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ABSTRACT

Important progress in research and application of Adaptive Control
Systems has been achieved in the last ten years. The techniques which
are currently used in applications will be reviewed. Theoretical aspects
currently under investigation and which are related to the application of
adaptive control techniques in various fields will be briefly discussed.
Applications in various areas will be briefly reviewed. The use of adaptive

techniques for vibrations monitoring and active vibration comntrol will
be em;hasized.

I. INTRODUCTION

The use of adaptive control techniques is motivated by the need of
automatically adjusting the parameters of the conmtroller when plant para-
meters and disturbances are unknown or change with time, in order to achieve
(or to maintain) a certain index of performance for the controlled systea.
While cais problem can be reformulated as a nonlinear stochastic control
problem (the unknown parameters are considered as auxiliary states) the
resulting solutions are extremely complicated. Therefore, in order to obtain
something useful, it is necessary to make  approximations. Adaptive control
techniques can be viewed as aporoximations for nonlinear stochastic control
problems. Model Reference Adaptive Controllers (MRAC) and Self-Tuning
Regulators (STR) can be considered as two approximations among other possible
approximatfons. These two approaches to adaptive concroli problems have
been € :t:nsively studied and they are well understood. These approaches
have be.n proven to be usable in practice and aa important number of success-
ful .pplications have been reported. However, some important theoretical
[ ‘blems still need further investigation and more experience utilizing
these techniques in practice should be gained.

As mentioned earlier the MRAC and STR approaches can be considered
as possible approximations for the solutions of some nonlinear stochastic
control pronblems. However, when making approximations, some hypothesis
should Ye considered which can justify these approximations. The basic
hypcthesis for MBAC and STR is of an algebraic nature: for any possible
vai.ues of the plant (and disturbance) paramcters, there exists a linear

_ontroller with a fixed complexity such that the plant plus the controller
has the pre-specified characteristics. The adaptive control loop

99



will only search for the values of the tuned parameters of a controller
whose structure has been fixed using a standard control design technique.

The MRAC and STR techniques have been initially developed independently.
Subsequently, connections between these two techniques have been investigated
and emphasized. See Egardt (1980), Landau (1981), Landau (1982), Astrom
(1983). For certain classes of problems these two approaches are equivalent.
It is important to note that the development of these two adaptive control
tecaniques is largely based on the deep understanding of certain types of
linear algebraic control design techniques and of an appropriate interpre-
tation of the controller design strategy.

A brief review of the underlying concepts and configurations used for
MRAC and STR is given in Section II. The linear tracking and regulation
problem is reviewed in Section III and this allows the definition of the
structure of the controller. The structures of various adaptive control
schemes are presented in Section IV, The parameter adaptation algorithms
are discussed in Section V. Applications.are listed in Section VI. Current
research trends are indicated in Section VII.

II. MODEL REFERENCE ADAPTIVE CONTROLLERS AND SELF-TUNING REGULATORS
- BASIC PRINCIPLES.

Figure 2.1 illustrates the basic philosophy for designing a linear
controller. The desired performance is specified in terms of the character-
istics of a dynamic system which is a "realization" of the desired inmput-
output behavior of the closed loop control system. The controller is
designed such that the closed loop control system is characterized by the
same parameters as those of the "desired" dynamic system.

Since desired performance corresponds in fact to the output of the
"desired" dynamic system which is pre-specified, the design problem can
be recast as in Fig. 2.2. The objective is now to design a controller
such that the error between the output of the plant and the output of the
reference model (the dynamic system which has the desired characteristics)
is identically null for identical initial conditions and such that an
eventual initial error will vanish with a certain dynamics.

These two interpretations of the linear control design in the case
of a plant with unknown or varying parameters lead to two adaptive control
schemes, shown in Figs. 2.3 and 2.4. Figure 2.3 is aa extension of the
scheme given in Fig. 2.2 and is called (explicit) MRAC. The difference
between the output of the plant and the output of the reference model is
a measure of the difference between the real performance and the desired
one. This information is used through an "adaptation:mechanism" (parameter
adaptation algorithm) to directly adjust the parameters of the controller.
This is a "direct" adaptive control scheme.

Figure 2.3 is an extension of the scheme considered in Fig. 2.1 in
the sense that a suitable controller can be designed if a plant model
is estimated on-line based on the current input-output data available.
This scheme 18 called STR and it is inspired by the separation theorem
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A. Minimum Phase Plants

Consider the S.I.S.0. discrete linear time invariant plant described
by:

a) deterministic environment:
-1 -1
A(q )y(k+D) = B(q Ju(k), d > 0, y(0) # 0 (3.1)
b) stochastlc environment:

A HyGer) = Bl Hu) + c(q M ulked) (3.2)

where:

A(q_l) =1+ alq-l + ...+ anq'“

B(ql) = bbgt + ... +bq b, #0 (3.3)

C(q-l)- =1+ clq-1 + ...+ cnq-n

Cela™h) y(ktD) = 0 (3.4)
where:

R -1

-1
CR(q ) =1+ .9

R -n
+ [ +qu (305)

is an asymptotically stable polynomial.

In order to design the controller, we will consider two strategies,
one using an explicit reference model as part of the control system and
the other using a l-step ahead predictor of the plant output which together
with the controller will form an implicit reference model.
Strategy 1: Explicit Reference Model

One considers an explicit reference model given by:
cptah) M) = i ™h oo (3.6)

where yM(k) is the output of the explicit reference model. The design
objective is:

Ca™) e(eH) =0 k20 (3.7)
where

e(k) = y(k) = yi(k) (3.8)
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is the plant model error. It is obvious that Eq. (3.7) includes the
regulation objective specified by Eq. (3.4) (for um(k) = 0, e(k) = y(k)).
Equation (3.1) with d = 1 can be rewritten as:

Cela™h) yUerD) = 16, (DA HIykt) + Bla Hu)

= R(q-l)y(k) + bou(k) + B*(q-l)u(k) (3.9)
where
n
-1 -1 -1 R -1+1 -1 -n+l
R(q ") = CR(q ) —A(q ) = 121 (ci—ai)q = r1+r2q -eeT q (3.10)
* -1 -1
B(q7) =B(q")-b (3.11)

and Eq. (3.7) becomes:
C. (@ (k1) = R(QT 1) y(k) + b u(k) + B (¢ Duck) - C.(q Yy (k+l) = 0 (3.12)
r(d q )y o q Crla yy .

which yields the desired control

Cta ™y ae) - R Hyw - 8°(¢H W
u(k) = (3.13)

b
o

Introducing the notation:

¢§(k) = [u(k-1) ... u(k-m), y(k) ... y(k-n+1)] (3.14)
T
60 = [b1 ces bm » Ty e rn] (3.15)

Equation (3.15) can be written:

Ca(a Dy ™aer) - ogeo ()

u(k) = bo (3.16)

or in an equivalent form:

cpla Hytaen) = e%ew) (3.17)
where:
T T (3.18)
2007 = [u(k), o3k
or = b, eg] (3.19)

The resulting control scheme is given in Fig. 3.1.
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Strategy 2: Implicit Reference Model.
This strategy is directly inspired by the separation theorem: one

first designs an appropriate predictor for the plant output, and then a

control will be computed such that the output of the predictor behaves as
the desired output in tracking.

First step: (predictor design). The predictor will be designed such that
the l-step ahead prediction error €{k+l) is defined by:

e(k+l) = y(k+l) - y(k+l) (3.20)

where §(k+1) is the predictor output and will vanish according to:
Ce(@™) Ektl) = 0 k> 0 (3.21)

Using Eq. (3.9), one obtains from Eq. (3.21) that the l-step ahead predictor
is characterized by:

Ca@™HF(eH) = bu(k) + R DY) + b (¢ Duk) = 67 9(k) (3.22)

where R(q-l), B*(q_l), 8, ¢(k) are given by Eqs. (3.10), (3.11), (3.18),
and (3.19) respectively.

Second step: (computation of the control). The control is computed such
that y(k+l) = yu(k+1); where yM(k+1) is the desired output given by Eq. (3.6).
One finally obtains:

Ce(a HIFCr)) = (a7 HyMaer) = 0o (k) (3.23)

and the control is given by Eq. (3.17) as expected.

Because of the output of the predictor is equal to the output of the
explicit reference model, the predictor plus the control will form an
"implicit reference model."

B. Tracking and Regulation in Stochastic Eavironment
We will examine first the behavior of the controller designed in the

previous section when the plant is subject to a stochastic disturbence of
the type considered in Eq. (3.2). For d = 1 Eq. (3.2) -becomes:

A y0e1) = B@H w0 + c@h) wkeD) (3.24)
Using the control given in Eq. (3.13) one obtains:

ce(a™h) yat) = g @™ et + e W) (3.25)
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Neglecting the effect of the deterministic disturbance (which vanishes
with the dynamics defined by CR(q 1)) one can re-write Eq. (3.25) as:

y(k+l) = y“(kﬂ) + —-(9—)— w(k+1)

c (q )
D) M e h
- (k) + Sd—tm u (k) (3.26)
Cr(a ™) Cpla )
Equation (3.26) shows the ptesence of two referznce models: a
deterministic one for tracking by E 2 whose input is the reference
c (q 1

signal u (k) and a stochastic one for regulation defined by —SS—-l—-whose

C(q)
input is the white noise sequence w(k+l).

In general the objective of the design in a stochastic environment is
to obtain a minimum variance tracking and regulation, i.e.:

E {[y(k+l) - yu(k-l-l)]z} = min (3.27)

From Eq. (3.26) it results straightforwardly that the objective of
Eq. (3.27) is achieved if one chooses:

C @) = c(a 1) (3.28)

which leads to:

E {[y(ktl) - y,(k+1)]?} = Blo® (D)} = o (3.29)

For the case d > 1, the control can no longer be computed directly
using the strategies given above since this will lead to a non-causal
controller (future values of the output and input are involved for the
computation of the control at the instant k). This problem can be avoided
by using a polynomial identify which allows us always to express the output
y(k+d) in terms only of y(k); y(k-1)... and u(k), u(k~-1) ...

Consider the following polynomial identity:
- - - -d_, -1
cta™) = a@™) s + ¢7%R@™ (3.30)

which has a unique solu’ ‘on for the polynomials s(q ) and R(q~ ) for
deg S(q~ 1) = d-1 where
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s =1+sqt .5 T B (3.31)

-1 - -
R(q ) = r1+r2q 1 «ee T 9 utl (3.32)

Using the identity of Eq. (3.30) in Eq. (3.9) for d > 1 one obtains:

Cp(@ Dy (ki) = R@ DY) + bu) + Bg(a Huw) (3.33)
where

By(a D) = BaHs@ ™ - b, (3.34)
Equation (3.7) for d > 1 becomes:

Cpla Dekrd) = R@ Iy () + b uk) + B(a™) uw(i)

- Ca(a7h) yy (k) = 0 (3.35)

which yields the desired control

Cafa D) yHkrd) - R(EHy® - Bga )

b
o]

Cla™) y(erd) - oF ¢_(0)
- 5 (3.36)
[+]

u(k) =

The control has ihe same strgcture as for the case d = 1 except that the
polynomials R(q"") and B (q”) are different, as well as 6, and ¢5(k):

Note that the strategy presented above achieves a poles-
zeros placement.

C. Non-minimum Phase Plants

In this case one can no longer assaun. that B(z 1) is asymptotically
stable and therefore the zeros of the plant transfer function can no
longer be cancelled. The basic control strategy (algebraic approach) is
the poles placement techuique without zeros cancelling. The basic relation
for the design of the controller is the Bezout identity:

- - - - -1 -
a@H s@H + a7 B@™H R =g (@7
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and the controller has the structure:
-1 1 -1, -
ST ull) = % C@™h) y k) - RG@H y(K)

1 if B(1) = 0
B.
B(1l) elsewhere

For a survey of the control strateg.:s for non-minimum phase plants, see
Landau, M'Saad, Ortega (1°"°3).

IV. STRUCTURES OF ADAPTIVE CONTROL SYSTEMS

In adaptive control schemes the fixed controller designed for the case
of knowu parameters is replaced by an adjustable controller having the same
*ructure, i.e., the fixed parameter vector will be replaced by an adjustable
parameter vector which for the case of the design considered for minimum
phase plants is given by:

AT & .. aT
6700 = (B (%), 8;(0)] 4.1)

and the correspondiag control law will be given (either in deterministic or
stochastic environment) by:

-1 . M T
C.(a Hy (k1) = 8-(K)¢_(K)
6(k) = = . 0 © (4.2)
b, (k)

or:

T 400 = ca™H Yiter) 4.3)
See Fig. 4.la.

Note that in the case of schemes using an implicit (prediction)

reference model (STR) the plant predictor will be replaced by an adaptive
predictor gcverned by:

Cy(a™) F(ktl) = 67 (k) $(K) (4.4)
and the control will be computed according to the strategy in the linear
case with known parameters which will lead to Eq. (4.2). See Fig. 4.1b.
V. PARAMETER ADAPTATION ALGORITHMS

Various approaches have been considered for the development of parameter

adaptation algorithms (PAA). A fairly general structure for the PAA is
given by:

8 (k+l) = 8(k) + F, (k) v(k+) (5.1)
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O
AV

v(ktl) = k;I (5.2)
1+ 47 B 08k)

Fol o= a (k) Fob 4+ A (k) 600) ¢(i0T (5.3)

k+1 1 k 2 ) ¢

0<A1(k)11;oi)\2(k)<2;i‘0>0 (5.4)

Using the matrix inversion lemma:

) ARICRICEE N
T3 @ i xl(k) ] (5.5)
T * 40T F 400

F

where 8: k) is the adjustable parameter vector, F(k) is the matrix adaptation
gain, ¢(k) is the measurement or the observation vector and v?(k+l) ard
v(k+l) are the "a priori" and the "a posteriori" adaptation errors respect-
tively. The "a priori" adaptation error is a measurable quantity which
depends on 6(i) up to the instant k, and the "a posteriori" adaptation error
which enters in the adaptation algorithm is not ditectly neasurable (it
depends on 8(k+l)) but can be expressed in terms of the "a priori" adaptation
error as indicated in eq. (5.2).

Different choices for Aj(k) and 12(k) are possible leading to different
types of variations of the adaptation gains. The performances of the
adaptive control systems in various situations depend upon the choices of
these two parameters. For details see Landau, Lozano (1981) and Landau (1983).

VI. APPLICATIONS

There are already a significant number of applications of adaptive
control systems as well as a few commercial products. For references, see
Astrom (1983), Landau (1981), Landau, Tomizuka, Auslander (1983), Narendra,
Mcnopoly (1980), Unbehauen (1980).

The adaptive control schemes can be used in three modes of operation:

1) Auto-tuning of a linear controller in the case of plants with unknown
but constant parameters.

2) Building a gain schedule for unknown plants with dynamics depending
on operating points.

3) Adapting in real-time the controller for plants with unknown and time-
varying parameters.
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An important remark to be made is that adaptive control algorithms
cannot be used in p actice without a priori analysis of the control problem
corresponding to each tentative application. This analysis should give
answers to two categories of questions regarding (a) the need of adaptive
control and (b) specific design requirements.

The main areas of applications are:

- Grinding

- Drying furnaces

- Cement mills

- Chemical reactors

- Distillatinn columns

- Diesel and explosion engines
- Heating and ventilation
- Paper machines

- Power systems

- Electrical drives

- Autopilots for ships

- Rebotics

- Heat exchangers

- pH-control

- Active vibration control

An adaptive active vibrations control is described in Mote, Rahimi
(1983). 1t uses tirst a recursive parameter estimation technique for
estimating in real-time the parametric model of the composite vibration
signal for circular plates (the vibrations frequencies). Then the parameters
of the transfer from control heat to vibration frequency are estimated on-
line and used for computing in real time the controller parameters.

VII. THEORY

The most complete theory is available today for the adaptive control
of wminimum phase plants achieving a poles-zeros placement. For this type
of plant, tracking and regulation with independent objectives can be
achieved both in deterministic and stochastic enviromments. Both MRAC
and STR approaches lead in this case to "direct" adaptive control schemes.

The basic assumptions for the design of adaptive control systems for
minimum-phase plants in deterministic and stochastic euvironments are
summarized next.

- Exact knowledge ofi the plant delay (d).

- Knowledge of an upper bound for the degree of A(q ) which is the
denominator of the plant transfer functiom.

- The zeros of the plant transfer function must lie within the unit circle.

- A lower bornd of the magnitude of the leading coefficient of the plant
transfer function should be known.

- The sign of the leading coefficient of the rumerator plant transfer
function is useful to be known (in order to avoid large adaptation
transients).

- The stochastic disturbances are modeled by ARMA processes.

- Asymptotic type convergence 1is considered.
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However, it practice some of these assumptions cannot be reasonably
satisfied, in particular, the need for knowing an upp:r bound for the
denominator degree (which in many cases simply does nc*t exist) and the
requirement that the disturbance is of ARMA type.

The use of reduced order models in adaptive control design is ore of
the main research topics today, and interesting results have been obtaine.

leading to improved design techniques. See Ioannou (1983), Ortega, lanuau
(1983), Kosut (1983).

The case of disturbances which cannot be modeled by ARMA ; .ocesses has

also been considered. See, for example, Samson (1983), Peterson, Narendra
(1982).

Another aspect is the extension of tLe adaptive control design for
the multi inputs - multi outputs systems. Except for trivial cases, the
extension raises important parameterization problems for MIMO planta. A
survey of the various designs available can be found in Dion, Dugard (1983).
More a priori knowledge on the plant structure than in the SISO case is
required, and the research is directed towards the development of adaptive
control schemes requiring less a priori structural information. The Hermite

form of MIMO transfer matrix plays a key role in understanding the multi-
variable case.

The case of adaptive control of non-minimum phase plants is more
complicated both from the point of view of the complexity of the adaptive
control schemes and of the analysis. A survey of the adaptive control
techniques for this type of plant is given in Landau, M'Saad, Ortega (1983).
Most of the schemes are of "indirect" type, and the major question to be
answered in order to show the convergence of the system is whether the
estimated plant model converges towards the model with satisfactory proper-
ties (stabilizable). Global convergence results have been obtained, but
with the requirement of using an additional persistent excitation signal,
see Goodwin, Teoh, Innis (1982). The robustness of the adaptive control
designs for non-minimum phase plants with respect to model reduction and
ill-modeled disturbances has also been studied, see, for example,

Praly (1983).
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