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ABSTRACT

Accurate modeling of flexible space structures is an important field that is
currently under investigation. Parameter estimation, using mechods such as max-
imum likelihood, is one of the ways that the model can be improved. The maximum
likelihood estimator has been used to extract stability and control derivatives
from flight data for sany years. Most of the literature on aircraft estimation
concentrates on new developwments and applications, assuming familiarity with
basic estimation concepts. This paper presents some of these basic concepts.
The paper briefly discusses the maximum likelihood estimator and the aircraft
equations of motion that the estimator uses. The basic concepts of minimization
and estimation are examined for a simple computed aircraft example. The cost
functions that are to be minimized during estimation are defined and discussed.
Graphic representations of the cost functions are given to help illustrate the
minimization process. Finally, the basic concepts are generalized, and estima-
tion from flight data is discussed. Specific examples of estimation of struc-
tural dynamics are included. Some of the major conclusions for the computed
example are also developed for the analysis of flight data.

INTRODUCTION

Accurate modeling of flexible space structures is an important area that is
currently under investigation. The mathematical mndeling of these structures
can be improved using parameter estimation. Such techniques have been gsuccess-
fully used to estimate aircraft stability and control derivatives and refine
aircraft mathematical models. Some of the experience gained in the aircraft
problem can be applied directly to analysis of flexible space structures.

The maximum likelihood estimator has been used to obtain stability and con-
trol estimates from flight data for nearly 20 years. The results of many appli-
cations have been reported worldwide. Reference 1 contains & representative
list of some of these reports. Several good texts (including Refs. 2 and 3)
contain thorough treatments of the theory of maximum likelihood estimation.
Experience reports (Refs. 1, 4, and 5) poirting out practical considerations for
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applying the maximum likelihood estimator have also been published. Stability
and control derivatives estimated from flight data are currently required for
correlation studies with predictive techniques, handling qualities documentation,
design compliance, aircraft simula*::i enhancement and refinement, and control
system design. Correlation, simulation, and control system design applications
(including the space shuttle) are discussed in Ref. 6. Current studies have
concentrated on estimation model structure determination (Refs. 7 and 8), equa-
tion error with state reconstruction (Refs. 9 to 11), and maximum likelihood
estimation in the frequency domain (Refs. 12 and 13).

Most of the reports in the estimation area concentrate on new developments
and applications, assuming familiarity with the basic concepts of maximum like-
lihood estimation. In this paper sume of these basic concepts are reviewed,
concentrating on simple, idealized models. These simple models provide insights
applicable to a wide variety of real problems.

This paper also presents some of the basics of maximum likelihood estimation
as applied to the aircraft problem. It briefly discusses the maximum likelihood
estimator and the aircraft equations of motion that the 2stimator uses. The
basic aspects of minimization and astimation are then examined in detail for a
simple computed aircraft example, Finally, the discussion is expanded to the

general aircraft estimation problem including specific examples of estimation of
structural dynamics.

SYMBOLS
A,B,C,D,F,G system matrices
ay normal acceleration positive upward, g
ay longitudinal acceleration, g
ay lateral acceleration, g
ay normal acceleration peositive upward, g
b reference span, ft
Cy coefficient of rolling mowent
Cn coefficient of yawing moment
Cx coefficient of axial force
Cy coefficient of side force
Cz coefficient of normal force
£(+), g(*) general functions
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GG* measurement noise covariance matrix

g acceleration due to gravity, ft/sec2

H approximation to the information matrix
InsIyiIz0Ixz moment of inertia abcut subscripted axis, slug-ft?
i general index

J cost function

Kp sidewash factcc

L rolling moment divided by I, deg/sec?

L' rolling moment, ft-1b

Lyg - rolling moment due to yaw jet, ft-lb

M pitching moment divided by I, deg/aec2

m mass, slug

N number of time points or cases or yawing moment divided

by I, deg/sec2

n state noise vector or number of unknowns
ﬁg estimated roll rate due to turbulence, deg/sec
P roll rate, deg/sec

q pitch rate, degy/sec

q dynamic pressure, 1lb/ft2

R innovati~n covariance matrix

r yaw @ ce, ‘g/sec

8 reference area, f2

T time increment, sac

t time, sec

u control input vector

v forward velocity, ft/sec
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b4 state vector

xay,yay,zay distance b?tween.lateral acceleroneteg and tpe
center o. gravity along the appropriate axis, ft

z observation vector

;E predicted Kalman-filtered estimate

o angle of attack, deg

B angle of sideslip, deg

ég estimated angle of sideslip due to turbulence, deg

A time sample interval, sec .

) contrcl deflection, deg

8a aileron deflection, deg

Se elevon deflection, deg

8y rudder deflection, deg

n measurement noise vector

0 pitch angle, deg

M mean

(3 vector of unknowns

o standard deviation

T time, sec

¢ transition matrix or bank angle, deg

¥ integral of transition matrix, or heading angle, deg

w t requency, rad/sec

Subscripts:

p,q,r,u,&,ﬁ.é. partial derivative with respect to subscripted quantity
§,64,6r,0¢

0 bias or at time zero

m measured gQuantity
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Other nomenclature:

~ predicted estimate
estimate
transpose

indicates moment in ft-lb
MAXIMUM LIKELIHOOD ESTIMATION

The concept of maximum likelihood is discussed in this section. First the
general heuristic problem is discussed, and then the specific equations for
obtaining maximum likelihood estimates for the aircraft problem are given. In
the following sections, both the concepts and the computations involved in a
simple but realistic example are discussed in detail.

The aircraft parameter estimation problem can be defined quite simply in
general terms. The system investigated is assvmed to be modeled by a set of
dynamic equations containing unknown parameters. To determine the values of the
unknown parameters, the system is excited by a suitable input, and the input and
actual system response are measured, The values of the unknown parameters are
then inferred based on the requirement that the model response to the given
input match the actual system response. When forsulated in this manner, the
problem of identifying the unknown parameters can be easily solved by many

methods; however, complicating factors arise when application to a real system
is considered.

The first complication results from the impossibility of obtaining perfect
measurements of the response of any real system. The inevitable sensor errors
are usually included as additive measurement noise in the dynamic model. Once
this noise is introduced, the theoretical nature of the problem changes drasti-
cally. It is no longer possible tc exactly identify the values of the unknown
parameters; instead, the values must be estimated by some statistical criterion.
The theory of estimation in the presance of measurement noise is relatively

straightforward for a system with discrete time observations, requiring only
basic probability.

The second complication of real systems is the prasence of state noise.
State noise is random excitation of the system from unmeasured sources, the
standard example for the aircraft stability and control problem being
atmospheric turbulence. If state noise is present and measurement noise is
neglected, the analysis results in the regression algorithm.

When both state and measurement noise are considered, the problem is more
complex than in the cases that have only state noise or only measurement noise.
Reference 14 develops a mixed continuous/discrete maximum likelihood formulation
that allows for both state and measurement noise. This formulation has a con-
tinuous system model with discrete sampled observations.
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The final problem for real systems is modeling. It has been assumed through-
out the above discussion that for some value (called the “correct® value) of the
unknown parameter vector, the system is correctly described by the dynamic model.
Physical systems are seldom described exactly by simple dynamic models, so the
question of modeling error arises. No comprehensive theory of modeling error .is
available. The most common approach is to ignore it: Any modeling error is
simply treated as state noise or measurement noise, or both, in spite of the
fact that the modeling error may be deterministic rather than random. The
assumed noise statistics can then be adjusted to include the contribution of
the modeling error. This procedure is not rigorously justifiable, but, combined
with a carefully chosen model, it is probably the best approach available.,

wWith the above discussion in mind, it is possible to make a more precise,
mathematically probabilistic statement of the parameter estimation problem. The
first step is to define the general system model {(aircraft equations of mwotion).
This model can be written in the continuous/discrete form as

x(tg) = xg (1)
x(t) = £[x(t),u(t),E] + F(£)n(t) (2)
z(tj) = glx(tj),u(t;),E] + G(§)n4 (3)

where x is the state vector, z is the observation vector, f and g are system
state and observation functions, u is the known control input vector, £ is the
unknown parameter vector, n is the state noise vector, and n is the measurement
noise vector. The state noise vector is assumed to be zero-mean white Gaussian
and stationary, and the measurement noise vector is assumed to be a sequence of
independent Gaussian random variables with zero mean and identity covariance.
For each possible estimate of the unknown parameters, a probability that the
aircraft response time histories attain values near the observed values can then
be defined. The maximum likelihood estimates are defined as those that maximize
this probability. Maximum likelihood estimation has many desirable statistical
characteristics; for example, it yields asymptotically unbiased, consistent, and
efficient estimates (Ref. 15).

1f there is no state noise and the matriz G is known, then the maximum
likelihood estimator minimizes the cost function

N
JE) =5 T lz(ty) - Zg(t)1*(66*) -V [2(t;) - zg(t;)) (4)
im1

where GG* is the measurement noise covariance matrix, aad ;E(ti) is the computed
response estimate of z at t; for a given value of the unknown parameter vector

E. The cost function is a function of the difference between the measured and
computed time histories.
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If Egs. (2) and (3) are linearized (as is the case for the stability and
control derivatives in the aircraft problem),

x(tg) = xg (5)
x(t) = Ax(t) + Bu(t) + Fn(t) (6)
z(ti) = Cx(ti) + Du(ti) + Gny (7)

For the no-state-noise case, the zg(tj) term of Eq. (4) can be approximated by

Xg(tg) = xg(£) (8)
X (tigg) = éxg(ty) + plulty) + ultyeq)1/2 (9)
ZE(ty) = Cxglty) + Dulty) (10)
where
¢ = exp [A(tj4q - t5))

ti+1
V= -[ exp (AT) d1 o
tj

When state noise is important, the nonlinear forwm of Eqs. (1) to (3) is

intractable. For the linear wodel defined by Eqs. (5) to (7), the cost function
that accounts for state poise is

N
J{E) =;— T [2(t3) - zg(ty))*R-Vz(tg) - zg(ty)] +%n in |R| (1)
i=1

where R is the innovation covariance matrix. The ;E(ti) term in Eq. (11)

is the Kalman-filtered estimate of z, which, if the state noise covariance

is zero, reduces to the form of Eq. (4). If there is no state noise,

the second term of Eg. (11) is of no consequence (unless one wishes to include
elements of the G matrix as unknowns), and R can be replaced by GG* which makes
Eq. (11) the same as Egq. (4).

To minimize the cost function J({), we can apply the Newtcon-Raphson
algorithm which chooses successive estimrates of the vector of unknown coef-

ficients, E. Let L be the iteration number, The L + 1 estimate of E is then
obtained from the L estimate as follows:

Erer = £y - (VAI(EL) -1 1953(Ep)] (12)
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The first and second gradients are defined as

N
VEI(E) = - T [z(t;) - zg(ti)]*(G6*) " [Vezg(t;)] (13)

i=1

N
VEI(E) = 3 [Vezg(ty)1+(66%) =1 {Vezg (ty)]
i=1

N

- T [z(ty) - ;E(ti)]*(GG*)"[Vé zg(t)] (14a)
i=1

The Gauss-Newton approximation to the second gradient is

N ~ "~
VEI(E) = T [Vezg(ty))*(G6%) = [Vezg (ty)] (14b)
i=1

The Gauss-Newton approximation, which is sometimes referred to as modified
Newton-Raphson, is computationally much easier than the Newton-Raphson approxi-
mation because the second gradient of the innovation never needs to be calcu-
lated., 1In addition, it can have the advantage of speeding the convergence of
the algorithm, as is discussed in the SIMPLE AIRCRAFT EXAMPLE section,

Figure 1 illustrates the maximum likelihood estimation concept. The meas-
ured response of the aircraft is compared with the estimated response, and the
.ifference between these responses is called the response error. The cost func-
tions of Eqs. (4) and (11) include this response error. The Gauss-Newton com-
putational algorithm is used to find the coefficient values that maximize the
cost function. Each iteration of this algorithm provides a new estimate of the
unknown coefficients on the basis of the response error. These new estimates of
the coefficients are then used to update the mathematical model of the aircraft,
providing a new estimated response and, therefore, a new response error. The
updacing of the mathematical model continues iterati.ely until a convergence
criterion is satisfied. The estimates resulting from this procedure are the
maximum likelihood estimates,

The maximum likelihocd estimator also provides a measure of the reliability
of each estimate based on the information obtained from each dynamic maneuver,
This measure of the reliability, analagousn to the standard deviation, is called
the Cramér-Rao bound (Ref. 16) or the urertainty level. The Cramér-Rao bound
as computed by current programs should generally be used as a measure of rela-
tive accuracy rather than absolute accuracy. The bound is obtained from the
approximation of the information matrix, H. This matrix equals the approxima-
tion to the second gradient given by Eq., (14b). The bound for each unknown is
the square root of the corresponding diagonal element of H. That is, for

the ith unknown, the Cramér-Rao bound is YH(i,1i).
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The Maine-Iliff formulacion (Ref, 14) and minimization algorithm discussed
above are implemented with the Iliff-Maine code (MMLE3 maximum likelihood esti~-
mation program). The program and computational algorithms are described fully
in Ref. 17, All the computations shown and described in the remainder of the
paper use the algo-rithms exactly as described in Ref. 17.

ATRCRAFT EQUATIONS OF MOTION

For the discussion that follows in later sections of this paper, some ' -wl~
edge of the air:raft equations of motion is assumed. To clarify some of tna.
discussion, the aircraft equations are discussed briefjy in this section.

Tirst, the axis system on which the aircraft equati-ns of motion are based
is discuss :d. Fiqure 2(a) shows th: aircraft reference ..ody-axis system and the
conventio.ial control rvrfaces. The origin of the body-axis system is at the
center of gravity. The sign convention for this axis system is detined by the
right-nand rule with the x-axis defined as positive forward on the aircraft.

The longitudinal acceleration (ay) and nondimensional axial force coefficien®

(Cy) are defined along this axis, and the roll rate (p) and rolling moment (L')

are defined about this axis. The y-axis is defined as positive out the right
wing. The lateral acceleration (ay) and nondimesional side force coeffic.ent

(Cy) are defined along this axis, and the pitch rate (q) and pitching moment

(M') are defined about this axis. The z-axis is defined as positive out the
bottom of the aircraft. The normal acceleration (a;) and nondimensionai normal
force coefficient (Cz) are A2fined along this axis, and the yaw rate (r) and

vawing moment (N') are defined about this axis. 7The normal acceleration is
sometimes defined 18 positive upward but is then referred to as ay. The three
woments (L', M', and N') are usually divided by the corresponding moments of
inertia (I, Iy, and I,}, and are then referred to without the prime as L, M,

and N. These q.antities are nondimensionalized (Cp, Cp, and C,, respectively)

for use in th~ eqg.-ations of motion soon to be discussed. The primary control
about thr. roll axis (x-axis) is the aileron (§,), about the pitch axis (y-axis)

is the elerator (8o), and about the yaw axis (g-axis) is the rudder (§.). Some

aircraft have other controls, tut in this paper these will only be defined where
they are discussed (the reaction control jets on the space shuttls, for example).

The Euler angles ¢, 8, and ¥ define the aircraft attitude with respect to
the earth. These angles define the rotations which transform earth-fixed axes
o the aircraft reference body-axis system of Fig, 2(a).. The order of rotation
must be atout the z-axis (y), then the y-axis (8), and finally the x-axis (¢)
for the aircraft equations of motion that will be written subsequently.

For stabilit' and control analysis, the velocity of the aircraft with
respect to the air (not with respect to the earth) is of primary interest.
Figure 2(b) shows the relationship between the aircraft axis system and the flow
angles. The flow angle in the x-z plane is the angle of attack (a), and the
flow angle in the x-y plane is the angle of sideslip (B). A more rigorous and

o
[=]
(G |



detailed definition is required for the derivation of the equations of motion,

but the above definitions are sufficient to define the following equation of
motion.

Generalized nonlinear equations of motion are given in detail in Ref. 17,
which fully describes the Iliff-Maine code (MMLE3 program). All computations
an® aircraft examples in this paper use the linearized form for the lateral-

directional equations. These equations are given below and referred to in the
remainder of the paper.

é = %%-(Cy + éo) +-%-cos O gin¢ + psina ~r ces a (15)
Ply - rlyz = astg + qr(ly - Ip) + Pqlxs (16)
rI, - ply, = qsbCp + pa(I, - I, - qriy, (17)
$ =p+rcos ¢ tan 6 + q sin ¢ tan 8 + 60 (18)
where b b

y = CygB + Cy, £y + oy, 77 * Cygd + Cy (19)

b rb . fb
Cy = CpgB + Ctp‘gv +Cy my +Cegl + Coo + Cog 3y (20)

b rb . éb

where the § term is summed over all controls.

The observation equations are

Bp =XKg B -y P+t ¥ (22)
Pn = P (23)
Iy =T (24)
ém = ¢ (25)
ay, ..%;-cy - z:” p + x;YE - y;’ (02 + r2) (26}
im = é + éo (27)
Tm=r +rp (28)
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The state, control, and observation wvectors for the lateral-directional mode
can then be defined as

x=(8Bpr¢)* (29)
u = (Ga Gr). (30)
z = (By pp *n ¢ ayn ;. ;m)' (31)

SIMPLE AIRCRAFT EXAMPLE

The basic concepts involved i1n a parameter estimation problem can be illus-
trated by usirg a simple example representative >f a realistic wircraft problea.
The example chosen here is repregentative of an aircraft thzt exhibits pure
rolling motion from an aileron input. This example, although simplified, typi-
fies the motion exhibited by many aircraft in particular flight regimes, such as
the F-14 aircraft flying at high dynamic pressure, the FP-111 aircraft at moder-

ate speeds with the wing in the forward position, and the T-37 :zircraft at low
speed.

Derivation of an equation describing this motion is straightforward.

Fiqure 2(c) shows a sketch of an aircraft with the x-axis perpendicular to the
plane .£ the figure (positive forward on the aircraft). The rolling moment (L'),
roll rate (p), and aileron deflection (8,) are positive as shown. For this

example, the only state is p and the only control is 65. The result of summing
moments is

Ixp = L'(p,8;) (32)
The first-order Taylor expansion then becomes
P = Lpp + Lg 8a (33)

where
L" IxL

Since the aileron is the only control, it is notationally simpler to use §

instead of 8, for the diacussion of this example. Bgquation (33) can then be
written as

P = Lpp + Lgb (34)

7 .. alternate approach that results in the same equation i3 to rombine Eq. (16)

with £g. (20), esubstiiuting for C;, snd then eliminate the terms that are zero
for our example. This yields

. - b -
PIx = gsb Cp, 55 + Cagé (35)
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where p is the roll rate and § is the ailercn deflection. Rearranging terms,
the equation can be put into the dimensional derivative form of Bn. (34).

Equaticn (34) is a simple aircraft equation where the forcing function is
provided by the aileron and the damping by the damping-in-roll term, Ly. In

subsequent sections we examine in detail the parameter estimation problem where
Ba. (34) describes the system. For this single-degree-of-freedom problem, the

maximum likelihood estimator is used to estimate either L, or Lg or both for a
given computed time history.

We will assume that the system has measurement noise, but no state noise as
in Bgs. (1), (2), and (3). Equation (4) then gives the cost function for maximum
likelihood estimation. The weighcing GG* is unimportant for this problem, so

let it equal 1. For our example, Eqs. (2) and (3) become xj; = p; and 2z = xj.
Therefore, Eq. (4) becomes

. \
I(Lp,Lg) = 3 Z (es - piCp L§)12 (36)

where p; is the value of the measured response p at time tj and §i(LP.L5) is the
computed time history of ; at time tj for L, = ip and L§ = L§. Throughout the
rest of the paper, where computed data (not fiight data) are used, the measured

time history refers to pj, and the computed time history refers to ;1(LP.L5).

The computed time history is a function of the current estimates of Lj and Lg§,
but the measured time history is not.

The most straightforward method of obtaining p; is with Eqs. (3) and (8).
Ir. terms of the notation stated above,

Pi+1 = 0pi + V(81 + 8541)/2 EX
where

$ = exp (LPA)

Lg{1 - exp ({PA)}
Ip

and A is the length of the sample interval (tj4+q - t3). Simplifying the
notation

A
V= .L exp (LpT) AT Ly =

8i+1/2 = 155 + 8349)/2 (38)

then

Pi+t1 = ¢pi *+ v8i+1/2 (39)
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The maximum likelihood estimate is obtained by minimizing Eq. (36). The
Gauss-Newton method described earlier is used for this minimization. Equa-
tion (12) is used to determine successive values of the estimates of the
unknowns during the minimization,

For this simple problem, § = [Lp Ls]* and successive estimates of ip aad £6

are determined by updating Eg. (12). The first and second gradients of Bg. {12)

are defined by Bqs. (13) and (14). The complete set of equations is given in
Ref. 17.

The entire procedure can now be written for obtaining the maximum likelihood
estimates for this simple example. To gtart the algorithm, an initial estimate

of Ly and Ls is needed. This is the value of §g3. With Bg. (12}, &; and sub-

sequently {p are defined by using the first and second gradients of J(Lp,L§)

from Eq. (36). The gradients for this particular example from Eg. (13) and
‘14b) are '

~ N ~ ~
Ved(&y) = -3 (pi - pi)V pi (40)
i=1
2 - N
VEI(EL) = 121 (Veps )*(Vepy) (41)

With the specific equations defined in this section for this simple example,

we can now proceed in the next section to the computational details of a speci-
fic example.

Computational Details of Minimizatior

In the previous section we specified the equations for a simple example and
described the procedure for obtaining estimates of the unknowns from a dynamic
maneuver., In this section we give the computational details for obtaining the
estimates., Some of the basic concepts of parameter estimation are best shown
with computed data where the correct answers are known. Therefore, in this sec-
tion we study twc examples involving computed time histories. The first example
is based on data that have no measurement noise, which results in es.imiates that
are the same as the correct value. The s=2cond example contains signrificant
measurement noise; consequently, the egtimates are not the same as the correct
values. Throughout the rest of the paper, wlere computed data are used, the
term “"no-noise case” is used for the case with no noise added and “"noisy case"
for the case where noise has been added.

Since we are studying a simple computed example, it is desirable to keep it
simple enough to complete some or all of the calculations on a home computer or,
wit. some labor, on a calculator. With this in mind, the number of data points
nezds t> be kept smzll., TPor thig >~mputed example, 19 points (time samples) are



used. Tle simulated data, which we refer to as the measured data, are based on
Eq. (34). We use the same correct values of Ly and L§ (-0.2500 and 10.0,
respectively) for both examples. In addition, the same input (6) is used for
both e> :mnles. the sample interval (A) is 0.2 sec, and the initial conditions
are zetc- Tables of all the significant intermediate values are given with each
examplc. These values ire given to four significant digits, although to obtain
exactly . same values with a computer or calculator requires the use of 13
significini- digits, as in the computaticn of these tables. 1If the four-digit
num er: are used in the computation, the answers will be a few tenths of a
percent off, but will still serve to illustirate the minimization accuracy. In

both exa.ples, the initial values of Lp and L§ (or £p) are -0.5 and 15.0,
respectively.

Example With No Measurement Noise

The leasurement time history for no measuiement noise (no-noise case) is
shown in FPig. 3, The aileron input start. at zern, goes to a fixed value, and
then returns to zero. The resulting roil-rvate time history is also shown. The

values of the measured roll rate to 13 sigrificant digits are given in Table 1
along with the aileron input.

Table 2 shows the values for Lp, L§, and J for each iteration, along with
the values of ¢ a..d ¥ needed for calculations of Ei. In three iterations the
algorithm c.nverges to the correct values to four significant digits for both Lp

and Lg. L§ overshoots slightly on the first iteration and then comes quickly to

the correct answer. Lp overshcots slightly on the second iteration.

Figure 4 shows the match between the measured data and the computed data for

each of the first three "terations. The match is very good after two iterations.
The match is nearly exact after three iterations.

Although the :lgorithm has converged to four-digit accuracy in Lp and L§,

the value of the cost function, J, continues to decrease rapidly between itera-
tions 3 and 4. This is a consequence of using the maximum likelihood estimator
on data with no measurement noise. Theoretically, using infinite accuracy the
value of J at the minimum should lLe zero. However, with finite accuracy the
value of J becomes small but never quite zero. This value is a function of the
number of significant digits that are being used. Por the 13-digit accuracy

used here, the cost eventually decreases to approximately 0.3 X 10-28,
Example With Measurement Ncise

The data used .n this é.:ample (noisy case) are the same as those used in the
previcus sectiun, except that pseudo-Gaussian noise has been added to the roll
rate, The time history i. saovm in Fig. 5. The signal-to-noise ratio is quite
low in thi~ example, as is readily apparent by comparing Figs. 3 and 5. The

exact values of the time history to 13-digit accuracy are shown in Table 3. The

values of Lp, L5, 9, ¥, and J are shown for each iteration in Table 4. The
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algorithm converges in four iterations. The behavior of the coefficients asa
they approach convergence is much like the no-noise case. The most notable

-

results of this case are the converged values of and £5, which are somewhat
different from the correct values., The match between the measured and computed
time h! te-y i3 shown in Pig. 6 for each iteration. No change in the match is

apparent for the last two iterations. The match is very good considering the
amount of measurement noise.

In Pig. 7, *he computed time history Jor the correct values of Lp and L is
compared to that for the noisy-case estimates of 7, and L§. Because the

algorithm converged to values somewhat different . an the correct values, the
two compute. time histories are similar but not identical.

The accuracy of the converged elsments can be assessed by looking at the
Cramer-Rao inequality (Refs. 16 and 17) discussed earlier., The Crameér-Rao bound
can be obtained from the following approximation to the information matrix.

H = 2(Jnininun)(VgJ)‘1/(N—1)

The Cramer-Rao bounds for Lp and L§ are the square roots of the diagonal ele-

ments of the H matrix, or vH(1,1) and YH(2,2), respectively. The Crameér-Rao

bounds are 0.1593 and 1.116 for Lp and L§, respectivsly. The errors in Lp and
L§ are less than the bounds.

Cost Functions

In the previous section we obtained the maximum likelihood estimates for
computed time histories by minimizing the values of the cost function. To fully
understand what occurs in this minimization, we must study in more detail the
form of the cost functions aid some of their more important characteristics. 1In
this section, the cost function for the no-noise case is discussed briefly. The
cost function of the noisy case is then discussed in more detail, The same two
time histories studied in the previous section are =2vamined here. The noisy
case is more interesting because it has a meaningful Cramér-Rao bound and is
more representative of aircraft flight data.

First we will look at the one-dimensional case where L§ is fixed at the

correct value, because it is easier to grasp some of the characteristics of the
cost function in one dimension. Thzn we will look at the two-dimensional case,
where both L, and L§ are varying. It i3 important to remember that everything

shown in this paper on cost functions is based on computed time “istories that
are defined by Eq. (3€6). For every time history we might choose {computed or
flight data), a complete cost function is defined. For the case of n variables,
the cost tunction defines a hypersurface of n + 1 dimensions. It might occur to
us that we could just construct this surface and look for the minimum, avoiding
the need to bother with the minimization algeorithm. This is not a reasonable
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approach because, in general, the number of variables is greater than two.

Therefore, the cost function can be described mathematically but not pictured
graphically.

One-Dimensional Case

To illustrate the many interesting aspects of cost functions, it is eas-
iest to first look at cost functions having one variable., In an earlier sec-
tion, the cost function of Ly and L§ was mirimized. That cost function is most
interesting in the Lp direction. Ther: ore, the one-variable cost functioun
studied here is J(Lp). All subsequent discussions are for J(Lp) with Lg equal
to the correct value of 10. Figure 8 shows the cost function plotted as a func-
tion of Lp for the case where there is no measurement noise (no-noise case). As
expected for this case, the minimum cost is zero and occurs at the correct value
of Lp = -0.2500. It is apparent tnat the cost increases much more slowly for a
more negative Lp than for a positive Lpe. In fact, the slope of the curve tends
to become less negative where Lp is more negative than -1.0. Physically this
makes sense since the more negative values of Lp represent cases of high damping,
and the positive Lp represents an unstable system. Therefore, the p; for posi-
tive Lp becomes increasingly different from the measured time history for small

positive increments in Lp. For very large damping (very negative Lp) the system

would show essentially no response. Therefore, large increases in damping
result in relatively small changes in the value of J(LP).

In Fig. 9, the cost function based on the time history with measurement
noise (noisy case) is plotted as a function of Lp. The correct value of
Lp (-0.2500) and the value of Lp (~0.3218) at the minimum of the cost (3.335)
are both indicated on the figure. The general shape of the cost function in
Pig. 9 is similar to that shown in Fig. 8. Figure 10 shows the comparison
between the cost functions based on the time histories with and without measure-
ment noise. The comments relating to the cost function of the no-nois: :ase
also apply to the cost function based on the noisy case. Figure 10 shows
clearly that the “wo cost functions are shifted by the difference 1. the value
of L, at the minimum and increased by the difference in the minimum cost. One
would expect only a small difference in the value of the cost when far from the
minimum. This is because the "estimated” time history is so far from the
measured time history that it becomes irrelevent as to whether the measured time
history has noise added. Therefore, for large values of cost, the difference in
the two cost functions should be small in comparison to the total cost,

Figure 11 shows the gradient of J(Lp) pPlotted as a function of Lp for the

noisy case. This is the function for which we were trying to find the zero (or
equivalently, the minimum of thc cost function) using the Gauss-Newton method of
a previous section. The gradient is zero at Lp = -0.3218, which corresponds to
the value of the minimum of J(Lp).

The difference between the Newton-FPaphson method (Eq. (14a)) and the
Gauss-Newton method (Eq. (14b)) of minimization has been mentioned previously.
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For this simple one-dimensional case, we can easily compute the second gradient
both with the second term of Eq. (14a) (Newton-Raphson), and without the second
term (Gauss-Newton, Eq. (14b)). Figure 12 shows a comparison between the
Newton-Raphson and the Gauss-Newton approximation second gradients. The
Gauss-Newton second gradient (dashed line) always remains positive because it
is the sum of quadratic terms (squared for the one-dimensional examplz). The
Newton-Raphson second gradient can be positive or negative, depending upon the
value of the second partial with respect to Lp. Other than the difference in

sign for the more negative Lp, the two curves have similar shapes.

As stated earlier, the Gauss-Newton method can be shown to be superior to
Newton-Raphson in certain cases. We can demonstrate obvious cases of this
with our example. An easy way to select a spot where problems with the Newton-
Raphson method will occur is to look for places where the second gradient (slope
of the gradient) is near zero o. negative. Figure 11 has such a region near
Lp = -1.0. If we choose a point where the gradient slope is exactly zero, we

are forced to divide by zero in Eq. (12) with the Newton-Raphson met:. >d. This
point is at Lp = -1.13 in Fig. 12. 1If the value of the slope of the gradient is
negative, then the Newton-Raphson method wiil go to very negative values of Lp.
For very negative values of Lp, the cost becomes asymptotically constant and the
gradient becomes nearly zero. In that region, the Newton-Raphson algorithm
would diverge towards negative infinity. If the slope of the gradient is

positive but small, we still have a problem with the Newton-Raphson method.
Figure 13 shows the first iteration starting from Lp = -0.95 for both Gauss-

Newton and Newton-Raphson. The Newton-Raphson method selects a point where the
tangent of the gradient at Lp = -0.95 intersects the zero line. This results in
the selection of an Lp of approximately 2.6 in the first iteration. From that
value it requires many iterations to return to the actual minimum. On the other
hand, the Gauss-Newton method selects a value for Lp of approximately -0.09 and

converges to the minimum to four-digit accuracy in two more iterations. With
more complex examples a comparison of the convergence properties of the two
algorithms becomes more difficult to visualize, but the problems are generaliza-
tions of the situation we have observed with the one-dimensional example.

The usefulness of the Cramér-Rao bound was discussed in the Example With
Measurement Noise section. At this point it is useful tc digress briefly to
discuss some of the ramifications of the Cramér-Rao bound for the one-dimensional
case. The Cramér-Rao bound only has meaning for the noisy case. In the noisy
example, the estimate of Lp is -0.3218 and the Cramér-Rao bound is 0.0579. The
calculation of the Cramér-Rao bound was defined in the previous section for both
one-dimensional and two-dimensional examples. The Cram§:~Rao bound is an esti-
mate of the standard deviation of the estimate. One would expect the scatter in
the estimates of Lp to be of about the same magnitude as the estimate of the

standard deviation. For the one-dimensional case discussed here, the range
(Lp (-0.3218) plus or minus the Cramér-Rao bound (0.0579)) nearly includes the

correct value of Lp (-0.2500). If noisy cases are generated for many time his-

tories (adding different measurement noise to each time history), then the sam-
Ple mean and sample standard deviation of the estimates for these cases can be
calculated., Table 5 gives the sample mean, sample standard deviation, and the
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standard deviation of the sample mean (standard deviation divided by the square
root of the number of cases) for 5, 10, and 20 cases. 7The sample mean, as
expected, gets closer to the correct value of -0.2500 as the number of cases
increases. This is also reflected by the decreasing values in column 4 of
Table S, which are estimates of the error in the sample mean. Column 3 of
Table 5 shows the sample standard deviations, which indicate the approximate
accuracy of the individual estimates. This standard deviation, which stays moraz2
or less constant, is approximately equil to tne Cramér-Rao bound for the noisy
case being studied here. 1Tn fact, the Crameér-Rao bounds for each of the 20
noisy cases used here (not shown in the table) do not change much from the
values found for the noisy case being studied. Both of these results are in
good agreement with the theoretical characteristics (Ref. 16) of the Cramer-Rao
bounds and maximum likelih..od estimators in general.

The examples shown here indicate the value of obtaining more sample time
histories {(maneuvers). More samples improve confidence in the estimate of the
unknowns. The same result holds true in analyzing actual flight time histories
(maneuvers); thus it is always advisable to obtain several maneuvers at a given
flight condition to improve the best estimate of esach derivative.

The size of the Cramér-Rao bounds and of the error between the correct value
and the estimated value of Lp is determined to a large extent by the length of
the time history and the amount of noise added to the correct time history. For
the example being studied here, it is apparent from Fig. 5 that the amount of
noise being added to the time history is large. The effect of the power of the
measurement noise (GG*, Egs. (3) and (4)) on the estimate of Ly (that is, £p)
for the time history is given in Table 6. The estimate of Ly is much improved

by decreasing the measurement noise power. A reduction in the value of G to
one-tenth of the valu: in the noisy example being studied yields an acceptable
estimate of Lp. For ilight data, the measurement noise is reduced by improving
the accuracy of the output of the measurement sensors.

Two-Dimensional Case

In this section the cost function (which is dejendent on both L, and L§) is
studied. The no-noise case is examined first, followed by the noisy case.

No-noise case, Even though the cost function is a function of only wwo
unknowns, it is much more difficult to visualize than the one-unknown case. The
cost function over a reasonable range of Lp and L§ is shown in Fig. 14. The
cost increases very rapidly in the region of positive Lp and large values of
L§. The reason is just an extension of the argument fcr positive Lp given in
the previous section. The shape of the surface can be depicted in greater
detail if we examine only the values of the ccst function less than 200 for Lp
less than 1.0. Figure 15 shows a view of this restricted surface from the upper
end of the surface. The minimum must lie in the curving valley that gets
broader as we go to the far side of the surface, Now that we have a picture of
the surface, we can look at the isonlines of constant cost on the Lp-vetsus-L5

plane, These isoclines are shown in Fig. 16, The minimum of the cost function
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is inside the closed isocline., The gsteepness of the cost function in the
poeitive-Lp direction is once again apparent., Inside the closed isocline the

shape is more rearly elliptical, indicating that the cost is nearly quadratic
here, so fairly rapid convergence in this region would be expected. The Lp axis

becomes an asymptote in cost as Lg approaches zero. The cost is constant for
L§ = 0 because no respcnse would result from any aileron input. The astimated

response is zero for all values of Lp, resulting in constant cost.

Figure 16 shows the region of the minimum value of the cost function, which,
as seen in the earlier example (Table 2), occurs at the correct values for Lp

and L§ of -0.2500 and 10, respectively. This is also evident by looking at the

cost function surface shown in Fig., 17. The surface has its minimum at the

correct value. As expected, the value of the cost function at the minimunm is
zero.

Noisy case. As shown before in the one-dimensional case, the primary dif-
ference between the cost functions for the no-noise and noisy cases was a shift
in the cost function. In that instance, the noisy case was shifted so that the
minimum was at a higher cost and a more negative value of Lpe In the two-

dimensional case, the no-noise and noisy cost functions exhibit a similar shift,
For two dimensions the shift is in both the Lp and Lg directions. The shift is

small enough that the difference between the wo cost functions is not visible
at the scale shown in Fig. 14 or from the perspective of Fig. 15. Figure 18
shows the isoclines of constant cost for the noisy case, The figure looks much
like the isoclines for the no-noise case shown in Fig. 16. The difference
between Figs. 16 and 18 is a shift in Lp of about 0.1, This is the difference

in the value of Lp at the minimum for the no-noise and noisy cases. Heuristi-

cally, one can see that the same would be true for cases with more than two

unknowns. The primary difference between the two cost functions is near the
minimum.

The next logical part of the cost function to examine is near the minimum.
Figure 19 shows the same view of the cost function for the noisy case as was
shown in Fig. 17 for the no-noise case, The shape is roughly the same as that
shown in FPig. 17, but the surface is shifted such that its minimum lies over
Lp = -0.3540 and L§ = 10.24, and is shifted upward to a cost function value of

approximctely 3.3,

To get a more precise idea of the cost of the noisy case near the minimum,
we once again need to examine the isoclines. The isoclines (Fig. 20) in this
region are much more like ellipses than they are ir Figs. 16 and 18, We can
follow the path of the minimization exauple used before by including the results
from Table 4 on Fiy. 20. The first iteration (L = 1) broughc the values of Lp
and 1§ very close to the values at the minimum. The next iteration essentially
selected the values at the minimum when v’ eved at this scale. One of the rea-
sona the convergence is so rapid in this region is that the isoclines are nearly
=lliptical, demonstrating that the cost is very nearly quadratic in this region.
If we had started the Gauss-Newton algorithm at a point wheire the isoclines
are such less elliptical (as in some of the border regions in Fig. 18), the
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convergence would have been much slower initially, but much the same as it
entered the nearly quadratic region of the cost function,

Before concluding our examination of the two-dimensional case, we need to
examine the Cramer-Rao bound. Figure 21 shows the uncertainty ellipsoid, which

is based on the Cramér:Rao bounds defined in an earlier section. The relatior-
ships between the Cramer-Rao bound and the uncertainty ellipsoid are discuss.d
in Ref. 16. The uncertainty ellipsoid almost includes the correct value of Lp

and L§. The Crameér-Rao bound for Lp and Lg can be determined from the pr.jec-
tion of the uncertainty ellipsoid onto the Lp and L§ axes, and compared with the
values given earlier, which were 0.1593 and 1.116 for Lp and Lg§, respectively.

ESTIMATION USING FLIGHT DATA

In the previous several sections we examined the basic mechanics of obtain-
ing maximum likelihood estimates from computed examples with one or two unknown
parameters, Now that we have a grasp of these basics, we can explore the esti-
mation of stability and control derivatives from actual flight data. For the
computationally much more difficult situation usually encountered using actual
flight data, we will obtain the maximum likelihood estimztes with the Ilirf-
Maine code (MMLE3 program) described in Ref, 17, The equations of motion that
are of interest are given in the AIRCRAFT EQUATIONS OF MOTION section of this
paper; the remainder of the equations are given in Ref. 17,

In general, flight data estimation is fairly complex, and codes °uch as the
Iliff-Maine code must usually be used to assist in the analysis., However, one
must still be cautious about accepting the results; thac :3, the estimates must
fit the phenomenology, and the match between the mezsured and computed time his-
tories must be acceptable. This is true in all flight -regimes, hut one must be
particularly careful in potential problem situations such as (1) in separated
flow at high Mach numbers or high angle of attack, (2) with uznusual aircraft
configurations such as the oblique wing (Ref, 18}, or (3) with modern high-
performance aircraft with high-gain feedback loops. In any of the above cases,
one should be particnlarly careful where there are even small anomalies in the
match. These anomalies may indicate ignored terms in the equations of motion,
separated flow, nonlinearities, sensor problems, insufficient resolution
(Ref. 1), sensor location (Ref. 1), time or phase lags (Refs. 1 and “9), or awy
of a long list of ocher problems.

The following brief examples are intended to show how the above caveats and
the computed examples of previous sections can be used to assist in the analy-
sis. Ii. the computed example, the desirability of low-noise sensors, an ade-
quate mocel, and several maneuvers at a given flight condition is shown.

Hard Calculation Example

Sometimes evaluation of a fairly complex flight maneuver can be augmented
with a simple hand calculation. One example of this can be found for the space
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shuttle. The space shuttle is a large double-delta-winged vehicle designed to
enter the atmosphere from space and land horizontally. The entry control system
consists of 12 vertical reaction-control-system (RCS) jets (six up-firing and
six down-firing), 8 horizontal RCS jets (four left-firing and four right-firing)
4 elevon surfaces, a body flap, and a split rudder surface. The locations of

these devices are shown in Fig. 22. The vertical jsts and the elavons are used
for both pitch and roll control. The jets and elevons are used symaetrically
for pitch control and asymmetrically for roll control. The space shuttle con-
trol system is described briefly in Ref. 6.

The shuttle example used here is from a maneuver obtained at a Mach number
of approximately 21 and an angle of attack of approximately 40°, The controls
being used for this lateral-directional maneuver are the differential elevons
and the gide-firing jets (yaw jets). The maneuver is shown in Fig. 23.
Equations (15) to (31) describe the equations of motion. A simplified approach
can be used to determine some of the derivatives by hand. The approach is one
that has been used since the beginning of dynamic analysis of flight maneuvers.
In particular, for this maneuver the slope of the rates can be used to determine
the yaw jet control derivatives. This is possible for this example, even with a
high-gain feedback system, because the yaw jets are essentially step functions,
and the slope of the rates p and r can be determined before the vehicle and the
differential elevon (aileron) responses become significant. The rolling moment
due to yaw jet (Lygy) is particularly important for the shuttle (ReZ, 6 discusses

the essential nature of flight-determined Lyy in the redefinition of entry

maneuvers) and is, in general, more difficult to obtain than the more dominant
yawing moment due to yaw jet. Therefore, as an illustrative example, Lyg is

determined by hand. Figure 24 shows yaw jet activity and smoothed roll rate
plotted at expanded scales. The equation for Lyy is given by

Lyg = pIy/(Number of yaw jets) (42)
b= ap/at = 200+ (0.1) (43)

Therefore, given that Iy % 900,000 slug-ftz, and the number of yaw jets is 4,
Lyg 2 2750 ft-1b.,

The same maneuvelr was analyzed with MMLE3, and the resulting match ‘- shown
in Fig. 25. The match is very good except for a small mismatch in p at about
6 sec. This small mismatch was studied separately with MMLE3 and found to be
caused by a nonlinearity in the aileron derivative. The value from MMLE3 for
Lyy is 2690 ft-1lb, which for the accuracy used here is essentially the same

value as obtained by the simplified method. The ailercn derivatives would be
difficult to determine as accurately as the yaw jet derivatives. Although good
estimates can seldom be obtained with the slope method discussed here, rough
estimates can usually bLe obtained to gain some insight into values obtained with
MMLE3 (or any other maximum likelihood program). These rough estimates can then
be used to help explain unexpected values of estimates from an estimation
program.
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Sometimes a flight example becomes too complex to allow anything other than
quzlitative estimates to be determined by hand. The example shown in Fig. 26 1is
the determination of the rudder derivative for tle F-8 aircraft with the yaw
augmentation system on. This example, taken from Ref. 20, includes an aileron

pulse and a rudder pulse. Although an indepundent pilot rudder pulse is input
during the manceuver, the rudder is largely responding to the lateral accelera-~
tion feedback. When the rudder is moving, several other variables are also
moving, thus making it difficult to use the simplified zpproach just discussed.
However, C“Gr can be roughly detcrmined when the rudder moves, approximately

1.7 sec from the start of the maneuver. Mogt of the slope of yaw rate ‘s pro-

bably caused by the rudder, but a poor estimate would be obtained using the hand
calculation.

Cost Function for Full Aircraft Problem

The analysis of a lateral-directional maneuver obtained in flight typically
has from 15 to 25 unknown parameters (as shown in Egqs. (15) and (31)), in
contrast to the one or two in the simple aircraft example. This makes detailed
examples unwieldy and any graphic presentation of the cost function impossibln.

Therefore, in this section we are primarily examining tl.e estimation procedure
and the process of the mirimization.

For our flight example, we have chosen a lateral-directional manevver, with
both aileron and rudder inputs, that has 7 unknown parareters. The data arc
from the oblique wing aircraft (Ref. 18) with the wing unskewed during the
maneuver. This example was chosen because it is a typical maneuver. The time
history of the data and the subsequent o:cput of MMLE3 have been published in
Ref. 21. Some results of the ana'ysis are shown in Table 7. The match between
the measured time history (solid .ines) and the estimated (calculated) time
history {(dashed lines) is shown as a function cof iteration in Fig. 27. PFig-
ures 27(a) to (e) are for iterations 0 to 4, respectively. Table 7 shows that
the cost remains unchanged after four iterations. A similar result was obtained
for the two-dimensional simple aircraft example in Fig. 6 and Table 4.

Of the many things the analyst m:st consider in oktaining estimates, the two
rost important onzs are how good is the match and how gnod is the convergence.
A satisfactory match and monotor convergence are necesgary, but not suffi-
cient, conditions for a success’ . analysie. Figure 27(e}), althouyh not per-~
fect, is a very good match. The convergence can best be evizluated by looking at
the normalized cost in the last row of Table 7. The cost has converged rapidly
and monctonically in four iterations, and it remains at the converged cost.
These factors are convincing evidence that the convergence is complete. There-
fore, the criteria of match and convergence are satisfied in our example. In
some cases we might encovnter cost that does not converge rapidly (in four to
six iterations) or monotonically, or stay “exactly" at the minimum value. These
situations usually indicate at least a small problem in the analysis. These
probiems, if found, are usually traced to an instrumentation or data aquisition

problem, an inadequate mathematical model, or a maneuver that contains a mar-
ginal amount of information.
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Table 7 also shows that the startup values of all the coefficients are zero
for the control and bias variables., Wind turnel estimates could have been used
for starting value., but the convergenze of the algorithm is not very dependentz

op the startup values. As part of the startup algorithm, the MMLE3 program nor-
mally holds the derivatives of the state variables consta:t until after the
first iteration, as is evident in Table 7.

Figure 27(a) shows the match between the measured and comput:d data fcr the
startup values. The match is very poor because the startup values for the con-
trol derivatives are all zero, 30 the only motion is in response to the initial
conditions. The control derivatives and biase . are determined on the first
iteration, resulting in the much improved match shown in Fig. 27(b). The match
after two iterations, shown in Fig. 27/c), is improved as the program further
modifics the control derivatives and, fcr the first time, adjusts the deriva-
tives affecting the natural frequency (CnB and CzB). By the third iteration

(Fig. 27(d)), the improvement in the match is.almost complete, because minor
adjustments to the frequency are made and the damping derivatives are changed.

Fig. 27(e) shows the match when all but the wost minor derivatives have ceased
to change.

Several general observations can be made based on this welli behaved example,
The strong or most important coefficients harve essentially converged in thre«e
iterations. The same effect was sesen in the simple example — that is, L& con-
verged faster than Lp (Table 4). Some of tre less important or second-order
coefficients have only converged to two places after three iterations and are
still changing by one digit in the fourth place at the end of six iterations.
Another observation is that for some coefficients (Cgr, cnéa' and ngr) even

though the sign is wrong after the first iteration, the algorithm quickly
selects their correct values once the important derivatives have stabilized.

In general, if the analysis of a maneuver has gone well, we do not need to
spend much time inspeccing a table analogous %o Table 7., WHowsaver, if there have
been problems in convergeuce or in the quality of the fit, a detailed inspection
of such a table may be nrecessary. The data may show an important ccefficient
going unstable at an early iteration, which could cause problems later. If tha
starting values are grossly in error, the algorithm is driven a long way from
reasonable values and then for many reasons does nct behave well, Occasiorally
the alaorithm alternately selects from two diverse gser of values of two or more
coefficients on successive iterations, behaving as if the shape of the cost
function were a narrow multidimensional valley analogous to but more extreme
than the two-dimensional valley shown in Figs. 18 and 20.

Cramér-Rao Bounds

The earlier sections regarding the computed example have shown that the
Cramér-Rao bound is a good indicator of the accuracy of an estimated parameter.
The Cramér-Rao bounds can be used in a similar, but somewhat more qualitative,
fashion on flight data. The Cramér-Rac bounds that are included in MMLE3 (as
well as many other maximum likelihood estimation programs) have been useful in
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determining whether estimates are good or bad. The aircraft example discussed
here has br2n reported previously (for example, in Refs. ! and 16). However,

this example of the use of the Cramer-Rac bound in the assessment of flight-
dorived estimates is pertinent to the thrust of this paper. Figure 28 shows
estimates of Cnp as a function of angle of attack for the PA-30 twin-engine

generali aviation aircraft (Ref. 22) at three flap settings. There is a signifi-
cant. amount of scatter, which makes the reliability of the information on Cp

questionable. The data shown are the egtimates from the MMLE3 program, which
also provides the Cramer-Rao bounds for each estimate. Past experience (Ref. 1)
has shown that if the Cramer-Rao bound is aultiplied by a scale factor (the
result sometimes being called the uncertainty level (Refs. 1 and 16)) and plot-
ted as a vertical bar with the associated estimate, it helps in the interpreta-
tion of flight-determined results. Figure 29 shows the same data as Fig. 28,
with the uncertainty levels now included as wvertical bars. The estimates with
small uncertainty levels (Cramér-Rao bounds) are the best estimates, as was
discussed earlier in the section on Cramér-Rao bounds for the one-dimensional
case. The fairing shown in Fig. 29 goes through the estimates with small
Cramér-Rao bounds and ignires the estimates with large bounds. One can have
great confidence in the fairing of the estimates, because the fairing is well
defined and consistent when the Crameér-Rao bound information is included. In
this particular instance, the estimates with small bounds were from maneuvers
where the aileron forced the motion, and the large bounds were from maneuvers
where the rudder forced the motion. Therefore, in addition to aiding in the
fairing of the 2stimates, the Cramér-Rao bounds help show that the zileron-
forced maneuvers ave superior for estimating Cnp for the PA-30 aircraft.

This example illuscrates that the Cramfr-Rac bounds are a useful tool in

assessing flight-determined estimates, just as they were found useful for the
simple aircraft example with computed data.

Atmospheric Turbuleace (State Noise)

Atmospharic turbulence (state noise) caanot always be avoidad in flight;
therefore, it 18 desirable to be able to obtain stability and control deriva-
tives in the prescnce of turbulence. 1In additicn, an estimste of the turbulence

time history can be of interest, particularly in the implementation of tur-
bulence suppression systems.

Many years ago it was demonstrated that the stability and control deriva-
tives cain be adequately determined with maximum likeliliood estimaticn techniques
for maneuvers performed in smooth air. If these techniques, which do not
account. for turbulence, are applied to data obtained in turbulence, nct only are
the resulting watches of the time histories unsatisfac tory but the estimated
coefficients are unacceptable (Refs. 23 to 25)., The tecnnique deacriked in
Refs, 14, 23, and 25 can account foi the effect of turbulence. With this tech-
nique, maximum likelihood 2stimates of the stability and control derivatives as
well as estimates of the turbulence time histories are »‘btained by mrinimizing
the cost function given by Fg. {11). Results of the applicaticn of the tech-

nique to longitudinal maneuvers obtained in turbulence have been reported
previously (Refs. 23 to 25).

to
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Tne lateral-directional equatioas (Egs. (15), (16), {17}, (18}, and (29))
can be modified in a manner similar to that used to modify the longitudinal
equations in Refs. 23 to 25. The turbulence (state noise) model is the Dryden
expression, which is described in Ref. 26. The Iliff-Maine code (Ref. 17) can
be used to obtain the maximum likelihood eatimates where state noise is present.

Thirty-eight seconds of data from the PA-30 aircraft flying in turbulence
was analyzed at 50 samples/sec. The best match that could be obtained with the
maximum likelihood estimation method that does not account fcr turbulenca is
shown in Fig. 30. The match is unacceptable and regulted in poor estimates of
the stability and control derivatives. Figure 31 shows the match obtained with
the maximum likelihood estimation technique that accounts for turbulence
(Re” . 14 and 17). The match is excellent and the maneuver provided acceptable
es .mated stability and control derivatives. It is also of interest to coapare
the power spectra of the estimated turbujence time histories. The power

spectrum of the turbulence component affecting -angle of sideslip, Bg, is shown
in Fig. 32. Fiqure 33 presents the power gspectrum of the turbulence component

affecting roll rate, j The slopes of the asymptotes shown in Figs. 32 and 33
are those defined by the Dryden expregsion given in Ref, 26, Good agreement is

showi. be.4een the power spectra and the asymptotes for Bg and Pqg-

The algorithm used here is based on a linearized system described by
Egs. (5) to (7) and solved by minimizing the cost function given by Eg. (11).
The system need not resemble that for the aircraft stability and control problem
other than in the requirement for linearity. Therefore, many formulations for
the structural problem are wricten in the form of Egs. (5) to (7), and the
algori~hm under discussion can be directly applied with these forsulations.

ESTIMATION POR SIMPLE STRUCTURAL PROBLEM

The problea of the flexible space structure is most fully characterized as a
distribuced parameter system with its associated distvibuted system control
laws. The model will vary dependi.y upon changes in its configuration or its
environment, such as sclar heating. As in most cases, the preferred solution is
the simplest succesgful approach. The lumped svstem approach is much simpler
and computationally far more efficient than the fully distributed paraseter sys-
tem approach. For example, structural mode control base? on current state-of-
the-art approaches has proved very successful. Admittedly, the aircraft struc-
tura is heavier than mogst spacecraft, but many aircraft structures are highly
complex, consisting of many subet{riuctures within the main structure. To the
novice, many of the sp-ce structures currentlv “eing iavestigated appear simpler
thar modern, large aircraft. If the lumped parameter system approach used for
the aircraft pro’ 2m is found to be inadequate, it seems likely that distributed
parameter estimation codes wiil evolve to whatever complexity i’ recessary to
solv2 the flexible space structure problem.
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This paper has discussed some of the experience gained from the applicatic..
of aircraft stability and con*rol analysis to flight data. The codes used for
this analys’s are for lumped parameter systems in the time domain. The codes
have been used successfully for structural problems and are fully adaptable to
the frequency domain if that is found to be preferable.

Although few results have been obtained fcr time-domain structural analysis
at the Ames Dryden Flight Research Facility, sose superficial experience in
structural time-dcmain analysis has been obtained. The following two examples
show how the techniques being used for stability and control analysis can be
applied to simple structural problems. The preceeding gsection discussed the
incorporation of state noise in the model. The following examples do not
include the use of state noise, but state noise, if warranted, could easily be
incorporated in the types of examples to be discussed.

Bstimation of Structural Charactetistics

All aircraft have observable structural modes. These modes usually cause no
difficulty in estimating stability and control derivatives because the struc-
tural frequencies are higher than the aerodynamic frequencies. 1In general, if
the structural frequencies are higher than the highest aerodynamic frequency by
more than a factor of 5 to 10, they can be neglected unless their amplitude is
so large as to mask measurementrc desired for the aerodynamic analysis. However,
if one or more structural aodes are affecting the aerodvnamic modes, as may
occur in large aircraft, these structural wodes must be included in the mathe-
matical model being analyzed.

Even though no completely satisfactory practical results are available that
account for structceral modes and their interactions with the aerodynamics, it is
interesting to assess the time-domain maximum likelihood analysis of the struc-
tural modes independent of any interaction. This can be done where a structural
mode is observed and no significant coupling is apparent.

Figure 34 shows a structural mode on the lateral acceleration of an aircraft
where little effect was obaerved for structural-aerodynamic coupling. The fre-
quency of the mode is high enough that the mode does not interact with the aero-
dynamic wmodes. Therefore, the stability and control derivatives were obtained
separately and held constant for the succeeding analysis. The analysis con-
sisted of using the maximum likelihocad estimation program MMLE 3 (Ref. 17) with
a sirth-order model that included the lateral-directional aerodynaaic moGes plus
one structural mode. The dynamic preasure and the velocity were allowed to vary
in the analysis. The structural mode frequency and damping were egstimatel as
linear functions of dynamic pressure. The initial conditions were also esti-
mated. A structural mode frequency of 7.84 Hz was chosen to start the estima-
tior process. The comparison between the original data and the match obtained
wi. the maximum likelihood estimation method is shown in Fig. 35. The two time
histories are in good agreement at the beginning of the maneuver and at the end
of the maneuver, but they are 180° out of phase at a time of approximately



0.3 sec. The match shown in Fig. 35 suggests that the maximmm likelihood esti-
mator has reached a local minimum but 20t the global minimum. Multiple minima
are not normally a problem when obtaining the stability and control derivatives
of aircraft with the maximua likelihood estimation method.

The reason for the multiple minima is demonstrated by the following simple
scalar example. Let the noiseiess measured response be z(t) = sin (wgt) and the
estimated response be ?5 = gin (wt), where w is the only unknown coefficient.
Then, by Eq. (4), the cost function becomes

T 2
J(w, 1) ] isin (wgt) - sin (wt)]€ at
0

[ . 1 .
t --Zaa sin (2wqT) - 2 8in (gm?)

2w Yo _. . .
-5 o2 5 sin (&T) cos (wgT) - cos (wT) sir (wqT)

If T is chosen to represent 10 cycles, as shown in Fig. 35, then for an wg of

1 rad/sec, T equals 20%. In Fig. 36, the cost function J(w,20%) is shown as a
function of w. The global minimum is at an w of 1 rad/sec, as it should be, but
there are many local ainima at increments of approximately 0.05 rad/sec. If a
value of less than 0.97 or greater than 1.03 were chosen for & starting estimate
of w, the algorithm would converge to a local minimum. If a value of between
0.98 and 1.02 were chosen, it would converge to the global minimum. Therefore,
for this example where 10 cycles were observed, the starting vaiue of & must be
less than 3 percent from the correct anwser to converge to the global minimum.

Figure 37 shows a sine wave for the global minimum along with a sine wave
with a frequency that varies 10 percent from the qlobal minimum. The sine waves
are in phase at the beginning and end, and 180° out of phase in the middle.
These data appear similar to those shown for flight data in FPig. 35. 1f only
one or two cycles were used for the analysis, the problem illustrated in Pig. 37
would be minimized. This is apparent in Pig. 38 where only the first cycle of
Fig. 37 is shown.

If T is chosen to represent only one cycle and Wy remains equal to 1 rad/sec
(as in Fig. 38), then T equals 27. The cost function J{w,2%) is presented as a
function of w in Fig. 39. The global minimum is correctly at an w of 1 rad/sec,
but now the algorithm converges tc the global minimum if w is started within
approximately 25 percent of the correct value.

Knowing the sensitivity of the algorithm when a record with many lightly
damped cycles is being analyzed, the data of Fig. 34 can be reanalyzed starting
closer to the observed frequency. Starting the maximum likelihood estimation
method with an w of 3.0 results in the fit shown in Fig. 10. This is an accep-
table fit of the data.
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Based on the preceding results, if data are to be analyzed where many cycles
of a structural mode are presgsent, the structural mode frequency, w, must be clc-
saly approximated before starting the estimation process.

Structural Modes in Space

In the process ~f analyzing aircraft flight data, the authors have fre-
quently obserwved results that clearly exhibit unmodeled dynamics. The unzodeled
dynamics could be caused by many phenomena, such as higher-order aerodynamic
modes or structural modes. These modes can usually be ignored and left unmo-
deled because thev have no effect on the results of primary interest in tne ana-
lysis. If the unmodeled modes cannot be ignored, then the systea equations must
be revised to include the unmodeled modes.

The authors have not yet found it necessary. to model structural modes for
data obtained in space in the process of obtaining control derivatives for the
space shuttle. However, the structural modes have been observed. Figure 41
shows the response of the space shuttle to the firirg of a roll jet and a yaw
jet at an altitude of 430,000 ft. The space shuttle configuration and the loca-
tion of the RCS jets are shown in Fig. 22. The changes in the rigid-body rates
and lateral acceleration caused by the jet firings are apparent in Fig. 41. The
structural modes are also excited by the jets, as evidenced by the increased
ringing in each signal at the time of the jet firings. The roll jet firing has
little effect on the rigid-body response for the yaw rate and lateral accelera-
tion; nowever, the yaw jet results in a rigid-body responte for all the signals
chcesen. This maneuver was analyzed to obtain control derivatives for the rigid-
body response described by BEgs. (15) to (31). The resulting match between the
measured and computed response is shown in Fig. 42. The estimated coatrol deri-
vatives are in good agreement with those obtained from the maneuvers. The unmo-
deled structural dynamic modes are evident, but it is apparent that the modes
will have little effect on the rigid-body control derivatives. The differences
between the measured and computed rigid-body responses (the residuals) for the
time close to when the jets were fired are shown in Fig. 43. The data shown
here are for a sample interval of 0.006 sec., Some persistent structural
ringing is shown for the two rates and the lateral acceleration. However, when
a jet is fired, the increased structural response is evideat. The structural
coefficients can be extracted directly from the residual as they were for the
example in the previous section, It appears that there may be some contamina-
tion caused by the rigid-body response at the instant the jets fire. If so,
this contamination can be eliminated in one of two ways: either analyze the por-
tion of the maneuver a tenth of a secord after the jet fires, or adapt the equa-
tions of motion to include the structural dynamics in addition to the rigid
dynamics. The structural dynamics depicted in Fig. 43 have not been analyzed,
but the procedure is straightforward. The procedure used on this case was the
same as that used on the example in the preceeding section. It is apparent,
however, that more than one structural mode wc~uld need to be included in the
model,

All the analysis techniques discussed in this paper apply to the analysis of
this space shuttle example. If state noise is included in the mathematical
model, then the linear form of Eqs. (5) to (7) would be required. 1In general,
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if the structural partial differential equation can be expressed in the linear
forr of Eqs. (5) to (7) (with or without state noise), the gstructural modes can
be analyzed readil, with the MMLE 3 program (Ref, 17) in the time domain. If

the analyst prefers, the problem can be expressed in the linear constant coef-
ficient fora and analyzed in the frequency domain, as described in Ref. 12. The
relative advantages and disadvantiges of time-domain analysis as compared with
frequency-domain anzlysis are also discussed in that reference. I1f the equa-

tions are nonlinear, but in thes form of Egs. (1) to (3), then maximum likelihood
estimates can be obtained in the time domain.

CONCLUDING REMARKS

The computed simple aircraft example showed the basics of minimization and
tr.2 general concepts of cost functions themselves. In addition, the example
demonstrated the advantage of low measurement noise, multiple estimates at a2
given condition, and the Cramer-Rao bounds, and the guality of the match between
the measured and computed data. The flight data showed that many of these con-
cepts still hold true even though the dimensionality of the cost function makes
it impossible to plot or visualize. 1In addition, the techniques used for the
aircraft problem were shown to be applicable to the flexible structure problem.
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Table 1 Values of computed time
history with no measurement noise

[ d

8§, deg p. deg/sec

0
0.9754115099857
2.878663149266
4.689092110779
6.411225409939
8.049369277012
9.6076199249137
10. 11446228200
9.621174135646
9.151943936071

O WO NOOUNE WN
O O 0 wboadb b = b b O

-h

Table 2 Pertinent values ags a function of iteration

L Epw) Ls(r) $(L) ¥(L) I

0 -0.5000 15.00 0.9048 2.855 21.21

1 -0.30C5 9.888 0.9417 1.919 0.5191

2 -0.2475 9.996 0.9517 1.951 5.083 x 10-4
3 ~0.2500 10.00 0.9512 1,951 1.540 x 10-9
4 -0.2500 10.00 0.9512 1.951 1.060 x 10-14

Table 3 Values of computed time his-
tory with added measurement noise

§, deg p. deg/sec

"

0
C.4875521781881
3.238763570696
3.429117357944
6.286297353361
6.953798550097

10.80572930119
9.739367269447
9.788844525420
7.382568353168

DO ONOARVEWN -
OO0 O b ek b d b O

-
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Table 4 Pertinent values as a function of iteration

L Ly (L) L§ (L) (L) ¥(L) Jy,

Q -0.5000 15.00 0.9048 2.855 30.22

1 -95.3842 10.16 0.9260 1.956 3.497
2 -0.3518 10.23 0.9321 1.976 3.316
3 -0.3543 10.25 0.9316 1.978 3.316
4 -0.3542 10.24 0.9316 1.978 3.316
5 -0.3542 10.24 0.9316 1.978 3.316

Table 5 Mean and standard deviations for estimates of Lp

Sample standard

Number of Sample mean, Sample standard derivation of the
cases, N u(Lp) deviation, o(Lp) mean, a(Lp)//i_
5 -0.2668 0.0739 0.0336
10 ~0.2511 0.0620 0.0196

20 -0.2452 €.0578 0.0129

e ————

xble 6 Estirate of Lp and Crawer-Rao bound as
a function of the square root of noise powar

o ———————

Square root of Estimate Cramer-Rao

noise power of Lp bound
u.0 ~0.2500 ————— -
0.01 -0.2507 0.00054
0.05 -0.2535 0.00271
0.10 -0.2570 0.00543
0.2 -0.2641 0.0109
0.4 -0.2783 0.0220
0.8 -0.3071 0.0457
1.0 -0.3218 0.0579
2.0 -0.3975 0.1248
5.0 -0.6519 0.3980
10.0 -1.195 1.279
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Fig. 30 Match of flight data obtained
in turbulemce (state noise) and com-
puted data obtained from -maximun
l1ikalihood estimator that does not
account for turbulence,
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Fig. 31 Match of flight data obtained
in turbulence (state noise) and com-
puted data obtained from a maximum
likelihood estimator that accounts
for turbulemce.,
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Fig. 32 Power spectral density of Bg
obtained from maneuver shown in Fig.

Fig. 33 Power spectral density of Pg
obtained from maneuver shown in Fig.
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Fig. 34 Structural mode oscillation Fig. 35 Match of measured and com-
observed on the lateral acceleration. puted lateral acceleration obtained

when maximum likelihood estimator
converged to local minimum.
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Fig. 37 Simple scalar example illus-
trating a local minimum similar to
that shown for flight data in Fig. 35.

Pig. 36 Cost functional for
10 cycles of data as function
of frequency, showing close
proximity of local minima

to global minimum.
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Fig. 38 Simple scalar example showing
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Fig. 29 Cost function for ome cycle
of data as function of frequancy,
showing wide region of convergence
for global minimum.
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Fig. 40 Acceptable match of measured
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Fig. 41 Dymamic response of space Thao, ser
shuttle to firing of roll and yaw
jets at an altitude of 430,000 ft. Fig. 42 Maximum likelihood match
of rigid-body response of the space
shuttl=.
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