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PREFACE

This technical report presents the development of a three-

dimensional finite element fracture mechanics analysis of composite

materials, sponsored in part by NASA-Langley Research Center under

Research Grant NAG-I-454. This grant was initiated in March 1984,

preliminary development work having been underway as an in-house effort

at the University of Wyoming for some time prior to that date. The

NASA-Langley Technical Monitor was Dr. John H. Crews, Jr.

All work was performed by the Composite Materials Research Group

(CMRG) within the Department of Mechanical Engineering at the University

of Wyoming. The Principal Investigator was Dr. Donald F. Adams,

Professor of Mechanical Engineering. He was assisted by Mr. Jayant M.

Mahishi, Ph.D. graduate student in Mechanical Engineering.
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official endorsement of such manufacturers, either expressed or implied,
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SECTION i

INTRODUCTION

Much of the further development and application of fiber-

reinforced composites in high performance structures now depends mainly

on the fracture characterization of these materials. Unfortunately, the

fracture behavior of these materials differs considerably from that of

homogeneous isotropic materials.

Even though the mechanics of initiation and growth of cracks in

composites is not well understood, it is generally believed that micro-

flaws in the form, for example, of broken fibers, fiber-matrix interface

debonds, and matrix cracks that exist in composites for various reasons,

influence the fracture process as much as material inhomogeneity and

anisotropy. Energy absorption during crack propagation in a multi-

layered composite laminate is typically due to intralaminar transverse

cracking, interlaminar delamination, fiber breaks, matrix cracks,

fiber-matrix debonds, fiber pullouts and matrix yielding (see Figure i).

These failure modes depend on a number of factors such as fiber orienta-

tion, individual layer thickness, and the constitutive relations that

describe the mechanical properties of the fiber, the matrix and the

interface.

The large number of variables involved in the geometry of com-

posites makes it very difficult to completely characterize their frac-

ture behavior experimentally. An analytical model which can represent

the various aspects of the intrinsic physical failure process is thus

highly desirable. The main obstacle to deriving such a single analy-

tical model is one of scale. The fiber breaks, matrix cracks and
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Figure i. Energy Absorption Mechanisms During Crack Propagation in a

Multilayered Fiber-Reinforced Composite Laminate.



fiber-matrix debonds are of the order of one fiber diameter in size,

while the intralaminar transverse cracks and interlaminar delaminations

are several orders of magnitude larger than the fiber diameter. Accord-

ingly, two different analytical approaches are commonly used, viz., the

macromechanics approach and the micromechanics approach. The macro-

mechanics approach, which treats the composite as a homogeneous aniso-

tropic continuum, has been relatively successful in predicting some

macro scale failure modes. However, it does not account for failure

modes associated with the material heterogeneity. On the other hand, the

micromechanics approach has been very useful in studying the influence

of microflaws on the fracture behavior of composites. Obviously a

satisfactory approach is one that combines both the micromechanics and

the macromechanics approaches.

The main objective of the present work was to develop a fracture

criterion for composites based upon a combined micromechanics/macro-

mechanics analysis. The historical development and present state of the

art of fracture mechanics of composites are reviewed in Section 2. The

theory associated with the proposed integrated micromechanics and

macromechanics fracture criterion (IMMFC) for fiber-reinforced com-

posites is explained in Section 3. A critical elastic strain energy

release rate in the presence of plasticity has been defined and used as

a criterion for crack initiation and propagation in both the micro-

mechanics and the macromechanics analyses. The energy release rate

criterion and the finite element technique of crack growth simulation in

three-dimensional finite element models based on the virtual crack

extension method are explained in Section 4. Preliminary results using

the micromechanical analysis are given in Section 5. Graphite/epoxy



unidirectional composite models are used to study the initiation and

propagation of microcracks from microscopic flaws. The fracture tough-

ness values, which represent the energy release rate at the onset of

fast fracture under different loading conditions, are evaluated using

the crack growth resistance curve method. These values are subsequently

used as critical energy release rates in the integrated analysis.

In Section 6, example results using the macromechanical analysis

are presented. The initiation and propagation of a delamination crack

in central notched and single-edge notched [±45/0] graphite/epoxys

laminates subjected to inplane tensile stresses normal to the notch are

studied. The delamination at ±45 and -45/0 interfaces, and material

yielding at different stages of loading, are presented.

Section 7 contains the application of the integrated micro-

mechanical and macromechanical fracture criterion to predict the onset

and growth of cracks in a single-edge notched [±45/0]s graphite/epoxy

composite laminate. A qualitative comparison with experimental results

is also presented.

Section 8 contains a summary, conclusions and suggestions for

future work.
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SECTION 2

BACKGROUND REVIEW

2.1 Classical Fracture Mechanics

Fracture mechanics is primarily concerned with the strength of

materials in the presence of cracks. Until the early twentieth century,

a satisfactory explanation had not been found for experimental obser-

vations that fracture occurs at a much lower stress level than that

needed to separate adjacent atoms across the fracture surface. Griffith

[1,2] proposed a theory based upon an energy balance associated with the

fracture process, equating the release of elastic potential energy

during crack extension under constant load point displacement to the

surface energy of the newly created crack surface. Realizing that a

certain amount of plastic deformation takes place near the crack tip in

most engineering materials, Irwin [3] and Orowan [4] modified the

Griffith energy balance equation by equating the energy release rate to

the plastic energy dissipation rate and the surface energy absorption

rate, which formed the basis for linear elastic fracture mechanics

(LEFM).

Irwin [5] postulated that the critical energy release rate or

"fracture toughness" can be related to the stress intensity factor,

which is a measure of the strength of the elastic singularity of the

crack tip strain field. Such a fracture characterization based on LEFM

theory is applicable only to those materials in which plastic yielding

is confined to a very small region around the crack tip, i.e., when the

stress field associated with the crack tip is mainly elastic.



In the last two decades, a considerable amount of work has been

done in developing methods to characterize fracture associated with

medium to large scale plastic yielding in ductile materials. The

plastic zone correction method by Irwin, et. al. [6], the J-integral

method by Rice [7] and Cherepanov [8], the crack opening displacement

(COD) method by Wells [9] and Cottrell [i0], the near tip strain criter-

ion by Ke and Liu [ii], and the equivalent energy method by Witt [12]

are some of the important theories that have been proposed to deal with

crack tip plasticity in the absence of crack growth. The crack growth

resistance curve (R-Curve) method [13], the nonlinear energy method by

Liebowitz and Eftis [14], the strain energy density criterion by Sih

[15], and the crack tip opening angle (CTOA) criterion by de Koning [16]

and Shih, et. al. [17] are some of the theories proposed for ductile

fracture associated with subcritical crack growth.

Irwin [6], in an early attempt, accounted for plastic yielding near

the crack tip in the classical elastic analysis by assuming a slightly

larger than actual crack size. This plastic zone correction method

proposed by Irwin is essentially an empirical correction to the linear

elastic solution.

Rice [7] and Cherepanov [8] independently introduced a path-

independent integral (referred to as the J-integral), which is expressed

as

J =f(wdyj - aijn.u, x)dS (i)j l,

F

where w is the strain energy density, F is any curvilinear path sur-

rounding the crack tip, starting from any point on the lower crack

surface and ending on the upper crack surface, traversing in a
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counterclockwise direction, n. is the outward unit normal vector to the
J

curve, oij is the traction vector parallel with nj, ui, x is the

derivative of the displacement vector, and s is the arc length. It has

been shown [18,19] that the J-integral represents the energy release

rate, and that its value at the onset of cracking (Jc) can be used as a

fracture criterion.

The concept of crack opening displacement (COD) introduced by Wells

[9] and Cottrel [i0] was successful in taking into account the consider-

able amount of plastic flow associated with fracture in high toughness

materials. For the fracture of elastic-perfectly plastic materials in

plane stress, the can be energy release rate G related to the crack

opening displacement 6 as

= _ (2)G Oy

where Oy is the yield stress of the material in simple tension. Hence

the COD can be used as an effective fracture criterion. In recent

studies of elastic-plastic fracture mechanics, the COD has been found to

be a valuable concept to describe stable crack growth.

The near tip strain criterion proposed by Ke and Liu [Ii] is based

on the fact that the transverse strains near a crack tip at the onset of

fracture are independent of the specimen geometry and type of loading.

It has been argued [20] that the plastic strains at all points closer

than a certain small characteristic distance from the crack tip attain a

value equal to or greater than a critical value; this distance can be

treated as a fracture criterion for growing cracks. Experimentally it

is difficult to measure the strains at the midplane of a plate. However,



available experimental results based on surface strains [ii] indicate

significant promise in using strain as a fracture criterion for plates

of all thicknesses.

The crack growth resistance curve (R-Curve) concept [13], in which

the resistance to crack growth is plotted against crack extension, has

been successfully used to explain the slow and stable crack growth in

ductile materials which precedes unstable crack growth. The R-Curve,

which has been shown to be independent of the initial crack size [13],

represents the energy balance equation G = R, where G is the energy

release rate and R is the energy absorption rate. The point of crack

instability occurs when

dG dR

da da (3)

The nonlinear energy method introduced by Liebowitz and Eftis [14]

takes into account the nonlinearity of the compliance curve of a non-

linear elastic material. A new fracture parameter G, which is con-

sidered to be more accurate than the linear elastic fracture toughness

GC, is defined as

= CGC (4)

where C is a constant determined by the geometry of the nonlinear

compliance curve. The parameter G is applicable to subcritical crack

growth as well. It has been claimed that the G value corresponding to

the onset of stable fracture is independent of the geometry effect of

the material (including the thickness), whereas GC corresponding to the

onset of rapid fracture depends on the thickness of the material.

8



The strain energy density theory originally proposed by Sih [15]

for linear elastic fracture was later extended to explain ductile

fracture and slow stable crack growth as well [21]. According to this

theory, the crack extension is postulated to occur in the direction of

minimum strain energy density when the strain energy density factor S

reaches a critical value SC.

The strain energy density factor S is given by

du

S = rc(_v) (5)

du

where (_v) is the strain energy density and r is the radius of the corec

region surrounding the crack tip, which is a characteristic of the

material.

Shih [17] and de Koning [16] have suggested that the crack tip

opening angle (CTOA), measured as the angle subtended by the opened

surface at a small but fixed distance behind the tip of the growing

crack, is a satisfactory criterion for stable crack growth. Several

investigators [17,20] have produced supporting theoretical and numerical

results.

The theories discussed above identify certain parameters as a

criterion for the onset and growth of cracks in ductile materials.

However, each one has its own merits and demerits relative to the

others. For materials exhibiting extensive plastic deformation, the

obvious difference from elastic response is the irreversible strain

followed by linear elastic unloading. The later feature of ductile

fracture was not given much importance in the development of elastic-

plastic fracture theories until recently, when Turner [22,23] noted that



the energy release rate in the presence of limit load plasticity is not

G, but a term he called I, which is greater than G. The parameter I can

be used as a criterion for the initiation and slow stable crack growth

in ductile materials.

2.2 Fracture Mechanics of Composite Materials

The failure modes associated with fracture in fiber-reinforced

composites differ considerably from those of homogeneous isotropic

materials. The microscopic flaws pre-existing in composites for various

reasons, typically in the form of broken fibers, matrix cracks and

debonded fiber-matrix interfaces, influence the fracture process as much

as material heterogeneity and anisotropy. The failure modes associated

with fracture in composites are typically in the form of transverse

cracking, delamination, fiber breaks, matrix yielding, matrix cracking,

and fiber-matrix debonding (as previously indicated in Figure i). As a

result, the crack growth often does not occur in a self-similar fashion

as in the case of isotropic materials. Obviously, the theories of

classical fracture mechanics cannot be directly applied to composite

materials.

Owing to the importance and complexity of the subject, a very large

volume of literature dealing with different aspects of fracture in

composites has accumulated within the past two decades. A number of

theories have been proposed. The various approaches adopted for fracture

characterization of composites can be broadly classified as

i) micromechanics approaches

ii) macromechanics approaches

iii) anisotropic continuum approaches

These approaches are discussed in more detail in the following sections.
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2.2.1 Micromechanics Approaches

These approaches were primarily developed to estimate the mechan-

ical properties of unidirectional composites based on the properties of

their constituent materials. The early development of simple self-

consistent mechanics models [24-29], variational models [30-34] and

exact models [35-44] are discussed in References [45-47]. The "material

model" approach developed by Hedgepath and Van Dyke [48] for the stress

concentration around a single broken fiber, and the associated matrix

damage in a unidirectional composite, has been extended by Goree and

Gross for the case of an arbitrary number of broken fibers [49], as well

as for longitudinal yielding and splitting of the matrix [50], in a

three-dimensional model containing equally spaced unidirectional fibers.

There are a number of papers dealing with cracks at interfaces between

different materials. Some of these directly address the situation in

composites [51,52]. In Reference [51], the stress intensity factors for

a crack running into and crossing an interface are evaluated. The

elastostatic interaction between a penny-shaped crack and elastic fibers

has been discussed in Reference [52]. The effects of cracks and imper-

fections of the fiber-matrix interface contact surface on composite

properties and the onset of brittle fracture are addressed in Reference

[53].

In the fracture characterization of composites, even more important

than a rigorous stress analysis [48-53] is the estimation of the energy

absorption associated with the failure at microflaws. Simple estimations

of the energy absorption during fiber pullout, fiber-matrix debonding,

"stress relaxation" due to fiber breaks, "crack bridging" (a process in

which the fibers are left intact as the crack propagates), and plastic

11



deformation of the matrix have been compiled by Phillips and Tetelman

[54] and Cooper [55]. The different failure mechanisms and the assoc-

iated energy absorption calculations have been reviewed in References

[56,57].

By introducing a crack propagation capability into an elasto-

plastic, generalized plane strain finite element micromechanics model,

the energy absorption mechanisms during crack propagation in a region of

a broken fiber have been studied in References [58,59]. A "failed"

element approach developed by Adams [60-64] for crack propagation in

two-dimensional finite element models was used in these analyses.

The initiation and propagation of microcracks from broken fibers

and matrix cracks in a single-fiber model composite has been studied by

Mahishi and Adams [65-67] using an axisymmetric, elastoplastic finite

element analysis. Similar single-fiber models have been used by several

other authors, e.g., by Ko [68] to study stress concentrations due to

the broken fiber, and by Gradin, et. al. [69] to study the debonding

between the fiber and the matrix. Mahishi and Adams observed in their

studies [65-67] that under fixed grip conditions, the microcracks

originating from a broken fiber end or from a matrix crack grow in a

slow and stable manner initially to a certain distance, before growing

rapidly in an unstable manner across the model. The situation of slow

and stable subcritical crack growth being similar to that observed in

the case of crack growth in thin metallic plates led to their use of

crack growth resistance curves (R-curves) to predict the point of crack

instability in composites. The energy release rate corresponding to the

point of instability has been defined as a measure of fracture toughness

of the model composite. This is a very important development in the

12



micromechanics approach to fracture characterization of composites as,

in addition to being able to predict a single fracture parameter

(fracture toughness), it can be used to compare the severity of differ-

ent types and sizes of microflaws. The axisymmetric model also has the

advantage of being useful in correlations with experimental results. The

requisite experiments are simple and easily performed. Such experiments

are underway at a number of research laboratories [70], including within

the Composite Materials Research Group at the University of Wyoming.

Mahishi and Adams [67] have also used the axisymmetric model analysis to

study the influence of weak fiber-matrix interfaces, curing-induced

residual thermal stresses, and environmental moisture absorption on the

fracture behavior of graphite/epoxy model composites. A three-dimen-

sional finite element model has also been developed by these authors to

study the stress state near a broken fiber in a unidirectional boron/

aluminum composite [71]. The fibers were assumed to be packed in a

regular square array; a repeating cell was identified consisting of a

single broken fiber surrounded by an array of continuous fibers. This

model has considerable flexibility in representing different types of

microflaws and loading conditions.

By means of such rigorous three-dimensional finite element analyses

it is possible to study the effects of sizes and density of different

types of microflaws on the fracture toughness of a unidirectional

composite. It is important to verify the predicted results of the

analysis with experimental data. However, the reduction of experimental

fracture mechanics data to identify different forms of microcracks is

not straightforward. Beaumont and Anstice [72] have presented a statis-

tical approach for the failure analysis of micromechanical fractures in

13



graphite fiber and glass fiber composites. Using a simple micromechanics

model, they were able to estimate the energy dissipated during partial

debonding of the fiber-matrix interface, during fiber fracture and

during fiber pullout.

A two-dimensional, micromechanical finite element analysis has been

used by Mandel, et. al. [73] to study the initiation of cracks in a

steel-fiber-reinforced methacrylate polymer matrix, the results being

compared with experimental data. Good agreement was obtained between the

predicted and experimental values of loading required for the initiation

of cracks in the matrix and subsequent crack arrest by the fibers.

Badar, et. al. [74] have studied the micromechanisms of fracture in

short-fiber-reinforced thermoplastics. Williams and Reifsnider [75] have

used three-dimensional micromechanics models to evaluate the internal

stress field in applying their strain energy release rate approach to

the prediction of failure modes in composites. Wells and Beaumont [76]

have used simple micromechanics models to calculate fracture energy

associated with fiber debond and fiber pullout mechanisms. A general

survey is presented by Hashin [77].

2.2.2 Macromechanics Approaches

A distinction should be made between different analytical ap-

proaches dealing with macroscale cracks in composite laminates, depend-

ing upon whether the macrocracks considered are at the lamina (ply)

level or at the laminate level. The interlaminar delamination and

intralaminar transverse cracking which occur at the lamina level are

usually treated by idealizing the individual laminae as homogeneous

anisotropic continua. The physical properties of the individual ideal-

ized laminae are thus represented by average values, based upon fiber

14



and matrix properties. In the present discussion, this approach to

macroscale cracks in composites is classified as a macromechanics

approach.

At the laminate level a phenomenological fracture analysis has been

developed to study through-the-thickness cracks, by assuming the entire

laminate as a homogeneous anisotropic continuum. This approach is

discussed in the next section.

The delamination mode of crack growth, which is characteristic of

multilayered composite laminates, has been attributed to the existence

of interlaminar stresses near the free edges of the laminate [78,79]. A

linear elastic stress analysis of the free edge in a composite laminate

[80] suggests that the interlaminar stresses become singular near the

free edges, and the signs of these stresses depend on the stacking

sequence of the laminate [79-81]. Hence some laminates may be more prone

to delamination than others depending on how the plies are stacked

together. A review of interlaminar stress effects is given in Reference

[82].

The singular behavior of the interlaminar stresses precludes use of

any failure criterion based on maximum stress for predicting the onset

and growth of the delamination. On the other hand, the homogeneous

continuum idealization enables one to use classical fracture mechanics

concepts. The critical energy release rate criterion has been used by

Rybicki, et. al. [83] to predict the stable delamination crack growth in

composite laminates. They used a finite element analysis and a numerical

technique for evaluating energy release rates based on the Irwin crack-

closure integral [84], a technique developed earlier by Rybicki and

Kanninen [85]. This numerical technique has also been used by several

15



other investigators to characterize delamination crack growth in com-

posite laminates under static tension, static compression, and fatigue

loading conditions [86-i03].

Wang and Crossman [86,95] have further developed the technique, to

include transverse cracking as well. The principal assumptions in their

energy release rate approach [86] are that the edge delamination in-

volves only matrix-dominated fracture, which is assumed to be elastic

and brittle, and that the crack surface is parallel to the ply inter-

face. Even though the extent of delamination predicted by this energy

release rate approach is in agreement with experimental observations

[87-89, 97-i00], there exists a difference between the experimentally

measured energy release rate values and the predicted values. This is

possibly because in reality the delamination crack does not propagate in

a self-similar fashion parallel to the ply interface, but rather takes a

zig-zag path. There is also some concern about possible material yield-

ing in the vicinity of the crack tip.

Delamination crack growth in composite laminates is essentially a

three-dimensional problem. A quasi three-dimensional finite element

analysis was used in References [93,99,100]. A fully three-dimensional

finite element analysis, in which the delamination growth surface can be

fully simulated, has been used in Reference [91]. Wang and his assoc-

iates [i04-i07] have used singular finite element, hybrid-stress models

to study delamination crack growth in composites under both static and

cyclic loadings. They used a mixed-mode failure criterion for crack

growth. The energy release rate was calculated directly from the rela-

tion between stress intensity factors and energy release rates.

16



The transverse cracking mechanism in composite laminates has also

been extensively studied [86,95]. Transverse cracks are caused by the

in-plane tensile stress normal to the fiber direction in a unidirec-

tional ply. The irregular spacing intervals of the multiple transverse

cracks observed in experiments are attributed to the presence of micro-

flaws. The energy release rate approach developed for delamination crack

growth has been used to study transverse crack growth also [86,95].

While considerable progress has been made in understanding the

delamination and transverse cracking mechanisms in composites incorpor-

ating brittle or quasi-brittle matrix materials, the problem of tough-

ened polymer matrix or metal matrix composites, in which large scale

yielding is associated with the cracking, requires special attention.

2.2.3 Anisotropic Continuum Approach

This is a phenomenological approach in which the composite is

assumed to be a homogeneous anisotropic continuum. Perhaps the success

of the homogeneous anisotropic continuum idealization in the stress and

deformation analysis of composites led to the development of this

approach for the fracture characterization of composites. But the fact

is that the composite stresses and deformations are averaged properties,

whereas failure is a localized process in which the material hetero-

geneity plays an important role. The single most important justification

for such an idealization may be that the classical fracture mechanics

concepts can be readily employed.

The anisotropic elasticity solutions [i08,109] have been used in

References [ii0-i12] to evaluate the stress intensity factors for cracks

of different sizes and orientations under various loading conditions.
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A number of fracture mechanics theories have been proposed based on

the LEFM concept [i13,114]. These theories have been reviewed exten-

sively in References [56,115]. Some of the more important of these

theories are briefly discussed here.

Waddoups, et. al. [i16] adapted the Bowie [i17] solution for a

crack emanating from a hole in an isotropic material, and derived an

empirical expression for a crack of length 2a in an infinite body under

tensile load normal to the crack, i.e.,

KI = o_(_ + a)I/2 (6)

where _ is the characteristic length of an "intense energy region" at

the crack tip. The critical stress for crack extension is then

KIC

oC = _(_ + a)i/2 (7)

The two parameters KIC and _ were evaluated from experimental data. The

predicted strengths were in good agreement with experimentally measured

values. Cruse [118] represented a hole of radius R as a crack of half

length a. The value of a was obtained through comparison of the hole and

crack solutions for an orthotropic material. The strength of the lami-

nate was then obtained using LEFM and an experimentally determined value

of KIC. Whitney and Nuismer [i14], using a stress concentration ap-

proach, have proposed two stress criteria for the strength of notched

composites. The first criterion assumes that fracture occurs when the

normal stress perpendicular to and ahead of the crack reaches the

strength of the unnotched laminate at a specific distance do from the
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crack tip. The distance do is assumed to be a material property, inde-

pendent of the laminate geometry and stress distribution. In the second

criterion it is assumed that failure occurs when the average stress over

a distance ao ahead of the crack tip reaches the unnotched tensile

strength of the laminate. Reasonably good agreement was obtained with

the limited experimental results available.

Pipes, et. al. [i19], generalizing the point stress and average

stress criteria of Whitney and Nuismer [I14], have introduced a three-

parameter fracture criterion. A fictitious crack model has been pre-

sented by Backlund [120].

All of the theories discussed so far assume self-similar crack

growth. In reality, cracks in composite laminates seldom grow in a

self-similar fashion. This factor alone makes the application of these

theories for the fracture characterization of composites somewhat less

effective.

Harrison [121], to remove the restriction of self-similar crack

growth, postulated different energy release rates for crack growth in

the plane of the crack (denoted as Gx) and for crack growth normal to

the crack (denoted as G ). In his study of splitting in fiber-
Y

reinforced materials, Harrison gave the condition of splitting as

G R
x X
-- < -- (8)G R
Y Y

where R and R are the critical energy absorption rates for crack
x y

growth in the two directions. More general theories have been developed

by Sih and Chen [122] and Wu [123,124]. The method of Sih and Chen is

based on a strain energy density fracture criterion, which not only
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predicts fracture but also the direction of fracture. This theory also

introduces a parameter r , the radius of the core region in Eq. (5),c

which can be evaluated analytically or experimentally. The technique has

been applied both to unidirectional composites and angle-ply laminates.

Lukshminarayana, et. al. [125] have applied the same technique to cracks

emanating from circular holes in cross-ply laminates. Experimental

correlations were limited to transverse cracks running parallel to the

fibers, but were in good agreement.

Wu's theory [123,124] also predicts fracture and the direction of

fracture. The theory involves application of a failure criterion to the

region ahead of a macroscopic crack in an anisotropic body. Wu assumes

that the composite is a homogeneous anisotropic continuum containing

randomly distributed microscopic cracks. For such configurations he

further assumes that there exists a small but finite volume of dimension

r that fully encapsulates a microscopic crack, such that the singular
c

stresses are contained within the critical volume and the stresses

external to the critical volume are bounded. He then postulates that i

failure occurs when the stress vector (o acting on the outer surface of
c

the critical volume reaches the value of the strength vector defining

the failure surface for the material failure. Wu obtained excellent

agreement with experiments on a Scotchply 1002 glass/epoxy laminate for

mixed mode loading with cracks parallel to the fibers. In this theory,

the failure surface must be obtained from experimental studies to

determine remote properties.

There are other approaches which deal only with the specific mode

of crack growth. One example is that of Kulkarni and Rosen [126], which

is limited to crack growth normal to the crack plane, as observed for
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both unidirectional and general laminates that contain 0° plies. This

model was originally developed by Zweben [127], who used the detailed

study of plasticity and crack blunting in an orthotropic body given by

Tirosh [128]. In their model, Ku!karni and Rosen [126] have taken the

region adjacent to the notch as a shear stress transfer region. The

regions adjacent to the crack are subdivided into a region of shear

stress transfer, a region of stress concentration, and a region of shear

stress transfer in the average material. In the application of this

approach to fracture normal to the original crack surface, it is neces-

sary to determine two arbitrary parameters experimentally which define

the size of the region of intense energy adjacent to the flaw, and the

demarcation between Mode I and Mode II behavior.

In summary, the different approaches attempting to extend the

classical fracture mechanics concepts to composite materials are, as

noted by Kanninen, et. al. [I15], nothing but curve-fitting techniques

with parameters which can be adjusted to fit any experimental data. It

can be concluded that the fracture behavior of composites is far more

complex than can be modeled by LEFM. The main reason for the complexity

is the material heterogeneity. A more general approach to study the

fracture mechanics of composites should include the affects of material

heterogeneity.

Kanninen, et. al. [I15,129] have developed an approach which

combines a micromechanical failure analysis with a macromechanical

continuum analysis. At the crack tip, a local region is defined consist-

ing of fibers, the surrounding matrix, and the associated interfaces.

This local heterogeneous region (LHR) is considered to be surrounded by

a homogeneous orthotropic continuum. The three constituent materials
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(which include an interface material) are modeled using "spring-like"

elements. The size of the LHR is assumed to be large enough such that

its boundary displacements are given by continuum analyses, and small

enough relative to the crack length that the singular behavior at the

crack tip dominates. By varying the fracture properties, Kanninen, et.

al. [129] were able to demonstrate the occurrence of axial splitting,

matrix crazing, matrix bridging and fiber bridging. There was also

qualitative agreement with the experimental results of Brinson and Yeow

[130] on edge notched unidirectional graphite/epoxy laminates. Represen-

tation of the local heterogeneous region in a multilayered laminate, and

in the case of continuous crack propagation, presents some practical

limitations.

From this literature study of different approaches to fracture of

composites it is clear that the micromechanics approach, which deals

with microscopic failure processes, and the macromechanics approach,

which deals with macroscale delaminations and transverse cracking

failure processes, are very well developed. A conglomeration of both

microscopic and macroscale failure processes represent the actual damage

in a multilayered composite. Thus, a more general, integrated approach

than that presented in Reference [i15], but retaining all the basic

features of the micromechanics and macromechanics approaches, is needed

for the prediction of initiation and growth of damage in composites.

The main objective of the present work was to develop such an

integrated approach.
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SECTION 3

DEVELOPMENT OF AN INTEGRATED FRACTURE CRITERION

A method of developing a fracture criterion for heterogeneous

anisotropic composites has been Suggested by Wu [124], by re-examining

the Griffith energy balance equation for homogeneous isotropic mater-

ials. By expressing the energy terms with greater generality, the

fundamental assumptions and constraints of classical fracture mechanics

can be relaxed to allow for material heterogeneity and anisotropy.

Griffith's energy balance equation for the instability of a crack

in a brittle material is [1,2]

dW dU
---- > _ (9)dA dA -

where W is the potential energy of the external forces, U is the elastic

strain energy, _ is the surface energy per unit area of the crack

surfaces and dA is the crack extension.

Irwin and Orowan [3,4] later modified the Griffith energy balance

equation to account for the plastic deformation that occurs near the

crack tip in most engineering materials as follows:

dW dU > dU'
dA dA - d-A-+ _ (i0)

r

where U' is the irreversible strain energy due to plastic deformation.

Equation (i0) is the basis of classical linear elastic fracture mech-

anics (LEFM).



The left-hand side of the Eq. (i0) is the input energy rate that is

released during an incremental crack growth, and the right-hand side is

the energy absorption rate during the crack extension. The left-hand

side of Eq. (i0) is a function of loading conditions, geometry of the

body and the orientation of the crack, whereas the right-hand side is a

constant for a given material.

The underlying principle in the above mentioned criterion is that a

crack in a continuum tends to extend when the left-hand side of Eq. (I0)

(i.e., the energy release rate G) reaches a critical right-hand side

value (Gc), which is a material property, i.e., when

G = GC (ii)

The above condition, i.e., Eq. (10), which has been derived from

energy principles, is independent of the constitutive properties of the

continuum. Therefore, the application of a general fracture criterion to

composites requires only that the energy terms in Eq. (i0) be redefined

so as to account for the material heterogeneity and anisotropy.

To begin, we will assume that the composite is a homogeneous,

anisotropic continuum, containing uniformly distributed microscopic

flaws, the size and density of which are characteristics of the material

and manufacturing process. In the vicinity of a microflaw tip (a high

energy region), we assume that a number of microcracks initiate and

propagate steadily with increasing external load. The microcracks

subsequently coalesce and grow in an unstable manner, leading to an

extension of the macrocrack.
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The microscopic flaws in a reinforced composite are typically in

the form of (see Figure 2):

a) broken fibers

b) matrix cracks

c) fiber-matrix interface debonds

d) weak sites in the fiber.

As mentioned earlier, the size and density of the different types of

flaws depend on the constitutive materials and the manufacturing pro-

cess. Since the size and density of the microflaws significantly

influences the failure process in composites, it is necessary to include

them as material parameters in a fracture criterion for these materials.

Assuming that the fibers in a unidirectional lamina are packed in a

regular square array, we can represent all different types of flaws as

shown in Figure 2. Because of the assumed periodicity, it is possible to

isolate a repeating cell, such as the one containing a single broken

fiber surrounded by an array of continuous fibers. A length of four

times the fiber diameter has been shown [71] to be appropriate for the

repeating cell in the fiber direction for complete load transfer from

the broken fiber to the surrounding matrix.

The sizes of the microflaws within a repeating cell can be non-

dimensionalized with respect to their individual maximum attainable

values inside the cell. The microflaw parameters are defined as follows:

Number of broken fibers in a repeating cell
afrbk = Total number of fibers in a repeating cell (12)

Surface area of the matrix crack parallel to the fibersa =
mcpl Maximum attainable size inside the repeating cell
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Figure 2. Typical Microscopic Flaws in a Unidirectional Lamina with Fibers Packed in a
Square Array.



Surface area of the matrix crack perpendicular to the fibersa =
mcpr Maximum attainable size inside the repeating cell

Surface area of the fiber-matrix debond
afmid = Maximum attainable size inside the repeating cell

The above parameters, along with the fiber volume content (Vf) and

the mechanical properties of the constituent materials, uniquely define

the unidirectional composite.

The repeating cell, which is a representative region of the uni-

directional lamina, is an ideal model for a micromechanics analysis. But

the two-material configuration, the presence of microflaws, and the

complex boundary conditions can pose serious difficulties for a

continuum analysis. All the above complexities can be easily incor-

porated in a numerical analysis, however, using a three-dimensional

finite element approach. In such a numerical analysis it is also pos-

sible to simulate the onset and growth of microcracks from the micro-

flaws. The energy absorption during the crack propagation can then be

evaluated.

In accordance with our earlier assumption that the energy absorp-

tion during a macrocrack growth in a composite is in the form of fiber

breaks, matrix cracks and fiber-matrix interface debonds instead of only

surface energy of the crack surfaces as in the case of homogeneous

isotropic materials, the term _ in Eq. (i0) should be replaced by _,

which is defined as

d

= _(Ufrbk + Umopr + Umcpl + Ufmid) (13)

where Ufrbk = energy absorption due to fiber breaks

Umcpr energy absorption due to matrix cracks perpendicular to
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the fiber direction

Umcpl = energy absorption due to matrix cracks parallel to the

fiber direction

Ufmid = energy absorption due to fiber-matrix interface debonding

The energy balance equation for crack instability in a fiber rein-

forced composite can thus be written as

dW dU > dU' d + U + U + (14)
dA dA - dA--+_ (Ufrbk mcpr mcpl Ufmid)

The left-hand side of Eq. (14) is the global elastic energy release

rate, which can be evaluated from a macromechanics analysis, treating

the composite as a homogeneous anisotropic continuum. The right-hand

side of the equation is the global energy absorption rate, which is a

material property. It depends on the size and density of the microflaws,

and the constituent material properties. The right-hand side should be

evaluated by means of a rigorous micromechanics analysis, preserving the

material heterogeneity. Eq. (14) therefore forms the basis of an

integrated micromechanical and macromechanical fracture criterion

(IMMFC) for composites.

The IMMFC can be stated as the onset of a macrocrack in a composite

laminate that occurs when the energy release rate during a virtual crack

growth, evaluated from a macromechanics analysis while treating the com-

posite laminate as a homogeneous continuum, reaches a critical value. We

define the critical energy release rate as that corresponding to the

onset of an unstable crack growth from a microflaw.
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In the micromechanics analysis, in which a repeating cell contain-

ing microflaws is analyzed for the initiation and propagation of micro-

cracks under fixed boundary displacement conditions, microcracks are

likely to grow in a slow and stable manner initially up to a certain

distance, beyond which they become unstable and grow rapidly across the

model. The point of crack instability can be established from crack

growth resistance curves (R-curves). The energy release rate corres-

ponding to the point of crack instability is a measure of the critical

energy release rate (toughness) of the material in that particular

fracture mode.

Since the critical energy release rate depends on the direction of

the loading on the micromechanics model, the three-dimensional micro-

mechanics analysis will yield six different values of critical energy

release rate, corresponding to the six independent applied stress

components, viz., GCII, GC22, GC33, GC23, GCI 3 and GCI2, where sub-

scripts i, 2 and 3 denote the material coordinates (Figure 2). These

critical energy release rates, which have the dimensions of force, can

be transformed to any other coordinate system by means of a trans-

formation.

The onset of the macrocrack will be in the direction in which the

energy release rate reaches a critical value in that direction. Thus,

the IMMFC can also predict the direction of fracture in the composite.
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SECTION 4

CRACK GROWTH SIMULATION IN A THREE-DIMENSIONAL

FINITE ELEMENT ANALYSIS

The application of the integrated micromechanical and macromechan-

ical fracture criterion (IMMFC) to composites requires an accurate

estimation of energy absorption during crack propagation from micro-

flaws, in both the micromechanics and macromechanics analyses. As

discussed in the previous section, both analyses are three-dimensional

in nature, and thus require a three-dimensional analysis.

The finite element method has been previously used in both two-

dimensional and three-dimensional fracture mechanics analyses. There are

a number of special elements to represent the stress singularity that

exists near a crack tip. A review of the application of the finite

element method to fracture mechanics is given by Gallaghar [131].

Fundamental to the study of fracture mechanics is the study of the onset

and growth of cracks in a continuum. It is possible in a finite element

analysis to propagate a crack after initiation. Crack propagation in a

finite element analysis was introduced by Anderson [132]. In his crack

propagation simulation, Anderson proposed a method of nodal relaxation

in which the cohesive crack tip forces at node points ahead of the crack

are cancelled by applying equal and opposite forces to represent the

crack extension. Anderson used a constant crack opening angle as a

fracture criterion and was able to simulate stable crack growth in

elastic-plastic materials. Light and Luxmoore [133] used the energy

release rate criterion to predict crack growth. The numerical errors

associated with a finite element simulation of crack growth in an



elastic-plastic material have been investigated by Bleackley and Lux-

moore [134]. A "stiffness derivative" finite element technique has been

developed by Parks [135] for determining elastic crack tip stress

intensity factors, which has been further used to derive a virtual crack

extension analysis for elastic materials by Parks [136] and Hellen

[137], and for nonlinear materials by Parks [138]. Younan, et al.

[139,140] used a technique similar to the stiffness derivative method

with the critical energy release rate criterion to study the crack

propagation in a heterogeneous anisotropic weldment.

Existing analytical modeling of crack propagation in composite

materials is very limited. The crack-closure method [81,83] and the

failed element [61-64] approaches used for delamination crack growth and

micromechanics analyses, respectively, were already discussed in Section

2. In the following sections, a crack propagation simulation in a

three-dimensional, elastoplastic, finite element analysis will be

presented.

4.1 General Requirements

Crack growth simulation in a three-dimensional finite element

analysis is extremely complex. There are nine possible modes in which a

stationary crack can advance. Use of failure strength theories (based on

stress or strain fields) has to be totally ruled out as they cannot

effectively predict the mode of fracture. One cannot resort to the

failed element approach [61-64] since this will be grossly inaccurate

for the present analysis. More general criteria, e.g., the J-integral

criterion or the strain energy density factor criterion, which have been

shown to be successful in planar configurations, have practical limita-

tions in a three-dimensional application. Since both the micromechanics
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and macromechanics analyses are envisaged to include elastoplastic

materials, it is not possible to continuously refine the finite element

grid ahead of the propagating crack as in the nodal grafting technique

[141] since in an elastoplastic analysis the stress history at fixed

points in the material must be maintained. This would restrict the crack

propagation to occur only between the element surfaces of the original

grid. To allow sufficient freedom to the propagating crack, the finite

element grid would have to be very fine and uniform.

The virtual crack extension method [135,136] combined with the

energy release rate criterion seems to be the most appropriate approach

to crack growth simulation in a three-dimensional finite element analy-

sis. However, for elastoplastic materials the energy release rate during

an increment of crack growth has to be redefined. Turner [22] has shown

that the energy release rate in the presence of plasticity is higher

than that estimated from the linear elastic approximation.

4.2 Energy Release Rate in the Presence of Plasticity

A simple estimation of the elastic energy release rate in the

presence of plasticity can be made following the general approach of

Turner [22], which is a direct extension of the well-known compliance

method of calculating energy release rate G in the LEFM theory. Refer-

ring to Figure 3, the path OAB represents a typical nonlinear load-

deformation curve for an edge cracked elastoplastic plate. If the

effects of hysteresis are ignored, the elastic unloading path will be

parallel to the initial loading path OA. If instead, an incremental

crack growth Aa occurs at constant displacement, in elasticity theory

the load drops to D due to a reduction in area tAa, where t is the

thickness of the plate, and BD = -o tAa, where o is the net sectionn n
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Figure 3. Estimation of the Elastic Strain Energy Release

Rate I for an Elastoplastic Crack Growth.
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stress on the cracked plane, and rises back to D' due to an increase in

the net stress, i.e., DD' = (w-a)tda n, where w is the width of the

plate. The ordinates BD and DD' can also be explained as follows. At

point B, force equilibrium requires that

p = On(W-a)t (15)

where P is the remote applied force.

When the crack growth occurs under a condition of zero boundary

displacement, the crack length, force, and net section stress change to

a+Aa, P', and On+dOn, respectively. Then force equilibrium requires that

P' = (On+dOn) [w-(a+Aa) It (16)

The change in the force is

P'-P = (on + dOn)[W - (a + Aa)]t - On(W - a)t

which can be rewritten as

= tAa - do (w - a)t + do tAa (17)
P-P' On n n

Neglecting the second order term dOntAa Eq. (17) reduces to

P-P' = OntAa - dOn(W- a)t (18)
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in which o tAa is the decrease in the force due to the incremental crack
n

growth, and do (w - a)t is the increase in the force due to the increasen

in the net section stress.

If the material is assumed to behave elastic-perfectly plastic, the

net stress o will be restricted to the yield stress _ and there will
n y

not be an increase in the force, i.e., DD' = 0. Unloading from point D

will be parallel to the increased elastic compliance line D'C. In the

case of perfect plasticity, the unloading line from D does not pass

through the transposed origin C. The elastic strain energy release rate

in the presence of plasticity is represented by area BCED. The area BCD'

corresponds to the strain energy release rate if the crack growth is

purely an elastic event. The energy release rate corresponding to the

area D'CED is the additional energy available in an elastoplastic crack

growth. It is also possible to actually include the strain hardening of

the material in the plastic zone near the crack tip instead of assuming

perfectly plastic response, in which case there will be an increase in

the net stress, reducing the total energy release rate. For all prac-

tical purposes, this reduction in the area D'CED due to strain hardening

will be very small and can be neglected. The elastic strain energy

release rate in the presence of plasticity as defined here has been

denoted by I by Turner [22], to distinguish it from the energy release

rate in the LEFM theory.

4.3 Fracture Modes and the Estimation of Local Energy Release Rates

The loading conditions corresponding to the three fundamental

fracture modes near a crack front are shown in Figure 4. The nine

possible modes in which a crack in a three-dimensional finite element
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Figure 4. The Three Fundamental Modes of Fracture Near the

Crack Tip in a Notched Composite Laminate as Represented
in a Three-Dimenslonal Finite Element Model.
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model can advance are shown in Figures 5 through 7. The nine modes of

fracture are designated as

MXI , MXII MXIII , Myl, Myll, Mylll, MZI, MZII and MZIII.

As noted in the previous section, we can estimate the energy

release rate in the presence of plasticity from the rate of change of

compliance during an incremental crack growth. The relation between the

rate of change of compliance and the energy release rate during an

incremental crack growth in a linear elastic material is given by

i p2 dC
G = _ _ (19)

where P is the applied force and C is the compliance of the body (the

inverse of the stiffness K).

If C1 is the compliance of the body before an incremental crack

growth and C2 is the compliance after an incremental crack growth of an

amount Aa, then the rate of change of compliance can be written as

dC CI - C2
= (20)

da Aa

Thus,

1 p2 CI - C2
G = _ t_a (21)

or

G = i p2 i__ i__)
2 tAa (KI K2

(22) _

where KI and K2 are stiffnesses corresponding to CI and C2.

Computation of energy release rate in a finite element analysis

directly using Eq. (22) will involve the solution of the global system
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Figure 5. Modes MXI , MXI I and MXIII with Virtual Crack Plane Normal to the X Coordinate Direction.
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Figure 6. Modes }_I' MyII and Myiil with Virtual Crack Plane Normal to the Y Coordinate Direction.
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Figure 7. Modes MZI, MZI I and MZIII with Virtual Crack Plane Normal to the Z Coordinate Direction.



of equations twice (once before an incremental crack growth and once

after introducing the crack growth). This procedure is not computation-

ally practical for a continuous crack growth simulation.

For the simulation of crack growth in a finite element analysis,

Parks [135] and Hellen [137] have shown that the crack extension affects

only a few elements near the crack tip. The virtual crack extension

method given by Hellen is as follows. The total potential energy H of a

continuum containing an initial crack of length a, in terms of the

global stiffness matrix [K], global displacement vector {q}, and global

load vector {P} in a finite element formulation is given by

i

= 2 {q}r[K]{q} _ {q}T{e} (23)

If the crack is extended virtually by an amount _a, the variation of the

potential energy is

i

_H = _q}T[_K]{q } + {6q}T[K]{q} _ {_q}T{p} _ {q}T{6p} (24)

where

[_K] is the change in the global stiffness matrix

{6q} is the change in the global displacement vector

{6P} is the change in the global force vector

If the loading forces are far from the crack and are kept constant

during the virtual crack extension, 6P = 0. Since [K]{q} = {P}, Eq. (24)

reduces to

i T

6H = _q} [_K]{q} (25)
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Then the energy release rate for a plate of thickness t is

d_ tr }TrdK_
G = - d-_ t = - _tq L_aJ{q} (26)

This method is sometimes termed the "stiffness derivative method". Only

a small portion of the stiffness matrix [_K] is populated since the

crack extension affects only a few elements near the crack tip.

A similar observation can be made for crack growth under constant

boundary displacement (fixed grip) conditions. Since the work done by

the external forces is zero, Eq. (24) becomes

i

6H = _Us = _q}r[_K]{q} + {_q}r[K]{q} (27)

or

1

_ = _{q}T[6K]{q} + {6q}T{P} (28)

where U is the strain energy of the system. But {6q}T{P} = 0 since the
s

displacements of the loading boundary are held constant.

Making use of the above observations, the computation of the energy

release rate during an incremental crack growth in a finite element

analysis can be made in terms of the local stiffnesses and forces at the

crack tip node points.

In the present analysis, the energy release rate in the presence of

plasticity I at the crack tip node points is evaluated using the rate of

change of compliance method. The energy release rate I is defined in

terms of the local forces and compliance changes. The local forces

referred to here are the sum of the corresponding incremental force

components required to move the crack tip node point through the corre-

sponding incremental displacement of the node point. The method is
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similar to that used in evaluating the energy release rate by the crack

closure integral method [85]. In Figure 8, typical force-displacement

relations corresponding to the three fracture modes (as indicated in

Figure 4) are shown for an elastoplastic material.

In the incremental displacement finite element analysis, the linear

elastic total stiffness K and reduced stiffness K required in calcu-

lating the local energy release rate can be determined in the first load

increment, by assembling the contribution of the stiffness coefficients

of all elements sharing a node point, before and after incremental crack

growth, respectively.

The values of I for the three modes of fracture (Figure 8) are

given by

II = 2A--_[Fz2/Kzz - (Fz - OzzYAA)2/Kzz ]

III= 2--_[Fx2/Kzx - (Fx - TYzxAA)2/Kzx] (29)

=I--[Fy2/Kzy2_A - (Fy - TYzy&A)2/Kzy]IIII

where AA is the area of the incremental crack, Fx, Fy and Fz are force

components, Kzz, Kzx' Kzy are the total stiffness coefficients, Kzz, _zx

and Kzy are the reduced stiffness coefficients, and _Y Ty Ty_' zx' zy are the

yield stress values. The total elastic strain energy release rate is

I = II + Iil + Iil I (30)

Although the finite element technique of evaluating energy release

rate was actually developed here for a general three-dimensional
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analysis, the method can be explained more easily using a

two-dimensional example. Shown in Figure 9a is a crack tip Node Point d

surrounded by four finite elements (1,2,3 and 4). Under the first load

increment the Point d gets displaced to d' by a displacement vector

Ud(Ud,Vd). The deformation of the crack tip elements is shown by the

dotted lines. With displacements of all node points held constant, the

force vector Fd(Fxd, Fy d) required to move the Point d to d' is

evaluated by setting the displacement components ud and vd equal to zero

in the matrix force-displacement relation for the crack tip elements

{F} = [K]{q} (31)

where [K] is the stiffness matrix assembled from the four element

stiffness matrices, {F} is the nodal force vector for the four elements,

and {q} contains the nodal displacements. The ratio of the force com-

ponents (Fxd and Fyd) to the corresponding displacement components gives

the required total stiffness coefficients at Node Point d before the

crack extension.

In Figure 9b, an incremental crack growth has been introduced by

splitting the Node Point d' into dI and d2. Under this new configura-

i and i
tion, the Node Points dI and d2 get displaced to dI d2 by displace-

ment vectors Udl and Ud2. The force vectors required to move dI and d2

i and i - -
to dI d2 can be computed, by setting Udl and Ud2 equal to zero in

the corresponding force-displacement relations, similar to Eq. (31), in

which the matrices are obtained by assembling only the top or bottom two

element matrices. The ratios of the force vectors to the displacement
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vectors give the required reduced stiffness coefficients at Node Point d

after an elastic increment of crack growth.

4.4 Evaluation of Accuracy

The finite element technique developed to compute the energy

release rate during an incremental crack growth can be tested for

accuracy by comparing the computed values with the values obtained by

standard LEFM methods. The example problem to be considered here is a

centrally cracked isotropic plate subjected to an inplane tensile force

normal to the crack plane. The other methods to be used for comparison

purposes are i) the compliance method, ii) the rate of change of total

potential energy method, and iii) the stress intensity factor method.

dC

In the compliance method, the rate of change of compliance _-_ is

calculated using Eq. (20). The compliances CI and C2 are obtained from

6

CI = P_I and C2 = E (32)

where P1 and P2 are the forces on the boundary and _ is the applied

constant displacement. The energy release rate is obtained using Eq.

(21).

In the rate of change of total potential energy method, the energy

release rate is given by

HI - H2

G = tAa (33)

where the total potential energies before and after an incremental crack

growth are given by
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51 = UI - _l and H2 = U2 - _2 (34)

where UI and U2 represent the strain energy of the plate before and

after the crack growth, respectively, and _i and _2 are the correspond-

ing potential energies of the external forces.

The finite element grid used to model the centrally cracked plate

is shown in Figure i0. The plate was assumed to be made of a linearly

elastic material having a Young's modulus E of 69 GPa (10.2 Msi) and a

Poisson's ratio _ of 0.3. The plate dimensions were 15.2 cm (6 in) in

length, 10.2 cm (4 in) in width, and 0.13 cm (0.05 in) in thickness. The

two ratios of crack length a to width b considered were 0.2 and 0.3. A

total of twenty eight 20-node quadratic isoparametric brick elements

were used. In order to represent the i//r stress singularity near the

crack tip, the 20-node elements were collapsed into 15-node quarter

point, triangular wedge singular elements [142]. Tensile stresses were

applied to the plate by prescribing uniform displacements at the boun-

dary nodes. As can be seen from the results presented in Table i, the

agreement of the present analysis with existing analyses is excellent.

4.5 Crack Growth Simulation

A three-dimensional, elastoplastic, generally orthotropic finite

element computer program patterned after that of Monib and Adams [144]

was developed for use in the present work. The present program includes

20-node quadratic isoparametric brick elements and a crack propagation

capability. The basic elastoplastic analysis theory and the structure of

the present computer code are given in Appendix A.

At the node points near an existing crack, the energy release rates

for all possible modes of fracture are evaluated at each load increment,
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Table i

Comparison of Energy Release Rates During an Incremental

Crack Growth Obtained by Different Analytical Methods for a

Central Cracked Isotropic Plate

Energy Release Rate
Method J/m _ (lb/in)

Compliance Method (Eq. 21)

i p2

G = 2 Aat(Ci-C2 ) 6089 34.4

Rate of Change of Potential Energy (Eq. 33)

HI - H2
G = 5947 33.6

tAa

Stress Intensity Factor [143]

_K 2
I YP_a

G =---_ , where KI = wt 6106 34.5

and Y = 1.82

Present Analysis 6053 34.2
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and compared with the corresponding critical energy release rate values

for the material. When the computed energy release rate at a node point

is equal to the critical value in an increment, that node point is

separated into two node points and the reaction forces are applied to

the old and new node points. The element nodal connectivity of all

elements sharing the new node point is changed to simulate the crack

growth in the model. If the crack tip node point at which the energy

release rate reaches a critical value happens to be a corner node, the

crack is assumed to extend up to the nearest mid-side nodes; if the node

point is a mid-side node, the extended crack surface is assumed to be

that connecting the adjacent corner nodes and the mid-slde node on the

opposite side. The possible forms of crack extension are shown in Figure

ii. Before applying the next load increment, the system of equations

with new boundary conditions and reaction forces is solved again to

check for any further crack growth. The crack growth simulation

technique and its implementation in a three-dimensional elastoplastic

finite element computer code is further explained in Appendix B.

4.6 Example Problem

The accuracy of the crack growth simulation technique developed in

the present analysis was verified by applying it to predict self-similar

crack growth in a centrally cracked 2024-T3 aluminum plate subjected to

inplane Mode I loading.

The finite element grid and plate geometry were assumed as shown in

Figure i0. The material properties used for the 2024-T3 aluminum alloy

[143] were as follows: Young's modulus = 70.3 GPa (10.2 Msi), Poisson's

ratio = 0.345, yield strength = 345 MPa (50 ksi), and tensile strength =

485 MPa (70 ksi). The nonlinear properties of 2024-T3 aluminum [143]
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were incorporated in the analysis by expressing the stress-strain

relation of the material in terms of Richard-Blacklock curve-fitting

parameters (see Appendix). The displacement constraints on the collapsed

nodes of the singular elements were removed, to represent the i/r type

of singularity of a perfectly plastic material. Such perfectly plastic

singular elements are extensively used in elastoplastic fracture

mechanics [145]. The thickness of the plate was taken as small as

possible, viz., 0.0025 cm (0.001 in), to simulate plane stress condi-

tions without introducing errors due to resulting large aspect ratios of

the grid elements.

In Figure 12, the predicted crack extension at various applied

stress levels and the associated extent of plastic yielding are shown.

The shapes of the plastic yield zones were obtained by drawing smooth

curves around the Gaussian integration points at which the material was

predicted to have yielded. It should be mentioned here that in earlier

trial runs in which greater plate thickness values were considered, the

predicted yield zone sizes were smaller than those shown in Figure 12,

and they varied in size through the thickness of the plate. The extent

of plastic yielding at various applied stress levels predicted in the

present analysis is in general agreement with those given in Reference

[146] for a central cracked aluminum plate.

During the process of crack propagation (particularly for large

scale yielding), the analysis also predicted that some of the elements o

which had previously plastically deformed start unloading as the crack

passes by, as one might expect.

It was observed that the crack propagated in small increments

initially, up to about half the plate width, and then propagated rapidly
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across the plate. This may have been due to the coarseness of the finite

element grid used, especially towards the later stages of crack growth,

but the applied stress _ = 330 MPa (47.9 ksi) at the point of observed

instability of the crack agreed with the critical stress value _ = 348
c

MPa (50.4 ksi) for the 2024-T3 aluminum [143]. The fracture toughness

value of 41.8 MPa,/-mm(38 ksi i_) computed using KIC = G_-, where G is the

energy release rate at the onset of unstable crack growth and E is the

Young's modulus of the material, was also in good agreement with the

material toughness value of 44 MPa_-m (40 ksi/_n) reported in Reference

[143].

The predicted crack opening displacements (crack shapes) of the

propagating crack are plotted in Figure 13. The effect of plastic

yielding at higher applied stress levels in blunting the crack tip can

be seen. Neither experimental nor analytical crack opening displacement

values were available in the literature for the material and crack

geometry used here, preventing comparisons with the crack opening dis-

placements predicted here.
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SECTION 5

MICROMECHANICS ANALYSIS

5.1 Model Geometry

Assuming that the fibers in a unidirectional lamina are packed in a

regular square array, a repeating cell can be identified. One such is

that containing a single broken fiber surrounded by continuous unbroken

fibers, as previously indicated in Figure 2. In this configuration, the

density of the broken fibers is 25 percent of the total number of

fibers. Other types of microflaws to be considered include matrix cracks

parallel to the fibers, and fiber-matrix interface debonds. These

microcracks are assumed to be distributed symmetrically with respect to

three orthogonal planes.

Figures 14 and 15 show the two three-dimensional finite element

models developed for the analysis. Taking advantage of the assumed

symmetry, only one octant of the repeating cell need be modeled. The

first model (Figure 14) contains a total of 282 20-node, quadratic

isoparametric elements, whereas the second model (Figure 15) contains

144 similar elements. Due to the memory (including extended core) limits

of the CDC Cyber 760 computer available for use at the University of

Wyoming, it was not possible to run the first, more refined model. An

attempt was made to run this model on the Department of Mechanical

Engineering's Prime 550 minicomputer, but the running time per increment

was prohibitively long. However, the limited results for the few incre-

mental solutions which were obtained using the Prime 550 (with double

precision) were later used to evaluate the much coarser second model

(Figure 15). Stresses predicted using the two different models differed
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Analysis.
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by only 4 percent (maximum). The very large aspect ratios of the inter-

face elements and the distortions of the fiber elements in the second

model did not introduce significant errors.

There are 945 node points in the second model (1583 in the first).

Three different microflaws, in the form of broken fibers, matrix cracks

parallel to the fibers, and fiber-matrix interface debonds, have been

represented in this model, by altering the boundary conditions. The

material microflaw parameters (defined by Eqs. 12 in Section 3) used in

the present analysis were:

= 0.250
afrbk

a = 0.020
mcpl

afmid = 0.017

The model incorporates a double-node concept at the junction of the

broken fiber and the surrounding matrix, in order to represent the

actual conditions of discontinuity of the fiber at the break, while

retaining the continuity of the matrix material at the same point. The

double nodes are constrained to have identical displacements in the x

and in the y directions.

The displacement boundary conditions for the octant of the repeat-

ing cell shown in Figure 15 are that the normal displacements of all

nodes on the vertical boundaries be uniform (from symmetry), and that

the normal displacements of all nodes on the upper horizontal boundaries

(surface EFGH) also be uniform (generalized plane strain loading). This

complex boundary condition has been achieved in the present three-
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dimensional model by assigning the same global degree of freedom to all

nodes that are required to have same boundary displacements.

5.2 Material Properties

The constituent materials used for the unidirectional lamina were

Hercules AS4 graphite fibers and Hercules 3501-6 epoxy matrix. The

temperature- and moisture-dependent properties of the neat (unrein-

forced) matrix material as obtained by means of solid rod torsion tests

[147] have been expressed in the present analysis in a polynomial form

as

P(T,M) = CIT + C2M + C3TM + C4 (35)

where P is the material property of interest, T is temperature (°C), M

is the moisture content (weight percent) and the C's are coefficients of

the polynomial (see Table 2). Temperature- and moisture-dependent

octahedral shear stress-octahedral shear strain curves for the Hercules

3501-6 resin are shown in Figure 16. The matrix is treated as an iso-

tropic, elastoplastic material in the analysis, by using a three-

parameter Richard-Blacklock model [148].

The properties of the graphite fibers used in the analysis are

given in Table 3. The anisotropic nature of the fibers has been taken

into account in the present analysis, as explained in the Appendix.

5.3 Loading Conditions

The main objective of the present micromechanics analysis was to

evaluate the six critical energy release rate values, viz, GCII, GC22,

GC33, GC23, GC31 and GCI 2. These critical energy release rate values

correspond to the loading conditions denoted by their subscripts. In
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Table 2

Coefficients of the Polynomial (Eq. 35) Used to Define the

Temperature-and Moisture-Dependent Properties of the Hercules

3501-6 Epoxy Resin.

Property = CIT + C2M + C3TM + C4

Property CI C2 C3 C4

Shear Modulus, G -1.14 x 103 -2.49 x 103 -3.38 x i01 2.60 x 105

(psi)*

Richard

Blacklock

Curve-Fit

Parameters n* 2.56 x 10-3 2.78 x 10-3 1.65 x 10 -4 1.54 x i00

To (psi)* -1.50 x 102 -1.36 x 103 6.46 x i00 2.67 x 104

Ultimate Shear -8.73 x i01 -6.03 x 102 1.86 x i00 1.66 x 104

Strength, Tult(psi)*

Coefficient of 1.22 x 10-7 1.04 x 10-6 -5.90 x i0-I0 3.83 x 10-5

Thermal_Expansion

(oc)-i

Coefficient of 0 0 0 3.20 x 10-3

Moistu_ Expansion,
8 (%M) -

Poisson's Ratio, _ 0 0 0 0.34 x i00

*Based on solid rod torsion shear data
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Figure 16. Temperature- and Moisture-Dependent Octahedral Shear Stress-Octahedral Shear
Strain Curves for Hercules 3501-6 Epoxy Resin, as Obtained from Solid Rod

Torsion Tests [147].



Table 3

Mechanical Properties of Hercules AS4 Graphite Fiber [147]

Longitudinal

Modulus, E_ 221 GPa (32.0 Msi)

Transverse

Modulus, Et 13.8 GPa (2.0 Msi)

Longitudinal Shear

Modulus, G_t 34.5 GPa (5.0 Msi)

Transverse Shear

Modulus, Gtt 5.52 GPa (0.80 Msi)

Major Poisson's

Ratio, _t 0.20

In-Plane Poisson's

Ratio, _ 0.25
tt

Longitudinal Tensile

Strength, o_ 3100 GPa (450 ksi)

Transverse Tensile

Strength, o_ 345 GPa (50 ksi)

Longitudinal Shear

u 1550 GPa (225 ksi)
Strength, T_t

Transverse Shear

u 172 GPa (25 ksi)
Strength, Ttt

Longitudinal Coefficient

of Thermal Expansion, _ -0.36xi0-6/°C

Transverse Coefficient

of Thermal Expansion, e 18.0xi0-6/°Ct
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general, to evaluate all six GC values, the micromechanics model must be

subjected to six separate loading conditions, viz, °ii' °22' o33' _23'

_13 and _12" However, since the model and the microflaws are assumed to

be symmetric about the x-z and y-z planes (in the transverse direction),

GC22 = GC33 and GCI 3 = GC21.

This reduces the total number of loading conditions to four (viz,

Oil , o22 , T21 and T23 ). Using the finite element model of the octant of

the repeating cell (Figure 15), the longitudinal and transverse normal

loads (see Figures 17a and 17b, respectively) are easily applied as

prescribed boundary displacements, in increments, whereas the two

longitudinal shear loading conditions (see Figures 17c and 17d) pose

difficulties. Under shear loading, the assumption of three orthogonal

planes of symmetry used in modeling an octant of the repeating cell is

not valid. Longitudinal shear loading (Figure 17c) can be modeled dir-

ectly, however, as presented in detail in Reference [40]. The longitud-

inal shear loading is applied by prescribing uniform displacements to

all node points on face FBCG (Figure 15 or Figure 17c) in the longi-

tudinal direction and removing the uniform displacement constraint on

all node points on the top face (EFGH) except along lines EH and FG. A

general approach to apply transverse shear loading in a two-dimensional

micromechanics analysis is to identify a repeating cell with its sides

at 45 ° to the transverse co-ordinates (2 and 3 in Figure 15), and then

to apply equal and opposite normal stresses to the cell boundaries. It

is not possible to identify such a repeating cell in the present case

that has same percentage of broken fibers. However, the crack propaga-

tion due to shear loading in the transverse plane has been studied in

the present analysis by applying equal and opposite normal stresses in
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the two transverse directions (Directions 2 and 3 in Figure 17d). This

is equivalent to transverse shear loading at 45 ° to the transverse

co-ordinates.

Before applying any mechanical loads, the thermal conditions

induced after curing the graphite/epoxy composite at (177°C) and then

cooling down to room temperature (21°C) were simulated by reducing the

stress-free reference temperature of 177°C to room temperature in i0

equal increments.

5.4 Crack Initiation and Propagation

For the three different types of microflaws considered in the

present analysis (broken fibers, matrix cracks parallel to fibers, and

fiber-matrix debonds) it could be judged beforehand that each individual

flaw type would become critical only under certain loading conditions

(e.g., the broken fiber will become critical only under longitudinal

tension and longitudinal shear loading conditions). These observations

considerably reduced the total number of computer runs required. The

different combinations of types of microflaws and loading conditions

actually considered are summarized in Table 4.

Table 4

Loading Conditions Considered with Different Types

of Microflaws in the Present Analysis

Flaw Type Loading Conditions

Broken Fibers °ll - _12 -

Matrix Cracks - a22 - T23

Fiber-Matrix Debond - a22 - T23
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5.4.1 Broken Fibers

The fiber break is introduced in the finite element model (Figure

15) by simply removing the displacement constraint of all node points in

the fiber lying in the plane of the break. If the fiber break is intro-

duced before the cooling temperature increments are applied, the graph-

ite fiber, which has a negative longitudinal coefficient of expansion,

tends to extend beyond the symmetry plane. This has been prevented in

the present analysis by not introducing the flaw until the system is

cooled down to room temperature. The crack propagation flag is also

turned off during the incremental loading.

The applied longitudinal displacement increments used were 0.0076

cm (0.003 in). In Figure 18, the predicted crack propagation at various

applied stress levels is schematically shown. At the applied stress of

284 MPa (50 ksi), all nodes near the initial crack opened in modes MZI,

MZI I and MZIII (predominantly in MZI), forming a radial crack front.

During subsequent load increments, the crack steadily grew until it

reached the diagonally opposite fiber. The crack then spread all across

the matrix. Although not shown here, plastic yielding was restricted to

small volumes near the propagating crack. Comparisons of the sizes of

the plastic yielding zones indicated that as the crack front advanced,

the nodes previously yielded started unloading.

In Figure 19, the predicted crack growth from the broken fiber due

to longitudinal shear loading is shown. The applied longitudinal dis-

placement increments on the vertical face were 0.0076 cm (0.003 in). Two

radial cracks initiated in the plane of the fiber break, and propagated

around the adjacent fibers.
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5.4.2 Matrix Cracks Parallel to Fibers

Two matrix cracks parallel to the fiber direction (Figure 20a) were

introduced into the finite element model prior to loading by splitting

the central node points on each of the sides into two nodes. The matrix

cracks are symmetrically oriented with respect to a diagonal vertical

plane, thus maintaining the transverse symmetry of the model.

Considering transverse normal loading first (see Table 4), the

transverse normal incremental displacements applied were 0.0051 cm

(0.002 in), on the face normal to the 2-axis (see Figure 20). Figure 20

shows the predicted crack propagation at various applied stress levels.

The matrix crack normal to the load direction propagated in its initial

plane up to the center of the model, and then suddenly changed its

direction and propagated at 45 ° to the loading direction. In subsequent

load increments, the crack growth was in the fiber direction. In an even

later stage, the other initial matrix crack (parallel to the loading

direction) started to propagate in its initial plane, all the way across

the model (see Figures 20c and 20d), and then in the fiber direction.

The initiation and growth of microcracks from the initial matrix

cracks under transverse shear loading is shown in Figure 21. The incre-

mental displacements on the transverse faces were +0.0051 cm (+0.002

in) and -0.0051 cm (-0.002 in) in the 2- and 3-directions, respectively.

As in the case of transverse tension, the initial crack, after running

o in its plane for some distance, changed its direction by 45° to the

transverse plane.

The mixed mode crack growth predicted when the unidirectional

composite containing matrix cracks is subjected to either transverse

tension or transverse shear is important from another viewpoint also.
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The crack growth predicted may very well explain the experimentally

observed zig-zag path of the delamination. It can be concluded that

cohesive matrix cracks in the "resin-rich" zone at the ply interface are

influenced by the presence of adjacent fibers, and change their path

during propagation As a result, the "fracture toughness" of the com-

posite also increases. This is in agreement with the experimental

observation that the fracture toughness of the reinforced resin is

higher than that of the neat resin. The transverse tension analysis can

be directly correlated with the double-cantilever beam test in which a

delamination is introduced between plies.

5.4.3 Fiber-Matrix Debond

In this flaw model, one of the fibers in the finite element model

of the repeating cell was partially debonded from the matrix material by

introducing double node points at the fiber-matrix interface in the x-y

symmetry plane. The model was then subjected to transverse tension and

transverse shear loads as in the case of the matrix crack flaw model.

The crack growth at various stages of transverse tensile loading is

shown in Figure 22. The crack growth pattern for transverse shear

loading was similar. Only a part of the initial debond extended in the

fiber direction, as shown in Figure 22.

5.5 Critical Energy Release Rates

The microcracks from the three different types of initial micro-

flaws considered grew in a number of small increments. By further

refining the finite element grid and reducing the load increment sizes,

it should be possible to obtain slow and stable crack growth from

microflaws. The fact that additional load increments are required to

propagate a crack suggests that there is increasing resistance to crack
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growth. This situation is similar to that observed in the case of thin

metal plates. The slow and stable crack growth in metals has been

explained in terms of R-curves [13,149]. The energy release rate

corresponding to the point of crack instability can be interpreted as

the critical energy release rate or fracture toughness. However, in the

present analysis, the loading increments were not small enough to

generate adequate R-curves. Therefore, the energy release rate

corresponding to only the first or second increment of crack growth was

taken as the critical energy release rate here. The energy release rate

was evaluated by dividing the difference between the global strain

energy before and after an incremental crack growth by the total area of

the incremental crack. The potential energy of the external forces was

zero since the crack growth was modeled as occurring under fixed grip

conditions. The computed critical energy release rates for the different

types of microflaws and loading condition combinations are tabulated in

Table 5.

Table 5

Computed Critical Energy Release Rates from the Micromechanics Analysis

critical Energy Release Rate, j/m2(in-lb/in2)--'-

Microflaw GC11 GC2 2 GC13 GC23
Type

Broken

Fibers 434 (2.45) -- 1873 (10.58) --

Matrix

Cracks -- 262 (1.48) -- 273 (1.54)

Fiber-

Matrix

Debond -- 119 (0.67) -- 350 (1.98)
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For use in the macromechanics analysis to be presented in the next

section, the lower of the values for a particular load increment was

taken as the critical value. The six critical energy release rates

actually used in the subsequent macromechanics analysis are given in

Table 6.

Table 6

Computed Values of Critical Energy Release Rates Selected for

Use in the Macromechanics Analysis

Parameter (J/m2) (in-lb/in 2)

GCI I 434 2.45

GC22 119 0.67

GC33 119 0.67

GC23 273 1.54

GCI 3 1873 10.58

GCI 2 1873 10.58
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SECTION 6

MACROMECHANICS ANALYSIS

6.1 Notched Composite Laminates

The numerical results of a macromechanics analysis of the initia-

tion and growth of a delamination crack near a through-the-thickness

notch crack in a composite laminate is presented in this section. In the

present macromechanics analysis, the individual laminae are treated as

homogeneous anisotropic continua. A central notched and a single-edge

notched [±45/0] s graphite/epoxy laminate were considered. It was assumed

that delamination involved only matrix-dominated fracture, and that the

crack surface is parallel to the ply interface.

The matrix-dominated transverse normal, transverse shear and

longitudinal shear properties of the lamina used in the present analysis

are shown in Figure 23. These properties were generated using a two-

dimensional finite element micromechanics analysis [147]. The nonlinear

stress-strain response of the ply material indicates the need to use the

elastoplastic stress analysis and fracture criterion for crack growth

developed in the present analysis.

6.2 Finite Element Model

The finite element grid used to model the central and single-edge

notched [±45/0] s graphite/epoxy laminate is shown in Figure 24. The

laminates were assumed to be 15.2 cm (6 in) in length, 10.2 cm (4 in) in

width, and to have a notch length a to plate width b ratio of 0.2 in

both cases. Twenty-node, quadratic, isoparametric elements were used.

Each individual ply was modeled by a separate layer of elements. The

model shown previously in Figure i0 is a single-layer model. Even though
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Figure 23. Matrix-Dominated Properties of a Unidirectional Hercules AS4/3501-6 Graphite/Epoxy

Composite as Predicted by a Finite Element Micromechanics Analysis [147] (fiber

volume = 60 percent).
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Figure 24. Finite Element Grid Used to Model the Central and Single-

Edge Notched [±45/0]s Graphite/Epoxy Laminate, a/b = 0.2.
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the assumed material symmetry relative to the x-z plane does not actual-

ly exist in the case of a center notched laminate, it was assumed here

that this does not affect the delamination crack growth in the one-half

laminate modeled. In order to reduce the total number of 20-node ele-

ments required to accurately represent the stress state near the crack

tip, the 20-node isoparametric elements were collapsed into 15-node,

quarter-point, triangular, wedge-like, singular elements in this region

[142]. These elements, if the collapsed nodes at the crack tip are not

constrained to have the same displacements, represent a perfectly

plastic (i/r type) singularity [150].

6.3 Crack Initiation and Propagation

The finite element model of the central notched and single-edge

notched [±45/0]s graphite/epoxy laminate was subjected to inplane

uniaxial tensile stresses, applied in small increments by prescribing

boundary displacements. At each increment of loading, the local elastic

energy release rates were calculated at all node points lying near the

crack tip in the +45/-45 and -45/0 interfaces. If the computed energy

release rate at any of these nodes was equal to the critical energy

release rate, the node was split into two nodes and the reaction forces

were applied to the split nodes. Holding the boundary node displacements

constant, the system of equations was solved again to check for further

crack extension due to the reaction forces at the split nodes. Experi-

mentally measured [i00] fracture toughness values for a Hercules

AS4/3501-6 graphite/epoxy composite, viz, GIC = 130 J/m 2 and GII C =

GIIIC = 230 J/m 2, were used as critical energy release rates in the

present analysis.
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Figures 25 and 26 show the growth of the plastic zone near the

crack tip between +45/-45 and -45/0 interfaces, for the central notched

laminate during different stages of loading. Figures 27 and 28 show the

' growth of plastic yielding for the single-edge notched laminate. In both

the central notched and single-edge notched laminates, the plastic

yielding was confined to a very small region near the through-the-

thickness crack tip.

Figures 25 through 28 presented the extent of interface yielding.

The onset and growth of actual delamination cracks between the +45/-45

and -45/0 interfaces for the case of the central notched laminate are

shown in Figures 29 and 30. The applied stress increments were kept

small enough to cause only one increment of crack growth in an increment

of applied stress. A Particular mode (Mode I, II or III) was predominant

in each incremental crack advance; this is indicated in Figures 29 and

30 by different shadings to represent the crack growth. The delamination

crack growths in the case of a single-edge notched laminate are shown in

Figures 31 and 32. In both the central and single-edge notched lami-

nates, the delamination was more extensive between -45/0 interfaces than

between +45/-45 interfaces.

6.4 Crack Growth Resistance and Fracture Toughness

In all cases, for loadings beyond the maximum applied stress levels

shown in Figures 29 through 32, the analysis predicted a very large area

of delamination. This was undoubtedly due to the very coarse finite

element grid used in the present analysis. With a finer grid, the crack

growth would likely continue further in the same slow and stable manner

as observed during the initial phase in the present analysis. One of the

explanations given for such stable crack growth behavior is that the
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A)120MPA(17,4KSI) B)223MPA(32,3KSI) ¢)291MPA(42,2KSI)

Figure 25. Material Yielding at Increasing Levels of Applied Axial Tensile Stress Near the

Crack Tip at the +45/-45 Interface in a Central Notched [±45/0]s Graphite/EpoxyLaminate.
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A)120MPA(17,4KSI) B)223MPA(32,3KSI) C)291MPA(42,2KSt)

Figure 26. Material Yielding at Increasing Levels of Applied Axial Tensile Stress Near the

Crack Tip at the -45/0 Interface in a Central Notched [±45/0] Graphite/Epoxy
Laminate. s



A)120MPA(17,4KSI) B)223MPA(32.3KSI) C)291MPA(42,2KSI)

Figure 27. Material Yielding at Increasing Levels of Applied Axial Tensile Stress Near the
• Graphite/EpoxyCrack Tip at the +45/-45 Interface in a Single-Edge Notched [!45/0] s

Laminate.
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A)120MPA(17,4KSI) B)223MPA(32,3KSI) C)291MPA(42,2KSI)

Figure 28. Material Yielding at Increasing Levels of Applied Axial Tensile Stress Near the
Crack Tip at the -45/0 Interface in a Single-Edge Notched [±45/0] s Graphite/Epoxy
Laminate.
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MODEI _ MODEII _ MODEIll

Figure 29. Delamination Growth Near the Crack Tip at the +45/-45 Interface in a Central Notched

[±45/0] s Graphite/Epoxy Laminate at Increasing Levels of Applied Axial Tensile Stress.
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MODEI _m MODEIf _ MODEIll

Figure 30. Delamination Growth Near the Crack Tip at the -45/0 Interface in a Central Notched

[±45/0]s Graphite/Epoxy Laminate at Increasing Levels of Applied Axial Tensile Stress.
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MODEI _ MODEII MODEIll

Figure 31. Delamination Growth Near the Crack Tip at the -45/0 Interface in a Central Notched

[±45/0] s Graphite/Epoxy Laminate at Increasing Levels of Applied Axial Tensile Stress.
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Figure 32. Delamination Growth Near the Crack Tip at the +45/-45 Interface in a Single-Edge
Tensile Stress.



energy absorption rate continuously increases with increasing plastic

zone size in front of the crack tip [95]. In the present analysis, the

elastic strain energy release rate at the next node point attains the

critical value only after sufficient material yielding. The delamination

crack growth observed in the present analysis can be characterized by

R-curves [150,151], and a point of instability can thus be established.

The energy release rate corresponding to the onset of unstable crack

growth is then defined as the delamination fracture toughness of the

particular notched composite. Owing to the coarseness of the present

finite element grid, crack growth beyond the singular crack tip elements

is not considered accurate. Nevertheless, for general information, the

energy release rates corresponding to the onset of the large delamina-

tions observed in the present model are given in Table 7. It should be

noted that in the present analysis, only delamination crack growth was

allowed; all other possible modes of crack growth, e.g., transverse

intralaminar cracking, were completely suppressed.

Table 7

Critical Energy Release Rates Predicted During Delamination Crack

Growth in Notched [±45/0] S Graphite/Epoxy Composite Laminates

Critical Energy Release Rate

Notch Geometry (J/m2) (ib/in)

Central Notch 515 2.92

Single-Edge Notch 511 2.89
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SECTION 7

INTEGRATED ANALYSIS

The ability of the integrated micromechanical and macromechanical

fracture criterion (IMMFC) and the crack propagation scheme developed in

the present analysis to predict the onset and growth of cracks in

general multilayered composite laminates will be demonstrated in this

section by means of an example problem. A single-edge notched [±45/0] S

graphite/epoxy laminate is assumed to be subjected to inplane tensile

stress normal to the notch (as shown previously in Figure 24). Individ-

ual laminae of the laminate are assumed to contain uniformly distributed

microflaws of the same size and density as used in the micromechanics

analysis of Section 4. In accordance with the IMMFC, the critical energy

release rate values evaluated by a rigorous micromechanics analysis of

the unidirectional lamina, as listed previously in Table 6, were used as

the criterion for the onset of cracking. These GC values, which were

derived in material coordinates, were transformed here into laminate

coordinates for the +45 and -45 plies.

The finite element grid, the layup of the laminate, and the notch

dimensions were assumed to be the same as these used for the macro-

mechanics analysis (see Figure 24 of Section 6).

7.1 Crack Propagation

The incremental inplane tensile stress was applied by prescribing

uniform displacements to all appropriate boundary node points. Displace-

ments of 0.00127 cm (0.0005 in) and 0.00254 cm (0.001 in) were applied

in the first two increments, respectively, followed by increments of

0.00762 cm (0.003 in) in subsequent increments.



In Figures 33 through 35, perspective views of the total crack/

damage growth are shown, at three successively increasing levels of

loading. It must be noted that the sizes of the incremental cracks are a

direct function of the finite element sizes. In Figure 36, the average

laminate stress is plotted against the applied normal tensile strain.

The several horizontal steps in this stress-strain curve correspond to

the large-scale crack propagation which occurred at higher load levels.

Beyond applied strains of 6.75 percent there was no increase in the

stress level.

Details of the predicted crack/damage growth between and within

individual plies at various applied stress levels are schematically

shown in Figures 37 through 39. Due to the complex nature of the pre-

dicted crack growth, results are shown individually between each ply

interface, and also on the top surface. It can be seen that, in addition

to the self-similar growth of the original crack, a number of through-

the-thickness transverse cracks running parallel to the fibers are

initiated during the initial stages of loading. The delamination mode

becomes predominant at the later stages of loading. In the present

analysis, only node points in a narrow band on either side of the

original crack were considered for possible cracking.

No experimental results were available in the literature for the

specific layup sequence and laminate geometry used in the present

example problem. However, the predicted strength and crack propagation

extent are in very good agreement with general experimental observations

[151]. This example problem demonstrates that the IMMFC and crack

propagation scheme developed in the present analysis are very effective
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Figure 33. Three-Dimensional View of the Predicted Crack/Delamination
Growth in a Single-Edge Notched [±45/0] Laminate at an

Applied Axial Tensile Stress of 105 MPaS(15 ksi).
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Figure 34. Three-Dimensional View of the Predicted Crack/Delamination
Growth in a Single-Edge Notched [±45/0] Laminate at an

Applied Axial Tensile Stress of 300 _aS(44 ksi).
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Figure 35. Three-Dimensional View of the Predicted Crack/Delamination

Growth in a Single-Edge Notched [145/0] Laminate at an

Applied Axial Tensile Stress of 434 MPaS(64 ksi).
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Figure 36. Predicted Stress-Strain Response of a Single-Edge

Notched [±45/0]s Graphite/Epoxy Laminate Subjected
to an Axial Tensile Stress.
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DELAMINATION

CRACKS .j_

EXTENSION

A) BETWEEN 0/0 PLIES B) BETWEEN 0/-45PLIES

Figure 37. Crack/Delamination Growth in a Single-Edge Notched

[±45/0] Graphite/Epoxy Laminate at an Applied Axial
TensileSStress of 105 MPa (15.2 ksi).
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C) BETWEEN +45/-45PLIES D) IN OUTSIDE (45O) PLY

Figure 37 (Continued). Crack/Delamination Growth in a Single-Edge

Notched [±45/0] s Graphite/Epoxy Laminate at an
Applied Axial Tensile Stress of 105 _a (15.2 ksi).
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A) BETWEEN 0/0 PLIES B) BETWEEN 0/-45PLIES

Figure 38. Crack/Delamination Growth in a Single-Edge Notched [±45/0] s

Graphite/Epoxy Laminate at an Applied Axial Tensile Stress
of 300 MPa (44 ksi).
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Figure 38 (Continued). Crack/Delamination Growth in a Single'Edge

Notched [±45/0] s Graphite/Epoxy Laminate at
an Applied Axial Tensile Stress of 300 _a

(44 ksi).
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A) BETWEEN 0/0 PLIES B) BETWEEN 0/-45PLIES

Figure 39. Crack/Delaminatino Growth in a Single-Edge Notched

[±45/0]s Graphite/Epoxy Laminate at an Applied Axial
Tensile Stress of 434 MPa (63 ksi).
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C) BETWEEN-45/+45 PLIES D) IN OUTSIDE (45°) PLY

Figure 39 (Continued). Crack/Delamination Growth in a Single-Edge

Notched [±45/0] Graphite/Epoxy Laminate at

an Applied Axia_ Tensile Stress of 434 MPa
(63 ksi).
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in predicting crack/damage growth in composite laminates very similar to

that which occurs in actual composites.
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SECTION 8

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

A new fracture criterion has been developed for the fracture

characterization of fiber-reinforced composites. The Griffith energy

balance criterion has been modified to include energy absorption due to

actual physical failure processes in the form of matrix yielding, matrix

cracks, fiber breaks and fiber-matrix interface debonds, all of which

are characteristic of the heterogeneous and anisotropic nature of these

materials. The integrated micromechanical and macromechanical fracture

criterion (IMMFC) proposed here is based on the assumption that micro-

flaws in the form of broken fibers, matrix cracks and debonded fibers

that exist in the composite for various reasons strongly influence the

fracture process in these materials. Arguing that there is a relation

between the size and density of the microflaws and the fracture response

of the composite, parameters which are a measure of the size and density

of the microflaws are introduced in the development of the IMMFC.

A three-dimensional finite element micromechanics model has been

presented to study the influence of these microflaws on the strength,

stiffness and fracture toughness of a unidirectional lamina. The model

has several advantages over two-dimensional transverse and longitudinal

section models [58,59]. Even though the computational costs of using the

three-dimensional micromechanics analysis are higher than for two-

dimensional micromechanics analyses (the 3-D analysis uses 174 CPU

seconds per solution increment on the CDC Cyber 760 computer, compared

to 80 CPU seconds per solution when using the 2-D micromechanics analy-

sis), with the rapidly increasing capabilities of digital computers, the



use of three-dimensional models such as in the present analysis appears

to be the logical long term approach.

In the present analysis, a local energy release rate in the

presence of plasticity has been defined and used as a fracture criterion

for the onset and growth of cracks. By including plasticity in the

criterion, the analysis is applicable to most of the composite material

systems currently in use.

A crack growth simulation technique based on the virtual crack

extension method has been developed for use in crack growth studies

using a general three-dimensional finite element model. The accuracy of

this crack growth technique has been established by applying it to

predict the crack propagation in a centrally cracked aluminum plate.

Several conclusions can be drawn from the results of the micro-

mechanics analysis. For example, microcracks from broken fibers and

fiber-matrix debonds grow in a self-similar fashion, whereas matrix

cracks parallel to fibers are influenced by the presence of these fibers

and change direction. This observation may be used to explain the

experimentally observed zig-zag path of delamination cracks. The analy-

sis can also be used to verify the double-cantilever beam test, in which

a crack is introduced between unidirectional plies and propagated in the

fiber direction.

The macromechanics analysis, in which only delamination crack

growth is allowed, is useful in studying the amount of delamination

associated with different stacking sequences.

In summary, the IMMFC and crack growth simulation techniques

developed in the present analysis have been successfully used to predict

the onset and growth of cracks/damage in the form of delaminations,
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transverse cracks parallel to fibers, and through-the-thickness cracks

in a single-edge notched [±45/0] s graphite!epoxy laminate subjected to

inplane tension normal to the notch. Even though the finite element

grids used in the present analysis for both the micromechanics and the

macromechanics analyses were shown to be adequate, a finer grid than the

one used here will result in higher resolution. By considering different

sizes and orientations of microflaws, a relation between microflaw

parameters and the critical energy release rates eventually can be

established.

An extensive experimental study should also be initiated, to

further establish the validity of the IMMFC. It should be possible to

actually evaluate the material microflaw parameters, by observing and

measuring the sizes of microflaws in actual composites. The critical

energy release rates corresponding to the measured microflaw parameters

could then be used for fracture characterization at the laminate level.
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APPENDIX A

TIIREE-DIMENSIONAL, ELASTOPLASTIC, GENERALLY ORTHOTROPIC

FINITE ELEMENT ANALYSIS

The theory of the three-dimensional, elastoplastic, generally

orthotropic finite element analysis developed by Monib and Adams [144]

for the analysis of composite laminates is summarized here.

The unidirectional composite lamina is assumed to be homogeneous

and transversely isotropic. The three principal material axes are

assumed as follows: the 1-axis, in the direction of the reinforcing

fibers, the 2-axis, normal to the fibers but in the plane of the lamina,

and the 3-axis, normal to the plane of the lamina (see Figure 2a of

Section 3). The 2-3 plane is the plane of transverse isotropy.

A quadratic yield condition similar to Hill's yield criterion [152]

is chosen in the form

2 2

2f(oij) = F(o 2 - 03 ) + G(o 3 - oI) + H(o I - 02 )2 (A.I)

2 2 2

+ 2L _^zJ + 2M T^_j±+ 2N TI2 = i

where F, G, H, L, M, and N are parameters characteristic of the current

state of anisotropy. These parameters of anisotropy are allowed to vary

with changes in temperature and/or moisture content. It can be shown

[152] that



i i i i

i i i i
-- = H + F , 2G = --+ (A.2)

1 1 1 1

where oy, oy, and oy are the tensile yield stresses in the i, 2, and 3

directions of anisotropy. Also, if rY
23, T Yl andT Y2 are the yield

stresses in shear with respect to the principal axes of anisotropy, then

1 1 1

2L = 2 ' 2M = 2N = (A.3)

(_Y3) (TYl)2 ' (Ty2) 2

The functional dependence of the parameters of anisotropy on temperature

and moisture follows from Eqs. (A.2) and (A.3) when the yield stresses

are expressed as functions of temperature and moisture content.

The obvious association, implied by the term 'work-hardening,'

between the work used to produce plastic flow and the hardening created,

suggests the hypothesis that the degree of hardening is a function only

of the total plastic work, and is otherwise independent of the strain

path. The external work dW per unit volume done on the element during an

infinitesimal increment of strain deij , with the continued loading of an

element of the material is

dW = o..dc.. (A.4)
m3 13
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A part of this work

= oijdc_j (A.5)dWe

represents recoverable elastic energy; the remainder is the plastic work

per unit volume, i.e.,

dWp dW - dWe - dE j) oijd_ j (A.6)

where dcp. = dc.. - dge. is termed the plastic strain increment. The
z3 zj z3

term dW is necessarily positive since plastic distortion is an irrever-
P

sible process, and the plastic work is then

Wp =foijdgP j (A.7)

In order for plastic work to be performed, the state of stress must

be on the yield surface, i.e., the stress state must also satisfy the

condition given by Eq. (A.I). To enforce this constraint, the Lagrange

multiplier d% is used [153]. Then

_o._ . [°i3"d_pzj- f(°ij)d%] = 0 (A.8)
z3

which gives

dc_. - _f dk (A.9)
zj _..

zj

With the use of Eq. (A.I), a set of equations for the plastic strain

increments can then be written as follows:
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d_ j = oijdl , i = j (A.10)

p *

dYij = 2T..dl, i # J
13 (A.ii)

where

°l = [H(al - o2) + G(aI - o3)]/(F+ G + H)

o2 = [F(°2 - o3) + H(o 2 - Ol)]/(F + G + H)

o3 = [G(c3- 0I) + F(o3 - 02)]/(F+ G + H)

:%

T23 = LT23/(F+ G + H) (A.12)

T31 = MT31/(F + G + H)

_12 = NTI2/(F + G + H)

Separating the strains into elastic and plastic components gives

dCl = Slld°l + S12d°2 + Sl3dO 3 + d£[

de2 = S21d° 1 + $22d° 2 + S23do 3 + ds_ (A.13)

de3 = S31d°l + S32d° 2 + $33do 3 + dc_

and for the shear components

d_23 = S44dx23 + dye3

dY31 = S55dT31 + dY_l (A.14)

dYl2 = S66dT12 + dye2
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where the S.. are the coefficients of the elastic compliance matrix [Se]
13 :. .

in

{dg) = [se]{do} (A.15)

The inverse of Eq. (A.15) is

{do} = [ce]{d_} (A.16)

where [Ce] is the elastic stiffness matrix. If Xo, Yo' etc., are the

initial yield stresses, then according to the assumption of isotropic

= Y = hY , etc., where h is a parameter increas-hardening above, X hX o, o

ing monotonically from unity that expresses the amount of hardening. The

anisotropic parameters must then decrease in accordance with Eq. (A.2)

as F = F /h2, etc. The manner in which h varies with strain can beo

explained by analogy with the isotropic theory due to von Mises. Let

h2]_2 = F+G+H

-- 2 -- --

3 F(°2 °3) + G(°3 °i)2 + H(°I °2)2

= 2 F + G + H (A.17)

+
F+G+H

be a nondimensional measure of the equivalent stress 5. By analogy with

- the von Mises criterion for isotropic materials, Hill [152] suggested

that if there is a functional relation between o and the work W (this is

yet to be demonstrated by experiment), there must be one between

and the effective (or equivalent) strain, fd_, as defined by
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d_ :[2(F + G + H)i½ [F(Gd£2 - Hd£3)2 + G(HdE 3 - Fd£l )2 + H(Fd£ I - Gd£2 )2(FG + GH + HF) 2

2(dY23) 2 2(dY31) 2 2(dYl2) 2 ½
+ + + (A.18)

L M N

where d£ij and dYij are given by Eqs. (A.13) and (A.14). This is the

analogue of the equivalent stress-equivalent strain curve for isotropic

materials, the area under which is equal to the work per unit volume.

Accordingly,

dW = 5(d_ - d_ e) = 5d_ p (A.19)
P

But, from Eq. (A.5)

dWp = Old_P + ..o + T23dY_3 + ... (A.20)

P from Eq. (A.10) into Eq. (A.20) yields
Substituting for de_j and dYij

dW 2 _2
P = _ o dl (A.21)

If an effective stress-effective plastic strain curve is then

constructed, the slope of such a curve at any point will be

H' - d_ (A.22)
d_P

from which

d_p = d___ (A. 23)
H'
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Now, substituting for dgPin Eq. (A.19), and equating the result to Eq.

(A.21) since both are equal to the plastic work per unit volume dWp,

2
2

_ d_ = _ _ d_ = dW (A.24)P

Rearranging

2

2 _d_ 4
_ o H'd_ (A.25)

The left-hand side of Eq. (A.25) is recognized as the differential of

Eq. (A.17), defining 5. Thus,

2 @d@ = 1

F + G + H[[-G(_3 - °l)d_l + H(°l - °2)d_l]

+[F(o 2 - o3)do 2 - H(o I - o2)do2]

+[-F(o 2 - o3)do 3 - G(o 3 - Ol)dO3]

+ 2L_23dT23 + 2MT31dT31 + T2NTI2dTI2 _ (A.26)
J

With the use of the definitions of Eq. (A.12), Eq. (A.26) can be re-

written as

23 8d8 = Oldo I + o2do 2 + o3do 3

, , ,
+ 2_23dT23 + 2T31dT31 + 2TI2dTI2 (A.27)

To arrive at a relation between stress and strain, Eqs. (A.13) and

(A.14) must be inverted. Rewriting these equations in matrix form,
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{dg} = [se]{do} + {dc p} (A.28)

Thus,

[se]-l{d_} = [se]-l[se]{do} + [se]-l{d_P } ' (A.29)

But [se]-l = [ce]. Also, because of the symmetry of [se],

[se]-I[se] = [I] (A.30)

where [I] is the identity matrix. Hence, the above expression becomes

[ce]{d£}= {do} + [ce]{d£p} (A.31)

or

{do} = [ce]{d£}- [ce]{d£p} (A.32)

Substituting from Eq. (A.10) for d_p,

[dTij_ = [Cij] - dl[Cij ] °iidYij _ . (A.33)

or

e

{doij} = [Cij]{d_ij} - dX{A} (A.34)

where, for an orthotropic material, i.e., a material with three planes

of symmetry,
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CllO 1 + C12o 2 + C13o 3

Cl2O I + C22o 2 + C23o 3

C13o I + C23(_2 + C33o3

{A} _ (A.35)

2C44T_3

2C55T31

2C66_12

Equating Eqs. (A.25) and (A.27) yields

4 -2 * * *

o H'dl = OldO I + o2do 2 + o3do 3

(A.36)

+ 2T23dT23 + 2T31dT31 + 2Tl2d_12

Now, substituting for do in Eq. (A.36) from Eq. (A.34), and solving for

dl

Aldg I + A2dg 2 + A3dg 3 + A4dY23 + A5dY31 + A6dYI2
dl =

B (A.37)
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where Ai(i = i, ..., 6) are elements of {A}, and

4 _2 H' * * *
B = _ o + AlO I + A2o 2 + A3a 3

+ 2A4T23 + 2AsT31 + 2A6TI2 (A.38)

Finally, substituting for dX from Eq. (A.37) into Eq. (A.38) yields the

desired form for the stress-strain relation, viz,

{do} = [cP]{d_} (A.39)

where

2

AI AIA 2 AIA 3 _ AIA 4 _ AIA 5 _ AIA 6

CII - B-- C12 B C13 B B B B

2

A2 A2A 3 A2A 4 A2A 5 A2A 6

C22 B C23 B B B B

2 A3A4 A3A5 A3A6A3

C33 B B B B

[Cp ] = (A.40)
2

A4 A4A 5 A4A 6

C44 B B B

2 AsA6A5
Symmetric C55 B B

2
A6

C66 - _-
is the )lastic stiffness matrix.
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For the 20-node quadratic isoparametric brick element, the element local

coordinates and node numbers used in the present formulation are as

shown in Figure A.I.

8

ii n

I

,7

5
19

17 3

i

2

Figure A.I. Node Point Numbering System for the 20-Node Quadratic
Isoparametric Brick Element.

The shape functions are:

For the corner nodes

i

Ni = _ (i + $o) (i + no) (i + _o) (_o + no + _o - 2) (A.41)

i = 1-8
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For the midside nodes

N i
i = _ (i - 2) (i + no) (I + _o) i = 9-12

i
Ni = _ (i - n2) (i + Go) (I + _o) i = 13-16 (A.42)

1
Ni = _ (i - 2) (i + _o) (i + no) i = 17-20

where

co cg i , no Bn i , and _o _i

The relation between derivatives in the local and global coordinate

systems is given by the chain rule of differentiation as

I 1( 'n = x'n Y'n z'n _ ( )'Y = [J]! ( ),y (A.43)( ),_ x,_ y,_ z,_ ,( )'z _( )'z

where commas denote partial differentiation and [J] is the tranformation

Jacobian matrix, which can be given as

I _NI/_ ..... _N20/_ ] Xl Yl Zl -[J] = _Nl/_n ..... _N20/_n I x2 Y2 z2 (A.44)_NI/_ ..... _N20/_ : : .

x20 Y20 z20
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The strains at a point within an element can be written in terms of

element nodal displacements as

" {s} = [B]{_} (A.45)

where{ 6}T = [u, v, w, u 2, v2, w2 ... u20, v20, w20] is the displacement

vector.

The element stiffness matrix is given by

[K] = t'/[B]T[_][B ] d(Vol) (A.46)-s

Vol

The C coefficients in the generally orthotropic stiffness matrix in

Eq.(A.46) are listed below:

CII = UI + U2 cos (2e) + U3 cos (4e)

C12 = U4 + U3 cos (4e)

c13 = C13c°s2e + C23sin2e

= = 0

C16 = ½ U2 sin (2e) - U3 sin (4e)

C22 = U1 = U2 cos(2e) + U3 cos (40)

U23 = Cl3sin2e + C23 c°s2e

C24 = C25 = 0 (A.47)

C26 = ½ U2 sin 2e + U3 sin(40)

C33 = C33

C34 = C35 = 0

C36 = Cl3sine cose- C23sine cose

c44 = C44c°s2e + C55sin2e

C45 = C44sin@ cos e + C55sine cos e
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C46 = 0

C55 = C44 sin2@ + C55cos 2@

C56 = 0

C66 = U5 = U3 cos (40)

where

UI = 1/8 (3CII + 3C12 + 4C66)

U2 = 1/2 (CII - C22)

U3 = 1/8 (CII + C22 - 2C12 - 4C66)

U5 = 1/8 (CII + C22 - 2C12 + 4C66)

CII = (i - ")23 _22 ) VEIl

C22 = (i - _31 _13 ) VE22

C33 = (i - x'12 _21 ) VE33 (A.48)

C12 = (_21 + _23 _31 ) VEIl = (_12 + _13 _32 ) VE22

C13 = (_31 + _21 _32 ) VEIl = (_13 + _23 _12 ) VE33

C23 = (_32 + _12 _31 ) VE22 = (_23 + _21 _13 ) VE33

C44 = G23

C55 = G31

C66 = GI2

and

V = (i - u12u21 - u23u32 _ u13u31 _ u12u23u31 )-I
(A.49)

The Richard-Blacklock three-parameter model [148] has been used to

represent the nonlinear stress-strain response of the material. The

model is in the form:

o = E_/[l+ IE_/coln]I/n (A.50)
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where o and n are two independent parameters, and E is the initial
o

slope of the stress-strain curve. Since the shape of an effective

stress-effective strain curve is similar to a tensile stress-strain

curve, a similar equation for the effective stress-effective strain can

be written as

= E _/[i + [E _/_ In]I/n (A.51)o

where _ is the effective stress and _ is the effective strain, as

defined by Eqs. (A.17) and (A.18), respectively. The two independent

parameters _ and n, together with the third parameter E, which is theo

initial slope of the curve, are selected to best fit the experimental

data.

The tangent modulus H' of the effective stress-effective plastic

strain curve is related to E as [154]

E ET
H' = (A.52)

where ET is found by differentiating Eq. (A.51) with respect to I. The

resulting equation is

l+n

ET = E/[1 + IE _/_ in] no (A.53)

. Since the material properties depend on temperature in the case of

metal matrix composites and on both temperature and moisture in the case
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of polymetric matrix composites, the material properties are represented

by a second order polynomial of the form

P(T,M) = CIT2 + C2M2 + C3TM + C4T + C5M + C6 (A.54)

where P is the functional material property of interest, T is temper-

ature, M is moisture content, and CI through C6 are regression coef-

ficients for that property. The parameters in Eq. (A.51), viz E, _ and
O

n, which can also vary with temperature and moisture, are thus also

expressed in tile same polynomial form of Eq. (A.54).

142



APPENDIX B

Crack Growth Simulation Technique

The crack growth simulation in a three-dimensional elastoplastic

finite element analysis, as developed in Section 4, is further explained

here. Implementation of this crack growth simulation technique in the

actual finite element computer code is also discussed.

The technique uses the critical strain energy release rate

(fracture toughness) of the material as the criterion for the onset and

growth of a crack. That is, at any stage of loading, if the computed

strain energy release rate for a virtual crack extension Aa exceeds the

fracture toughness of the material, the original crack is assumed to

have extended by an amount &a.

The strain energy release rate in the presence of plasticity, I, is

computed using the rate of change of compliance method. It must be noted

that the symbol I is used to denote strain energy release rate in the

present analysis, to distinguish it from the symbol G which is generally

used to represent the strain energy release rate in linear elastic

fracture mechanics.

Making use of the observations made in Section 4 relative to the

stiffness derivative method for both fixed load and fixed grip

conditions, that any small extension of the crack in a finite element

model affects only the relatively few elements near the crack tip, the

strain energy release rate in the present analysis is computed in terms

of local compliance changes.

The organization of the three-dimensional, elastoplastic, generally

orthotropic finite element analysis computer code (WYO3D) with crack



propagation capability, as developed for use in the present analysis, is

shown in Figure B.I.

I_INPUT_ CHECKI+--qE_O l
CHECK2 I --_ BMTRX I

DRIVE 1--_ ELSTIF _-_ DBTRX I

DMTRX _---i YPRSPR I

q DPMTX [

"-[ GAUSP l©

I STRESS _ NODSTR[ q HYGRG [

STREF i _ JACOB _ MI_ I

MULT I _ SFADR I

YFCHK _ OUTPUT _--_ FAILUR I

CRACK1 [--_ STIFF [

CRACK2 [ _ AREACRI

Figure B.I. Block Diagram of the WYO3D Computer Code
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The bulk of the input data regarding the model geometry, material

properties, and loading conditions are read into the INPUT subroutine

following the general format given in Reference [144]. For crack

propagation, the following additional variables should be read as input:

NPCR: Crack Propagation Flag. It must be equal to I for crack

propagation analysis.

NNCT: Number of Nodes near a Crack T_ip.

NNCTN: N_ode N_umber of C_rack Tip N_odes.

NELCN: Elements surrounding a crack tip node as shown in

Figure B.2.

Crack Tip Node

Figure B.2. Numbering Order of Elements Near a Crack Tip Node
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The step by step procedure adapted for crack growth simulation in

the computer code is as follows:

Step I: During the first load increment, the total stiffness

coefficients (used for computing the strain energy release

rates) at all crack tip node points in all nine modes of crack

extension (refer to Figures 5, 6, and 7) are evaluated in

subroutines STRESS, CRACK, and STIFF, as explained in Section

4 using a two-dimensional example. The stiffness coefficients

K are then stored in an array for later use.

Step 2: The three incremental force components FX, Fy, and FZ at all

crack tip nodes are also stored in an array (this is done in

subroutine CRACK1). In all of the subsequent load increments,

the incremental force components FX, Fy, FZ at the crack tip

nodes are computed and added to the previous incremental

values to obtain total force components (in CRACKI).

Step 3: In subsequent load increments, the crack is virtually extended

to the next nearest grid points in all possible directions (in

both opening and shearing modes) and the reduced stiffness

coefficients K are evaluated as explained in the two-

dimensional example in Section 4. It must be noted that there

may not be two values of K for each mode, depending on which

set of elements were used to compute K (e.g., Elements I and

2, or 3 and 4 in Figure 9).
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Step 4: The strain energy release rates I are calculated in all nine

modes of crack extension using the expressions given in Eq.

(29). (Equation 29 gives I values for Modes MZI , MZII, and

MZIII. For Modes _I' MXII' MXIII' _I' _II' and _III'

similar expressions can be derived by cylically changing the

subscripts.) In an actual computation, there are two values of

I for each mode, corresponding to two values of the reduced

stiffness coefficients. The higher of the two computed strain

energy release rates is taken as the strain energy release

rate in that particular mode.

Step 5: In subroutine CRACK2 the computed values of the strain energy

release rates are compared with the critical energy release

rates (the fracture toughness values for the nine modes of

fracture, which are read as material properties in subroutine

INPUT). If the computed strain energy release rate is higher

than the critical strain energy release rate, the crack tip

node point is split into two node points. A new node number

is then assigned to one of the nodes and the element

connectivity matrix is updated to include new nodes. Reaction

forces are than applied to the old and the new node points.

The crack propagation flag (NPCR) is set equal to 2, to check

for any further crack growth due to reaction forces in the

same load increment. If there are no further crack extensions,

the NPCR is set back to i and loading is resumed.
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