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1. INTRODUCTION

Many important issues in the control of large space structures are intimately
related to the fundamental problem of parameter idemtification. Very oftem, a
complicated structure can be adequately modeled for certain operations by the
fitting of a rather simple model with a number of free parameters. This simple
model then can be referenced for necessary control operations. Important
applications include the many space ststion designs which are based on the assembly
and joining of discrete modules by crew memers. Thit crew-assisted construction
will result in a configuration v aich is a large-scale composite of many structural
elements and whose static and dynamic characteristics cannot be adequately
modeled in advance, In fact, any modeling will require periodic updating as more
modules are added to the system and as the structural properties of the elements
slowly change over the lifetime of the station.

One might also ask how well this identification process can be carried out in the
presence of noisy data since no senszor system is perfect. With these considerations
in mind our algorithms are designed to treat both the case of uncertainties in the
modeling and uncertainties in the data.

This paper serves as a companion to [6] where the analytical aspects of
maximum likelihood identification are considered in some detail. Here we focus on
the questions relevant to the implementation of these schemes, particularcly as they
apply to models of large space structures. Our emphatis will be ~n the influence of
the infinite-dimensional character of the problem on finite- dimensional
implementations of the algorithms. We highlight those areas of currer. and future
analysis which indicate the interplay between error analysis and possible truncations
of the state and parameter spaces.

2. MODELS
As in {6), we consider the systems of the form

A(GN(O) = O'OB(G)Q + C(O)f

(2.1)
7(0) = H(O)(0) +0“Tl

Here A is a formally self-adjoint elliptic differential operator defined over the
spatial domain 2; the integral operator O is related to A by

A° = I 1] (2.2)
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where I is the identity. B and C are appropriately dimensional operators that model
the influence of the process error » and the input f on the state u. H is an
operator that characterizes the state-to-observation map; © smd n are model
errors that form the model error vector

€ = [Q. Tl]. (2-3)

and f is a deterministic input. Conceptually the error vector € represents spatial
white noise and is characterized by the covarisnce operator

E(ee*) = 1.

%, and on are non-negative scalar weighting parameters that respectively

measure the relative importance of the modeling error and the measurement error.
Thus, the limit o, 0 corresponds to the case of perfect modeling while the limit

d'ﬂ - 0 corresponds to the case of perfect measurements.

" © is the possibly infinite-dimensional parameter which must be estimated. PFor
simplicity we shall generally consider cases where the parameter dependence is
restricted to the operator A. Furthermore, we assume as in [6] that the parameter

enters linearly into the expression for the potential energy of the system. Thus we
assume

A(Ohu = D¥ODu) (2.4)

where D¥* denotes the formal adioint of D; the corresponding potential energy is
given in terms of the appropriate state-space inner-product:

<A(BN,u> = <BDu,Du>. Q...

And finally, the deterministic and stochastic forcings wili be localized to
discrete points which might correspond to actustor locatic-s. Similarly, the
observation map returns s vector of observations at discrete points which might
correspond to sensor locations. We assumed that there are N' point-sensors at

locations {{ i} and N . point-actuations at locations {‘Ei).

Because of these last assumptions, many of the relevant calculations sutlined in
[6) reduce to matrix and vector manipulations. In this paper the nctation § will

refer to a finite-dimensional vector whose k-th component is given by g(k).

Similarly G is the notation for a matrix whote (i,j)-component is given by G“"). The
releva.t dimensions of vector ané matriv. quantities will always be clear from the
context.

After taking formal limits in the system (2.1) we have:

Au:ou B@+ CT

(2.6)
¥ = Hu + a“ n
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where

T = (uh)w" Q(N‘))T (2.79)
T - (n‘”.-- , ,](NS))T (2.7b)
T
Hu(x) = (& ooy WE,. ) (2.7¢)
1 N
3
N'
-~ (1)
H*g = ¥ 8(x-¢ i)g (2.74)
i=1
N
a
cf- foa-Ep ¥
i=1 (2.78)
Cutx) = (@E, ..., WEy, nr (2.70
s
N
a
— 1)
Bo=Y6 (x-Ei) @ (2.78)
i=1
B*u(x) = (u(Ex)..... u ({N ))T (2.7n)
Py

an in the case of more general sensing and actuating systems, the modeling
requir..ments for the system can be reduced to solving eguations of the form

Au = f. (2.8)

Thus the discussion in this section will fecue on how the infinite-dimensional
structure of the system (2.8) influences the choice of finite-dimensjonal
approximations which can be made. In this paper we consider two specific
structural models: a string under tension and a wrap-rib antenna.

Let & be a distance coordinate messured in meters along & .tring of Length L which
is also given in meters. Let ﬁ(g be the displaceraent in meters and let a®) be the
tension parameter given in umcs of newtons. The forcing density is given by £x) in
units of newtons/meter. Then the energy potential [3: is ;iven by

L L
V) = ; f ARE'R)? 4k - j £ 8® ak. (2.9)
0 0
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Of course the energy potential is given in units of newton-meters. The equations of
motion can be derived immediately based on the principles of the calculus of
vnru}\.ionz but it will be convenient to first transform to dimensionless coordinates.
Let @, be some chararterisiic value of the tension parameter. We introducs the

dimensionless variables:

A
X
Xz —
L
ao
a(x) = -
a,
4@
u(x) = (2.10)
L
AN
f(x)L
£x) = ———
(I.‘l
AN
V(u)
V() = ———
q,L
and the potential expression becomes
1 1
Viw) =-§—I ax) (u'x)? dx - I fxulx)dx. @.11)
0 0

Por simplicity we prescribe boundazy conditions _orresponding to fixed end points:
vio) =uw(l) a0 (2.12)

Then arguments based on the calculus of varistions give the system

(a(x)u'(x))’ = f(x)
(2.13)
u(o) =u(l)=0 0<x<1

This example has been studied many times in the classical literature but an
anslogous approach gives comparable expressions for much mofe complex systems.

We consider now a planar model for 8 wrap-rib antenna which is used to study
out-of-plane vibrations (sce Figure 1). The antenna model comprises N gores
(subsections) modeled by ‘nterconne-ted ribs and mesh. Since the transformations
are similar to those used in the case of the string, we immediately write the
potential expression with dimensionless coordinates. Let the vector of rib

displacements be Ulr) where the k-th component of vis u‘k), the displacement of the
k-th rib (0 < r < 1). Let the vector of mesh displacements be Wr,0) where the k-th

component of Vis v the displacement of the k-th mesh sector (0<r<1,0<8<1).
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Pig. 1 Simplified model for wrap-rib antenna

Based on analysis of actual antenna designs, our model consists of N identical
beams fixed at a central hub. Stretched between the beams are N identical
anisotropic membranes. The potential equation is given by

Pl b Lo ® 2=
vp% G, d du 4
Jo dr? dr?
1 i s .
+%— Gzr-ﬁf N 4rde (2.18)
Jo Jo or ar

1 1 *
1 1 &N ov
5 I Gg + m® o 4rde

Il»* 1 Il”‘
- F udr - F vrdrde
o R o Jo M

Here the coefficients {Gi} are related to the physical parameters of the beams
and memlranes thusly:

Bl
o
G1 = ———
oL
2
G T, 90 - (2.15)
2 ]
2
. TeL
3=
(o{%]
o
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E and Io are respectively the Young's modulus and the moment of inertia of the
beams. ‘1'r and 'I‘e are respectively the radial and circumferential tensions of the

membrane. L is the radius of the antenta and 60 is the angular width of a sector;
that is, we have

0 = — ’ (2.16)
(o]

where N is the number of gores. Pinally, o is some convenient scaling parameter
with the dimensions of energy (nt-m). We note that the physical forcing densities

?R and FM having respective dimensions nt/m and nt/m” were rescaled according to

=
?’R- . Fp
. 2.17)
F- o B
[o}

Appropriate geometrical boundary conditions follow from fixing the center and
attaching each of the ribs to its adjoining membranes:

a ——
v = u 20
or
r=0 r=0
(2.18)
v] = CV] Y
6=0 6=1
Here C is an N x N periodic matrix:
.—0 1 -
C= .
L (2.19)
. l
1 0
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As in the case of the string, the equations now follow from arguments based on

the calculus of variations:
—cd v = F, (2.208)
B B
1—

a? éa? = 9 —
o (Gx e “) — Gs(aa"
60

1 3 F 1 a? -
— —_— —— r —J)- — v)=PF (2.20b)
¢ ar G2 ar 2 39? G3 ) M

with the additional natural borndary conditions:

22—

F) c o

arz
r=1

23—

‘;‘: =0 2.21)
r=1
r=1

One of the focuses of this study is the consideration of nonmodal approaches in
the finite-dimensional approximation schemes. In practice, this generally will mean
directly solving a linear system of equations rather than proceeding fromr some
finite modal synthesis. But the infinite-dimensional structure of the system (2.8)
also can influence the particular finite-dimensional approximation schemes used.
Our approach is sufficiently general so that any adequate finite e’ ient model of
the system (2.8) should yield adequate numerical approximations. Bv. one can often
do much better for a particular model or a particular class of models.

We use the antenna model to illustrate the point and make some observations
that should influence the approximation scheres regardless of which finite element
or finite differsnce scheme is employed. We emphasize that these considerations
also apply to much more complicated antenna models which share salient features
with the system (2.18) - (2.21). PFirst we note that the structure is periodic in the
O-direction. This cyclic symmetry leads to considerable savings in the computation
of solutions to (2.8). This can be deduced from either the differential equation or
the energy expression (2.14). The periodic matrix C can be diagonalized by means of
a finite Pourier transform {[1]. That is, let g be the N x N matrix whose (j,k)
component has the form .

G5 exp (1 30— (-1 (k-1)
U - N (2.22)

v N
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We then have:
Uy - 1L

U*CU = A =disg exp(i
j

(i-1)) (2.23)

This transformation decouples the system since the potential expression (2.10)
with

g

(2.20)

4 o <y 2
[} I
3

o
"
ls l

has the same form as the original system except that the matrix C is replaced by
the diagnonal matrix A. The differential system (2.20) is likewise transformed.
Thus a1y particular solution of (2.8) can be expressed in terms of N subsystems each
comprising a single rib counled to a szingle membrane. Since the cost of solving a

m-dimensional linear system is Oo(m®) this represents a considerable computational
savings.

The balancing of terms in the equation also can influence the choice of

discretization. Based on a report by Lockheed on the specifications for a §5-meter

wrap-rib antenna with 48 ribs [2], the following nominal parameter ranges were
derive :

L ~27.5m
e ~1.31 107

[ o]
I, ~ 131 10 *m*
(2.25)
B ~9.72 10*° avm?

Ty ~ 175 107 ntvm

Tg ~ 3.50 10 n/m

This <wuves the proper scalings in system (2.20). PFor simplicity we take

PR |
o =T&L /0 oand we have
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G, ~ 858 10°° (2.26)

This means that the radial terms of the mesh potential are comparatively small
excep. when the rsdial derivatives are large. How this affects the structure of the
system is demonstrated in the following example (see Figure 2).

RIB2
MESH SECTOR
RIB 1
Pig. 2 Single antenns gore
Example:
L3 (r av) 1 3 _,
r or or 2 a9l

v(r,6)|e=° = f (0 ese<] (2.27)
v(r,9)|e’l - f @ (f©=f(0)=0)

% (r,8) 20
r=l

In this example we study the equations for a sector of membrane where the
prescribed boundary conditions depend on the adjoining rib displacements (fl(r) and

f 2(:)). For simplicity we take the forcing on the mesh to be sero although the more
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general case could be handled in a similar fashion. We are of course interested in
the case where

0<e<1 (2.28)

which corresponds to the parameter ranges (2.26) in (2.20). Physically one expects
that the radial terms contribute little to the static behavior except perhaps at the
boundary where the gradients may become large. One is also interested in the
behavior near the corners (r,0) = (1,0) and (r,8) = (1,]1) since some singular behavior

may be possible. Using the techniques of singular perturbations, (see for example
[4]), one can show that as € approaches zero we have

v(r,0) = fl(r) (1-6) + fz(r)e

V' ® ' ' 2 awi{r-1)
s e L(-fM +f3(1)(—l)°) exp [—‘7{'] sin (nwO)

.. 2
tarr) € (2.29)
+ G(e)

This expansivn could be continued to higher orders, and, as noted before, a more
complicated expression would result from forcings on the membrane. One possible
approach to the numerical solution of the system (2.20) w>uld by the elimination of
the mesh behavior entirely be substituting an expression similar to (2.29) into the
beam equations (2.20a). Then one would have only equations along the beams to
solve. If higher-order accuracy on the mesh is required, one could then apply
finite-element techniques to the system obtained after linearization about the
asymptotic expansion for the mesh behavior. Finally we note the appearance of
logarithmic singularities in the mesh gradients (3v/dv, Ov/30) as the comners (1,0) =
(1,0) and (r,8) = (1,1) are approached from the interior of the mesh. This
consideration should also influence any finite element approximation of the mesh.

We emphasize that this analysis applies not only to the simplified antenna
model we have considered but would hold for more elaborate configurations where a
similar structural balance of terms governs the system. Thus, many modeling
options can be considered for parameter identification in important classes of

structures if one does not insist on a traditional modal characterization of the
system.

3. THE LIKELIHOOD FUNCTIONAL

A detailed discussion of the likelihood principle is given in [6]. The functional
we consider is the negative logarithm of the likelihood ratio associated with the
detection of a Gaussian signal in additive Gaussian noise; this framework is
traditional in the theory of communication and signal detection.

In accordance with the discussion given in [6], and the notation discussed in
Section 2 ,the log-likelihood functional is given by,
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1©:y) =3 Tr (log [a7L+ o5 RD

+-;-(§’-a(e))* (02L+ o7 B] i5aRe)) 3.1)

_l- 2 ~o, =
-3 (l/dn) 'y

where the expected mean and the covarisnce operator are given by:

o) = H(O) &) CO T

(8.2)
R(6) = H(O)YD(6)B(G)BXO)D*OIH*(O)

Here 'i'l*i’z indicates the Buclidian inner product in the N'-dlmemional space to
which the observators belong.

Proma the assumptions of Section 2, it is eaxy- to see that 5 is an N‘x N 8txut.x‘i.x
whose (i,j) component is given by

N
T ) N
k=1
(3.3)
N‘ -
= L (8D 8 (E1EY
k-1
where g(x|£) is the point-source solution of the underlying elliptic system
Au s 8(x - §) (3.4)

with the appropriate boundary conditions. And likewise the expected observation
has the form

—

B-GF
= (..., fNNT (8.5)
¢ geye) .

where g is an Ns x N‘ matrix.

We note that (3.1) also differs from (1.3) of [6] in accordance with the
introduction of the positive weighting parameters, 9, and o_, into the system (2.1).

An equivalent form for the likelihcod functional follows from a rearrangement of
terms.
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J03) =3 Tr log {L+ uR)

+ (/o )® (-ERON* [+ uRl™* GiR6) (3.6)
1 —
-7 Wo 5%

where

8.7

N

This form is useful since one can arrive at the functional given in [6] directly by
the substitutions

P>

R
y» (/o) = 3 (3.8)
m+G/0 )m=m

n

This correspondence allows one to use the algorithms derived in [6] directly on the
functional

A1 A
] 6,y =5 Tr Log L+ 5]
+2@ - Aepras R G- @ (3.9)
153
- 2 y'y

The goal is to find the parameter value © which minimizes the log-likelihood
functional; that is; we wish to solve

min  J(6,%) , (3.10)
o

where O ranges over some appropriate infinite-dimengional space. Assuming that
the functional hes & Frechet derivative and satisfies an appropriate convexity
condition, one can restate the problem (3.10) as

3]/30 (0, = 0 (3.1

Both problems (3.10) and (3.11) have been studied in a variety of contexts (See, for
example, (S]).

Since both the parameter space and the state space are infinite-dimensional,
one mus. make dual approximations in order to achieve problems that are
finite-dimensional and therefore computationally tractable. Thus in practice one
solves a sequence of problems of the forn:
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A A
min J(6,y) (3.12)

or

— -,

A
af728 8, = 0 (3.13)

where the state-space and parameter-space have been replaced by finite
dimensional spaces. Then the problem reduces to a finite minimization problem
which can be treated numerically by a variety of techniques (see, for example, [1,5)).

The state-space can be approximated by a finite-element space which is
appropriate for approximating solutions to (3.4), and the parameter-space can be
conveniently represented by a spline-based space. Let N_ be the dimension of the

finite-dimensional approximation to the state-space and let Ne be the dimensions of
the finite-dimensional parameter space. This leads to the natural substitutions

Nx
u-Y u(k) vk(x)
k=1

Ng

o+ 7 o® )
k=1

(3.18)
o = e,..., eNeghT

- [uu)...., u(Nx)]T ,

where the sets {tyk} and (rk} give the basis elements for the state and parameter
spaces respectively.

It will also be convenient to consider the state-space inner-product with s
weighting given by the basis elements of the parameter space. Thus we define

<u,v >i = <y, x’(e)v>

(8.15)
G e {l,..., NgD)

In the following we restrict our attention to these finite-dimensionsl problems,
and, when the context is clear, we suppress the “-notation. Questions concerning
the convergence of the numerical schemes and the general relationship between the

infinite-dimensional and finite-dimensional problems will be discussed more fully in
a future report.
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Most nonlinear optimization techniques require solving linearized systems
iteratively, and consequently one must solve systems of the form (3.4), where the
dimension Nx may be quite large. Since the complexity of solving an m-dimensional

linear system is O(m®), the speed of convergence of the iterates is an important
consideration. With this in mind, we emphasize the use of quasi-Newton methods
for the solution of (3.13). Consequently much of the resulting effort is directed
towards deriving adequate approximations for the Ne— dimensional Jacobian vector

3]/36 and the Ng x Ny Hessian matrix a%ys00°.

We briefly outline the procedure here; as noted previously, a more complete
description is given in [6]). In general for the finite problems, the dimension of the
state space (Nx) is much larger than the dimension of the parameter space (Ne). the
number of sensors (N 8) or the number of sctuators (N‘). and so it is preferable to

carry out the necessary manipulations in spaces whose dimensions do not depend on
the dimension of the state space.

Therefore, as in [6] we represent calculations in terms of the eigen-structure of
the NS x Ns matrix E
— 22—
Roy = Moy
(3.16)

w
Xk = tan dk (0 dr <—;)

From the spectral components of g we define useful quantities as given in [6].

From (3.2) we have the expected observation

m = HOCE
- (3.17)
m, = ¢, *m ’
and slso we define the filtered observation
Z=Ly+(-Lm
~ ~ (3.18)
=P *z
zk ¢k z ’
where the Ns x Ns matrix L. is given by
A
L=1-(+R) &
~ -~ (3.19)

=¥ (- cosa,) 613;
k

and the related matrix 5 is given by
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K =@+ R-1

~

(3.20)
= E (seca, - 1) $k$k*

Por algebraic convenience we also define the residual of the process:

—_— el el

e=y-2
- (3.21)
=0 ¥*e
ek ¢k e

The gradient of L is represented by

4 j -
ayae =y ¥ &m ¢k ¢m* (3.22)
k m#k

where the coefficients {alm} are given by:
(

- (sin a.k)’ <Dpk’ka>j yk=m

I
4m " < , , (3.23)
(O"m Xk) 7 O"k -\ m)) (c:.osa.k - cosam) .

\ ['hk<me,ka>j4xm<Dpk,Dxm>)] yKk#2m

For later convenience we derive another form for the coefficients {a’km}. Using
standard trigonometric identities one can easily verify the relation

cosa, - cosa (cosa ) *(cosa )?

k n m — - - ¥ m (3.28)
(unak) - (tana m) coaam + coau.k

This leads to an alternate form for the coefficients
(
] 3
- coaak) [(Xk) <Dpk, ka >’] » kem
§

m "™ < (3.25)

2
- (cosak cosam) / (coaak + cosam) .

2 o 2
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The point of this last derivation is that the bracketed terms reduce to simpler

expressions. From (2.2), (2.7), and (3.4) one can easily show:

N O 0,

NS
SN Da ey,

j=1
and also from (2.7) we have:
x_ =\_®B¥%
m m m
Nt Ns
=\ L Xs(xlEk)s(E,JE,)¢2)~
k=1 ,31 ]

By this we have:
2 *
» k )‘m < Dpk’ Dxm >i '$k 'éjzm

where the Ns b 4 Ns matrix Q’ has the form
N

(k,m) -E‘ (£.)8_) <Dg (x|Z.), Dg (x|£,) >
g =L BLSlen) <DEiXicy ) VB IXIS) 24

i=1

A

And similarly we have the useful relation

Ny <Dpy D= B *B, T

u=O0Cf

where the Ns x N‘ matrix E is given by

j

pkem) _ e x|, Dg . >,

}

(3.26)

(3.27)

(3.28)

(3.29

(3.3v)

(3.31)

We now give expressions for the gradient and the Hessian in terms of the

quantities given above. As in [6] the gradient can be represented as

8]/89“) = -y sin’ a, tan ay <Drk. ka >j
Te, (azk/ae‘”)

Here the spectral coefficients azk/ae‘” are given by
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815/86i aZcosa A,
m

k‘mk

_ (3.99)
- (cosak) [Xk <Dpk’ Du)i]

Bxact expressions for the Hessian are givea in {6]; in general, “owever, all
terms need not be estimated to give an adequate approximatilon. In particular, the
calculations are much simpler if the terms with second-order derivatives can be
ignored. The simplest approximation comes from only keeping those terms which
contribute to the expected v. of the Hessian. Thus, from (1.12) of [6] the
{i,j) - component of the N8 x Ns Hessian approximation M is given by

M(i.i) ($ )]

= e ar paye ar o)

@za6™) * (azrae") (3.34)
. e 4)
A +E 27, /30" 33,/30

where by (3.20) and (3.22) we have V' ™K

mk
i = 8, secd,.

This estimate is justified when the covariance is amall as one might expect if the

number of measurements is large. This point will be investigated more rigorously ir
a future paper.

We now summarize the search procedure for the system (2.6) where the
-dimensional obseruuon vector y is g'ven and an ini‘ial N e-dimemimul

purameter estimate 9 is available,

First the expected observation m and the covariance matrix R are determined from
(3.3) and (3.5). The spectral decomposition of R as well as the qunt.ides given by (L.17
- (3.33) then can be determined by standard “matrix algebra routines. And therefore
from (3.82), (3.33) and (3.34) one obtains an Ns-dtmemi.oml gradient spprorimation g

and an N, x N Her-ian approximation M.

The parameter estimate 9c can then be updated by making the quasi-Newton
correctlion:

a = e Y
6,-8 - M (3.35)

Here‘ Y, is an appropriate scalar chosen to improve the updated parameter

estimate. In accordance w! 1 the geuera} theory of Ne'rton iterationz in function
spaces [5), one can repeat this procedure until the solutions of the linesrized problems
converge o the solution of the vnderlying nonlinear problem.

This analysis completes our outline of the maximum likelihood identification

process. In Section 4 we give examples which illustrate the successful
implementation of these schemes in useful applications.
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«. RXAMPLES: In this section we give examples of successful implementations of the

previously discussed algorithms.
We first consider the string (cf (2.13)

Au = - (a(x) u'(x))'
4.1)
ufo) =uw(l) =0

For the case where the unknown tension parameter is constant, the point-source
solution can be explicitly given:

1
u(xjf) = a(l - x>)(x<)
x, = max {x, £} (4.2)

X, = min {x,{}

And thus, as outlined in Section 2, all calculations could be given in terms of these
quantities, without any truncation of the state space or the parameter space.

In general, however, truncat’ons in both spaces are necessary. For the string
problem we consider an Nx - dimensional state space of linear splines; the state

variable then beccmes the vector of nodal values on the corresponding grid. For
simplicity we take the grid to be uniform; thus, since the endpoints x = 0 and x = 1
are fixed, we have:

1
Ax = —- (4.3)
+1
x
The state-space elements are then given by
Nx
u= ¥ u(i)xi(x) (4.4)
i=1
where, as illustrated in Figure 3, the basis elements {r1(x)} have the form
( x -(i-1)Ax
— , iI-DAXx <x <) Ax
Ox
(4.5

y (D) Ax <x» < (i+]) Ax

\ 0 , otherwise



K; {x)

(a) '
{ i | I |
(i-1)AX (i)AX (i+1)AX
Ko (X)
{b) 1
1 | ] 1 I ]
0 aX
Ky, (X)
Nx
(c) 1
| i | | { A
(NX)AX 1

Pig. 3 Linear spline elements

A similar discretization of the parameter space is possible. Pirst we consider the
sugmented spline space
Nx+1
{Ki(x)} (4.6)
i=0

where, as illustrated by Pigure 3, the endpoint-elements 5, and N +1 are given by
x
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—————— [ 0 < X < AX
x (x) = Ax
o)
0 » Ax< x <1
a.n
0 » 0< x < N! (Ax)
N H(x) = x - Nx (Ax)
x e ,Nx(Ax)<x<1
Ax
Thus we have a corresponding parameter element.
Nx+l Gl
ax)=}Y a 1+ ri(x) (4.8)
i-o

which would give a parameter space {0} with dimension N_+32.

However, as previously noted, the resolution of the parameter space often does
not need to be a3 fine as the resolution of the state-space. We consider then the use
of a piecewise linear parameter space of lower dimension where the only
requirement is that the nodal points must be a subset of the nodal points of the
state-space. The new parameter space is then a subset of the (Nx+2)—dimemiona1

space given by (4.6). Let a be an NG -dimensions] parameter element (N, S N!d).
Then a identifies with an element d of the larger (Nxel)—dlmemional space and the
relationship is given by

q-Ra @.9)
where B is an (Nx+ x Ne matrix. And correspondingly, we have
3a/3T=B . (4.10)
This relationship simplifies the algorithms as described below since B is easy to
construct, and the more cumbersome calculations which are needed to determine
partial derivatives with respect to the perameter gspace are then specified in terms
of the grid associated with the state space. Thus we have:

o/0T = B 8/ 4.11)
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We illustrate these points with a sample calculation (see Fig. 4). We consider
the case where there are seven sensors at the locations

£ € {.125, .25, .375, .5, .625, .75, .85} 4.12)
A A A
S S S S S S
®- 1 | i 1 1 i 1 P
0.0 0.25 0.5 0.75 1

S: SENSOR LOCATION
A: ACTUATOR LOCATION

Fig. 4 String tension identification: sensor and actuator locations
and three actuators at the locations

£ €{.25, .5, .75}. (4.13)
The data vector was derived from a plant with specifications

dplant(x) =3+x
CT = 8(x-.25) +6(x-.5) + &(x-.75)
(4.14)
g =.001
W

o_ =.001
n

Por the state space we take the seven-dimensional space of linear splines {r‘(x)}

with nodes corresponding to the sensor locations (4.12), and for the parameter space
we take the five-dimensional subset of linear splines with nodes corresponding to
the set

{0, .25, .5, .75, 1.} (4.15)

The relaxation parameter Yo in (3.35) was chosen to speed up to the convergence of

the iteration; these issues will be discussed more fully in a future report but we give
the results of the calculations in Fig. 5. These numerical experiments sppear io be
very encouraging although with a crude approximation to the Hessian the
convergence can be very slow.
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aix)

T omam e et o e o e = > ———— T - — — — G —-—— - -~ A
ol_.. | )i 1
0.00 0.25 0.50 0.75 1.00
x
ITERATE TN YT =T 7T T
A
INITIAL 1.00 1.00 1.00 1.00 1.00
8
INTERMEDIATE 319 3.64 1.98 3.81 3.62
Cc
FINAL 208 | 329 | 355 | 368 | 4.0
D
TRUE 3.00 3.25 3.50 3.75 4.00

Fig. 5 Distributed parameter identification vis spline analysis

In a similar way, the algorithm was successfully applied to the wrap-rib antenna
model (2.4). To simplify the calculations, we assumed here that the stiffness
parameters were scalers although one could introduce a spline-based space as in the
previous example.

Again for simplicity we consider the case where there are six gores (N = 6),
where a sensor is placed on the outer endpoint of each rib (r = 1), and where an

actuator is placed at the midpoint of each rib (r =.5). Thiz scheme is outlined in
Figure 6.

We iniroduce the set of N-dimensional unit vectors

x| N
(4.16)
( ek Sk:l

where the components of each é\k are determined by
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® POINT — SENSOR LOCATION
# POINT — ACTUATOR LOCATION

Pig. 6 RIb stiffness identification: sensor and actuator locations

e, = 4.1

The parameters of the likelihood functional are then given by

g =.001

[A]
o, = -001 (4.18)
CT = ):'Z‘;ur- 5)

And the stiffness parameters of the pla... are given by

EI = 1.25 .10* nt-m? (4.192)
Tp=175 107 atym (4.19b)
Tg = 3.5 107 nt/m (4.19¢)
L =275.10*m (4.19d)

We opplied the algorithm then to the case where the unknown parameter was Bl
while the other stiffness parameters were asaumed to be known.

399



To discretize the state-space eight equal subdivisions were made in the radial
direction on each rib and in each mesh sector; in the circumferential direction five
equal subdivisions were made in each mesh sector. The shape functions on the ribs
were given by Hermite cubics while on the mesh the shape functions were given by
splines linear in r and ©. In test cases this discretization produced at least three
digits of accuracy in solving problems of the form (8.4). In all calculations the
principle of cyclic symmetry (cf. (2.24)) was exploited to reduce the number of
calculations.

Convergence of the likelihood slgorithm was very fast (see Fig. 7) when the
relaxation parameter was taken to be

YO =25 .

LIKELIHOOD FUNCTIONAL

1 . L

-0.0048

-0.0052

| i
0.100 0.125 0.150 0.175

RIB STIFFNESS X 10°6 nt-m?

Nt | PARAMETER | RELATIVE ERAOR
N Eiy ST
1 1.75000 - 10° 410"
2 1.01930 - 10° 2.-10”!
3 1.20484 - 10° 3.+ 10°2
4 1.23866 - 10° 2..1074
5 1.23889 - 10° -

5

= v 5
Elggy = 1.23880 + 10

Pig. 7 Distributed parameter identification of beam stiffness parameter
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Numerical experiments also demonstrated an improvement in the sensitivity of the
identification schemes as the number of measurements was increased. Thus, PRigure
8 illustrates how, for the antenna problem considered, an incresse in the number of
sensors led to a steepening of the likelihood functional. Here the curves were
shifted transversely for illustrative purposes. We note that no corresponding
improvement in the psrameter estimate occurred in these trials, possit.y because of

the less favorable signai-to-noise ratio which corresponds to sensing in the interior
of the ribs.

LIKELIHOOD FUNCTIONAL

-0. 0050

-0.0052

1
0.100 0.125 0.150 0.175

RIB STIFFNESS x 1075 nt-m?

Fig. 8 Sensitivity of antenna stiffness - parameter identifica-
tion according to number of »ensors

(a) One sensor per rib at r = 1.0
(b) Two sensors per rib at r = 0.5, 1.0
(c) Three sensors per rib at r = 0.5, 0.75, 1.0

More detailed numerical experiments with distributed antenna stiffness
parameters will be given in a future report. But the resuits outlined in this report
demonstrate already the great potential for these algorithms.
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