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ABSTRACT

A technique is presented for obtaining a control law tc
regulate the modal dynamics and identify the modal parameters
of a flexible structure. The method is based on using a
min-max performance index to derive a control law which may
be considered to be a best compromise between optimum
one-step control and identification inputs. Features of the
approach are demonstrated by a computer simulation of the
controlled modal response of a flexible beam.

I. INTRODUCTION

A class of indirect adaptive control systems proposed for the
control of large space structures [1] is based on a modal
decomposition of the system dynamics and may incorporate one
or more on-line testing schemes [2] to determine when
successful parameter identification has been achieve. The
control strategy used in calculating the actuator inputs must
achieve adequate regulation or tracking performance and, at
the same time, provide inputs to allow adequate parameter
identification. A on*rol system designer is thus faced with
the problem of “~vising a control strategy to ensure
acceptable system perfurmance even when on-1ine parameter
identifiability tests have failed because the system

* This work was supported by NASA under Grant NAG-I-6.
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configuration has changed or the environment in which the
system operates has changed.

In this paper we formulate and examine the performance of a
nonlinear dual-adaptive control scheme in which a
sampled-data controller is designed to select a best
compromise between an input signal that is optimum for
mean-square system regulation and an input signal that is
optimum for parameter identification. Dual control theory,

originally formulated by Feldbaum [3,4], has been studied in

[5-7] and in the references cited therefn. A key concept

introduced by Feldbaum is the dual control strategy based on

a performance index that takes into account the fact that
future observations on the process will be made. A
controller mav be able to "probe" the system for state and
parameter estimation improvement, which then may improve
future regulation and tracking performance. In many

situations where the dual nature of stochastic control is not

taken into account the controller becomes “cautfous" [5,6]
and tends to “turn-off", This undesirable phenomenon is
avoided by the approach described below.

II. FORMULATION OF AN ADAPTIVE PERFORMANCE INDEX

The discrete-time dynamics for each mcde is assumed to be
described by the ARMA model

yl{t)+tajy(t-1)*azy(t-2) = bju(t-1)+bou(t-2)+e(t)
where y(t) denotes modal displacement, u(t) denotes modal
force, and e(t) 1s a sequence of independent,
equally-distributed, normal (0,02) random variables. It is
assumed that e(t) is independent of y(t-1),y(%-2),...,
u(t-1),u(t-2),... and that the parameters aj,a2,b1,b2

are unknown constants. If we let Yt denote the information
available to the controller at time t,

Yt = {y(t),y(t-n..... u(t-l).u(t-Z)....}

x(t) denote the modal parameter vector and e(t) denote a
modal measurement vector,

XT(t) = (al paZlblobZ);
oT(t) = (-y(t-1),-y(t-2),u(t-1),u{t-2)

where ( . )T denotes vector or matrix transpose, then (1)
may be rewritten as

y(t) = aT(t)x(t)*e(t)
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where the constant parameter “"dynamics" satisfies

x(t*l) = x(t) (5)

It can than be shown, following the analysis of [8], that the
conditional distribution of x(t+2) given Y¢sq is norma)

with mean x(t*+2) and covariance matrix P(t+2¥ where x(t) and
P(t) satisfies the difference equations

R(t+1l) = R(L)+Kk(t)(y(t)-oT(t)x(t)) (6)
K(t) = P(t)e(t)/(o2+eT(t)P(t)e(t)) (7)
P(t+l) = P(t) 4P(t)e(t)or(t)P(t))/

(c2+eT(t)P(t)e(t)) (8)

Furthermore, the control law that minimizes the regulation
criterion

Velu(t)) = E{.Yz(t*l)lYt} )
is given by
u(t) = - ‘2;;x;(t*l)x3(t’1)’P31‘t*l))oi(t+1) (10)
e )

where :E: denotes the sum over i = 1 to 4 with the value 3
excluded.

To provide bounded modal 1nquts that improve parameter
identification accuracy while guaranteeing that the modal
amplitude will not become excessively large, the controller is
designed to optimize, at each sampling instant t, the following

performance criterion:

min max [V(x, u(t))] (11)
u(t) A
subject to the constraints
u(t) <M, 0 <<l (12)
where
Vc(u(t)) vl(u(t))
Y(a, u{t)) = a —_— ¢ (1-’\)—"'—6—— (13)
Vc VI

119



V. denotes an acceptable or desired level of regulation cost.

Vi(u(t)) denotes and identification cost function of u(t),

Vi(u(t)) = trace [P(t+zﬂ (14)

VI denotes and acceptable or desired level of identification

cost, The maximization indicated in (11) yields a function
V(u(t)) which, although not convex, is interpreted as
specifying, for each admissible u(t), the most costly linear
combination of relative regulation and relative identification
cost. Minimization of V(u) thus yields the modal input that
minimizes this most costly combination of relative
identification and regulation performance,

III. SIMULATION RESULTS

Since Vc(u(t)) and trace P(t+2) are relatively simple
functions of u(t) the numerical solution of the one-step
optimization problem (11)-(13) at each sampling time is quite
feasible., Results of simulation studies described below
illustrate an interesting feature of this approach: since the
parameters involved in the evaluation of V;(u(t)) and
Vi(u(t)) depend on system measurgments, the optimum
distribution of relative cost, » (u) depends on on-line
measurement data and hence, at each sampling instant, the
weighting between identification and regulation will change
depending on the on-l1ine system performance. This is in
contrast to[9] in which a fixed weighting between absolute
control and identification cost is used at each sample time.

In the simulation study we compare the performance of three
control systems:

a) A constrained adaptive controller that minimizes (9)
subject to the control magnitude constraint,

b) An optimum identification controller that miniuizes
(14) subject to the control magnitude constraint.

c) I??)o?iaitep dual-adaptive controller based on

In Figures 1-3 we present simulated modal response data for the
first flexible mode of the Langley beam experiment described in
[10] where we assume here that a single actuator 1s used. The
accumulated on-l1ine reguiation cost, VT, shown in Figure 1 is
defined as

VT(N) - ﬁ; y2(k) (15)
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and the on-line identification cost, PT, is defined as

PT(N) = trace [P(N)] (16)

where P(N) is calculated on-1ine using (8). Note that for the
first 10 to 15 sampling times the regulation cost of the
dual-adaptive controller is close to that of the constrained
minimum-variance controller and the jdentification cost of the
dual-adaptive control system is close to that of the
constrained one-step optimum jdentification controller.

Figure 2 indicates that the dual-adaptive controller's actuator
signals switch between its limits, +0.5, more frequently than
do the actuator signals of the other controllers. This may be
due to the lack of any energy constraint in the above problem
formulation,.

A future study will examine the performance of the
energy-constrained dual-adaptive controlier in comparison with
energy-constrained minimum-variance and one-step optimum
identification controllers. The relative regulation cost and
relative identification cost defined in (13) are plotted in
Figure 3 where
° 2
Vc (N) = o'N (17)

is the accumulated control cost that would be achieved if the
parameters of the system where known precise.y and if an
unconstrained control law were used; o2 = 10-% was used in
the simulation runs. A constant value Vi’ = 10-4 was chosen
as indicating the acceptable level of parameter
identification, Figure 3 indicates that, depending on on-1ine
measurements, the one-step identification and regulation cost
at one sampling instant can have widely differing shapes from
their respective distributions at other sampling times. This
leads to the on-line variations in the dual-adaptive control
strategy mentioned earlier,

The simulation results indication that the cne-step,
constrained dual-adaptive controller has the feature of
providing, based on measured data, system inputs that result in
parameter identification while maintaining bounded modal

amplitude response.
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Fig. 1. On-Line Regulation and Identification Cost
for Three Feedback Controllers
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