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1. INTRODUCTION 

Many important issuet in the control of large space stmctotcs are intimately 
related to the fundament.1 problem of parameter identification. Very often, a 
complicated structure can be adequately modeled for certain operationr by the 
fitting of a rather rimple model with a number of free parameten. Tblr simple 
model then can be referenced for necestary control operations. Important 
applications include the many tpace station design8 which are baaed on the amembly 
rrnd joining of discrete module* by crew mewem. Thiz crew-misted coartruction 
wi l l  result in a configurrtion -v nich t a Irrge-scale composite of wuy structural 
element8 and whore static and dyrumic chrracterlrtics cannot be abeqortely 
modeled in advance. In fact, any mode- will require periodic upflat- as more 
modules are added to the system and as the rtn;rctural properties of the element8 
rlowly change over the Wetime of the station. 

One might nl8o ask how well th i8  identification process can be carried out h the 
presence of noisy data since no sensor qstem is perfsct. With these conrideratiom 
in mind our algorithm are designed to treat both the case of uncertainties in the 
modeling and uncertaintier in the data. 

Thi8 paper aerves as a companion to [a] where the analptical arpect.8 of 
mrximum likelihood identification are considered in wme detail. Here we foctu on 
the questions relevant to the implemenution of these schemes, p3rticularI9 as ttray 
apply to models of lwge space structures. OPT emphriis will be ,-a the influence of 
the infinite-dimenrim1 character of the problem on finite-dimenrioPrl 
implementation8 of the 8lgorithm8. We highlight those areas of currev'- a d  fu tm 
an8lgsL which indicate the interplay between error analysis and possible truncation8 
of the rtate and parameter spacer. 

2. MODELS 

A8 in (61, we conrider the syrtemr of the form 

Here A it 8 formally self-adjoint elliptic dif€crenti&l operator defined over the 
spatial donuin n; the integral operator @ it related to A by 
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where I is the identity. B and C are appropriately dimeariooll operaton that model 
the influence of the procesr error o and the input f on the state u. H is an 
operator that chrracteriaer the 8t8te-tO-Ob8eW@th mapi o a d  9 are model 
erron that form the model error vector 

and f is a deterministic input. Conceptually the error vector E representa spatial 
white note a d  is characterized by the covarhnce operator 

uo and uq are non-negative scalar wemting parametem that respectively 
m e a m  the relative importance of the modem error a b  the meammm40t error. 
Thus, the limit uo + 0 corresponds to  the caw of perfect modeling while the limit 
u + 0 correqoads to the case of yerfect mearruemsnts. v 

8 is the porribty infidte-dimen8ional parameter which must be ettimated. For 
simplicity we shall generally contider cases where the parameter dependence is 
restricted to the operator A. potthhrmore, we astom4 a8 in [6) that the parametsr 
enters linearly into the expression for the potentirl energy of the system. Thru we 
assume 

where D* denotes the form81 rdioint of Di the corre8pod.q~ potential eXl6rm 
given in t e r n  of the appropriate state-rprce inner-product: 

And finally, the detenninfrtic a b  8tochartic forcings will be localized to 
discrete point8 which might correrpoad to actuator locrtkr .  Similarly, the 
obrenration mrp retimu a vector of obrervations at dircrete poinu which might 
correrpond to sensor locations. We a r m w d  that there are Ns point-rearom a t  
locations {[Q and N, point-actuations at  locationr {TJ. 

Became of there last assumption8, many of the relevant calculation8 m t b d  h 
[6] reduce t o  matrix and vector mraipulrtiofu. In thir paper the mution 3 will 

(k) refer t o  a finite-dimension4 vector whore k-th component 14 given by g . 
Similarly 
relevut dimemiom of vector AC matrix qurntitier will rlwayr be clear from the 
context. 

(hj). me is the notation for a matrix whom (i,j)-component .is given by G 

After t a w  formal limit8 in the system (2.1) we bye:  

AU = uo B 3 +  Cf 
(2.6) 

378 



where 

s 

w 

(2.76) 

(2.7e) 

(2.7D 

in the c u e  of more general senrin4 and rcturtin$j ryrtem, the oaodeliq 
requii,mentr for the system can be reduced to rolvin~~ equations OE the form 

AU = f .  (2.8) 

Thus the discussion in tu section will facut on how the infiniie-dimena!oml 
stm-ture of the ryrtem (2.8) influencer the choice of finite-dimensional 
approximations which ern be m d e .  In this paper we consider two specific 
structural rnodeb: a strirq under tefuion and a wrap-rib a t a x i a .  

Let be a distance coordinrt: ernved in meten along A of Length L which 
is aho given in meters. Let u(x 7 be the displacement in meters and let &&I Re the 
tension parameter given in upla of newtons. The forcirq dcnsity f&) in 
unit8 of newtondmetez. Then the energy potential [3! la @en by 

given 

(2.9) 
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Of come  the energy potential i s  given in units of newton-meten. The equations of 
motion can be derived immediately bared on the principbt of the calculus of 
varhpon8 but it will be convenient to first  transform to dimenrionlerr coordinates. 
Let a* be some chara~terirtlc value of the tension parameter. We introduce the 
dimemionless variables: 

A 
X 

.x = - 
L 
A at3 

a(x) = -fi- 

"* 

U(X) 

L 

A h  

& X I =  - 

%)L 

t4 

$(& 

%L 

f(x) = -- 

V(u) = --- 

and the potential expremion becomes 

(2.10) 

(2.11) 

For simplicity we prercribe boundary condition8 ,ontpolding to fixed end points: 

u(0) = dl) = 0 (2.12) 

Then arguments based on the calculua of v a r h t i m  give the mystem 

(a(xlu'(x))' - f ( x )  

u(0) = ull) = 0 O < x < l  
(2.13) 

This example has been studied many timer in the clardcal literature but m 
analogous approach @ver comparable upresrim for much moh complex systems. 

We consider now a planar model for I wrap-rib antem which is wed to study 
out-of-plane vibrations (sce P W e  1). The antenna model comprber N gores 
(subsections) modeled by *uterconne:ted rib8 and mesh. Since the tramformrtions 
are similar to  thore wed in the care of the string, we imm66i.tely write the 
potential expression with dimenrionlasr coodinater. Let the vector of rib 
dirplacemenu be ar) where the k-th component of zi8 u ~ ' ,  the di8placament of the 
k-th rib (0 < r < 1). Let the vector of merh dirplacementd bs%r,8) where the k-th 
component of ais v(') the displacement of the k-th merh rector (0 < r < 1 , 0  < 8 < 1). 
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Pig. 1 Simplified model for wrap-rib antenna 

Based on malyrk of actul antenna d e w ,  our model consists of N identical 
beams fixed at a central hub. Stretched between the beams are N identical 
anisotropic membranes. The potential eqyation k given by 

d'z d'u' dr 1 1 
2 V = -  I C 1  7 - 

0 dr' 

(2.14) 

Here the coefficients {GQ are related to the phyeical parameters of the beam 
8 d  memtranea thudy: 

G l =  --- 
UL 

Tr eo L' 
Ga = 

U 

T ~ L ~  
Gg = 

OB0 

(3.15) 
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E and Io are respectively the Youzy'~ modulus ud the moment of inertia of the 
beams. Tr and Te are rewctively the radial .nd circumferential tensions of the 
membrane. L is the radiw of the antenna d eo it the .Iytllar width of a rector, 
that is, we have 

2n 

N 
g = -  

0 
8 (2.16) 

where N is the number of gores. Pixully, u it lome convenient scaling parameter 
with the dimensions of energy (nt-m). We note that the phydcd f o r c a  densities rR and FM having retpective dimensions nt/m ami nUm3 were rescaled accozding to 

(2.17) 

Appropriate geometrical boundary cozditioar follow from fixing the center .nd 
attaching each of the ribs to its adjoining membranes: 

(2.18) 

Here is an N x N periodic matrix: 

C =  
N 
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As in the case of the s-, the equations now follow from .rgumeatr based on 
the C d C d U S  Of V8fhtiOlU: 

l a  

r &  

with the additiond natural boi..d.ry conditions: 

(2.20b) 

(2.31) 

One of the focuses of this study is the conrideration of nonm0d.l approaches in 
the finite-dimensional approximation schemes. In practice, tbir gene- wil l  mean 
directiy sol- a h e a r  system of equations rather tlun proceeding fron 30- 

finite modal synthesis. But the infhW-dimen$ional 8tructure of the 8y8tem (2.8) 
also can influence the particular finite-dimensional approrinution schemes d. 
Our approach is sufficiently generd so that any adeqgate finite el- aent model of 
the system (2.8) should yield adequate Eumerical approdnutim. Br me can often 
do much better for a particular model or a particular chrr of modelr. 

We use the antenna model to illortratr the point md make some observations 
that should influence the approximation scheolts regardless of which finite element 
or finite difference scheme is employed. We exkphmixe that these coaridentions 
also apply to much more complicated antenna model8 whkh rbrre 88lient features 
with the system (2.18) - (2.21). First we note that the rtnrcfurt is periodic in the 
9-direction. This cyclic symmetry leads to conriderable saving8 in the compukth 
of solutions to (2.8). This can be deduced from either the differentid equation or 
the energy expression (2.14). The periodic mrvix can be di.g&ed bY means of 
a finite Fourier transform [l]. That tr, let U be the N r N matrix whore (f,k) 
component has the form 

IC) 

(2.32) 
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We then h8ve: 

(2.23) 

This tr8nsfoxm8tion decouple8 the 8ystem 8ince the potentid exprc88ion (2.10) 
with 

= u =wu 
u 

(2.24) 

The brlurc@ of terrm in the equation also can influence the choice of 
discretization. Based on A report by Lockbed on the 8pecific8tionr for a SS-meter 
wnp-rib antenna with 48 ribs [2], the follo*riry n o m i d  parameter me8 were 
derive : 

- 1.31 10*m4 

B - 9.72 10'ont/nr' 

IO 

TR - 1.75 lO-'nt/m 

Te - 3.50 lo-' nt/m 

(2.25) 
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G - 2.29 
1 

G - 8.58 lo-' (2.26) 
1 

G - 1  
8 

This -ne- that the ndi.l terms of the mesh potantid ue comparatively I11D.u 
ucepr nhen the rrdi.l derivatives u e  large. How thir affects the stnrcture of the 
system is demonstrated in the follo- example (see Figure 2). 

RIB 2, 

F b .  2 Si@e antemu gore 

h thir example we rtudy the equationr for a rector of membrane where the 
prescribed boundary conditions depend on the adjoining rib ~ k c e x n e n t s  (fx(r) u x l  
fa(r)). For simplicity we take the forcing on the mesh to be zero although the more 
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general case could be handled in a similu fashion. We are of course interested in 
the case where 

0 < € < < 1  (3.28) 

which corresponds to the parameter ranges (2.26) in (2.30). Physically one expects 
that the radial terms contribute little to the sut ic  bch.vior except perhaps at the 
boundary when the gradients m y  become w e .  One is also interested in the 
behavior near the cornen (r,8) = (LO) and Cr,e) = (1,1) since some rinsplu behavior 
may be possible. Using the techniques of pcrturb.tion$, (see for example 
[a]), one can thou thrt as € approaches zero we have 

This expansicm could be continued to higher orbera, .od, u noted before, a more 
complicated expression wo-dd r e d t  from forcing8 on the membrane. One possible 
approach to &e numerical 801Uth of the 8y8tem (2.20) k-dd by the eUminltion of 
the mesh behavior entirely be mbstitu- an expre88ion'rimilu to (2.29) into the 
beam equations (2.90.). Then one would have only equations alone the beams to 
solve. If higher-order accuracy on the mesh is  required, one could then apply 
finite-element techniques to the system obtained after linearbation about the 
asymptotic expamion for the mesh behavior. Finally we note the appearance of 
logarithmic singularities in the mesh gradients (&re, ar tole cornem (r,8) = 
(1,O) and (r.8) = (1.1) are approached from the interior of the mesh. This 
consideration should also influence my finite element approximation of the me&. 

We emphasize that th is uulyris applies not only to the simplified antenna 
model we have considered but would hold for more elaborate configur8tion8 when 8 
similar structural balance of term8 govern the system. Thus, m8ny modeliYuJ 
options can be considered for parameter identification in important c lwes  of 
structures if one does not insist on a traditional 11106.1 churrcterization of the 
system. 

3. THE LIKELIHOOD FUNCTIONAL 

A detailed discussion of the likelihood pxinciple is given in (61. The functiond 
we consider is the negative logarithm of the likelihood ratio associated with the 
detection of a Ga-asian signal in additive Gaussian nobe; thir framework is 
traditional in the theory of communication and 8-1 detecticm. 

In accordmce with the diacusrion @veri in (61, md the notation discussed in 
Section 3 ,the log-likelihood functional is given by, 
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(3.1) 

Here Fl*q indicates the Euclidian inner product in the N*dtmbnriOo.l w e e  to 
which the obsemators belong. 

Prom the assumptions of Section 2, it is easy to see t&t 5 El is an N N lnutrix 
whose (i, j) component is given b9 

where g(xl<) is the point-source solution of the underlying elliptic -tern 

A u ~ ~ ( x -  E )  (3.4) 

with the appropriate boundary conditions. And likewise the expected observation 
has the form 

?a;,= g f- - (1; iN IT f = (f ,..., f a ) (3.5) 

We note that (3.1) also differs from (1.3) of [a] in accordance with the 
rntraductioa of the poritive weigh- parameters, uo and u,,, into the system (2.1). 
An equivalent form for the likelihood functional follow from a rearrangement of 
terms. 
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where 

(3.6) 

This form is useful since one can amve a t  the f u a c t i o d  given in [a] directly by 
the substitutions 

This correspondence rllows one to we the algorithms derived in [a] directly on the 
functional 

The goal is to find the parameter value 0 which minimizes the log-likelihood 
Eunctional; that is, we wish to solve 

-c 

min Jt0,$) , (3.10) 
e 

where 0 ranges over some appropriate infinite-bimenriorul qace. As- that 
the functional hr.s a Prechea; derivative rrad rati8fier UI appropriate convexity 
condition, one can restate the problem (3.10) as 

3 . I  

a J / S  (e,$) = 0 (3.11) 

Both problems (5.10) and (3.11) have been studied in a variety of contexts (See, for 
example, [SI). 

Since both th~, parameter space and the s t a t e  space are infinite-dimensional, 
one m w i  make dual approximations in order to achieve problem that are 
finite-dimensional and therefore computationally tractable. Thus in practice one 
solves a sequence of problems of the dorni 
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(3.12) 

or 

(3.13) 

where the state-space and parameter-space have been replaced by finite 
dimensiolul spaces. Then the problem reduces to a finite minimixation problem 
which can be treated numerically by a variety of techniques (see, for example, [1,5)). 

The state-space Can be approximated by a finite-element space which i s  
appropriate for approximating solutions to (9.41, and the parameter-space can be 
conveniently represented by a spline-based space. Let Nx be the dimeruion of the 
finite-ctimensiorul approximation to the state-space and let Ne be the dimensions of 
the finite-dimensional parameter space. This leads to the natural substitutions 

b 1  

k =1 
(3.14) 

(1) RJ )T u = [u I . . . )  u x ] s 

where the sets {tpd and give the basis elements for the skte and parameter 
spaces respectively. 

It wil l  also be convenient to consider the strte-space 
weighting given by the basis elements of the parameter -ace. 

< u,v >) = <u, r p >  

(i {la . . . ,  - 

inner-product with a 
Thus we define 

(3.15) 

Jn the following we restrict our attention to these finite-dimensional problem, 
and, when the context irr clear, we suppress the ^-notation. Questions concerning 
the convergence of the numerical schemes and the general relationship between the 
infinite-dimensional and firlite-dimensional problems will be discussed more fully in 
a future report. 
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Most nO&ear Opthhatiou teChniqlM8 reqube 80lVhg Uearfred 8y8tetXM 
iteratively, a d  conuequently one must solve system of the form (3.41, where the 
dimension Nx may be quite large. Since the complexity of 801- an m-dimenrionrl 
linear system is O(ma), the speed of convergence of the iterates is an impoxtant 
consideration. With this in mind, we emphasize the use of quasi-Newton methods 
for the solution of (3.13). Consequently much of the resulting effort is directed 
towards deriving adequate approximations for the Ne- dimemional Jacobian vector 
aJ/M and the Ne x Ne Hessian matrix aa J/a2. 

We briefly outline the procedure here; as noted previously, a more complete 
description is given in 16). In general for the finite problems, the dimension of the 
s t a t e  space (Nx) is much larger than the dimension of the parameter space Ne), the 
number of sensors Ws) or the number of actuator8 RJ.1, and so it is preferable to 
carry out. the necessary manipulations in spaces whose dimemions do not depend on 
the dimension of the state space. 

Therefore, as in [a] we represent calcrrlatim in term8 of the eigen-structure of 
the Ns x Ns matrix R. 

N 

(3.16) 
n Ak = tan ak (0 S a <-) r i  

From the spectral components of R we define useful quantitks a8 given in [a]. 
N 

From (3.2) we have the expected observation 

(3.175 

and also we define the filtered observation 

where the Ns x NS matrix L is given by 
N 

(3.18) 

(3.19) 

aad tl;e related matrix K is given by 
N 
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(3.20) 

Par algebraic convenience we also define the residual of the process: 
- - c -  
e = y - z  

ek = Tk* 'i' 
The gradient of L is represented by 

(3.21) 

(3.22) 
k m#k 

(3.23) 

i Pot later convenience we derive another form for the coefficient8 {ah]. us- 
standard trigonometric identities one can easily verify the relation 

cosak - cosa (cosa 3 '(cosa m) a 
= -  m (3.24) 

tuna k) a - (tanam la COSUm + Cos% 

This leads to an alternate form for the coefficients 

- ( Cos\)' [(kk)' <mk, % >j] k-m 

(9.25) 

- (cosak cosam)'/ (COS% + cosam) . 

[Am%.; Wp,, % >i + Ak ILL <Dpk, Dx > 1 m i  
, k # m 
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The point of this last derivation is that the bracketed terms reduce to rimpler 
expressions. Prom (2.2)’ (2.71, and (3.4) one can easily rhow: 

and also from (2.7) we have: 

x m -h;@B*p, 

By this we have: 

where the Ns x Ns matrix A has the form -1 

And similarly we have the useful relation 

’k<-k’ D3j = q * B  k -j f 
u = @Cf 
- 

where the Ns x N, matrix B is given by -i 

(3.26) 

(5.27) 

BPSrn)  = <Dg (xJEk), Dg (X,F~)>~ (3.311 
1 

We now give expressions for the gradient and the Hessian fn terms of the 
quantities given above. As in [a] the gradient can be represented as 
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(3.33) 

B u c t  expression8 for the H e 8 d U  are givca in [6]j in general, \owever, all 
terms need not be estimated to @ve an adequate approximation. In par'Jculrr, the 
crlculatfonr are much simpler if the terma With second-order derivative* CUI be 
ignored. The simplest approximation comes from only keeping thore terms which 
contribute to the expected V L  of the Hessian. Thua, from (1.12) of (41 the 
(i,j) - corzrponent of the N, x Ns Hearian approximation e i8 given by 

(3.34) 

where by (3.20) a d  (3.22) we have Vi ( m*k) a F s e c %  

This esti~natc is justified when the covariance 3s amall as one might expect if the 
number of measurements is large. This point will be inveatigated more rigorously i~ 
a future paper. 

We now ~utnmarh? the search procedure for the 8yrtem (2.6) where the 
Ns-dimensional obsenratian vector 7 is even and an WYa1 N e-dlm8tUid 
parameter estimate go is rvauable. 

Pint the expected observation a d  the covarhnct matrix E are dete&b from 
(3.3) snd (3.5). The spectral decomposition of E a9 well as the qpantkiear given by (b.17) 
- (3.33) then can be determined by standard matrix abebrr routher. Aab therefore 
from (3.921, (3.33) and (9.941 one obtains an N c - d i m r u h i  grdien t  spptoXimat3m 8 

an3 an Ns x N8 Het5au approximation ?$. 

The parameter eatinlate eo can then be updated by making the quasi-Newton 
correction: 

-1 -. - -  
e* = e o -  Y o 8  g (3.35) 

Here' yo i.8 an appropriate scalar choreo to  improve the updated parameter 
ertimrle. In accordance wl '1 the geueral ?.&eory of Ne.rton iteratiom in function 
spacer IS], one can repeat this procedure until the 8olntLoru of the Ilnowri2ed problems 
converge to  the rolutlon of the underlyw nonllnerr problem. 

This analyrir completes our o u t h e  of the marinrum Ueubood identification 
prOse88. h SSCtiOn 4 we give eXaf&~ple!J Which ub8w8U the 8 U C C g E i f d  
implementation of there schemes in useful applications. 
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+. 
previously discussed aborithms. 

BXAXPLBS: In this section we give examples of successful implementations of the 

We f i r s t  consider the string (cf (2.13) 

Au = - (ak) u'(1t))' 

do) = u(1) = 0 
(4.11 

For the case where the unknown tension parameter is constant, the point-source 
solution can be explicitly given: 

x< = min{x,El . 
And thus, as outlined in Section 2, all calculations could be given in terms of these 
quantities, without any uvncation of the state space or the parameter space. 

In general, however, truncat'ons in both spaces are necessary. For the s t r i n g  
problem we consider an Nx - dimensional state space of linear splines; the s t a t e  
variable then beccmes the vector of nodal values on the corresponding grid. For 
simplicity we take the grid to be uniform; thus, since the endpoints x = 0 and x = 1 
are fixed, we have: 

1 
Ax= -- 

Nx t 1 

The state-space elements are then given bv 

(i) NX 
U = U K.(X) 

1 
i= 1 

wherc, as illustrsted in Figure 3, the basis elements {r{x)) have the form 

x -(i-llAx 
- , (i-1) A x < x < (i) Llur 

Ax 

x -ti)Ax 
, (i) Ax < x  < (i+l)LLt 

Ax 

0 , otherwise 

KCI(X) = 

(4.3) 

(4.4) 

(4.52 



(i-l)AX (i)AX (i+l)AX 

0 AX 

Fig. 3 Linear spline elements 

A rimL1.r dircretizrtion of the parameter rprce k pO88ible. P i n t  we consider the 
augmented upline space 

where, ar illustrated by Figure 3, the endpoint-elements K~ and ‘ c ~  are given by 
X 
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(&I - x 

Ax 

0 , A x <  x < 1 

, o <  x <Ax ------ 
IC (XI = 
0 

Thus we have a corresponding parameter element 

(4.7) 

(4.8) 
i =o 

d 

which would give a parameter space {a with dimension N,t2. 

However, as previously noted, the resolutim of the pairmeter space often does 
not need to be as fine as the resolution of the state-space. We consider then the use 
of I) piecewise linear parameter space of lower dimension where the only 
requirement is that the nodal points must be a subset of the nodal points of the 
state-space. The new parameter space is then a subset of the (Nxt2)-dimemional 
space given by (4.6). Let a be an No -dimentional parameter element 'Ne 5 Nxt2). 
Then a identifies with an element Z of the larger (Nx+Z)-dimensioarl space a d  the 
relationship is given by 

- - *  
hr 

a = &a (4.9) 

where E is an ( r t 2 )  x Ne matrix. And correqmndingly, we have 

&==B - . (4.10) 

This relationship simplifies the algorithm as described below since B is easy to 
construct, a d  the more cumbersome calculations which are needed to determine 
partial deriV8tiVe8 with respect to the parameter space are *en specified in terms 
of the grid associated with the s t a t e  space. Thus we have: 

a /s :  a / s  (4.11) 
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We illustrate these points with a sample calculation (see Pig. 4). We consider 
the case where there are seven sensors a t  the locations 

A A A 
S S S S S S S 
I I I I I I 1 

0.0 0.25 0.5 0.75 1 

S: SENSOR LOCATION 
A: ACTUATOR LOCATION 

Fie. 4 S t r i n g  tension identific-tion: sensor and actuator locations 

and three actuators a t  the locations 
h 

E E (-258 -5, -75). 
The data vector was derived from a phnt  with specifications 

a ( x ) = 3  t x plant 

C F= 6(x-.25) +6(x-.S) + Mx-.75) 

u = .001 w 

(4.13) 

(4.14) 

u = .QO1 
rl 

For the s t a t e  space we take the seven-dimensid space of linear splines  fix)} 
with nodes corretporading to the sensor locations (4.121, and for the parameter space 
we take the five-dimensional subset of l h e u  sppllnes with nodes corre$pondbg to 
the set 

The relaxation parameter yo in (3.35) was chosen to speed up to the convergence of 
the iteration; these issues will be discussed more fully in a future report but we give 
the results nf the calculations Ln Fig. 5. There numerical experiment8 appear Lo be 
very encouraging although with a crude approximation to the Hessian the 
canvergence can be very slow. 
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Fig. 5 Distributed parameter identification via spline analysis 

In a similar way, the algorithm wa8 successfay applied to the wrap-rib antenna 
model (2.4). To simplify the calculation8, we assumed here that the stiffness 
parameters were scaler8 although one could introduce a spline-baed @ace ad in the 
previous example. 

Again for simplicity we consider the case where there are six gores (N = 61, 
where a sensor k placed on the o u t e ~  endpoht of each rib (r = 11, and where an 
actuator is placed a t  the midpoint of each rib (r =.SI. This scheme is outlined in 
Flgute 6.  

We introduce the set of N-dimeasional d t  vectora 

(4.16) 

- 
where the components of each ak are determined by 
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POiNT - SENSOR LOCATION 

POINT - ACTUATOR LOCATION 

Pig. 6 Rib stiffness identification: sensor and actuator locations 

(4.17) 

The parameters of the likelihood functional are then given by 

CYa = .001 

u = ,001 (4.18) 

cT= 1 < 6 (r - .SI 
rl 

And the stiffness parameters of the plb..,. are given by 

E1 = 1.25 .lo’ nt-m’ 

TR = 

(4.19.) 

1 ’ 5  .IO-’ at/m (4.19b) 

L = 2.75 .IO-’ m (4.196) 

We applied the algorithm then to  the case where the unknown parameter was E1 
while the other stiffness parameters were asawned to be kxiown. 

399 



To discntize the state-space eight equal mbdivisionr were made in the radial 
direction on each rib and in each mesh sector; in the circumferential direction five 
equal subdivision8 were xnade in each ae8h sector. The shape functions on the ribs 
were given by Hermite cubics while on the mesh the shape functiom were given by 
splines linear in r and 9. In test cases this discretization produced a t  least three 
digits of accuracy in solving problems of the form (3.4). In all calculations the 
principle of cyclic symmetry (cf. (2.24)) was exploited to reduce the number of 
calculations. 

4 

5 

Convergence of the likelihood algorithm was very fast (see Fig. 7) when the 
relaxation parameter was taken t o  be 

* 

1.13866 105 

1.23889 l@ 

yo = 2.5 . 

LIKELIHOOD FUNCTIONAL 

-0.0048 - 

- 
- 

-0.0052 - - 
i I 

0.1m 0.126 0.1 w 0.175 

RIB STIFFNESS X IO-‘ nwn2 

IT€ R I T ~ N  f STlMATED 
Nr .18€9 PAR AM ET ER 

I 1  I 1.75000- l@ 4.- 10-1 I 
2. 10-1 I 
3. 1oA2 ---I 2. 10-4 

Fig. 7 Distributed parameter identification of beam stif fnesa parameter 
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Numerical experimenu rho demonstrated an improvement in the sensitivity of the 
identification rrchemes a8 the number of rnerruremenu was increased. Thus, Figure 
8 illustrates how, for the antenna problem considered, an increase in the number of 
sensors led to a s t e w  of the likelihood functional. Here the curves mre 
shifted transversely for illu8trative purposes. We note that no corretpondhg 
improvement in the parameter estinute occurrcd in these trials, possit$ because of 
the lea8 favorable &pS-U-noire ratio which corresponds to renting in the interior 
of the ribs. 

LIKELIHOOD FUNCrlONAL 

I I I I 
0.125 0.150 0.175 0.100 

Fig. 8 

(a) One sensor per rib at r - 1.0 
(b) Two aensors per rib at r - 0.5, 1.0 

( c )  

Sensitivity of antenna etlffaese - phsameter ldtantiflca- 
tion according to number of k,eneors 

Three eensors per rib at r - 0.5, 0.75, 1.3 

More detailed numtricrl experiments with distributed antenna rtiffneu 
parameters will be given in a future report. But the resuits outlined in t&i8 report 
dernorutrrte already the great potential for these algorithmr. 
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