- -l ]
Fxp= |° © [x*] O & p aax 5] (12)
a 4 A Pa**] I Gl 2
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One further assumption is that che dynamlcs matric C (for the parameters a) is
diagonal and equal to the scalar ¢g times the identity matrix I. With those
assumptions, the differential equation for the cross covariance P,x can be
written as follows where x is a diagonal matrix made up of the elements of x.

_ T
dPax/dt = Pax(F KxH+C)

+ (pa***[x] )T

where C = cOI
0 o0 (13)
and P kkk =
a P *x P k*
a a

The remairder of the analysis will deal with the cross-covariance matrix Py,
which is the transpose of the covariance matrix P,,. The differential equa-
tion for the cross-covariance P, can be written as follows:

dp__/dt = Fx P +9***[§]
Xa Xa a

[}

where Fx = F - Kx H+ C (14)

The linear matrix differential equation for P,, has particularly desirable char-
acteristics. All the terms in the differential equation are known constants
(because the gain Ky and the covariance P, are known and constant) except for
driving terms due to estimates of the state x. If the approximation is made
that the derivative of the forcing terus x is equal to the dynamics matrix F
times x, then, except for tronsient terms, the solution to the linear matrix
differential equation for Px can be written in closed form as a linear com-
“ipa:ion of the torcing terms x. This is similar to the result in elementary
linear differential equations where the general solution is composed of the
sum of the homogeneous solution due to the unforced different.al :quation and
the particular solu*ion due to the forcing function.

Because the forcing function [i] is a diagonal matrix, the first element X is
the forcig term for the first column of the solution for the matrix P the
second element x2 is the forcing term for the second column of the matr;x Paxs
and so on. Ler Py be a vector which represents the i-th column of the matrix
P.y. The linear matrix-vector differential equation for the i-th column can
be written as follows where Paiiis a scalar which is the i-th element of the
disgonal matrix P, and xl 's a scalar which is the i-th element of X and PI is
is the i-th col. nn of the matrix Pa*** which is all zeroes except for entries
equal to the diagonal elements of Py
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= F*% *A
dP./dt = F* P, + P.* x, (15)

The solution for the vector P; is assumed to be composed of the sum of two
vectors. The first vector is the constant vector Ej times the scalar xj
(rorresponding to the estimate of the position of the mode) and the second

vector is the constant vector Gj times the scalar x; (corresponding to the
estimate of the velocity of the appropriate mode).

Py =By X+ 6% (16)

where for i <N/2 then j i and k = i + N/2

for i >N/2 then j i-N/2 and K = i

The derivative of the vector Pj can be calculated directly if it assumed the
derivative of the vector x is equal to F x with A% and A} being scalars which

represent the j-th element of the representative diagonal matrices which make
up F.

dPi/dt = Eidxj/dt + Gidxk/dt

17
= FE.x, + *2 0+ Kk
XK Giijj GiAj X

Substituting the expression for the assumed form of the vector P; and the
expression for the derivative of the vector P;j into the differential equation,

gives the following equations where 8;; is a discrete delta function which is
unity if i equals j and zero otherwise.

* *k) 3
GiAj xj + (Ei + GiAj )xk

(18)

= F* Eixj + F*Gixk + Giij xj + 3§ Pk k

Collecting all terms which multiply the scalar x gives one veccor equation
and collecting all terms which multiply the scalgr XK 8ives a second vector
equation. The : are two vector equations and two unknown vectors Ej and Gj.

GiAj F Ei 5iij

k% = F* *
E1 + GiAj F Gi + 6ikPk

(19)
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The expression for Ej obtained fiom the second equation is substituted into the
first equations to give a single equation with the unknown vector Gj

* = * - ki * *
GiAj F*(F (;i GiAj + aikpk ) + aijpj (20)

Since a;* and A.** are both scalars, it is possible to solve directly for the
unknown vector “Gj where I is the identity.

-1
= k4 FkA kk _ FhFx x4 xp *
G. (IAj F Aj F*F ) (GJPJ GHF Pl ) (21)

In the same way, the expression for Gj obtained from the first equation is sub-
stituted into the second equation to give a single equation with the unknown
vector Ej.

* = *_ *k % ) * * *
Aj Ei (F IAj ) (F Ei + 13 Pj ) + Aj Gikpk (22)
It is again possible to solve directly for E;j.

- - *_ %k * xXpP *
B = (A% + ErA st - FAF4) 1 [éij(F TA %)P %46, A KBy ] (23)

Thus the two unknown vector quantities Ej and G{ can be determined from known
quantities so the covariance vector Pj and the approximation for the covariance
matrix Pax can be determined.
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IV, SIMYLATION RESULTS WITH TWO MODES

The new, simplified adaptive formulation was first tested with a single
mode system. After encouraging results were obtained with one mode, 2 two-mode

system was examined. The two-mode system used in the simulation studies is
shown in Figure 1.

+—A— ., —— ., /R
2-——w~—- - AM— ——-wv——&

FIG. 1 TWO-MODE SYSTEM

The system consists of two masses, M, three springs, K, and three viscous
dampers, B. For this study, M=1, K=1, and B=0.10. Control forces may be
applied to both masses, random external forces disturb both masses, and noisy
measurements of the position of both masses are available. The measurements
are used for estimating the state vector, and for estimating the parameter
vertor. The differential equations representing this system are:

e
E

+

N

i~ -]

“0
—

]

.
Bx2+21(x1 ‘szz f1+V1

L 1Y L ] L]
Mx, + Zsz - Bx1 + 2Kx2 - exy = f2 + w2

zZ, =X, +v
1 1 (24)

V2
The natural frequencies and damping ratios of this system are:

w, =1 8y = 0.05

1

wy = 1.732 = 0.0869

%2
where the low frequency mode is the common mode motion of the two masses. The
spectral dencities of both the process and measurement disturbances (Q and R)

are 0,0163, Tws hundred position measurements of both the masses were made
during a sixty second computer simulation. This sixty secord duration was
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selected to assure about ten oscillations of the lowest frequency mode. The
sample rate was selected to give about ten samples per cycle of the highest
frequency mode. The value of the correlation time constant for the parameters
that are to be estimated was 250 seconds (so C, is 1/250). This value is much
larger than the time constants of the system. The selection of a "large"
value is important in order to allow the adaptive filter to average values
over several cycles of the system. The fol®  wirg table gives a summary of

the test cases. In each case, both the standard, non-linear extended Kalman
filter, and the simplified extended Kalman filter described in this paper

were run in order to make comparisons. In all of the cases studied thus

far, these two cases were indistinguishable, except for a small, initial
transient. This transient effect is attributed to beginning the standard
extended Kalman filter covariance integration with values slightly different
from the steady state values.

CASE 1 Wy unknown ;1 Known no noise
w, unknown ;2 known
CASE 2 W; unknown g unknown no noise
w, unknown C2 unknown
CASE 3 wy unknown Cl unknown r.oise
W, ur.known %, unknown
z 2

The results are shown i the following figures and are discussed below.
In Case I the starting estimates for the natural frequencies were cnosen
to be 10% in error with w; estimated to be 0.9 (rather than 1.0, and ¥
estimated to be 1.559 rather than 1.732), The damping parameters were
exact, and no noise was present in the system. The results for the estimate
of W1 (Fig. 2) show that the modal frequency is very readily identified from
the measurements, inspite of the 10X initial ervor in the estimate. As the
system response diminishes, less information is available for updating the
parameters. Consequently, with no new information coming into the system,
the parameter estimate begins to return to its nominal value (0.9) with the
selected time coustant of 250 sec. The estimate of w; behaves similarly.

In Case II, the objective was the same as in Case I with the additional
problem of simultaneously estimating the damping parameters. The initial
estimates of the damping parameters were zero. The results of “hc poor ini-
tial guess of the damping parameter are evidert in Fig. 3. The estimate
of the modal frequency tends to be lightly damped, but in all other aspec.s,
the estimate of W] appears to have the same features that were present ju
Case I. As has been found in past studieS'[I], the estimate of the dampir 4
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parameter itself is quite poor. This is due to the fact that the position
measurement contains very little damping information.

Case III is identical to Case II with the addition of both process and
measurement disturbances. Surprisingly, this case yielded the best results,
as is evident in Figures 4 and 5. The effects of the aoise are clearly
visible in the figures. However, in contrast with the previous two cases,
the process noise continues to excite the system after the transient effect
of the initial conditions have subsided. The result is that the measurements
continue to provide information on the parameters for the duration of the
simulation. Since the higher frequency mode is more heavily damped, and is
less perturbed by the external disturbance, the improvement in the natural
frequercy estimate of mode two is not as dramatic.

CONCLUSIONS

This paper has developed approximations which allow dramatic reductions
in the on-line computational requirements of the extended Kalman filter.
Numerical simulations of this technique have validated the approach for two
simple spring-mass systems. It was found that the full non-linear extended
Kalman filter and the closed-form adaptive filter developed in this paper gave
virtually identical results. Work is currently in progress to apply this
ipproach to a much larger system using experimental data, rather than simulated
data.
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ABSTRACT

The paper discusses several concepts and results in robust adaptive control
and is organized in three parts. The first pa.. "nr.eys existing algorithms,
Different formulations of the problem and theoretical solutions that have been
suggested are reviewed here. The second part contains new results related to the
role of persistent excitation in robust adaptive systems and the use of hybrid
control to improve robustness. In the third part promising new areas for future
researcn are suggested which combine different approaches currently known.

1. INTRODUCTICN

The stable adaptive control of linear time invarfant plants, in what 1is now
termed "the ideal case", was resolved in 1980 [1-4]. The assumptions made in
[1-4] regarding the plant to prove global stability are quite stringent. Specifi-
cally, knowledge of the sign of the high frequency gain K_, the relative degree
n* and an upper bound n on the order cf the plant transfeg function are assumed
to be known. Further it is assumed that the zeros of the plant transfer function
lie in the left half plane, the plant parameters are constant (though unknown) and
the system is disturbance free. However, in practice, these assumptions are rare-
ly met. No actual plant is truly linear, finite dimensional or noise free., Fur-
ther, in practical situations, the rationale for using adaptive control is to com-
pensa“e for large variations in plant parameters. In the presence of such devia-
tions from ideal conditions, the algorithms suggested in [l-4] no longer assure
the boundedness of the signals in the adaptive loop. This accounts for the wide
interest in the past few years in what is termed robust adaptive control to
achieve satisfactory performance in the prese ce of both mrdeling and operating
uncertainties. This japer attempts to survey some of the modest gains that have
been made in this direction, presents some new results for improving robustness
and discusses promising directions for future research.

Adaptive systems are special classes of nonlinear systems and many questions
which arise in such systems can be stated as problems in the stability theory of
differential equations. In particular, questions of robustness can be addressed
using amply discussed results cn practical stability and total stability, Since
such results are bound to find increased application in adaptive systems, some of
the more frequently used concepts, definitions and theorems are collected in
gection 2,

Recent years have witnessed many contributions to the robustness problem,
Among these some assume additional prior information regarding the ur :rtainties
to suitably mediry the adaptive algorithms [5~9 ] while ctheis ass  that the
reference inpute possess propertiec which make the ideal system e ,onentially
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stable. 1In all cases it is shown that boundedness of solutions is assured when
the true situation deviates in specific ways from the ideal., Some of these ana-
lytical results which are currently known are presented in section 3.

Sections 4 and 5 contain some new results on persistent excitation and hy-
brid auaptive control which are relevant to the problem of robustness. In sec-
tion 4 a nonlinear error equation of second oruer is discussed in detail. While
the ideal system is uniformly asymptotically stable it is showa that unbounded
solutions can result if the disturbance is sufficiently large. It is also shown
that by increasinp the depree of persistent excitation of the reference input the
overall system can be made practically stable. Section 5 discusses hybrid con-
trol algorithms recently introduced by the authors [10]. The same algorithms can
also be modified to adaptively control discret: plants by updating control param-
eters infrequently. Some plausible arguments are given towards the end of the
section as to why such algorithms -ay be more robust than continuous algorithms
when external bounded disturbances are present.

Finally, in section 6, possible vays of coﬁbining known methods are discussed
in the hope that it will stimulate research in these new directions., While no

hard results exist in these areas the suggestions are based on extensive simula-
tion studies.

2. MATHEMATICAL PRELIMINARIES AND STABILITY RESULTS

Some well known concepts and results of stability theory which find frequent
application in the analysis of adaptive systems are included in this section.
Waile they can be readily found in any good text [11-13] we present them here for
easy reference as well as to place some of the problems discussed .in the follow-
ing sections in proper perspective. We start with the definicions of uniform
asymptotic and exponential stability of the solution x = 0 of an equation
% = f(x,t), £(0,t) = 0. We assume that f is continuous and satisfies conditions
which guarantee the existence and uniqueness of solutions and continuity of their
dependence on the initial conditions, The general solution of vhe differential
equation is denoted as p(t,xo,to) with p(to,xo,to) = Xge

(i) Definition (Uniform Asymptotic Stability): The equilibrium x = O of the
differential equation % = f(x,t) i3 uniformly asymptotically stable if it is uni-
formly stable and for some € > 0 and all €, > 0 there is a T(el.ez) > 0 such that

""o <« implies || p(t,x,,ts) Il < e, for all t 3 t, 4 T.

.(ii) Definition (Exponential Stability): The equilibrinm state of the equation
x = f(x,t) is exponentially stable 1f two positive constants a and B which are
independent of the initial values gx%sf such that for sut lently small initial

-a(E=~ .
va1ues,|lp(t,x0,to)||< Bllx0||e 0,

A linear time-invariant system with f(x,t) = Ax where A is a constant matrix
is asymptotically stable if the eigenvalue. of A are in the open left F .1f of the
complex plane. Asymptotic, uniform asymptotic and exponential stabiiity are
equivalent in this case. For linear time-varying .ystems, asymptotic stability
does not imply uniform asymptotic stability whereas the latter is equivaleut to
exponential stability. For linear systems, all stability properties hold in the
large. 1In general, for nonlinear systems exponentfal stability implies uniform
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asymptotic stability but not vice versa, If f(x,t) is autonomous or periodic in
t,all stability properties are uniform,

In robust adaptive control we are interested in deducing *he properties of
the solutions of a perturbed system (S ) from the tehavior of the solutions of an
unperturbed system (S). These are desBribed by the differential equations

& o= f(x,t) () ; x * £(x,t) + g(x,t) (sp) (1)

Let the equilibrium state of (S) be exponentially stable, If"g(x,t)“ < L" x'l
for sufficiently small b and G,andllx “< §,then the equilibrium stav~ of (S ) 1is
also exponentially stable [11]). In physical situations the condition g(O,tg = 0

required above is not generally met and this gives rise to the concept of total
stability,

(iii) Definition (Total Stability) {*1}: The equilibrium state x = 0 of (S) is
totally stable if for every ¢ > 0 two positive numbers Gl(e) and 62(3) exist such

that every solution p(t,x_,t.) of (S ) satisfiesl'p(t,x st )“ < g, t 3t provided
0, 0 P 0’0 0
||x0" < 61 and f} g(x,t) < 62. .

In the Russian literature this is also referred to as stability under per-~
sistent disturbances. The uniform asymptotic stability of the u-,erturbed system
implies total stability {11] and is frequently used to prove robustness of adap-
tive systems in the presence of sufficiently small perturbations. Recently the
magnitude constraint on gx.l| in the definition of total stability has been velaxed
by Anderson and Johnstone ?8] at the expense of stronger conditions on f(x,t).

In practical s stems we are interested in the uniform boundedness of the asolu-
tioas in the presence of perturbatfons as well as in the magnitides of this bound.
This leads to the concept of practical stability def.ned below.

(iv) Definition (Practical Stability) [12]: Let Q0 = {xlllxﬂ < 61} be open
set in R° and 52 > 0 a constant sugk that]]g(x,t)}} < 5, for all x and ¢ 2 tye
If the solutions of (Sp) lie witkin a closeld bounded set Q :)Qo for X € Qo then
the system (S) is said to be practi..lly stable,

Total stability assures the existence of Q0 and 62 relative to which the sys-

tem (S) is oractically stable but provides no way of estimating the size of Q, or
the magnitude of 62. In adaptive control applications this is not adequate. One

is more interested in determining an estimate of Q from a knowledgu of 52.
An alternacive method for treuating the effect of pertur. tions is by consid-

ering them as bounded independent functions of time. This leads to the w L1 known
concept of bounded input - bounded output (BIBO) stability,

(v) Definition (BIBO Stability): A system X = f(x,u,t) with {(*,0,t) = 0 is
BIBO stable if for every a > 0 and every a 3 O ther: is a 3 = R(a,a) such that
leu(r,xo,to)" < B8 for ail © 3 ty for every initial condition (xo,tc) with

“,h'ls o and sgpl]u(t)'is a, where pu(b,xo,to) is tne solution of the system with
i u(e).
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A lineacr system x = A(t)« + b(t)u 18 L'80 stable if rhe homogeneocus part is
unif<rmly asymptotically stable, This is a pruperty which is frequently used i:
robust adaptive control using the concept of per-istent excitatior. In contrast
to the above, uniform asymptotic stability of a nonlinear system does not imply
BIBO stabilitv. An example of this was given by Deso=r et al [14]). A similar

situi.tior arises in the discussion of robustness of a second order nonlinear sye~
tem in section 4,

Stability Problems in Adaptive Syste is: The study of the stability or adaptive
systems (2s shown In (he fullowing sactions) can be convenieatly carried out usiig
a set of nonlinear time-varying error differential equations. Even in the "id-al"
or disturbance free case the time-variatinns arise due to the presence of the
reference input r(+). The foilowing are some noteworthy features of many of the
stability questions which arise in adapt e systems.

(i) 1In the !deal case, a Lyapunov function V > 0 with & « J can be found. The
regative semi-definiteness of ¥ cannot he avoided and is a resu'. cr th2 adap-ive
law used. )

(ii) ~t a result of (1) even the unforced (autonomous) ~ <em is uniformly sta-
ble. Even when tne reference input is persistently exciring, ' £ 0 buu the system
can be shown to be uniformly asymptotically stable [15]. We note that LaSalle's
theorem cannot be directly applied to prove this since the system is nonautonomous.

(i1i) Since the system is exponentially sta. ‘e with a persistently exciting ref-
erence irput, Malkin's theorem can be used to conclude that the solutions will be
bounded for some initial set Q0 and perturbation of magnitucde g 62. However, wvery
little can be said directly about either Qo or 62.

(iv) Aaother cc .sequence of the semidefiniteness of V is that assuring even tha
boundedness of solutions vsing Lyapunov's Direct method for givem bounus on per-
turbations is nc longer trivial., Sowe of these cases are consiaered in section 3.
In section 4 it is shown that even v =n the reference inpu. is persistentiy excit-
ing, if the disturbance 1s 1-cge the :32lutions can be unbounded. Alternately, for
a given bound on the disturbance the persistent excitation czn te made sufficient-
ly large to assure the boundedness of the solutions.

3. GJECENT RESULTS IN ADAPTIVE CONTROL

In this secti. n we attempt to survey briefly some oi. the theoretical results
currently known ir the area of robust adaptive control. The aim of the sectiun ias
to provide an understanding of the qualitative idea: that lcd to these resurts a1
well as the analy .ical tools used in deri:’'ng them. Since the idecal system rcrms
the starting point of all perturbation a.:.lyses, we shall .briefly outline the
statement of the vroblem and tne proof of stability in chis case. Further, whiie
several stable adaptive algori.ams have been suggested in the literature, we shall
discuss the proof of stability using only 2 alg.rithm proposed in [16]. The
proofs using all the other algorithms follow along similar Iiues.

a) Idesl System: The plant to be contro.led is described by tue a*atc equsticos
° i
= AX +bu ; = c (2)
TR T P T % p
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and a reference mod2l is described by

° T
= + . = -
X, = AXp bt 5oy = X 3)
where %x_, u and y_ are rz2spectively the state input and output of the plant and
X, ane “y, - are the state anu outjut of the model. The transfer functions of

the plant and mcdel are

X2 (s)
= T - -1 = 2...?.._ . = T -1 = &l
W (s) = c "(sI-A) b, Py 5 w8 = (sI;AD) by R_(s)

o
The following assumptions a:- r ;e regarding Hp(s) and Wm(s)

(i) Zp(s), Rp(s) and & ~) are moric polynom: s of degrees m, n and n*=n-m
(ii) ZD(s) and Rm(s) ar.. . tric.ly stable polynomials
and (iii) r is a piecewise cantinuous un1;orﬁly bounded reference input,

The objective is to COXtTJl the planc in such a fashion that the output error
between plant and model e, =v, -y, tonds to zero asymptotically, while the sig~

Py

nals and parameters of the system remain uniformly bounded. It is now well known
that knowledge of the c¢xact relative degree n* of the plant, an upper bound n on
its order, the s51gn of the gain Kp and the condition that Zp(s) be Hurwitz as

given in ,iil) are needed to solve *he problem. n* enables the model to be con-
structed while the value of n det..mines the order of the controller to be used.

The sign of K and the constraint on Z (s) are necded to prove the stability of
the overall s?stem. P

Structure of Controller: In the following we shall assume that K_ is known and
Kp = Km = ], To meet the control objective a controller describell by the follow-
ing equations is used:

o) | gD

+ gu &(2) = Fw(Z) + gyp ; u= 6Tw +r 4)

where F is an asymptotically stable nxn matrix, (F,g) is controllable,

T, @7

w = [w s ] and 6(t) is a Zn dimensional parameter vector which is to be
adjusted adaptively. It is well known [17] that a unique constant vector 6%
exists such that the transfer function of the plant together with the controller
matches that of the model exactly, when 8(t) = 6%, The aim of the adaptive law

is to adjust 6(t) in such a merner that the overall system is globally stable and
lim el(t) = 0, '

£

While several aspecial cases of the adaptive control problem have been con-
sidered, we discuss below the general case when W_{s) has a relative degree

n* > 2, If 6(t) - o% 4 ¢(t), then ¢ is the parameter errnr vector and the output
of the plant can be expressed as

y (6 = V() [x(e) + ¢7(D)u(t)] (5)
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The Adaptive Scheme: To generate the adaptive law an auxiliary error signal Yo (t)
is added to e (t) to generate an augmented error € (t). if

v, (B 2 o (W ()T ~ Hm(S)6 (t) Ju(t) (6)

then
T (DT(E) = e (1) +y (£) = € (t) )

where Hm(s)lw = L. The adaptive law for updating 6(t) then depends on the aug-
mented “error € (t) and the signal z7(t) and is given by
= £ (6)z(r)
o(t) = 8(r) = -——~———-——-— (8)
1+¢ (t)C(t)
fhis has been shown to result in global stability of the adaptive loop [16].

T
Proof of Global Stability: 1If V(¢) = 1/2 ¢ ¢, the adaptive law (8) yields

¢, ()

T
1+ 7 (t)g(e)
from which it follows that

V(¢) =

(i) ¢ and 6 are uniformly bounded
(i1) ¢ ¢ L2 9)
and (111) e (6) = w1 + ¢ @1, v e 1

Since the complete proof is too long and involved to be included here in its
entirety we merely outline the principal steps involved.

(a) Since the parameter vector is bounded by (i) it is first shown that

sup|y (T)| 4" sup“w( )(T)ll n sup “m(‘r)" " sup “C(T)u (10)
Tt £t

Here v is an equivalence relation and 1nplies that the corresponding signals in
(10) grow at the same rate [i8].

(b) - Since $ € L2 it can be shown that Yo (t) grows at a slower rate than

sup lw(t)u denoted by Yq (t) = of[sup Ju(x) B 1. (11
&t st
(¢c) From (5), (9-1i1) and (11) it follows that
e, = ¥ ¢Tw = v[l + ;Tclllz + ofsup JJu(D)|f ] (12)
TSt

(d) Since v ¢ L using equation (4) we conclude that
sup||w( )(T)|| = o sup ||w(r)|| which contradicts (10).
T8t Tst
Hence all the signals in the system are uniforamly bounded and lim el(t) = 0,

L+
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The importance of demonstrating the boundedness of ¢(t) and $ € L2 in the
proof of stability is worth noting. [In some cases it may be possible to show
that lim ¢(t) = 0, which serves the same purpose.] The former assures that the

£
relevant signals in (10) grow at the same rate while the latter is used to prove
that |yp(t) andllmz(t)" should grow at different rates if the adaptive control

is used, leading to a contradiction.

Asymptotic Stability of the Ideal System: Once the boundedness of all the signals
in the adaptive system has been established, interest shifts to the convergence
of the parcueter vector 6(t) to its desired value 6% or equivalently of ¢(t) to
the null vector. Since the adaptive law (8) can be represented as

&(t) - — C(t)CT(t)
1 + zT(t)z(t)

the conditions that have to be imposed on [(t)-to accomplish this is of interest,
Following the results of Morgan and Narendra [19] if g(t) is persistent-

#(t) (13)

T
Y1 + ¢ (t)g(t)
ly exciting 1lim ¢(t) = 0 and the convergence is exponential. Since Wm(s)Im = 7,
to

a sufficient condition for z(+) to be persistently exciting is that w(e) is per-
sistently exciting [15]. Hence conditions under which w(e) will be persistently
exciting have been investigated by several authors [15,20-22].

Persistent Excitation (PE) of w(t) and w*(t): Early results on the convergence of
the parameter vector to the null vector were stated in terms of the PE of w(t).
However since w(t) is a dependent variable within the adaptive loop, very little
can be said directly about its persistent excitatjon., Hence attempts were made to
express this condition in terms of the PE of signals in the model which are at the
discretion of the designer. Since the adaptive system and model transfer functions
are identical when 6(t) = 6*, the model can be parametrized in such a fashion that
a signal w* in it would correspond to the signal w(t) in the adaptive loop. Fur-
ther since the model 1s time 1nv%rianx, conditions on r(t) which would assure the
P of w*(t) can be derived. If w(t) 2 u(t) - w*(t), the adaptive law assures that
lim w(t) = 0, Hence, in the ideal case the PE of w*(t) ensures the PE of w(t)

[

and hence the convergence of the parameter vector 8(t) to its true value.

Ccaments:

(1) The abuve arguments have focussed attention on several interesting ques-

tions related to persistent excitation and transformations-under which the proper-
ty is preserved [15].

(11) The convergence of X{t) to 0 1s used above to show the PE of w(t) and hence
the convergence of ¢(t) to O, This ie no longer possible when an external dis-

turbance is present since even the boundedness of the signals is not assured in
such a case,

(i11) From the results of several authors it is now known that an almost periodic
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reference input with n-distinct frequencies results in the PE of w(t).

b) Adaptation Under Perturbations: The adaptive control system described in sec-
tion (3a) assumed ideal conditions. The plant was linear and time-invariant and
no external disturbances were present. In addition, considerable prior knowledge
of plant transfer characteristics was assumed to help in setting up a reference
model and deriving stable adaptive laws. As mentioned earlier, plants are rarely
strictly linear or finite dimensional and in many practical situations the need
for adaptive control arises due to large parameter variations, Also, external in-
put and output disturbances are invariably present in real systems. Hence there
is a definite need to extend the theory developed for the ideal case to situations
with modeling errors and external disturbances., Some of the schemes that have
been proposed in recent years to achieve robustness in the presence of such per—

turbations are briefly reviewed in this section and some new results are reported
in sections 4 and 5.

The basic adaptive system in the ideal case is only uniformly stable. This
implies that bounded perturbations can theoretically produce unbounded outputs.
When the reference input is persistently exciting, the nonlinear system is uni-
formly asymptotically stable in the large and exponentially stable when the ini-
tial state x, lies in a finite ball around the origin. The latter fact allows
BIBO results to be derived using theorems cf the type described by Malkin, pro-
vided the perturbations are sufficiently small., However, as pointed out in sec-
tion 2, very little can be said using such an approach about the effect of bounded
perturbations of a specified maximum amplitude on the global behavior of the solu-
tions of the adaptive system, In addition to such perturbation methods a few
global wethods have also been used to derive results in robust adaptive systems.
The principal concepts involved in deriving some of these are discussed below.

(1) Use of Dead-Zone {5]: The problem statement is similar to that given for the

ideal system with the exception that yp = cpTxp + vy where vy is a bounded dis-

turbance., Using the same adaptive law (8) as in the ideal case, the error equa-
tions can be expressed as

$T(D)Z(E) + v(t) = e(t) (14)
and

* =Te(t t

jo) - L@@
1+ z (£)rg(t)
where v is an equivalent output disturbance due to vl. The difficulty arises due

to the presence of v(t) in (14). When sgn[¢T; + v] = sgn[¢Tc] the adaptation is
in the right direction. Otherwise the parameter vector may be adjusted away from
its desired value, This implies that problems of convergence may arise when e(t)
is of the order of the vound v, of v(t). The modification in the algorithm sug-
gested in [5] is to use a dead-zone so that the adaptive parameters are not ad-
justed when €(t) lies inside it. Hence the overall system operates in two modes--
a linear time~invariant mode when |e(t)| g v, + § (for some constant § > 0) and
an adaptive mode otherwise. In 5] it is shgwn that such an algorithm results in
a system with bounded signals, Further, adaptation takes place for only a finite
time, This implies that in practice the system will converge to a linear time-
invariant system in a finite time after which the output error will lie entirely
in the dead-zone and hence adaptation ceases entirely.

(adaptive law)
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(i1) Bound onfe*ll : An alternate approach to the bounded disturbance problem

was taken by Kreisselmeier and Narendra [6]. While the statement of the problem
as well as the structure of the controller are identical to that in (i), it is
assumed that no knowledge of a bound on the disturbance is available, Instead,
it is assumed that the desired vector §* has a norm less than a specified value
"e*llmax° Hence the search procedure can be confined essentially to the set

S:{sl Hell 5" e*||max}. The adaptive law used to update §(t) is identical to that

in the ideal case when 6 lies in the interior of S and is modified when it reaches
the boundary of S, or lies outside it., In [6] it is shown that such a scheme re-
sults in the boundedness of all signals in the system.

Apart from the obvious differences between the schemes suggested in [5] and
[6], there are mathematical diiferences in the proof that are worth stressing.
As in [1-4], the proofs of stability in [5] use limiting arguments as t + = to
show that ¢ ¢ L*. Such a procedure cannot be used in [6], since ¢(t) does not
tend to any limit as t + =, Hence all arguments are based on the analysis of the
behavior of the systen over a finite interval. As shown in sectlon 6 the approach-
es in {5] and [6] complement each other and can be . ombined to have wider applica-
tion in adaptive systems in the future,

(iii) The og-modification Scheme: In approaches (i) and (ii) certain prior infor-
mation is assumed to implement the adaptive laws. In contrast to this, a scheme
suggested by loannou and Kokotovic [7] assures boundedness of all signals in the
system, without any assvmptions regarding the bounds on either the disturbance or
the control parameters, However, to the authors' knowledge, the method has been
shown to result in global boundedness only for the special case when the refer-
ence model is strictly positive real.

The method is based on the following simple ideas., If V(e,¢) is a quadratic
Lyapunov function candidate, the time derivative V(e,¢), along a trajectory, is
generally a quadratic fugction of e and hence is negat}ve sem*definite. When_a
disturbance is yresent, V(e,¢) has the general form -e Qe + e av, where Q = Q > 0,
a is a constant vector and v is a bounded disturbance. Very little can be con-
c¢l.1ed regarding stability from this and accounts for the modifications suggested
in [5] and [6]. Jn {7), an additional term —¢6 is used in the adaptive law, as a
result of which V(e,$) becomes negative definite outside a bounded region in the

(e,¢) space. From this it is concluded that all signals in the system are bound-
ed.

(iv) Adaptive Systems and Time-Varying Plants: The methods outlined in sections
3b(1-11i) deal with the global behavior of the adaptive systems when bounded per-
turbations are present. In contrast to this Anderson and Johnstone [ 8] examine
adaptive control problems where the assumptions made regarding the system deviate
slightly from the idesl. While [ 8] addresses primarily the problem of time-
varying plant parameters the authors claim that the same methods with remarkably
little change allow examination of the effect of measurement noise, plant nonlin-
earity and undermodelling of the plant order.

As 1in our discussions in section (3a), the authors first consider the ideal
system and demonstrate uniform or exponential stability in the presence of per-
sistent excitation., For the various types of perturbations considered,their aim
is then to show that the resulting equations can be cast in such a form that the
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total §tability of the overall system can be demonstrated using modifications of
Malkin's theorems. [ wever, as mentioned earlier, the theorems are useful primar-

ily for establishing the existence of robustness in the presence of sufficiently
small perturbations rather than for providing guidance in the choice of the con-

trol input to assur: boundedness of solutions when the class of perturbations is
specified.

4. PERSISTENT EXCITATION AND ROBUSTNESS

In the last section, we discussed two approaches of studying the robustness
problem in adaptive systems, The approach in 3-d assumed that the perturbations
were sufficiently small and derived BIBO results local in nature, using Malkin's
theorem, whereas in 3a-3c the approach was global in nature and used additional
information regarding plant dynamics and the external perturbations. Also, the

first approach made use of the PE of the reference input which was not needed in
the second.

In this sectlon, we present some new results which demonstrate global bound-
edness of all signals in the adaptive system in the presence of bounded disturb-
ances’ when the reference input is sufficiently persistently exciting. We show
that by analyzing a set of nonlinear error differential equations, we can estab-
lish the global robustness behavior of the adaptive systems. In particular, it is
shown that if the persistent excitation of the model output is larger than the
disturbance, the solutions will be globally bounded and that if the maximum ampli-
tude of the disturbance is greater thar that of the model output, the system can
have unbounded solutions. The basic idea is stated here by considering the adap-
tive control of a first order plant and studying the corresponding second order
nonlinear differential equations in detail. The same methodology is
applicable to the general adaptive control probl:am,

Nonlinear Error Equations: The plant to be adaptively controlled, the correspond~
ing reference model and the resulting error equations are as follows:

.

Plant: = a +u+v; u=60y +r
n yp py P ’ yp
Model: § = -y +7r
.m m (15)
: = - +
Error Equations e el + ¢yp v
Adaptive Law: & = —elyp

where r is the refergnce input, v i8 a bounded input disturbance, e, 1s the output
error defined as e1 = yp - Yp and ¢ is the parameter error. In the ideal case,

when v(t) = 0, by considering

e. (t) = —e_(t) + ¢(t)y (t)
1o K (16)
p(t) = -el(t)yp(t)

it immediately follows that the system is uniformly stable and if y (t) is per-
sistently exciting, the system is exponentially stable. When a P 4isturbance
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v(t) is present, it is tempting to proceed as in the ideal case and require y_(t)
in (15) to be persistently exciting so that the unperturbed system is expo-
nentially stable resulting in a bounded error vector for bounded perturbations.
Since stability of the overall system has not been established, y (t) cannot be
assumed to be bounded and proving that it is PE becomes specious.' Hence we have
to express the right hand side of (15) in terms of the model output y (t) which

is an independent variable rather than the dependent variable y (v). ™his results
in the following nonlinear error differential equations:

e, (1) = -e,(£) + ¢(B)y_(£) + ¢(t)e (V) + v

. 2 (17
o(t) = -e,(t)y (t) - e, (t)

By analyzing the above nonlinear differential equation, we demonstrate the global
behavior of the adaptive system in the presence of v(t).

The Ideal ‘ystem: In the absence of external: perturbations, the nonlinear system

e, (1) = e, (£) + ¢(t)y_(£) + d(t)e, (t)

o(t) = e, (t)y () - e, "(£)

can be shown to be uniformly asymptotically stable in the large as follows: If

W(e s9) =-l [e 2 + ¢2], the time-derivative W[e1,¢] = --el2 < 0. Hence the system

e, (t) and ¢(t) are uniformly bounded for all t > to, if W[el(to).¢(t0)] < »,
Since e, ¢ L and e1 is bounded, 1im el(t) = 0. The nonlinear vector [¢el,-e12]T

can be considered to be the inputtz: the linear part which is exponentially stable
if ym(t) is PE. As e 0 as t + =, this input tends to zero and hence x(t) - O

as t + = where x 2 [e1,¢]T. Since all the arguments are independent of the init~
ial time t and the magnitude of the initial conditions, the system is u.a.s.l.
It is also worth noting that when ym(t) is PE, the linear part of (18) is expo-

nentially stable but the nonlinear system is exponentially stable only when the

initial state x(t.) lies in a finite ball around the origin and not globally ex-
ponentially stablg

Perturbed System: To provide some insight into the behavior of the nonlinear sys-

tem, we shall discuss three cases where the perturbed nonlinear system (17) is
autonomous,

Case (1) Ym (t) = 0: When v(t) = 0, the system is uniformly stable., If v(t) = max
1im ¢{t) = ~» and lim e (t) = (,

£ o

Case (ii) ym(t) = Yoax® The unforced system in this case is autonomous and, by

LaSalle's theorem, is u.a.s.l, since the largest invariant set in E = {x]el2 = 0}
is the origin. However, since the system 18 nonlinear, it no longer follows that

a bounded input will result in a bounded output. If, for example, v(t) = ~v

max’
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where Voax  Ymax® ¥€ can show that lim el(t) = “Ypax and lim ¢(t) = -=,

t-ro 0
Case (iii) ym(t) z Ymax*Ymax > Vmax' The system is Lagraege stable. When
v(t) = “Voax® the system has an equilibrium state at (O, max ) which is
max
u.a.s.,1l. Similarly when v(t) = Viax® the system has an equilibrium state at
ma;
0, - 7).
max

The above special cases reveal that the behavior of the nonlinear system is
very much dependent on Y max and Viax® In particular, when ym(t) = Y max and

v(t) = =-v__, the system has unbounded solutions when v >y and all solu-

tions are “bounded when Y pax >v__ ., The results also carry over to the general

case when both v(t) and y (t) are time-varying and are stated in the following
main theorem of the paper? (Fig. 1)

1: < . -
Theorem 1:Let |ym(t)| S Voax® Iv(t)| 2 Voax and ym(t) be a smooth persistently ex

citing signal in the sense described in [23]. This implies that positive numbers
TO’EO and 60 exist such that given any t. > 0, there exists a t, € [tl,t + TO],

2
1 t,+§
s 1
with [t + 0](: [t)st) + T,l and T I t2 Oym(r)drl > €5 Then

(a) 1If Ymax < Voax® by choosing an input v(t) as

1
2%

v(t) = -sgr.(ym(t))vmax when lel(t)l > Yoax

= sgnley (B))v, Iel(t)l < Ymax

where sgn(a(t)) s T;%é%% when a(t) # 0 and is equal to unity when a(t) = 0, there

exist initial conditions for which 1lim ¢(t) = -« and el(t) approaches asymptotic-

o~
ally the region |el| < ymax + €, where € 18 an arbitrary positive constant.

(b) 1If €0 > Vmax + 8 where 6 is any arbitrary positive constant, then all the
solutions of the differential equation (17) are bounded,

Prooif;

a) Let D, be the open domain enclosed by the line e, = ~v and the curve
e1 + v 1 max

1 max _

$ ;;_:7;;;; with ¢ < 0. When ym(t) 2 Yoax and v(t), Vax all solutions
that start on the boundary a(Dl) enter Dl' Since the system is autonomous and
contains no singularities in D.,all solutions originating D, are unbounded and

1 1
lim ¢(t) = -», lim e, (t) = -y .
1 max

oo Lty

For a time-varying signal y (t) the proof of unboundedness is related to the
above autonomous case. Consider™the solution of the differential equation with
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-~ v
initial condition (0,¢0) with ¢0 < ——;Eéi » With ym(t) = Y max and v(t) “Vnax’
max

Let T', denote the open curve along which the trajectory lies for all t 3 0., Simi-

»

larly let TI'_ denote the curve along which the solution lies for all t 3 0 when
v(t) = Vinax and y(t) = Y pax® Let F(¢0) = h+(] r_. F(¢o) divides the plane into

two open regions D2 and DZc where (0,¢) ¢ D2 if ¢ < ¢0. Then all solutions of the
differential equation with Iym(t)l S Ymax and ]v(t)l A with initial conditions
on F(¢0) lie either in r(¢0) or enter D2' Since this is true for every ¢0, the

"

solutions are unbounded and lim ¢(t) = -,
A T Lo 2
b) Let x = [e,,¢]. Let D denote the region in R~ D#{x| lell S Vpax! and let

c

D~ denote the complement of D. If W(x) = 1/2 xTx, the time derivative of W along
a trajectory is ﬁ(x) = --el2 + ev < 0 for x ¢ D°. Hencellxlldecreases in D¢ and
can increase only in D, We wish to show that -a constant ¢ exists so that if

“x(tO)“ = ¢, > c over an interval [to,to + TO], thenllx(to + To)u < ey

1f "x(toxl = 4o integrating the equation for él in (17) 41t gan be shown that
if x(to) e D, then x(tl) e D° for some t

2{T + 1]
(eo-vmax)T

max
1 € [to,t0 + To] if o > S1a0 ° where

cot 6 = + Hence under the conditions specified in the theorem, the

trajectory invariably enters p¢ during every period To. By increasingl'x(to)“

monsconilally, the trajectory can be made to lie in a subdomain of D¢ for a finite
time A with 0 < A < §, over every period. Sincellx(t)l decays exponentially in
this subdomain, a constant c > c0 exists satisfying the conditions of the theorem,

Comments:1,The positive limit set of any solution x(t) lies in D,

2, €, will be referred to as the degree of persistent excitation. By the theorenm,

the solutions are bounded if €0 > Vnax but the nature of the limit set depends on
TO’ €. and §_,

0 0
3. From the theorem it follows that for a given bound Voax °0 the perturbations,
the system can be made robust by increasing the degree of persistent excita-
tion. Note that this is an example of practical stability.

4, The conditions for boundedness and unboundedness of solutions are given in
this case in terms of y (t)., For design purposes it is more appropriarc to ex-
press them in terms of ™ the reference input r(t).

%. HYBRID ADAPTIVE CONTROL
In continuous adaptive systems of the type described in the previous sections,
the plant operates in continuous time and the controller parameters are adjusted

continuously. Recent advances in microprocessor and related digital computer tech-
nology favor the use of discrete systems in which signals are defined at discrete
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instants. Practical systems on the other hand may contain both discrete and con-
tinuous elements. Such systems may be described as hybrid systems. In a recent
report [10] the authors have developed analytical models of hybrid ystems in
which control parameters are adjusted in discrete time even as the continuous
plant signals are processed in real time. The same algorithms can also be extend-
ed to control disciete time plants so that the overall discrete system operates

on two time scales -~ a fast time scale in which the system operates and a slow

time scale in which the control parameters are updited, We shall refer to such a
system as a discrete hybrid system,

In this section we describe briefly one of the hybrid adaptive algorithms and
demonstrate global stability in the ideal case of an adaptive system which uses
such an algorithm. The behavior of a discrete hybrid system is then discussed
when bounded external disturbances are present. Using the results of the previous
sectior, arguments are put forward as to why hybrid schemes should result in more

rcbust systems and simulation results are presented to show that this is indeed
the case.

a) Hybrid Error Model: 1In this section we consider the first of several hybrid
error medels giver: in [10] and discuss its properties., Similar results can also
be derived in all the other cases. The error model is described by the equation -

T
o u(t) = el(t) t e [tk’tk+1)’ k e N (19)
where u: nl+ +|Rm, e, : m+ —>[R1 are plecewise continuous fur:tions which are refer-
red to as the input and output functions of the error model. {ck} is a monotonic~

+
ally increasing unbounded sequence in (R with 0 < Tmln g 'I'k < Tmax < = for k ¢ N

where Tk = tk+l - tk. When Tk = T, a constant, we shall call T the sampling peri-
od. ¢:u§*—+n€n is a plecewise constant function, referred to as the parameter

error vector and assumes values $(t) = ¢k. t c [tk’tk+l)’ where ¢k is a constant
vectort, i

It is assumed that ¢0 (and hence ¢k) is unknown, the values u(t) and el(t)
can be obgserved at every instant t and A¢k ¢ ¢k+1 - ¢k can be adjusted at

t=t . The objective is to determine an adaptive law for choosing the sequence
{A¢k} using all available input-output data so that lim el(t) = C,

o0 .
Theorem 2:If in the error equation (19) the vector ¢k is updated according to the
adaptive law

t
f k1 el(t)U(r)

b, = dt (20)

<)L
—

8 1+ ul(t)ulr)

then

(1) 4if u(t) and G(t\ are uniformly bounded in Bf'lim nl(t) =

>
(i1) 1if in addition to the conditions in (1) u iR” persistently exciting over an
interval T , , 1lim ¢, = 0
min K k
00
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(iii) If u ¢ L: then e (c) = p(t)[1 + uTull/z. pE Lz-

1
Proof: 1f V(k) = §'¢k ¢k’ using the adaptive law (20) we obtaln AV(k) = - 3 ¢k
[21 - R JR 9, < O
Rk Rk “ 1 tk+1 U(T)uT(T)
where Rk = ir-Jt T dt
k“’7k 1+ u (t)u(r)

Hence V(k) is a Lyapunov function and assures the boundedness of ¢k. Since
£ AV(k) < = it follows that lim AV(k) = 0. Henc

k=1 k+~ t e (1)
Lin ¢k RO, - % J k+1 1T
1 4+ u (t)u(t)

ke k+m k
(i) If u is bounded, e1 is bounded and e1 € LZ. If u is bounded lim el(t) = 0.
to
(ii) 1If u is persistently exciting Rk is uniformly positive definite and hence

¢k + 0 as k + «,

(iii) . If u grows in an unbounded fashion with u € L:, e / where p € L

dt = 0.

Comments: In the three cases given in theorem 2 the first two assume that the
input u is uniformly bounded and the corresponding results are applicable > the

identification problem. The third case which treats unbounded inputs is applic-
able to the control praoblem,

The fact that T, need not be a constant is also worth noting. As shown in section

6 a time-varying period may be used to improve the transient response of the sys-
tem,

b) Stable Hybrid Adaptive Control - Ideal Case: The hybrid adaptive algorithm
described in the preceding section can be used to adjust the control parameters
of a hybrid adaptive system., Using an approach very similar to that used in sec-
tion 3 for a continuous time system the overall system can be shown to be globally
stable. Using the same notation as in section 3 we have for ths adaptive law
~1 Yktl € (T)c(r)
M= 1 e
k% 1+ ¢ (0n

From the analysis in the previous section we conclude that

dat

(1) the parameter error vector ¢k is bounded
and (ii) € " eVl + ;T; where p ¢ Lz.

whizh conditions are the same as those o?&siued for the continuous case, Condi-
tion (1) assures that the signals y_, fu(E))f and fz(t)}| grow at the same
rate., Condition (ii) results in lyp(t)[ =0 gggllm(r)“ which coutradicts the pre-

vious assertion proving the boundedness of all the signals.

The similarity between the continuous and hybrid syst=ms also extends to
cases when external bounded disturbances are present and the methods described in
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sections 3 and 4 apply to the hybrid case as well., However, as shown in the fol-
lowing section, the use of averaged values over an interval rather than instant-
aneous values, results in more robust coutrol,

c) Adaptive System with Two Time Scales: The hybrid adaptive algorithm developed
in section 5a and applied to hybrid adaptive systems in section 5b can also be

s’ . modified for discrete hybrid systems or discrete systems with two time
- shown below,

Let the output error e, (k) ¢ Rl and the parameter error vector ¢(k) (.:l:Rn be
related by tne error equation

¢T(k)w(z) = el(z) k,2 € N, & e[kT,(k+1)T] (21)

where ¢(k) is a constant vector over the interval [kT,(k+1)T], T ¢ N and denotes
the period of the interval and w(2) ¢ 1s an input vector. Using information
collected over the entire interval, the parameter error vector ¢(k) is updated at
time (k+1)T using the adaptive law

(k+1)T-1 el(i)w(i)

¢(k+1) ~ ¢(k) 4 A¢p(k) = - 1/T T T
i=kT 1 + w(i) w(i)
( = = R(k)¢ (k) (22)
k+1)T-1 T
where R(k) 4 1/T T w(1)w(i) .

KT 1 4+ w(i) w(i)

In [10] it is shown that V(k) = 1/2 ¢T(k)¢(k) is a Lyapunov function for the
system (21) from which it follows that ¢(k) is bounded if ¢(0) is bounded and
e (i)
lim 72 * 0 1 eN (23)
i+ [14w(i) Ta(1))

If the adaptive law (22) is used in a control system to update the parameters,
equation (23) can be used to dem nstrate global stability [10].

When an external disturbance v is present the error equation (23) have to be
modified as

TIOW) + v() = e (1) 2 elkT, (D] (24)
Using the same adaptive law as before, the error equation has the form
(k+1)T-1 w(1)v(1)
8¢(k) = -R(k)¢(k) + z (25)

i=kT 1 + w(i)Tw(i)
= -R(k)$(k) + s(k)
(k+1)T-1

where s(k) 4 b w(i)v(;) .
1=kT 1 + w(i) w(i)

The matrix R(k) and the vector s(k) in algorithm (25) are averaged values
over an interval rather than instantaneous values. Hence the equivalent sysiem
may be considered to have more persistently exciting inputs in its homogeneous
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equation and a smaller magnitude of perturbation (if the mean value of the dis-
turbance is small). Due to both reasons the outputs tend to be smaller. Simula-
tion results shown in Fig, 2 indicate the dramatic improvement in performance.

6. NEW DIRECTIONS

The criteria for judging the performance of an adaptive control system are
no different from those used for any conventional control system and include sta-
bility speed and accuracy of response. In the preceding sections methods using
persistent excitation of reference input, and nonlinear and hybrid adaptive aigo-
rithms were described which would make the overall system stable under perturba-
tions. A judicious combination of these different methods may improve the robust-
ness of the system substantially and result in schemes which are practically at-
tractive. Some of these combinations as well as extensions of known methods which
appear promising are given below.

(i) Robustness of nth Order System Using Persistent Excitation: A detailed analy-
sis of a first order adaptive system containing a single control parameter was
given in section 4., When a disturbance is present it was shown that a sufficiently
large persistently exciting reference input would also result in bounded solutions.
Further studies have revealed that similar c~aclusions can be drawn regarding
higher order systems and research is currently being done to determine the bounds
on the solutions.

(ii) Hybrid Adaptive Control: 1In the adaptive control system described in sec-
tion 5, it was shown that the sampling incerval Tk could 1itself be time-varying

provided it lay in a bounded interval ([T s T ]Twith T > 0, In practical
min® "max min

on line to improve the transient response

systems it appears possible to adjust Tk
of the - 1,

(ii1) exd-Zone, Persistent Excitation and Plant Identification: A suf.iciently
large dezd-zone in the adaptive algorithm was shown to result in bounded solutions
in section 3. The results in section 4 indicated that boundedness of solutions
could also be achieved by increasing the PE of the reference input. It therefore
appears likely that the same results can be achieved using a combination of a
smaller dead-zone and a smaller degrvee of persist- ‘- excitation. Simulation stu-

dies have shcwn that this is indeed the case and a..empts are being made to demon-
strate this theoretically.

When the reference input is persistently exciting and the adaptive loop 1is
stable, the plant parameters can be estimated on-~line and used in second level
adaptation to reduce the dead-zone further., Hence combining a dead~zone with PE
of reference inputs appears to be of boih theoretical and practical interest.

* . o
(1v) "e "max and Persistent Excitation: As in (1i1) a persistently exciting in-

put enables 8* to be estimated and hence an attempt could be made to use thaz infor-
mation to decrease the region of search,

(v) o-mcdification and Persistent Excitation: The o-modification scheme, 1n its
basic form, described in section 3 is unappealing, since the parameter error can
be large if || 6*]} 1s large. Using identification methods as in (iii) and (iv) and
estimating 6% on line, secord level adaptive procedures may result in a smaller

bias.
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The second level adaptation problems stated in (ii)-(v) while practically at-
tractive, lead to stability questions in more complex nonlinear systems. Further,
it is worth pointing out that all of them consider external disturbances rather
than perturbations in plant dynamics. The reduced order problem which deals with
the design of a low order controller to adaptively control a higher order plant is
generally agreed to be the single most important theoretical question in the field
of adaptive control. While considerable research is being carried out in this
area, it is acknowledged that even a proper formulation of this problem is a form—
idable one. It is felt that the answers to some of the questions raised in this
section will contribute significantly towards this end.
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MAXIMUM LIKELIHOOD ESTIMATION WITH
EMPHASIS ON AIRCRAFT FLIGHT DATA

K. W, Diff* and R. E. Maine**
NASA Ames Research Center
Dryden Flight Research Facility
Edwards, CA 93523

ABSTRACT

Accurate modeling of flexible space structures is an important field that is
currently under investigation. Parameter estimation, using mechods such as max-
imum likelihood, is one of the ways that the model can be improved. The maximum
likelihood estimator has been used to extract stability and control derivatives
from flight data for sany years. Most of the literature on aircraft estimation
concentrates on new developwments and applications, assuming familiarity with
basic estimation concepts. This paper presents some of these basic concepts.
The paper briefly discusses the maximum likelihood estimator and the aircraft
equations of motion that the estimator uses. The basic concepts of minimization
and estimation are examined for a simple computed aircraft example. The cost
functions that are to be minimized during estimation are defined and discussed.
Graphic representations of the cost functions are given to help illustrate the
minimization process. Finally, the basic concepts are generalized, and estima-
tion from flight data is discussed. Specific examples of estimation of struc-
tural dynamics are included. Some of the major conclusions for the computed
example are also developed for the analysis of flight data.

INTRODUCTION

Accurate modeling of flexible space structures is an important area that is
currently under investigation. The mathematical mndeling of these structures
can be improved using parameter estimation. Such techniques have been gsuccess-
fully used to estimate aircraft stability and control derivatives and refine
aircraft mathematical models. Some of the experience gained in the aircraft
problem can be applied directly to analysis of flexible space structures.

The maximum likelihood estimator has been used to obtain stability and con-
trol estimates from flight data for nearly 20 years. The results of many appli-
cations have been reported worldwide. Reference 1 contains & representative
list of some of these reports. Several good texts (including Refs. 2 and 3)
contain thorough treatments of the theory of maximum likelihood estimation.
Experience reports (Refs. 1, 4, and 5) poirting out practical considerations for
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applying the maximum likelihood estimator have also been published. Stability
and control derivatives estimated from flight data are currently required for
correlation studies with predictive techniques, handling qualities documentation,
design compliance, aircraft simula*::i enhancement and refinement, and control
system design. Correlation, simulation, and control system design applications
(including the space shuttle) are discussed in Ref. 6. Current studies have
concentrated on estimation model structure determination (Refs. 7 and 8), equa-
tion error with state reconstruction (Refs. 9 to 11), and maximum likelihood
estimation in the frequency domain (Refs. 12 and 13).

Most of the reports in the estimation area concentrate on new developments
and applications, assuming familiarity with the basic concepts of maximum like-
lihood estimation. In this paper sume of these basic concepts are reviewed,
concentrating on simple, idealized models. These simple models provide insights
applicable to a wide variety of real problems.

This paper also presents some of the basics of maximum likelihood estimation
as applied to the aircraft problem. It briefly discusses the maximum likelihood
estimator and the aircraft equations of motion that the 2stimator uses. The
basic aspects of minimization and astimation are then examined in detail for a
simple computed aircraft example, Finally, the discussion is expanded to the

general aircraft estimation problem including specific examples of estimation of
structural dynamics.

SYMBOLS
A,B,C,D,F,G system matrices
ay normal acceleration positive upward, g
ay longitudinal acceleration, g
ay lateral acceleration, g
ay normal acceleration peositive upward, g
b reference span, ft
Cy coefficient of rolling mowent
Cn coefficient of yawing moment
Cx coefficient of axial force
Cy coefficient of side force
Cz coefficient of normal force
£(+), g(*) general functions
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GG* measurement noise covariance matrix

g acceleration due to gravity, ft/sec2

H approximation to the information matrix
InsIyiIz0Ixz moment of inertia abcut subscripted axis, slug-ft?
i general index

J cost function

Kp sidewash factcc

L rolling moment divided by I, deg/sec?

L' rolling moment, ft-1b

Lyg - rolling moment due to yaw jet, ft-lb

M pitching moment divided by I, deg/aec2

m mass, slug

N number of time points or cases or yawing moment divided

by I, deg/sec2

n state noise vector or number of unknowns
ﬁg estimated roll rate due to turbulence, deg/sec
P roll rate, deg/sec

q pitch rate, degy/sec

q dynamic pressure, 1lb/ft2

R innovati~n covariance matrix

r yaw @ ce, ‘g/sec

8 reference area, f2

T time increment, sac

t time, sec

u control input vector

v forward velocity, ft/sec

199



b4 state vector

xay,yay,zay distance b?tween.lateral acceleroneteg and tpe
center o. gravity along the appropriate axis, ft

z observation vector

;E predicted Kalman-filtered estimate

o angle of attack, deg

B angle of sideslip, deg

ég estimated angle of sideslip due to turbulence, deg

A time sample interval, sec .

) contrcl deflection, deg

8, aileron deflection, deg

Se elevon deflection, deg

8y rudder deflection, deg

n measurement noise vector

0 pitch angle, deg

M mean

(3 vector of unknowns

o standard deviation

T time, sec

¢ transition matrix or bank angle, deg

¥ integral of transition matrix, or heading angle, deg

w t requency, rad/sec

Subscripts:

p,q,r,u,&,ﬁ.é. partial derivative with respect to subscripted quantity
§,64,6r,0¢

0 bias or at time zero

m measured gQuantity
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Other nomenclature:

~ predicted estimate
estimate
transpose

indicates moment in ft-lb
MAXIMUM LIKELIHOOD ESTIMATION

The concept of maximum likelihood is discussed in this section. First the
general heuristic problem is discussed, and then the specific equations for
obtaining maximum likelihood estimates for the aircraft problem are given. In
the following sections, both the concepts and the computations involved in a
simple but realistic example are discussed in detail.

The aircraft parameter estimation problem can be defined quite simply in
general terms. The system investigated is assvmed to be modeled by a set of
dynamic equations containing unknown parameters. To determine the values of the
unknown parameters, the system is excited by a suitable input, and the input and
actual system response are measured, The values of the unknown parameters are
then inferred based on the requirement that the model response to the given
input match the actual system response. When forsulated in this manner, the
problem of identifying the unknown parameters can be easily solved by many

methods; however, complicating factors arise when application to a real system
is considered.

The first complication results from the impossibility of obtaining perfect
measurements of the response of any real system. The inevitable sensor errors
are usually included as additive measurement noise in the dynamic model. Once
this noise is introduced, the theoretical nature of the problem changes drasti-
cally. It is no longer possible tc exactly identify the values of the unknown
parameters; instead, the values must be estimated by some statistical criterion.
The theory of estimation in the presance of measurement noise is relatively

straightforward for a system with discrete time observations, requiring only
basic probability.

The second complication of real systems is the prasence of state noise.
State noise is random excitation of the system from unmeasured sources, the
standard example for the aircraft stability and control problem being
atmospheric turbulence. If state noise is present and measurement noise is
neglected, the analysis results in the regression algorithm.

When both state and measurement noise are considered, the problem is more
complex than in the cases that have only state noise or only measurement noise.
Reference 14 develops a mixed continuous/discrete maximum likelihood formulation
that allows for both state and measurement noise. This formulation has a con-
tinuous system model with discrete sampled observations.
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The final problem for real systems is modeling. It has been assumed through-
out the above discussion that for some value (called the “correct® value) of the
unknown parameter vector, the system is correctly described by the dynamic model.
Physical systems are seldom described exactly by simple dynamic models, so the
question of modeling error arises. No comprehensive theory of modeling error .is
available. The most common approach is to ignore it: Any modeling error is
simply treated as state noise or measurement noise, or both, in spite of the
fact that the modeling error may be deterministic rather than random. The
assumed noise statistics can then be adjusted to include the contribution of
the modeling error. This procedure is not rigorously justifiable, but, combined
with a carefully chosen model, it is probably the best approach available.,

wWith the above discussion in mind, it is possible to make a more precise,
mathematically probabilistic statement of the parameter estimation problem. The
first step is to define the general system model {(aircraft equations of mwotion).
This model can be written in the continuous/discrete form as

x(tg) = xg (1)
x(t) = £[x(t),u(t),E] + F(£)n(t) (2)
z(tj) = glx(tj),u(t;),E] + G(§)n4 (3)

where x is the state vector, z is the observation vector, f and g are system
state and observation functions, u is the known control input vector, £ is the
unknown parameter vector, n is the state noise vector, and n is the measurement
noise vector. The state noise vector is assumed to be zero-mean white Gaussian
and stationary, and the measurement noise vector is assumed to be a sequence of
independent Gaussian random variables with zero mean and identity covariance.
For each possible estimate of the unknown parameters, a probability that the
aircraft response time histories attain values near the observed values can then
be defined. The maximum likelihood estimates are defined as those that maximize
this probability. Maximum likelihood estimation has many desirable statistical
characteristics; for example, it yields asymptotically unbiased, consistent, and
efficient estimates (Ref. 15).

1f there is no state noise and the matriz G is known, then the maximum
likelihood estimator minimizes the cost function

N
JE) =5 T lz(ty) - Zg(t)1*(66*) -V [2(t;) - zg(t;)) (4)
im1

where GG* is the measurement noise covariance matrix, aad ;E(ti) is the computed
response estimate of z at t; for a given value of the unknown parameter vector

E. The cost function is a function of the difference between the measured and
computed time histories.
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If Egs. (2) and (3) are linearized (as is the case for the stability and
control derivatives in the aircraft problem),

x(tg) = xg (5)
x(t) = Ax(t) + Bu(t) + Fn(t) (6)
z(ti) = Cx(ti) + Du(ti) + Gny (7)

For the no-state-noise case, the zg(tj) term of Eq. (4) can be approximated by

Xg(tg) = xg(£) (8)
X (tigg) = éxg(ty) + plulty) + ultyeq)1/2 (9)
ZE(ty) = Cxglty) + Dulty) (10)
where
¢ = exp [A(tj4q - t5))

ti+1
V= -[ exp (AT) d1 o
tj

When state noise is important, the nonlinear forwm of Eqs. (1) to (3) is

intractable. For the linear wodel defined by Eqs. (5) to (7), the cost function
that accounts for state poise is

N
J{E) =;— T [2(t3) - zg(ty))*R-Vz(tg) - zg(ty)] +%n in |R| (1)
i=1

where R is the innovation covariance matrix. The ;E(ti) term in Eq. (11)

is the Kalman-filtered estimate of z, which, if the state noise covariance

is zero, reduces to the form of Eq. (4). If there is no state noise,

the second term of Eg. (11) is of no consequence (unless one wishes to include
elements of the G matrix as unknowns), and R can be replaced by GG* which makes
Eq. (11) the same as Egq. (4).

To minimize the cost function J({), we can apply the Newtcon-Raphson
algorithm which chooses successive estimrates of the vector of unknown coef-

ficients, E. Let L be the iteration number, The L + 1 estimate of E is then
obtained from the L estimate as follows:

Erer = £y - (VAI(EL) -1 1953(Ep)] (12)
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The first and second gradients are defined as

N
VEI(E) = - T [z(t;) - zg(ti)]*(G6*) " [Vezg(t;)] (13)

i=1

N
VEI(E) = 3 [Vezg(ty)1+(66%) =1 {Vezg (ty)]
i=1

N

- T [z(ty) - ;E(ti)]*(GG*)"[Vé zg(t)] (14a)
i=1

The Gauss-Newton approximation to the second gradient is

N ~ "~
VEI(E) = T [Vezg(ty))*(G6%) = [Vezg (ty)] (14b)
i=1

The Gauss-Newton approximation, which is sometimes referred to as modified
Newton-Raphson, is computationally much easier than the Newton-Raphson approxi-
mation because the second gradient of the innovation never needs to be calcu-
lated., 1In addition, it can have the advantage of speeding the convergence of
the algorithm, as is discussed in the SIMPLE AIRCRAFT EXAMPLE section,

Figure 1 illustrates the maximum likelihood estimation concept. The meas-
ured response of the aircraft is compared with the estimated response, and the
.ifference between these responses is called the response error. The cost func-
tions of Eqs. (4) and (11) include this response error. The Gauss-Newton com-
putational algorithm is used to find the coefficient values that maximize the
cost function. Each iteration of this algorithm provides a new estimate of the
unknown coefficients on the basis of the response error. These new estimates of
the coefficients are then used to update the mathematical model of the aircraft,
providing a new estimated response and, therefore, a new response error. The
updacing of the mathematical model continues iterati.ely until a convergence
criterion is satisfied. The estimates resulting from this procedure are the
maximum likelihood estimates,

The maximum likelihocd estimator also provides a measure of the reliability
of each estimate based on the information obtained from each dynamic maneuver,
This measure of the reliability, analagousn to the standard deviation, is called
the Cramér-Rao bound (Ref. 16) or the urertainty level. The Cramér-Rao bound
as computed by current programs should generally be used as a measure of rela-
tive accuracy rather than absolute accuracy. The bound is obtained from the
approximation of the information matrix, H. This matrix equals the approxima-
tion to the second gradient given by Eq., (14b). The bound for each unknown is
the square root of the corresponding diagonal element of H. That is, for

the ith unknown, the Cramér-Rao bound is YH(i,1i).
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The Maine-Iliff formulacion (Ref, 14) and minimization algorithm discussed
above are implemented with the Iliff-Maine code (MMLE3 maximum likelihood esti~-
mation program). The program and computational algorithms are described fully
in Ref. 17, All the computations shown and described in the remainder of the
paper use the algo-rithms exactly as described in Ref. 17.

ATRCRAFT EQUATIONS OF MOTION

For the discussion that follows in later sections of this paper, some ' -wl~
edge of the air:raft equations of motion is assumed. To clarify some of tna.
discussion, the aircraft equations are discussed briefjy in this section.

Tirst, the axis system on which the aircraft equati-ns of motion are based
is discuss :d. Fiqure 2(a) shows th: aircraft reference ..ody-axis system and the
conventio.ial control rvrfaces. The origin of the body-axis system is at the
center of gravity. The sign convention for this axis system is detined by the
right-nand rule with the x-axis defined as positive forward on the aircraft.

The longitudinal acceleration (ay) and nondimensional axial force coefficien®

(Cy) are defined along this axis, and the roll rate (p) and rolling moment (L')

are defined about this axis. The y-axis is defined as positive out the right
wing. The lateral acceleration (ay) and nondimesional side force coeffic.ent

(Cy) are defined along this axis, and the pitch rate (q) and pitching moment

(M') are defined about this axis. The z-axis is defined as positive out the
bottom of the aircraft. The normal acceleration (a;) and nondimensionai normal
force coefficient (Cz) are A2fined along this axis, and the yaw rate (r) and

vawing moment (N') are defined about this axis. 7The normal acceleration is
sometimes defined 18 positive upward but is then referred to as ay. The three
woments (L', M', and N') are usually divided by the corresponding moments of
inertia (I, Iy, and I,}, and are then referred to without the prime as L, M,

and N. These q.antities are nondimensionalized (Cp, Cp, and C,, respectively)

for use in th~ eqg.-ations of motion soon to be discussed. The primary control
about thr. roll axis (x-axis) is the aileron (§,), about the pitch axis (y-axis)

is the elerator (8o), and about the yaw axis (g-axis) is the rudder (§.). Some

aircraft have other controls, tut in this paper these will only be defined where
they are discussed (the reaction control jets on the space shuttls, for example).

The Euler angles ¢, 8, and ¥ define the aircraft attitude with respect to
the earth. These angles define the rotations which transform earth-fixed axes
o the aircraft reference body-axis system of Fig, 2(a).. The order of rotation
must be atout the z-axis (y), then the y-axis (8), and finally the x-axis (¢)
for the aircraft equations of motion that will be written subsequently.

For stabilit' and control analysis, the velocity of the aircraft with
respect to the air (not with respect to the earth) is of primary interest.
Figure 2(b) shows the relationship between the aircraft axis system and the flow
angles. The flow angle in the x-z plane is the angle of attack (a), and the
flow angle in the x-y plane is the angle of sideslip (B). A more rigorous and

o
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detailed definition is required for the derivation of the equations of motion,

but the above definitions are sufficient to define the following equation of
motion.

Generalized nonlinear equations of motion are given in detail in Ref. 17,
which fully describes the Iliff-Maine code (MMLE3 program). All computations
an® aircraft examples in this paper use the linearized form for the lateral-

directional equations. These equations are given below and referred to in the
remainder of the paper.

é = %%-(Cy + éo) +-%-cos O gin¢ + psina ~r ces a (15)
Ply - rlyz = astg + qr(ly - Ip) + Pqlxs (16)
rI, - ply, = qsbCp + pa(I, - I, - qriy, (17)
$ =p+rcos ¢ tan 6 + q sin ¢ tan 8 + 60 (18)
where b b

y = CygB + Cy, £y + oy, 77 * Cygd + Cy (19)

b rb . fb
Cy = CpgB + Ctp‘gv +Cy my +Cegl + Coo + Cog 3y (20)

b rb . éb

where the § term is summed over all controls.

The observation equations are

Bp =XKg B -y P+t ¥ (22)
Pn = P (23)
Iy =T (24)
ém = ¢ (25)
ay, ..%;-cy - z:” p + x;YE - y;’ (02 + r2) (26}
im = é + éo (27)
Tm=r +rp (28)
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The state, control, and observation wvectors for the lateral-directional mode
can then be defined as

x=(8Bpr¢)* (29)
u = (Ga Gr). (30)
z = (By pp *n ¢ ayn ;. ;m)' (31)

SIMPLE AIRCRAFT EXAMPLE

The basic concepts involved i1n a parameter estimation problem can be illus-
trated by usirg a simple example representative >f a realistic wircraft problea.
The example chosen here is repregentative of an aircraft thzt exhibits pure
rolling motion from an aileron input. This example, although simplified, typi-
fies the motion exhibited by many aircraft in particular flight regimes, such as
the F-14 aircraft flying at high dynamic pressure, the FP-111 aircraft at moder-

ate speeds with the wing in the forward position, and the T-37 :zircraft at low
speed.

Derivation of an equation describing this motion is straightforward.

Fiqure 2(c) shows a sketch of an aircraft with the x-axis perpendicular to the
plane .£ the figure (positive forward on the aircraft). The rolling moment (L'),
roll rate (p), and aileron deflection (8,) are positive as shown. For this

example, the only state is p and the only control is 65. The result of summing
moments is

Ixp = L'(p,8;) (32)
The first-order Taylor expansion then becomes
P = Lpp + Lg 8a (33)

where
L" IxL

Since the aileron is the only control, it is notationally simpler to use §

instead of 8, for the diacussion of this example. Bgquation (33) can then be
written as

P = Lpp + Lgb (34)

7 .. alternate approach that results in the same equation i3 to rombine Eq. (16)

with £g. (20), esubstiiuting for C;, snd then eliminate the terms that are zero
for our example. This yields

. - b -
PIx = gsb Cp, 55 + Cagé (35)
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where p is the roll rate and § is the ailercn deflection. Rearranging terms,
the equation can be put into the dimensional derivative form of Bn. (34).

Equaticn (34) is a simple aircraft equation where the forcing function is
provided by the aileron and the damping by the damping-in-roll term, Ly. In

subsequent sections we examine in detail the parameter estimation problem where
Ba. (34) describes the system. For this single-degree-of-freedom problem, the

maximum likelihood estimator is used to estimate either L, or Lg or both for a
given computed time history.

We will assume that the system has measurement noise, but no state noise as
in Bgs. (1), (2), and (3). Equation (4) then gives the cost function for maximum
likelihood estimation. The weighcing GG* is unimportant for this problem, so

let it equal 1. For our example, Eqs. (2) and (3) become xj; = p; and 2z = xj.
Therefore, Eq. (4) becomes

. \
I(Lp,Lg) = 3 Z (es - piCp L§)12 (36)

where p; is the value of the measured response p at time tj and §i(LP.L5) is the
computed time history of ; at time tj for L, = ip and L§ = L§. Throughout the
rest of the paper, where computed data (not fiight data) are used, the measured

time history refers to pj, and the computed time history refers to ;1(LP.L5).

The computed time history is a function of the current estimates of Lj and Lg§,
but the measured time history is not.

The most straightforward method of obtaining p; is with Eqs. (3) and (8).
Ir. terms of the notation stated above,

Pi+1 = 0pi + V(81 + 8541)/2 EX
where

$ = exp (LPA)

Lg{1 - exp ({PA)}
Ip

and A is the length of the sample interval (tj4+q - t3). Simplifying the
notation

A
V= .L exp (LpT) AT Ly =

8i+1/2 = 155 + 8349)/2 (38)

then

Pi+t1 = ¢pi *+ v8i+1/2 (39)
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The maximum likelihood estimate is obtained by minimizing Eq. (36). The
Gauss-Newton method described earlier is used for this minimization. Equa-
tion (12) is used to determine successive values of the estimates of the
unknowns during the minimization,

For this simple problem, § = [Lp Ls]* and successive estimates of ip aad £6

are determined by updating Eg. (12). The first and second gradients of Bg. {12)

are defined by Bqs. (13) and (14). The complete set of equations is given in
Ref. 17.

The entire procedure can now be written for obtaining the maximum likelihood
estimates for this simple example. To gtart the algorithm, an initial estimate

of Ly and Ls is needed. This is the value of §g3. With Bg. (12}, &; and sub-

sequently {p are defined by using the first and second gradients of J(Lp,L§)

from Eq. (36). The gradients for this particular example from Eg. (13) and
‘14b) are '

~ N ~ ~
Ved(&y) = -3 (pi - pi)V pi (40)
i=1
2 - N
VEI(EL) = 121 (Veps )*(Vepy) (41)

With the specific equations defined in this section for this simple example,

we can now proceed in the next section to the computational details of a speci-
fic example.

Computational Details of Minimizatior

In the previous section we specified the equations for a simple example and
described the procedure for obtaining estimates of the unknowns from a dynamic
maneuver., In this section we give the computational details for obtaining the
estimates., Some of the basic concepts of parameter estimation are best shown
with computed data where the correct answers are known. Therefore, in this sec-
tion we study twc examples involving computed time histories. The first example
is based on data that have no measurement noise, which results in es.imiates that
are the same as the correct value. The s=2cond example contains signrificant
measurement noise; consequently, the egtimates are not the same as the correct
values. Throughout the rest of the paper, wlere computed data are used, the
term “"no-noise case” is used for the case with no noise added and “"noisy case"
for the case where noise has been added.

Since we are studying a simple computed example, it is desirable to keep it
simple enough to complete some or all of the calculations on a home computer or,
wit. some labor, on a calculator. With this in mind, the number of data points
nezds t> be kept smzll., TPor thig >~mputed example, 19 points (time samples) are



used. Tle simulated data, which we refer to as the measured data, are based on
Eq. (34). We use the same correct values of Ly and L§ (-0.2500 and 10.0,
respectively) for both examples. In addition, the same input (6) is used for
both e> :mnles. the sample interval (A) is 0.2 sec, and the initial conditions
are zetc- Tables of all the significant intermediate values are given with each
examplc. These values ire given to four significant digits, although to obtain
exactly . same values with a computer or calculator requires the use of 13
significini- digits, as in the computaticn of these tables. 1If the four-digit
num er: are used in the computation, the answers will be a few tenths of a
percent off, but will still serve to illustirate the minimization accuracy. In

both exa.ples, the initial values of Lp and L§ (or £p) are -0.5 and 15.0,
respectively.

Example With No Measurement Noise

The leasurement time history for no measuiement noise (no-noise case) is
shown in FPig. 3, The aileron input start. at zern, goes to a fixed value, and
then returns to zero. The resulting roil-rvate time history is also shown. The

values of the measured roll rate to 13 sigrificant digits are given in Table 1
along with the aileron input.

Table 2 shows the values for Lp, L§, and J for each iteration, along with
the values of ¢ a..d ¥ needed for calculations of Ei. In three iterations the
algorithm c.nverges to the correct values to four significant digits for both Lp

and Lg. L§ overshoots slightly on the first iteration and then comes quickly to

the correct answer. Lp overshcots slightly on the second iteration.

Figure 4 shows the match between the measured data and the computed data for

each of the first three "terations. The match is very good after two iterations.
The match is nearly exact after three iterations.

Although the :lgorithm has converged to four-digit accuracy in Lp and L§,

the value of the cost function, J, continues to decrease rapidly between itera-
tions 3 and 4. This is a consequence of using the maximum likelihood estimator
on data with no measurement noise. Theoretically, using infinite accuracy the
value of J at the minimum should lLe zero. However, with finite accuracy the
value of J becomes small but never quite zero. This value is a function of the
number of significant digits that are being used. Por the 13-digit accuracy

used here, the cost eventually decreases to approximately 0.3 X 10-28,
Example With Measurement Ncise

The data used .n this é.:ample (noisy case) are the same as those used in the
previcus sectiun, except that pseudo-Gaussian noise has been added to the roll
rate, The time history i. saovm in Fig. 5. The signal-to-noise ratio is quite
low in thi~ example, as is readily apparent by comparing Figs. 3 and 5. The

exact values of the time history to 13-digit accuracy are shown in Table 3. The

values of Lp, L5, 9, ¥, and J are shown for each iteration in Table 4. The
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algorithm converges in four iterations. The behavior of the coefficients asa
they approach convergence is much like the no-noise case. The most notable

-

results of this case are the converged values of and £5, which are somewhat
different from the correct values., The match between the measured and computed
time h! te-y i3 shown in Pig. 6 for each iteration. No change in the match is

apparent for the last two iterations. The match is very good considering the
amount of measurement noise.

In Pig. 7, *he computed time history Jor the correct values of Lp and L is
compared to that for the noisy-case estimates of 7, and L§. Because the

algorithm converged to values somewhat different . an the correct values, the
two compute. time histories are similar but not identical.

The accuracy of the converged elsments can be assessed by looking at the
Cramer-Rao inequality (Refs. 16 and 17) discussed earlier., The Crameér-Rao bound
can be obtained from the following approximation to the information matrix.

H = 2(Jnininun)(VgJ)‘1/(N—1)

The Cramer-Rao bounds for Lp and L§ are the square roots of the diagonal ele-

ments of the H matrix, or vH(1,1) and YH(2,2), respectively. The Crameér-Rao

bounds are 0.1593 and 1.116 for Lp and L§, respectivsly. The errors in Lp and
L§ are less than the bounds.

Cost Functions

In the previous section we obtained the maximum likelihood estimates for
computed time histories by minimizing the values of the cost function. To fully
understand what occurs in this minimization, we must study in more detail the
form of the cost functions aid some of their more important characteristics. 1In
this section, the cost function for the no-noise case is discussed briefly. The
cost function of the noisy case is then discussed in more detail, The same two
time histories studied in the previous section are =2vamined here. The noisy
case is more interesting because it has a meaningful Cramér-Rao bound and is
more representative of aircraft flight data.

First we will look at the one-dimensional case where L§ is fixed at the

correct value, because it is easier to grasp some of the characteristics of the
cost function in one dimension. Thzn we will look at the two-dimensional case,
where both L, and L§ are varying. It i3 important to remember that everything

shown in this paper on cost functions is based on computed time “istories that
are defined by Eq. (3€6). For every time history we might choose {computed or
flight data), a complete cost function is defined. For the case of n variables,
the cost tunction defines a hypersurface of n + 1 dimensions. It might occur to
us that we could just construct this surface and look for the minimum, avoiding
the need to bother with the minimization algeorithm. This is not a reasonable
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approach because, in general, the number of variables is greater than two.

Therefore, the cost function can be described mathematically but not pictured
graphically.

One-Dimensional Case

To illustrate the many interesting aspects of cost functions, it is eas-
iest to first look at cost functions having one variable., In an earlier sec-
tion, the cost function of Ly and L§ was mirimized. That cost function is most
interesting in the Lp direction. Ther: ore, the one-variable cost functioun
studied here is J(Lp). All subsequent discussions are for J(Lp) with Lg equal
to the correct value of 10. Figure 8 shows the cost function plotted as a func-
tion of Lp for the case where there is no measurement noise (no-noise case). As
expected for this case, the minimum cost is zero and occurs at the correct value
of Lp = -0.2500. It is apparent tnat the cost increases much more slowly for a
more negative Lp than for a positive Lpe. In fact, the slope of the curve tends
to become less negative where Lp is more negative than -1.0. Physically this
makes sense since the more negative values of Lp represent cases of high damping,
and the positive Lp represents an unstable system. Therefore, the p; for posi-
tive Lp becomes increasingly different from the measured time history for small

positive increments in Lp. For very large damping (very negative Lp) the system

would show essentially no response. Therefore, large increases in damping
result in relatively small changes in the value of J(LP).

In Fig. 9, the cost function based on the time history with measurement
noise (noisy case) is plotted as a function of Lp. The correct value of
Lp (-0.2500) and the value of Lp (~0.3218) at the minimum of the cost (3.335)
are both indicated on the figure. The general shape of the cost function in
Pig. 9 is similar to that shown in Fig. 8. Figure 10 shows the comparison
between the cost functions based on the time histories with and without measure-
ment noise. The comments relating to the cost function of the no-nois: :ase
also apply to the cost function based on the noisy case. Figure 10 shows
clearly that the “wo cost functions are shifted by the difference 1. the value
of L, at the minimum and increased by the difference in the minimum cost. One
would expect only a small difference in the value of the cost when far from the
minimum. This is because the "estimated” time history is so far from the
measured time history that it becomes irrelevent as to whether the measured time
history has noise added. Therefore, for large values of cost, the difference in
the two cost functions should be small in comparison to the total cost,

Figure 11 shows the gradient of J(Lp) pPlotted as a function of Lp for the

noisy case. This is the function for which we were trying to find the zero (or
equivalently, the minimum of thc cost function) using the Gauss-Newton method of
a previous section. The gradient is zero at Lp = -0.3218, which corresponds to
the value of the minimum of J(Lp).

The difference between the Newton-FPaphson method (Eq. (14a)) and the
Gauss-Newton method (Eq. (14b)) of minimization has been mentioned previously.
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For this simple one-dimensional case, we can easily compute the second gradient
both with the second term of Eq. (14a) (Newton-Raphson), and without the second
term (Gauss-Newton, Eq. (14b)). Figure 12 shows a comparison between the
Newton-Raphson and the Gauss-Newton approximation second gradients. The
Gauss-Newton second gradient (dashed line) always remains positive because it
is the sum of quadratic terms (squared for the one-dimensional examplz). The
Newton-Raphson second gradient can be positive or negative, depending upon the
value of the second partial with respect to Lp. Other than the difference in

sign for the more negative Lp, the two curves have similar shapes.

As stated earlier, the Gauss-Newton method can be shown to be superior to
Newton-Raphson in certain cases. We can demonstrate obvious cases of this
with our example. An easy way to select a spot where problems with the Newton-
Raphson method will occur is to look for places where the second gradient (slope
of the gradient) is near zero o. negative. Figure 11 has such a region near
Lp = -1.0. If we choose a point where the gradient slope is exactly zero, we

are forced to divide by zero in Eq. (12) with the Newton-Raphson met:. >d. This
point is at Lp = -1.13 in Fig. 12. 1If the value of the slope of the gradient is
negative, then the Newton-Raphson method wiil go to very negative values of Lp.
For very negative values of Lp, the cost becomes asymptotically constant and the
gradient becomes nearly zero. In that region, the Newton-Raphson algorithm
would diverge towards negative infinity. If the slope of the gradient is

positive but small, we still have a problem with the Newton-Raphson method.
Figure 13 shows the first iteration starting from Lp = -0.95 for both Gauss-

Newton and Newton-Raphson. The Newton-Raphson method selects a point where the
tangent of the gradient at Lp = -0.95 intersects the zero line. This results in
the selection of an Lp of approximately 2.6 in the first iteration. From that
value it requires many iterations to return to the actual minimum. On the other
hand, the Gauss-Newton method selects a value for Lp of approximately -0.09 and

converges to the minimum to four-digit accuracy in two more iterations. With
more complex examples a comparison of the convergence properties of the two
algorithms becomes more difficult to visualize, but the problems are generaliza-
tions of the situation we have observed with the one-dimensional example.

The usefulness of the Cramér-Rao bound was discussed in the Example With
Measurement Noise section. At this point it is useful tc digress briefly to
discuss some of the ramifications of the Cramér-Rao bound for the one-dimensional
case. The Cramér-Rao bound only has meaning for the noisy case. In the noisy
example, the estimate of Lp is -0.3218 and the Cramér-Rao bound is 0.0579. The
calculation of the Cramér-Rao bound was defined in the previous section for both
one-dimensional and two-dimensional examples. The Cram§:~Rao bound is an esti-
mate of the standard deviation of the estimate. One would expect the scatter in
the estimates of Lp to be of about the same magnitude as the estimate of the

standard deviation. For the one-dimensional case discussed here, the range
(Lp (-0.3218) plus or minus the Cramér-Rao bound (0.0579)) nearly includes the

correct value of Lp (-0.2500). If noisy cases are generated for many time his-

tories (adding different measurement noise to each time history), then the sam-
Ple mean and sample standard deviation of the estimates for these cases can be
calculated., Table 5 gives the sample mean, sample standard deviation, and the
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standard deviation of the sample mean (standard deviation divided by the square
root of the number of cases) for 5, 10, and 20 cases. 7The sample mean, as
expected, gets closer to the correct value of -0.2500 as the number of cases
increases. This is also reflected by the decreasing values in column 4 of
Table S, which are estimates of the error in the sample mean. Column 3 of
Table 5 shows the sample standard deviations, which indicate the approximate
accuracy of the individual estimates. This standard deviation, which stays moraz2
or less constant, is approximately equil to tne Cramér-Rao bound for the noisy
case being studied here. 1Tn fact, the Crameér-Rao bounds for each of the 20
noisy cases used here (not shown in the table) do not change much from the
values found for the noisy case being studied. Both of these results are in
good agreement with the theoretical characteristics (Ref. 16) of the Cramer-Rao
bounds and maximum likelih..od estimators in general.

The examples shown here indicate the value of obtaining more sample time
histories {(maneuvers). More samples improve confidence in the estimate of the
unknowns. The same result holds true in analyzing actual flight time histories
(maneuvers); thus it is always advisable to obtain several maneuvers at a given
flight condition to improve the best estimate of esach derivative.

The size of the Cramér-Rao bounds and of the error between the correct value
and the estimated value of Lp is determined to a large extent by the length of
the time history and the amount of noise added to the correct time history. For
the example being studied here, it is apparent from Fig. 5 that the amount of
noise being added to the time history is large. The effect of the power of the
measurement noise (GG*, Egs. (3) and (4)) on the estimate of Ly (that is, £p)
for the time history is given in Table 6. The estimate of Ly is much improved

by decreasing the measurement noise power. A reduction in the value of G to
one-tenth of the valu: in the noisy example being studied yields an acceptable
estimate of Lp. For ilight data, the measurement noise is reduced by improving
the accuracy of the output of the measurement sensors.

Two-Dimensional Case

In this section the cost function (which is dejendent on both L, and L§) is
studied. The no-noise case is examined first, followed by the noisy case.

No-noise case, Even though the cost function is a function of only wwo
unknowns, it is much more difficult to visualize than the one-unknown case. The
cost function over a reasonable range of Lp and L§ is shown in Fig. 14. The
cost increases very rapidly in the region of positive Lp and large values of
L§. The reason is just an extension of the argument fcr positive Lp given in
the previous section. The shape of the surface can be depicted in greater
detail if we examine only the values of the ccst function less than 200 for Lp
less than 1.0. Figure 15 shows a view of this restricted surface from the upper
end of the surface. The minimum must lie in the curving valley that gets
broader as we go to the far side of the surface, Now that we have a picture of
the surface, we can look at the isonlines of constant cost on the Lp-vetsus-L5

plane, These isoclines are shown in Fig. 16, The minimum of the cost function
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is inside the closed isocline., The gsteepness of the cost function in the
poeitive-Lp direction is once again apparent., Inside the closed isocline the

shape is more rearly elliptical, indicating that the cost is nearly quadratic
here, so fairly rapid convergence in this region would be expected. The Lp axis

becomes an asymptote in cost as Lg approaches zero. The cost is constant for
L§ = 0 because no respcnse would result from any aileron input. The astimated

response is zero for all values of Lp, resulting in constant cost.

Figure 16 shows the region of the minimum value of the cost function, which,
as seen in the earlier example (Table 2), occurs at the correct values for Lp

and L§ of -0.2500 and 10, respectively. This is also evident by looking at the

cost function surface shown in Fig., 17. The surface has its minimum at the

correct value. As expected, the value of the cost function at the minimunm is
zero.

Noisy case. As shown before in the one-dimensional case, the primary dif-
ference between the cost functions for the no-noise and noisy cases was a shift
in the cost function. In that instance, the noisy case was shifted so that the
minimum was at a higher cost and a more negative value of Lpe In the two-

dimensional case, the no-noise and noisy cost functions exhibit a similar shift,
For two dimensions the shift is in both the Lp and Lg directions. The shift is

small enough that the difference between the wo cost functions is not visible
at the scale shown in Fig. 14 or from the perspective of Fig. 15. Figure 18
shows the isoclines of constant cost for the noisy case, The figure looks much
like the isoclines for the no-noise case shown in Fig. 16. The difference
between Figs. 16 and 18 is a shift in Lp of about 0.1, This is the difference

in the value of Lp at the minimum for the no-noise and noisy cases. Heuristi-

cally, one can see that the same would be true for cases with more than two

unknowns. The primary difference between the two cost functions is near the
minimum.

The next logical part of the cost function to examine is near the minimum.
Figure 19 shows the same view of the cost function for the noisy case as was
shown in Fig. 17 for the no-noise case, The shape is roughly the same as that
shown in FPig. 17, but the surface is shifted such that its minimum lies over
Lp = -0.3540 and L§ = 10.24, and is shifted upward to a cost function value of

approximctely 3.3,

To get a more precise idea of the cost of the noisy case near the minimum,
we once again need to examine the isoclines. The isoclines (Fig. 20) in this
region are much more like ellipses than they are ir Figs. 16 and 18, We can
follow the path of the minimization exauple used before by including the results
from Table 4 on Fiy. 20. The first iteration (L = 1) broughc the values of Lp
and 1§ very close to the values at the minimum. The next iteration essentially
selected the values at the minimum when v’ eved at this scale. One of the rea-
sona the convergence is so rapid in this region is that the isoclines are nearly
=lliptical, demonstrating that the cost is very nearly quadratic in this region.
If we had started the Gauss-Newton algorithm at a point wheire the isoclines
are such less elliptical (as in some of the border regions in Fig. 18), the
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convergence would have been much slower initially, but much the same as it
entered the nearly quadratic region of the cost function,

Before concluding our examination of the two-dimensional case, we need to
examine the Cramer-Rao bound. Figure 21 shows the uncertainty ellipsoid, which

is based on the Cramér:Rao bounds defined in an earlier section. The relatior-
ships between the Cramer-Rao bound and the uncertainty ellipsoid are discuss.d
in Ref. 16. The uncertainty ellipsoid almost includes the correct value of Lp

and L§. The Crameér-Rao bound for Lp and Lg can be determined from the pr.jec-
tion of the uncertainty ellipsoid onto the Lp and L§ axes, and compared with the
values given earlier, which were 0.1593 and 1.116 for Lp and Lg§, respectively.

ESTIMATION USING FLIGHT DATA

In the previous several sections we examined the basic mechanics of obtain-
ing maximum likelihood estimates from computed examples with one or two unknown
parameters, Now that we have a grasp of these basics, we can explore the esti-
mation of stability and control derivatives from actual flight data. For the
computationally much more difficult situation usually encountered using actual
flight data, we will obtain the maximum likelihood estimztes with the Ilirf-
Maine code (MMLE3 program) described in Ref, 17, The equations of motion that
are of interest are given in the AIRCRAFT EQUATIONS OF MOTION section of this
paper; the remainder of the equations are given in Ref. 17,

In general, flight data estimation is fairly complex, and codes °uch as the
Iliff-Maine code must usually be used to assist in the analysis., However, one
must still be cautious about accepting the results; thac :3, the estimates must
fit the phenomenology, and the match between the mezsured and computed time his-
tories must be acceptable. This is true in all flight -regimes, hut one must be
particularly careful in potential problem situations such as (1) in separated
flow at high Mach numbers or high angle of attack, (2) with uznusual aircraft
configurations such as the oblique wing (Ref, 18}, or (3) with modern high-
performance aircraft with high-gain feedback loops. In any of the above cases,
one should be particnlarly careful where there are even small anomalies in the
match. These anomalies may indicate ignored terms in the equations of motion,
separated flow, nonlinearities, sensor problems, insufficient resolution
(Ref. 1), sensor location (Ref. 1), time or phase lags (Refs. 1 and “9), or awy
of a long list of ocher problems.

The following brief examples are intended to show how the above caveats and
the computed examples of previous sections can be used to assist in the analy-
sis. Ii. the computed example, the desirability of low-noise sensors, an ade-
quate mocel, and several maneuvers at a given flight condition is shown.

Hard Calculation Example

Sometimes evaluation of a fairly complex flight maneuver can be augmented
with a simple hand calculation. One example of this can be found for the space
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shuttle. The space shuttle is a large double-delta-winged vehicle designed to
enter the atmosphere from space and land horizontally. The entry control system
consists of 12 vertical reaction-control-system (RCS) jets (six up-firing and
six down-firing), 8 horizontal RCS jets (four left-firing and four right-firing)
4 elevon surfaces, a body flap, and a split rudder surface. The locations of

these devices are shown in Fig. 22. The vertical jsts and the elavons are used
for both pitch and roll control. The jets and elevons are used symaetrically
for pitch control and asymmetrically for roll control. The space shuttle con-
trol system is described briefly in Ref. 6.

The shuttle example used here is from a maneuver obtained at a Mach number
of approximately 21 and an angle of attack of approximately 40°, The controls
being used for this lateral-directional maneuver are the differential elevons
and the gide-firing jets (yaw jets). The maneuver is shown in Fig. 23.
Equations (15) to (31) describe the equations of motion. A simplified approach
can be used to determine some of the derivatives by hand. The approach is one
that has been used since the beginning of dynamic analysis of flight maneuvers.
In particular, for this maneuver the slope of the rates can be used to determine
the yaw jet control derivatives. This is possible for this example, even with a
high-gain feedback system, because the yaw jets are essentially step functions,
and the slope of the rates p and r can be determined before the vehicle and the
differential elevon (aileron) responses become significant. The rolling moment
due to yaw jet (Lygy) is particularly important for the shuttle (ReZ, 6 discusses

the essential nature of flight-determined Lyy in the redefinition of entry

maneuvers) and is, in general, more difficult to obtain than the more dominant
yawing moment due to yaw jet. Therefore, as an illustrative example, Lyg is

determined by hand. Figure 24 shows yaw jet activity and smoothed roll rate
plotted at expanded scales. The equation for Lyy is given by

Lyg = pIy/(Number of yaw jets) (42)
b= ap/at = 200+ (0.1) (43)

Therefore, given that Iy % 900,000 slug-ftz, and the number of yaw jets is 4,
Lyg 2 2750 ft-1b.,

The same maneuvelr was analyzed with MMLE3, and the resulting match ‘- shown
in Fig. 25. The match is very good except for a small mismatch in p at about
6 sec. This small mismatch was studied separately with MMLE3 and found to be
caused by a nonlinearity in the aileron derivative. The value from MMLE3 for
Lyy is 2690 ft-1lb, which for the accuracy used here is essentially the same

value as obtained by the simplified method. The ailercn derivatives would be
difficult to determine as accurately as the yaw jet derivatives. Although good
estimates can seldom be obtained with the slope method discussed here, rough
estimates can usually bLe obtained to gain some insight into values obtained with
MMLE3 (or any other maximum likelihood program). These rough estimates can then
be used to help explain unexpected values of estimates from an estimation
program.
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Sometimes a flight example becomes too complex to allow anything other than
quzlitative estimates to be determined by hand. The example shown in Fig. 26 1is
the determination of the rudder derivative for tle F-8 aircraft with the yaw
augmentation system on. This example, taken from Ref. 20, includes an aileron

pulse and a rudder pulse. Although an indepundent pilot rudder pulse is input
during the manceuver, the rudder is largely responding to the lateral accelera-~
tion feedback. When the rudder is moving, several other variables are also
moving, thus making it difficult to use the simplified zpproach just discussed.
However, C“Gr can be roughly detcrmined when the rudder moves, approximately

1.7 sec from the start of the maneuver. Mogt of the slope of yaw rate ‘s pro-

bably caused by the rudder, but a poor estimate would be obtained using the hand
calculation.

Cost Function for Full Aircraft Problem

The analysis of a lateral-directional maneuver obtained in flight typically
has from 15 to 25 unknown parameters (as shown in Egqs. (15) and (31)), in
contrast to the one or two in the simple aircraft example. This makes detailed
examples unwieldy and any graphic presentation of the cost function impossibln.

Therefore, in this section we are primarily examining tl.e estimation procedure
and the process of the mirimization.

For our flight example, we have chosen a lateral-directional manevver, with
both aileron and rudder inputs, that has 7 unknown parareters. The data arc
from the oblique wing aircraft (Ref. 18) with the wing unskewed during the
maneuver. This example was chosen because it is a typical maneuver. The time
history of the data and the subsequent o:cput of MMLE3 have been published in
Ref. 21. Some results of the ana'ysis are shown in Table 7. The match between
the measured time history (solid .ines) and the estimated (calculated) time
history {(dashed lines) is shown as a function cof iteration in Fig. 27. PFig-
ures 27(a) to (e) are for iterations 0 to 4, respectively. Table 7 shows that
the cost remains unchanged after four iterations. A similar result was obtained
for the two-dimensional simple aircraft example in Fig. 6 and Table 4.

Of the many things the analyst m:st consider in oktaining estimates, the two
rost important onzs are how good is the match and how gnod is the convergence.
A satisfactory match and monotor convergence are necesgary, but not suffi-
cient, conditions for a success’ . analysie. Figure 27(e}), althouyh not per-~
fect, is a very good match. The convergence can best be evizluated by looking at
the normalized cost in the last row of Table 7. The cost has converged rapidly
and monctonically in four iterations, and it remains at the converged cost.
These factors are convincing evidence that the convergence is complete. There-
fore, the criteria of match and convergence are satisfied in our example. In
some cases we might encovnter cost that does not converge rapidly (in four to
six iterations) or monotonically, or stay “exactly" at the minimum value. These
situations usually indicate at least a small problem in the analysis. These
probiems, if found, are usually traced to an instrumentation or data aquisition

problem, an inadequate mathematical model, or a maneuver that contains a mar-
ginal amount of information.
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Table 7 also shows that the startup values of all the coefficients are zero
for the control and bias variables., Wind turnel estimates could have been used
for starting value., but the convergenze of the algorithm is not very dependentz

op the startup values. As part of the startup algorithm, the MMLE3 program nor-
mally holds the derivatives of the state variables consta:t until after the
first iteration, as is evident in Table 7.

Figure 27(a) shows the match between the measured and comput:d data fcr the
startup values. The match is very poor because the startup values for the con-
trol derivatives are all zero, 30 the only motion is in response to the initial
conditions. The control derivatives and biase . are determined on the first
iteration, resulting in the much improved match shown in Fig. 27(b). The match
after two iterations, shown in Fig. 27/c), is improved as the program further
modifics the control derivatives and, fcr the first time, adjusts the deriva-
tives affecting the natural frequency (CnB and CzB). By the third iteration

(Fig. 27(d)), the improvement in the match is.almost complete, because minor
adjustments to the frequency are made and the damping derivatives are changed.

Fig. 27(e) shows the match when all but the wost minor derivatives have ceased
to change.

Several general observations can be made based on this welli behaved example,
The strong or most important coefficients harve essentially converged in thre«e
iterations. The same effect was sesen in the simple example — that is, L& con-
verged faster than Lp (Table 4). Some of tre less important or second-order
coefficients have only converged to two places after three iterations and are
still changing by one digit in the fourth place at the end of six iterations.
Another observation is that for some coefficients (Cgr, cnéa' and ngr) even

though the sign is wrong after the first iteration, the algorithm quickly
selects their correct values once the important derivatives have stabilized.

In general, if the analysis of a maneuver has gone well, we do not need to
spend much time inspeccing a table analogous %o Table 7., WHowsaver, if there have
been problems in convergeuce or in the quality of the fit, a detailed inspection
of such a table may be nrecessary. The data may show an important ccefficient
going unstable at an early iteration, which could cause problems later. If tha
starting values are grossly in error, the algorithm is driven a long way from
reasonable values and then for many reasons does nct behave well, Occasiorally
the alaorithm alternately selects from two diverse gser of values of two or more
coefficients on successive iterations, behaving as if the shape of the cost
function were a narrow multidimensional valley analogous to but more extreme
than the two-dimensional valley shown in Figs. 18 and 20.

Cramér-Rao Bounds

The earlier sections regarding the computed example have shown that the
Cramér-Rao bound is a good indicator of the accuracy of an estimated parameter.
The Cramér-Rao bounds can be used in a similar, but somewhat more qualitative,
fashion on flight data. The Cramér-Rac bounds that are included in MMLE3 (as
well as many other maximum likelihood estimation programs) have been useful in

219



determining whether estimates are good or bad. The aircraft example discussed
here has br2n reported previously (for example, in Refs. ! and 16). However,

this example of the use of the Cramer-Rac bound in the assessment of flight-
dorived estimates is pertinent to the thrust of this paper. Figure 28 shows
estimates of Cnp as a function of angle of attack for the PA-30 twin-engine

generali aviation aircraft (Ref. 22) at three flap settings. There is a signifi-
cant. amount of scatter, which makes the reliability of the information on Cp

questionable. The data shown are the egtimates from the MMLE3 program, which
also provides the Cramer-Rao bounds for each estimate. Past experience (Ref. 1)
has shown that if the Cramer-Rao bound is aultiplied by a scale factor (the
result sometimes being called the uncertainty level (Refs. 1 and 16)) and plot-
ted as a vertical bar with the associated estimate, it helps in the interpreta-
tion of flight-determined results. Figure 29 shows the same data as Fig. 28,
with the uncertainty levels now included as wvertical bars. The estimates with
small uncertainty levels (Cramér-Rao bounds) are the best estimates, as was
discussed earlier in the section on Cramér-Rao bounds for the one-dimensional
case. The fairing shown in Fig. 29 goes through the estimates with small
Cramér-Rao bounds and ignires the estimates with large bounds. One can have
great confidence in the fairing of the estimates, because the fairing is well
defined and consistent when the Crameér-Rao bound information is included. In
this particular instance, the estimates with small bounds were from maneuvers
where the aileron forced the motion, and the large bounds were from maneuvers
where the rudder forced the motion. Therefore, in addition to aiding in the
fairing of the 2stimates, the Cramér-Rao bounds help show that the zileron-
forced maneuvers ave superior for estimating Cnp for the PA-30 aircraft.

This example illuscrates that the Cramfr-Rac bounds are a useful tool in

assessing flight-determined estimates, just as they were found useful for the
simple aircraft example with computed data.

Atmospheric Turbuleace (State Noise)

Atmospharic turbulence (state noise) caanot always be avoidad in flight;
therefore, it 18 desirable to be able to obtain stability and control deriva-
tives in the prescnce of turbulence. 1In additicn, an estimste of the turbulence

time history can be of interest, particularly in the implementation of tur-
bulence suppression systems.

Many years ago it was demonstrated that the stability and control deriva-
tives cain be adequately determined with maximum likeliliood estimaticn techniques
for maneuvers performed in smooth air. If these techniques, which do not
account. for turbulence, are applied to data obtained in turbulence, nct only are
the resulting watches of the time histories unsatisfac tory but the estimated
coefficients are unacceptable (Refs. 23 to 25)., The tecnnique deacriked in
Refs, 14, 23, and 25 can account foi the effect of turbulence. With this tech-
nique, maximum likelihood 2stimates of the stability and control derivatives as
well as estimates of the turbulence time histories are »‘btained by mrinimizing
the cost function given by Fg. {11). Results of the applicaticn of the tech-

nique to longitudinal maneuvers obtained in turbulence have been reported
previously (Refs. 23 to 25).

to
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Tne lateral-directional equatioas (Egs. (15), (16), {17}, (18}, and (29))
can be modified in a manner similar to that used to modify the longitudinal
equations in Refs. 23 to 25. The turbulence (state noise) model is the Dryden
expression, which is described in Ref. 26. The Iliff-Maine code (Ref. 17) can
be used to obtain the maximum likelihood eatimates where state noise is present.

Thirty-eight seconds of data from the PA-30 aircraft flying in turbulence
was analyzed at 50 samples/sec. The best match that could be obtained with the
maximum likelihood estimation method that does not account fcr turbulenca is
shown in Fig. 30. The match is unacceptable and regulted in poor estimates of
the stability and control derivatives. Figure 31 shows the match obtained with
the maximum likelihood estimation technique that accounts for turbulence
(Re” . 14 and 17). The match is excellent and the maneuver provided acceptable
es .mated stability and control derivatives. It is also of interest to coapare
the power spectra of the estimated turbujence time histories. The power

spectrum of the turbulence component affecting -angle of sideslip, Bg, is shown
in Fig. 32. Fiqure 33 presents the power gspectrum of the turbulence component

affecting roll rate, j The slopes of the asymptotes shown in Figs. 32 and 33
are those defined by the Dryden expregsion given in Ref, 26, Good agreement is

showi. be.4een the power spectra and the asymptotes for Bg and Pqg-

The algorithm used here is based on a linearized system described by
Egs. (5) to (7) and solved by minimizing the cost function given by Eg. (11).
The system need not resemble that for the aircraft stability and control problem
other than in the requirement for linearity. Therefore, many formulations for
the structural problem are wricten in the form of Egs. (5) to (7), and the
algori~hm under discussion can be directly applied with these forsulations.

ESTIMATION POR SIMPLE STRUCTURAL PROBLEM

The problea of the flexible space structure is most fully characterized as a
distribuced parameter system with its associated distvibuted system control
laws. The model will vary dependi.y upon changes in its configuration or its
environment, such as sclar heating. As in most cases, the preferred solution is
the simplest succesgful approach. The lumped svstem approach is much simpler
and computationally far more efficient than the fully distributed paraseter sys-
tem approach. For example, structural mode control base? on current state-of-
the-art approaches has proved very successful. Admittedly, the aircraft struc-
tura is heavier than mogst spacecraft, but many aircraft structures are highly
complex, consisting of many subet{riuctures within the main structure. To the
novice, many of the sp-ce structures currentlv “eing iavestigated appear simpler
thar modern, large aircraft. If the lumped parameter system approach used for
the aircraft pro’ 2m is found to be inadequate, it seems likely that distributed
parameter estimation codes wiil evolve to whatever complexity i’ recessary to
solv2 the flexible space structure problem.
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This paper has discussed some of the experience gained from the applicatic..
of aircraft stability and con*rol analysis to flight data. The codes used for
this analys’s are for lumped parameter systems in the time domain. The codes
have been used successfully for structural problems and are fully adaptable to
the frequency domain if that is found to be preferable.

Although few results have been obtained fcr time-domain structural analysis
at the Ames Dryden Flight Research Facility, sose superficial experience in
structural time-dcmain analysis has been obtained. The following two examples
show how the techniques being used for stability and control analysis can be
applied to simple structural problems. The preceeding gsection discussed the
incorporation of state noise in the model. The following examples do not
include the use of state noise, but state noise, if warranted, could easily be
incorporated in the types of examples to be discussed.

Bstimation of Structural Charactetistics

All aircraft have observable structural modes. These modes usually cause no
difficulty in estimating stability and control derivatives because the struc-
tural frequencies are higher than the aerodynamic frequencies. 1In general, if
the structural frequencies are higher than the highest aerodynamic frequency by
more than a factor of 5 to 10, they can be neglected unless their amplitude is
so large as to mask measurementrc desired for the aerodynamic analysis. However,
if one or more structural aodes are affecting the aerodvnamic modes, as may
occur in large aircraft, these structural wodes must be included in the mathe-
matical model being analyzed.

Even though no completely satisfactory practical results are available that
account for structceral modes and their interactions with the aerodynamics, it is
interesting to assess the time-domain maximum likelihood analysis of the struc-
tural modes independent of any interaction. This can be done where a structural
mode is observed and no significant coupling is apparent.

Figure 34 shows a structural mode on the lateral acceleration of an aircraft
where little effect was obaerved for structural-aerodynamic coupling. The fre-
quency of the mode is high enough that the mode does not interact with the aero-
dynamic wmodes. Therefore, the stability and control derivatives were obtained
separately and held constant for the succeeding analysis. The analysis con-
sisted of using the maximum likelihocad estimation program MMLE 3 (Ref. 17) with
a sirth-order model that included the lateral-directional aerodynaaic moGes plus
one structural mode. The dynamic preasure and the velocity were allowed to vary
in the analysis. The structural mode frequency and damping were egstimatel as
linear functions of dynamic pressure. The initial conditions were also esti-
mated. A structural mode frequency of 7.84 Hz was chosen to start the estima-
tior process. The comparison between the original data and the match obtained
wi. the maximum likelihood estimation method is shown in Fig. 35. The two time
histories are in good agreement at the beginning of the maneuver and at the end
of the maneuver, but they are 180° out of phase at a time of approximately



0.3 sec. The match shown in Fig. 35 suggests that the maximmm likelihood esti-
mator has reached a local minimum but 20t the global minimum. Multiple minima
are not normally a problem when obtaining the stability and control derivatives
of aircraft with the maximua likelihood estimation method.

The reason for the multiple minima is demonstrated by the following simple
scalar example. Let the noiseiess measured response be z(t) = sin (wgt) and the
estimated response be ?5 = gin (wt), where w is the only unknown coefficient.
Then, by Eq. (4), the cost function becomes

T 2
J(w, 1) ] isin (wgt) - sin (wt)]€ at
0

[ . 1 .
t --Zaa sin (2wqT) - 2 8in (gm?)

2w Yo _. . .
-5 o2 5 sin (&T) cos (wgT) - cos (wT) sir (wqT)

If T is chosen to represent 10 cycles, as shown in Fig. 35, then for an wg of

1 rad/sec, T equals 20%. In Fig. 36, the cost function J(w,20%) is shown as a
function of w. The global minimum is at an w of 1 rad/sec, as it should be, but
there are many local ainima at increments of approximately 0.05 rad/sec. If a
value of less than 0.97 or greater than 1.03 were chosen for & starting estimate
of w, the algorithm would converge to a local minimum. If a value of between
0.98 and 1.02 were chosen, it would converge to the global minimum. Therefore,
for this example where 10 cycles were observed, the starting vaiue of & must be
less than 3 percent from the correct anwser to converge to the global minimum.

Figure 37 shows a sine wave for the global minimum along with a sine wave
with a frequency that varies 10 percent from the qlobal minimum. The sine waves
are in phase at the beginning and end, and 180° out of phase in the middle.
These data appear similar to those shown for flight data in FPig. 35. 1f only
one or two cycles were used for the analysis, the problem illustrated in Pig. 37
would be minimized. This is apparent in Pig. 38 where only the first cycle of
Fig. 37 is shown.

If T is chosen to represent only one cycle and Wy remains equal to 1 rad/sec
(as in Fig. 38), then T equals 27. The cost function J{w,2%) is presented as a
function of w in Fig. 39. The global minimum is correctly at an w of 1 rad/sec,
but now the algorithm converges tc the global minimum if w is started within
approximately 25 percent of the correct value.

Knowing the sensitivity of the algorithm when a record with many lightly
damped cycles is being analyzed, the data of Fig. 34 can be reanalyzed starting
closer to the observed frequency. Starting the maximum likelihood estimation
method with an w of 3.0 results in the fit shown in Fig. 10. This is an accep-
table fit of the data.
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Based on the preceding results, if data are to be analyzed where many cycles
of a structural mode are presgsent, the structural mode frequency, w, must be clc-
saly approximated before starting the estimation process.

Structural Modes in Space

In the process ~f analyzing aircraft flight data, the authors have fre-
quently obserwved results that clearly exhibit unmodeled dynamics. The unzodeled
dynamics could be caused by many phenomena, such as higher-order aerodynamic
modes or structural modes. These modes can usually be ignored and left unmo-
deled because thev have no effect on the results of primary interest in tne ana-
lysis. If the unmodeled modes cannot be ignored, then the systea equations must
be revised to include the unmodeled modes.

The authors have not yet found it necessary. to model structural modes for
data obtained in space in the process of obtaining control derivatives for the
space shuttle. However, the structural modes have been observed. Figure 41
shows the response of the space shuttle to the firirg of a roll jet and a yaw
jet at an altitude of 430,000 ft. The space shuttle configuration and the loca-
tion of the RCS jets are shown in Fig. 22. The changes in the rigid-body rates
and lateral acceleration caused by the jet firings are apparent in Fig. 41. The
structural modes are also excited by the jets, as evidenced by the increased
ringing in each signal at the time of the jet firings. The roll jet firing has
little effect on the rigid-body response for the yaw rate and lateral accelera-
tion; nowever, the yaw jet results in a rigid-body responte for all the signals
chcesen. This maneuver was analyzed to obtain control derivatives for the rigid-
body response described by BEgs. (15) to (31). The resulting match between the
measured and computed response is shown in Fig. 42. The estimated coatrol deri-
vatives are in good agreement with those obtained from the maneuvers. The unmo-
deled structural dynamic modes are evident, but it is apparent that the modes
will have little effect on the rigid-body control derivatives. The differences
between the measured and computed rigid-body responses (the residuals) for the
time close to when the jets were fired are shown in Fig. 43. The data shown
here are for a sample interval of 0.006 sec., Some persistent structural
ringing is shown for the two rates and the lateral acceleration. However, when
a jet is fired, the increased structural response is evideat. The structural
coefficients can be extracted directly from the residual as they were for the
example in the previous section, It appears that there may be some contamina-
tion caused by the rigid-body response at the instant the jets fire. If so,
this contamination can be eliminated in one of two ways: either analyze the por-
tion of the maneuver a tenth of a secord after the jet fires, or adapt the equa-
tions of motion to include the structural dynamics in addition to the rigid
dynamics. The structural dynamics depicted in Fig. 43 have not been analyzed,
but the procedure is straightforward. The procedure used on this case was the
same as that used on the example in the preceeding section. It is apparent,
however, that more than one structural mode wc~uld need to be included in the
model,

All the analysis techniques discussed in this paper apply to the analysis of
this space shuttle example. If state noise is included in the mathematical
model, then the linear form of Eqs. (5) to (7) would be required. 1In general,
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if the structural partial differential equation can be expressed in the linear
forr of Eqs. (5) to (7) (with or without state noise), the gstructural modes can
be analyzed readil, with the MMLE 3 program (Ref, 17) in the time domain. If

the analyst prefers, the problem can be expressed in the linear constant coef-
ficient fora and analyzed in the frequency domain, as described in Ref. 12. The
relative advantages and disadvantiges of time-domain analysis as compared with
frequency-domain anzlysis are also discussed in that reference. I1f the equa-

tions are nonlinear, but in thes form of Egs. (1) to (3), then maximum likelihood
estimates can be obtained in the time domain.

CONCLUDING REMARKS

The computed simple aircraft example showed the basics of minimization and
tr.2 general concepts of cost functions themselves. In addition, the example
demonstrated the advantage of low measurement noise, multiple estimates at a2
given condition, and the Cramer-Rao bounds, and the guality of the match between
the measured and computed data. The flight data showed that many of these con-
cepts still hold true even though the dimensionality of the cost function makes
it impossible to plot or visualize. 1In addition, the techniques used for the
aircraft problem were shown to be applicable to the flexible structure problem.
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Table 1 Values of computed time
history with no measurement noise

[ d

8§, deg p. deg/sec

0
0.9754115099857
2.878663149266
4.689092110779
6.411225409939
8.049369277012
9.6076199249137
10. 11446228200
9.621174135646
9.151943936071

O WO NOOUNE WN
O O 0 wboadb b = b b O

-h

Table 2 Pertinent values ags a function of iteration

L Epw) Ls(r) $(L) ¥(L) I

0 -0.5000 15.00 0.9048 2.855 21.21

1 -0.30C5 9.888 0.9417 1.919 0.5191

2 -0.2475 9.996 0.9517 1.951 5.083 x 10-4
3 ~0.2500 10.00 0.9512 1,951 1.540 x 10-9
4 -0.2500 10.00 0.9512 1.951 1.060 x 10-14

Table 3 Values of computed time his-
tory with added measurement noise

§, deg p. deg/sec

"

0
C.4875521781881
3.238763570696
3.429117357944
6.286297353361
6.953798550097

10.80572930119
9.739367269447
9.788844525420
7.382568353168

DO ONOARVEWN -
OO0 O b ek b d b O

-
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Table 4 Pertinent values as a function of iteration

L Ly (L) L§ (L) (L) ¥(L) Jy,

Q -0.5000 15.00 0.9048 2.855 30.22

1 -95.3842 10.16 0.9260 1.956 3.497
2 -0.3518 10.23 0.9321 1.976 3.316
3 -0.3543 10.25 0.9316 1.978 3.316
4 -0.3542 10.24 0.9316 1.978 3.316
5 -0.3542 10.24 0.9316 1.978 3.316

Table 5 Mean and standard deviations for estimates of Lp

Sample standard

Number of Sample mean, Sample standard derivation of the
cases, N u(Lp) deviation, o(Lp) mean, a(Lp)//i_
5 -0.2668 0.0739 0.0336
10 ~0.2511 0.0620 0.0196

20 -0.2452 €.0578 0.0129

e ————

xble 6 Estirate of Lp and Crawer-Rao bound as
a function of the square root of noise powar

o ———————

Square root of Estimate Cramer-Rao

noise power of Lp bound
u.0 ~0.2500 ————— -
0.01 -0.2507 0.00054
0.05 -0.2535 0.00271
0.10 -0.2570 0.00543
0.2 -0.2641 0.0109
0.4 -0.2783 0.0220
0.8 -0.3071 0.0457
1.0 -0.3218 0.0579
2.0 -0.3975 0.1248
5.0 -0.6519 0.3980
10.0 -1.195 1.279
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SUMMARY

The optimum sensor l-ozation problem, OSLP, may be thought of in terms of the
set of systems, S, the class of input time functions, I, and the identificatior
algorithm (estimator) used, E. Thus, for a given time history of input, the
technique of determining the OSL requires, in general, the solution of the opti-
mizatjon and the identification problems simultaneously.: However, this paper
introduces a technique which uncouples the two problems. This is done by means
of the concept of an efficient estimator fpor which the covariarce of the parameter
estimates is inversely proportional to the Fisher Information Matrix.

INTRODUCTION

The problem of structural identification in structural engineering is one
which has received considerable attention from several resear- ‘ers in the recent
past (Refs. 1-4). Though various methods have been developed for identifying the
difrerent parameters that characterize a structure from records obtained in them
under various loading conditions, few investigators, if any, have looked at the
question of where to locate sensors in a structure to 1equ. 2 data for "best"
parametric identif’cation (Ref. 5). The problem of optimaliy locating sensors in
a suructural system arises from considerations of+ (1) minimizing the cost of
instrumentation; and (2) efficiently detecting structural changes in the system
with a view to acquiring improved assessment of structural integrity.

The problem addressed in this paper can be stated as follows: Given m sen-
scrs, .here should they he located in a structure so that records obtained from
those loca:ions yield the "best" estimates of the unknown parameters?

In the past, the optimal sensor location problem (OSLP) was solved by
positioning the given number of =ensors in the system, using the records obtained
it those leccations with a specific ectimator, and repeating the procedure for
different sensor locations. The set of locations which yield the "best" parameter
estimates would then be selected as optimal. The es:imates obtained, of course,
would naturally depend upon the type of estimator used. Thus the optimal loca-
tions are estimator dependent, and an exhaustive search needs to be performed for
each sp.cific estimator. Such a procedure, besides being highly computationa v
intensive, suffers from the majcr drawback of not yielding any physicel insti
into why certain locations are preferable to others.

Recently, work ¢ the solution of the OSIP was done by Shah and Udwadia
(Ref. 5). 1n brief, .hey used a linear relationship between small periurbations

247



in a finite dimensional representation of the system parameters and a finiie
sample of cbservations of the system t.ne response. The error in the parameter
estimates are minimized, yielding the optimal locations. In this paper, we develop
a more direct approach to the problem which is both computationally superior, and
throws c¢.msicerable light on the rationale behind the optimal selection process.

We uncoupi= the optimizarion problem from the identification problem using
the concept of an ofiicient estimator (e.g., the maximum likelihood estimator as
time becomes very large). For such an  timator the covariance of the parameter
estima es is a minimum. Using this technique and motivated by heuristic argu-
ments, a rigorous form lation aud solution of the OSLP is presented. The method
is applied to a building structure mcdelled as a general linear dynamic system.
For the N degree of freedom system considcred, the methodology for selecting
m{m < N) ot the nodal displacements for purposes of measurement is presented.

Sample calculations are made for a simple building structure modelled as a

two-degree-of-freedom system subjected to base excitations. The uptimal sensor

location for the identification of: (a) the mass ratio; and (b) the stiffness
ratio is investigated.

The results indicate that the OSLP depends on:

i) the class of systems, S, to which the structure belongs;

2) the tvpe of excitation;

3) the actual system parar :ters involved; and

4) the parameters to be identified.

THEORY

Consider a system modelled by the equation

MX + CX + KX = F(t) (1)
where M, C, and K are the (NXN) mass, dauping and stiffness matrices, E(t) is
an (NX1) vector containing inertial forces and exte...ally applied loads and X
is tho N-vector of nodal displacements. Let B8y, 8¢ and Bg be vectors containing
the various parameters related to the mass matriz, the damping ma.rix and the

stiffness matrix, respectively, whick need to be identified. For convenience,
we collect these quantities in the parameter vector, 0, defined as

T _ | .T).TyT
) -[euleclex]

where the superscript T indicate matrix transpose. If the M, C and K are
symmetric each of the three subvectors has a maximum dimension of N(N+1)/2.

Given m sensors (m<N), we fhen need to find where to locate them so that
the covariance of the estimate, 6, is a minimum. Assune further that the
measurement vector Z{(t) can be expressed as
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Zi(t) = gi[X(e,t)] + Ni(t) , 1=1,2,...,N (2)

where Z; is the ith component of Z(t), and the functionals gy represent the
"measurement process'. The dependence of the response X on the parameter
vector 8 is explicitly noted The measurement noise Nj(t) is taken as non-
stationary Gaussian White noise with a variance of y2(t). Therefore,

E[Ni(tl)Nj(tzi]= wz(tl)éx(i-j)éb(tl-cz) . (3)

where dSg and d8p stand for the kroneker and the dirac-delta functions,
respectively. A total of m out of N responses neced to be selected so that
they contain the most information about the system parameters and are maxi-
mally sensitive to any changes in the parameter values. This "selectica"
process can be represented by an m-dimensional vector Y such that

¥(r) = 52(t) (4

where S is the (m x N) upper triangular selection matrix with each row con-
taining null elements except for one which is unity. The m different compo-
nents of Z selected to be measured are so ordered in vector Y, that if the
element in the i-th row and k-th column of S is unity, the (i+1)-ith row has
unity in its f-th column with & > k. The matrix S has the property that

P = STS in an (NXN) diagonal matrix with unity in its i-th row if, and only
if, Zy is selected to> be measured. The elements of P are otherwise zero.
Hence, one can write

Y(t)

SglX(8,t)] + SN(t) (54)

fle-

HIX(8,t)] + V{t) (5B)
f g; is linearly related to che response X , in general, then
H[X(6,t)] = SRX (6)

where R(:) can bhe thought of as a dynamic gain matrix. In the case that g4

is related tn _the resporse Xi oaly, then matrix R will reduce to a diagonal
matrix, J,

The prctlem of locating sensors in an optimal manner then reduces to
determining the selz2ction matrix S, or alternatively, finding the m locations
in P that should be unity. These locations must be so chosen as to obtain the
"best' parameter estimates. '

SOME MOTIVATING THOUGHTS AND THE FISHER INFORMATION MATRIX

Consider a case in which ore tries to estimate only one parameter, 61 (to
be identified) involved in a dynamic system model with only one sensor provided.
Therefore, one wants to ideally choose a location i (out of N possible such
locations) such that the measurement y4(t), 1ie[1,N], te(0,T) at location i yielids
the best estimate of the parameter 8]. Heuristically, one shculd place the
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sensor at such a location that the time history of measurements obtained at that
location is most sensitive to any changes in the parameter 6y. He~ce, in equa-
tion (5B) it is really the slope of H{X(8;,t)}] with respect to 8] that needs to
be maximized. However, since only the absolute magnitude of this slope is of
interest, it is logical to want i+ find i (or equivalently determine the selec-
tion matrix S described previously) such as to maximize (3H/861)2 over the inter-

val (0,T) during which the response is to be measured. This leads to maximizing
the following integral:

T 2

q; =f(:TH1) at . (7)

0

When there is more than one parameter to be estimated, and the number of
sensors is greater than unity, this intuitive approach needs to be extended in a
more rigorous wmanner. In such cases recourse to mathematical treatment is

necessary, and we shall see that such treatment will be in agreement with our
heuristic solution outlined above.

To further understand the problem, let us loo™: at it from another angle,
namely, the concept of an efficient unbiased estimator. For such as estimator

che covariance of the estimates is a minimum. Furthermcre, it can be shown that
for anv unbiased estimator of 9,

-1
T

eleo-d-07] 2| f(E) (%) 2o ®
0

where & is the estimate of 6 and the matrix [3H/230]; A=3Hi/86j. If the esti-
mator is "efficient", the above inequality becomes an equality. This means that

the left-hand side of inequality (8) takes its lowest value (minimum covariance).
Heunce,

-1

‘T
e e T
E[(e-e)(e-e)‘] - f(%) (%%)/qf’(t)dt 9

0

The term inside the bracket on the right-hand side of the equation (9) is known
as the Fisher Information Matrix, Q(T). Thus, maximizing Q(T) would indeed 1lead
to a minimization of the covariance of the estimate, 6.

Wa note then that the m sensor locations need to be so chosen that a suitable
norr « the matrix Q(T) given by

T

QUT) = f(g )T(%%)/w2<:)dc (10)
0

o]

[e-]
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is maximized. This constitutes an extension of equation (7), which we heuris-

tically derived earlier for the scalar case, to the vector situation. Introducing
equation (6) in equation (10) one may write

T
eR PRX

Q1) = f——z————e— d, (1)
A

where the ij element of Xe can be written as:

r axi
Lxe]i‘ =55 > 1c¢ [1,N}, 3 ¢ (1,m)
N J

where X = {x;}y and 8 = {65};. We note that the Fisher Matrix is symmetric and
is dependent on che 1ength of the record available, as well as the locations of
the sensors as determined by the matrix P.

If the m locations where the sensors are to be placed are denoted by
Si» k=1,2,...,m, then

m
=Y I (12)
k=1

k

where the (N x N) diagonal matrix Is, has all its elements equal to zero excepr
the element of the sy row, which is unity. Noting that P is a diagonal matrix,
equation (11) can be simplified to yield

T
m
Q[T;sl,sz,...,sm;S,G;I] = 2 f (13)
=5 T

where rsy is the sy row of the matrix R. Also in eq. (13) explicit mention is
made of the dependence of the Fisher Matrix on the time length T of the available
data, the syscem S, the parameter vector 6, and the time-variant input I, If the
matrix R 1s diagonal, with diagonal elements P1,---5PyNs then the ij element of
the matrix Q, after some manipulation, reduces to

m T 3xsk Bsk p(t)8k>
N R | B o
0

Each element of (j: represents the cross-sensitivity of meas.rement with respect
to the response x = of node s, .
Sy k
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The cptimal sensor locations are then obtained by picking m locations sy,
k=1,2,...,m, out of a possible N, so that a suitable norm of the matrix Q is

maximized (e.g., the trace norm, etc...). This may be specified by the
condition

max [IQ[f;s 3Snseee38 ;S,S;I][l . (15)
Sk e(1,N) 12 n

Although there are several matrix norms which could be used, perhaps the
most useful and physically meaningful in this context is the trace norm. In
order not to detract the reader from the basic methodology we defer an exhaustive
treatment of suitable matrix norms to a later communicatiom.

The methodology presented up to this point is valid for both linear and non-
linear systems since the criterion developed in equation (13) was derived using

only equations (5) ané (9). We will now indicate its application to linear
multi-degree-of-freedom systems.

APPLICATION TO LINEAR DYNAMIC SYSTEMS
Consider the N-degree-of-freedom dynamic system whose governing differential
equation of motion is given by eq. (1), together with X(tg) = X, X(tg) = Xo,

where Xg and X are the given initial conditions for the system. Assume the
system to be classically damped. Introducing

X(t) = ¢n(t) (13)

where ¢ is the (N x N) weighted modal matrix and n(t) is the N-vector »f
generalized coordinates we get

R+ 26gunin = $TF(E),  n(tg) = oTMRG, B (rg) = oTMX,, (17)

where the (N x N) diagonal matrix A is given by

[\A\] = ¢Tko = [\uﬁ\], and g = [\51\].

The solutica of equation (17) is given as

t
ni(t) = noiui(t—t0)+ﬁoivi(t—t0)+ f hi(t—‘l‘)pi(‘t)d‘r E (18

%o

where Ny and ﬁo are initial conditions and
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Ew

_ i
ui(t) = EXP(—Eiwit) Coswd t + Zr—-Sinwd t s
i d i

i

v (t) = EKP(— ))si

148 = o BP(fjuyt ) neg b
d, i
i
h, (8) = v, (1),

€
il

7 ui\/l - Ei , and

= oTF(t), 4i=1,2,...,N.

o
~
r.
~
|

Also, differentiating equation (1) with respect to 8, yields

" e VANV ANRVAN o
Mx6+cxe+xxe = Fe(t) - (Mex+cex+xe ); Xe(o) = 0, xe(o) =0
where
[x ) Bxi

. .

= : X : XM X
MK = (Mg X 3 Mg X I Mg XD M ]

1 2 i L

i=1,...,N, and 3 < 1,...,L.
Introducing

Xe = ¢z (19)
yields

£+25NmNé+Az = () (20)
where

NN N
G(t) = ¢T[%6-(Mex+cex+xex)] ) (21)

Equation (21) can further be simplified to give

/NN /\>]

G(t) = ¢T[Fe—(ueon+ceon+Ke¢n (22)
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where 1 and n can be obtained by differentiation of eq. (18).

as follows
n, ()
where

Wiy

¥, (t)

Hi(t)

pi(t)

Also
ni(t)
where

wi(t)

t
no wi(t-to)+ﬁoiYi(t-t0) + J/.'Ei(t-r)pi(r)dt
t

i
0

E9\
EXP(-&iwit) Cosu.xo1 t —(m >Sinwd t R

T\Oiwi(t:-to)+noiYi(t-to) +f hi(t—T)pi(T)dT
%o

~n
<

EXP L) 50, )| sthe, e
("1w1t) @ “q <§1 1) g
a, i 1
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t ’
di

p;(t) = @TF(t), i=1,2,...,N,

Therefore, substituting equations (23) and (24) into equation (22) gives G(t).
Consequently the solution of equation (20) can be written as:

t
zij(t) = f hi(t-r)Gij(r)dr (25)

o

where hj(t) is the same as that of eq. (18). Notice that the initial conditions
in eq. (20) are zero. This is due to the fact that the initial conditions of
(18) are known constants.

If we assume that [Z] is expressed as a linear combination of [K] and [M],
then eq. (22) zan further be simplified. Namely,

C = 20K+28M, (26)

where a and B are known constants. Hence in equation (17), the percentage of
damping, EN, can be expressed as:

g, = au +-£% , i=1,2,...,N (27)

To further simplify equation (22) under this assumption, let us consider the
following three cases:

1) The vector 6 contains only 6jM, 1.e., only estimation of mass param-
eters is undertaken. Then

T N\
G(t) = ¢ [Fe - Me¢(n+28n)] . (284)

2) The vector 8 contains only the subvector 6g. Then
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r N

G(t) = ¢ [Fy - Kgo(mr2an)] (288)
3) Finally if tha vector 8 = [a B]T .
G(t) = <¢TFQ - 2An, ¢TFB - 216»1 (29)

If the input F(t) is not a function of @8, then Fg would be omitted all through
this discussion. Once the solution of equation (25) is obtained, the Fisher
Matrices may be obtained as in equation (13). Hence

T zT¢TrT r_ 9%z
m sk sk
Q=Ef————2— dt (30)
=19, ¥ (t)

We note that the summation form of relation (30) is particularly amenable to the
maximization of the trace nnrm of Q.
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EXAMFLE

To illustrate some of the ideas of the previous section, consider the prchlem
of finding the optimal sensor location (OSL) in a structural system modelled by the

two-degree-of-freedom system (shown in Figure 1) which is subjected to the base
excitation of f(t).

The governing differential equation of motion can pe expressed as

M+ CX + KX = -W £(¢) (31)

where X = <xl x2>T,(I= aK, W = <Am m>T and the matrices M and K are

A O B+l -1
M= m, and K = k
0 1 -1 1

A case study for locating sensors to best identify (1) the mass ratio, A, of the

first to the second floor and (2) the stiffness ratio, B, ~f the first to the
second flcor, will be presented.

Let sj denote the lower mass location and sy the upper mass location. The
selection between the locations can be equated to determining the one non-zero
element of the [1x2] selection matrix, S, with the measurement H(t) defined by

H(t) = SX + V(t) ,

where, V/t) is Stationary Gaussian White Noise (5 G W N) with w(t)=w°.

If S = [1 0] the lower mass is selected for measurement; if S = [C 1] the
gpper mass is selected. The location s; would then be preferred over the loca-
tion s for identifyirg the parameter A, 1f Q{T,s;] > Q[T,s2], where T is the
time that the measurement is taken,

1 ! axl 3x2 1 0 3;%
Q (1) 4 QIT,s] = L2 / <-a7§ _éK> o ol de
o 0 —SX
- L jr (—af—l—>2 dt (324)
v 3A ’ )
o] 0



and

ax
T 1
ax. 9x 0 0 —
1 1 %% 3A
A 1= 12
Q, (D 2QlT,s,!] 2 f <aA aA) ] ax, (3

T 01 2
3

N 2

o 0

Since only one parameter is being estimated the Fisher matrices reduce to
scalars.

The dependence of the OSL on various types of the base excitations can be

studied now. Let us for this presentation consider ground acceleration in the
form of a delta function, i.e., f(t) = 6(t).

In this case, closed form solutions fo1 Qi and Q2 can be obtained.

For the OSL problem for the "best" (minimum covariance) identification of
the parameter A (given the parameters B and «) using an impulsive base excitation,
Figure 2-A shows the plots of th2 ratio of the information matrices Q1(T)/Q2(T),
for T = 50 secs, for various values of the parameters A (which is to be identi-
fied) and o A awg, where wo A Yk/m. Points on the graph with ordinates greater
than unity indicate the optimal location to be the lowar mass level and vice
versa. The graphs indicate that the optimal location in most cases, for the
range of A considered, is the upper mass level. However, we obse ve that for
some small values of A and a* the OSL is the lower level. We note, interestingly
enough, that the optimal sensor lecation for identification of A actually depends
not only on the actual values of B and a which are presumably known, but also on
the value of the parameter A itself which is to be jdentified! Thus to be able

to ascertain the optimal sensor location some a priori assessment of A is
necessary.

Figure 2-B shows that the ontimal location for identification of the param-
eter B (given A and a), using an impulsive base input, is again the upper mass
level for the range of B values considered. For jarger B values, however, and
a*>0,05, the trend appears to be more and more in favor of the upper mass. This
seems intuitively correct, for as B becomes larger, the lower part of the system
becomes stiffer and the OSL would be the upper mass level.

Figure 2-C is associated with the OSLP for estirating the parameter B usir-
a sinusciual base excitation, f(t) = a sin wt. The figure shows that as the
normalized driving frequency y = w/w, varies, the OSL changes. For this example
the Fisher Matrices can be computed in closed form. For the estimation of B,
(g*ven A and a* = 0) the dimensi.nless driving frequency y = vV1+l/A yields no
information on B from records a: either of the two mass lavels., The responses at
the two mass levels yield identical amour.*s of information on B at y = 0 and
vy = /2 for A # 1, as indicated by the values of Q1/Q2 = 1 at these frequencies.
The value of Q3j/Q2 = 0 at y = 1 is indicative of the fact that the upper mass
level is .. far better location for a sensor when estimating B with o* = 0.
Figure 2-D shows the mean value of the ritio (1/Q2 for a random Gaussian white
noise base excitation together with the 1-g band. The OSL appears to be at the
upper mass level for identification of A.
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CONCLUSIONS AND DISCUSSION

This paper presents a general methodology for determining the optimal sensor
locations in dynamic systems for obtaining records which would enable the 'best"
(minimum covariance) identification of a given set of unknown parzmeters in the
system. The technique utilizes the concept of an efficient estimator to uncouple
the identification from the optimization problem. In order to present the basic

idea in as clear a fashion as possible, we have restricted the discussion in this
sequel tec linear systems.

The method has been illustrated by application to a two degree of freedom
system. Though the results presented here for the simple system chosen form only
a first step towards acquiring a detailed understanding of the OSL problem, the
following conclusions appear to be relevant at this time:

(1) The OSL for a given system heavily depends on the class of farcing
functions used for obtaining responsé data. 1In this study, an im-
pulsive base motion is considered.

(2) The OSL for linsar dynamic systems is independent of the amplitude of
the forcing function.

(3) The OSL depends in general on all the values of system parameters. For
instance, the OSL for estimating A with minimum covariance depends not
only on the actual parameter values B and a but on the value of A it-
self for the system! This implies that the OSL problem associated with
identifying a given parameter {(or a set of parameters) in a dynemic
system necessitates the knowledge of some a priori estimates of the
unknown parameter(s).

(4) 1he results of our simple example show that che OSL protlem may yield
solutions which may be dirficult to predict on purely heurisric
grounds. The OSL appears to depend, even tur this relatively simple
problem, in a rather cumplex manner on the actual parameter values of
the system and the nature of the base excitation.
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Figure 2-C.
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ABSTRACT

Parameter and state estimation techniques are discussed for an ellip-
tic system arising in a developmental model for the antenna surface of the
Maypole Hoop/Column antenna. A computational algorithm based on spline
approximations for the state aud elastic parameters is given and numerical
results obtained using this algorithm are summarized.

I. INTRODUCTION

Results are presented from a Langley program divected towards
developing computationally efficient identification techuiques for flexible
systems modeled by partial differential equations with an emphaslis on large
space structures. Initial efforts have been directed towards extendiag the
spline-based theory and computational techniques used by the first two
authors [1]-[6] in solving identification problems with delay and partial
differential equation mocels in one spatial variable to solve distrituted
problems in seveval spatial variables. Additionally, ii. order to support
Langley's technology development program [7] in large space antennae, a
parameter and state estimation algorithm has been derived for a prototype
distributed model of the Maypole (Hoop/Column)  antenna reflector
surface [8). Tha next section describes the Hoop/Column antenna and pre-
sents the identification problem being considered. The state and parameter
estimation approach is rhen outlined and Aiscussed in tone context of the
Hoop/Column application. Subsequent sections include mathematical details
of the antenna application and numerical results.

MECEDING PAGE RLANK NOT FILMED
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II. THE MAYPOLE (BOOP/COLUMN) ANTENNA

For the purpose of technology development, the NASA Large Space
Srstems Technology (LSST) program office has pinpointed focus missions and
identified future requirements for large space antennas for communications,
earth sensing, and radio astronomy [7]. In this study, particular emphasis
is placed on mesh deplovable antennas in the 50-120 meter diameter cate-
gory. One such antenna is the Maypole (Hoop/Column) antenna shown for the
100m point-design in Figures 1 and Z. This antenna concept is being devel-
oped by the Harris Corporation, Melbourne, Florida, under contract to the
Langley Research Canter ([8].

The Hoop/Column antenna consists of a knitted gold-plated wolybdenum
wire reflective mesh stretched over a collapsible hoop that supplies the
rigidity necessary to maintain a circular outer shape. The annular
membrane~like reflector surface surrounds a- telescoping mast which provides
anchoring locati~ns for the mesh center section (Fig. 1). The mast also
provides anchoring for cables that connect the top end of the mast to the
outer hoop and the bottom end of the mast to 48 equally spaced radial
graphite cord truss systems woven through the mesh surface [8]. Tensions
on the upper (quartz) cables and outer lower (graphite epoxy) cables are
counter balanced to provide stiffness to the hoop structure. The inner
lower cables produce, through the truss systems, distributed surface load-
ing to control the shape of four circular reflective dishes (Figs. 1 and 2)
on tte me... surface.

After deployment or after a long period of operation, the reflector
surface may require adjustment. Optical sensors are to be locatri1 on the
upper mast which measure angles of retroreflective targets placed on the
truss radial cord edges on the antenna surface. This information can then
be processed using a ground-based computer to determine a data set of val-
ues of mesh surface location at selected targe. points. If necessary, a
new set of shaping (cortrol) cord tensions can be fed back to the antenna
for adjustment.

It is desirable to have an identification procedure which allows one
to estimate the antenna mesh shape at arbitrary surface points and the
distributed loading from data set observations. It can also be snticipated
that environmental stresses and the effects of aging will alter the mesh
material properties. The identification procedure must alsc allow one to
address this issue.

Considering the uantenna to be fully deployed and in static equilib-
rium, a distributed mathematical model whict describes the antemna surface
devistion from a curved equilibrium configuration 1is under investigation
(for preliminary findings, see [9]). Using a cylindrical coordinate system
with the z-axis along the mast, it is expected that the resulting model
will entail a system of coupled second-order linear partial differential
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equations in two spatial variables. The coefficients of these equations
are functions of the material properties of the gtretched mesh. The deri-
vation and computer software for this model are still under desvelopment.
In the meantime, a simpler developmental (prototype) problem has been
solved which is descriptive of the original problen.

For the developmental problem, the loading is assumed to be normal to
the horizontal plane containing the hoop rim, and the mesh surface is
assumed to be described by the static two-dimensional stretch:d membrane
equation [10] with variable stiffness (elastic) coefficients and appropri-

ate boundary conditions for tha Hoop/Column geometry. Mathematically, in
polar coordinates, we have

19 3u 1 3 . 3du
= 3% [rE(r,e) -a—r-] - ?8—6 [E\!‘,He) -3—6'] = f(r,0) (1)

where u(r,0) 1is the vertical displacement of the mesh from the hoop
plane, f(r,0) is the distributed loading force per unit area, and
E(r,0) > 0 1is the distributed stiffness (elastic) coefficient of the mesh
surface (force/unit length). Erwation (1) is to be solved over the annular
region & = [€,R] x [0,27]. Appropriate boundary conditions are

u(e,9) = u

o
(2)
u(R,0) = O
along with the periodicity requirement
u(r,0) = u(r,2v) , (3)

where R 1s the radius from the mast ceater to the circular outer hoop,
€ 1is the radius from the mast to the beginning of the mesh surface (see

Fig. 2), and uy 13 the coordinate at r = € of the mesh surface below
the outer hocp plate.

We further assume that the Jistributed loading along withk a data set
of vertical displacements, um(ri,ej), at selected points (ri,ej) on the

mesh surtace is known. Given this “‘nformarion, the developmental problem
is to estimate the material properties of the mesh as represented by
E(r,0) ani produce state estimates of the surface represented by u(r,9)
at arbitrary (r,0) points within Q. The procedure applied to solve this
problem is dis~ussed in the next section.
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I1I. THE SYSTEM IDENTIFICATION APPROACH

The first two authors and their colleagues have derived techniquec for
approximating the solutions to systems identification aund control probiems
involving delay equation models and partial differential equation models in
one spatial variable and have used them in a variety of applicatious
[11],{12]. The Hoop/Column application requires an extension of the theory
and numerical algorithms to elliptic distributed systems in several spatial
variables. The approach, when specialized to the system identification
problem, may be s’ mmarized as follows: (1) select a distributed parameter
formulation containing unknown parameters for a specific system; (2) mathe-
matically "project” the formulation down onto a finite dimensional subspace
through some approximation procedure such as finite differences, finite
elements, etc.; (3) solve the identification problem within the finite
dimensional subspace obtaining an estimate -dependent upon the order of the
approximation embodied in the subspace; (4) successively increase the order
of the approxima*ion and, in each case, solve the identification problem so
as to construct a sequence of parameter and state estimates ordered with
increasing refinement of the approximatiun scheme; (5) seek a mathematical
theory which provides conditions under which tle sequence of approximate
solutions approaches the distributed solution as the subspace dimension
increases with a convergent underlying sequunce of parameter estimates.

In applying this approach to the developmental problem, the stiffness
function is parametrized in terms of cubic splines of fixed order; thirs
converts the estimation of E(r,6) 1into a finite dimensional parameter
estimation problem. After writing the energy functional generic to the
membrane equation, the Galerkin procedure is used to project the dist-i-
buted formulation onto a finite dimensional state subspace gpanned by ten-
sor products of linear spline functions defined over Q. The approximate
displacement (state estimate; thus obtained is expressible in terms of the
spline basis functions. The Galerkin procedure in this case ylelds alge-
braic equations which define the displacement approximation coordinates in
terms of the unknown E(r,0) parameters. In order to solve the approxi-
mating parameter estimation problem, the parameters defining E(r,0) are
chosen so that a _east squares measure of the fit error between the
observed and predicted (by the estimated state) data 3et 1s minimized.
Finally, following steps (4) ai.d (5) an algorithm is constructed to
determine the order of the linear spline approximation above which little
or no further improvement 1is obtained in the unknown quantities as one
increases the dimension of the subspaces. Details of this system
identification approach are presented in the following sections.
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IV. FINITE DIMENSIONAI. APPROXIMATIONS

Prior to applying the Galerkin procedure [13,14] to perform the finite
dimensional approximation for the developmental problem, the boundary
corditicns (2} are converted to homogeneous form by introducing the new
dependent variable

y(r,0) = u(r,0) - (%—%—%) uy (4)

Equation (1) then becomes

13 3 1 2 ) ) 3 (FECr,0)ug
v (rE(r,e) _3%) - -;2' T (E(t.e) 3%) = f(r,6) + ;a—r\—s-—_——k—-— (5)

with boundary conditions
y(e,0) = 0
y(R,8) = 0 (6)
y(r,0) = y(r,2%) .

tollowing the standard formulation (see (13,14]) for the weak or
variational for~ of (5), the energy functional E associated with (5) is

. 2% R )
E(z) = f f [% E(r,0)Vz « Vz ~ .(r,e)z] rdrdo , (7
0 £

where V is the gradient in polar coordinates which, in the form used
here, 1. equivalent to
) 1 3\ T
(-a-; . ;33) . (8)

The function f is diver by

(9)

rE(r,O)uO
r

£(r,6) = £(r,0) + = 5= ( € - R

and the vertical displacement z(r,8) of the mesh surface awa, from the
hoop equilibrium plane 1is a fuaction satisfying the boundary conditions (6)
and possescing first derivatives on £ in the distributional sense (we

denote this by ze Hé per(ﬂ) £ Z). The first variation 6E of E about
’
the function y(r,0) 1s given by



- 2% ~R -
SE(y;v) "f f {E(x,0)Vy *» W - T(r,0)v} rdrde
J Ve

27 ~R
= f f {E(r,e)Vy e Vr ~ [£f(r,B)v + z(:,e)’i . Vv]} rdrd®© (10)
0 €

where
K “o
k- o (11)
0 e
l -
and v 1is an arbitrary function in Z .Ho’pet(ﬂ).

Given a finite dimensional subspace Z of Z, the Galerkin procedure
defines the approximation y as the solution in Z of

2% R a - [‘2' R - ~ ~
f f {E(r,G)Vy * Vv} rdrdé = { f {f(t,e)v + E(x,6)k Vv} rdrde
0 € o} €

(12)

A A

for all veZ2.

For computational efficiency, the basis functions used for the
representations of y in (12) are taken as tensor products of linear

B-splines ([13], p. 27; (14}, p. 100). Thus v and y are in the space
spanned by

viE,e) = d{(08f8) . (L=l M-l eI, ()

where a’: = a;{(t), (1 =1,..., M~ 1), and B;‘ - a?(e), (3 ee,N = 1),
are standard linear B-aplines with knots uniformly spacea over fe,R] and
[0,2n], respectively, modified to satisfy the appropriate boundary

conditions. The elements {al:} are modified to satisfy homogeneous

N

bour "iry conditions while BN has been altered to satisfy periodic

boundary conditions [15].
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For yM’N(r,O) within the subspace spanned by vT}N we can write

M-1
YH’N(r,O) - ) 2 a (r)w:jNﬁng) . (14)
i=] j=1

Replacing y(r,0) in (12) by yM’N(r,G) from (14) and successively set-
M,N

ting v(r,¢) = vij (r,” for 1i=1,...,M-1 and jJ = 1,...,48 1leads to
a set of high-order linear algebraic equations for the TjN coordinates.
We avoid sparse matrix methods 1in solving the ?j equation by
imposing a separability condition: .
E(r,0) = El(r)E2(e) . (15)
As shown in [15], condition (15) reduces the ng calculaticn to the
sorutio of the matrix equation *
TN L SN LN (16)
with
N [ M,N
W Gﬁj ) (17)
2 Ny oo
N - f E.(0)8}(0)8 (6)de (18)
(o <& k| q

~M

(f E (r)[—- oM )] [—- a (r)] rdr) (19)
(j;“ E, (0) de sj(e)] [ N(e)] ) (20)

M M
R a,(r) a(r)

B - (f E, (r) —1——;-P——dr> (21)
€
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and

R
f(r,e)aT(r) B?(B)rdrde

SMN (j’
0

2% R
~ N d M
+./; j; E(r,0)ic8}(9) ['E ai(r)] tdrde) , (22)

’

~—

whel‘e, 1“ (17)-(22), i’P = l,n-.,“ - l 8nd j,q = l’ooo’N.

Equation (i6) is rewritten in the equivalent form

[(Ta")“‘“ﬁ"]w"'" + w"'"[E"(“A“‘)“] - @GN (23)

and solved by the Bartels-Stewart algorithm [16].

Jn order to estimate, via a numerical scheme, the functional
coeffizients E; and E), we parametrize these functions so that

idertification is performed over a finite-dimensional parameter set. To
this end, let

)

E (r) = kzl v A () (24)
N

E,(6) = jgl ajuj(e) (25)

where v and ¢ are scalar parameters and ), and M are
cubic B-spline functions defined [13, p. 61] over [e,R] and 0,271,
respectively, whose orders are independent of M and N. The basic spline

functions are modified so that My and its derivatives satisfy periodic
boundary conditions. '

We turn next to the computer implementation of the identification
scheme.
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V. COMPUTATIONAL PROCEDURE

Appealing to the ideas found in previous sections, we now detail an
algorithm for estimating thc coefficients vy, k = l,..., M} and &y,

i = 1l,..., Ny, for E(r,0) that provide the “best fit" between
estimations of the state u and observed data uy, obtained from various

sample poincs on the surface. We may equivaleatly consider data for y by
making the transformation

ri - R
ym(r‘l ,Gj) = um(ri,ej) - (E__:—R—-) Y, (26)

for i = 1,.04, Ly and j = 1,..., Lg.

A parameter estimation algorithm may Je organized into the following
steps.

1. Select an order of approximation for the cubic spline elements

M, ko= l,e.., M) and My, J = l,e.., N), used to
represent E) and Ej. Set n = [,

2. Select M and N, .~ number of the linear spline basis elements
used to represent uM\N (and yM,N).

3. Assume a nominal set of values for

Vo= (vl, Vyreses le) (27)
and
5§ = (61, 62,..., 6N1) . (28)
4, Calculate the -~oefficient matrices 1in (22) and solve for
whil(v, 6).
5. Calculate, from (14}, y“’N(r{,ej; v,§) and evaluate
L L
M,N LI RV 2
JoNv, 8y = T Y lyN(r, 0. v,8) - y (r,,0)]" . (29)
=1 j=l 173 m 173

6. Proceed to steo 8 if J