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Some turbulent solutions of the unaveraged Navier-Stokes equations (equa-
tions of fluid motion) are reviewed. Those equations are solved numerically
in order to study the nonlinear physics of incompressible turbulent flow.
Initial three-dimensional cosine velocity fluctuations and periodic boundary
conditions are used in most of the work considered. The three components of
the mean-square velocity fluctuations are initially equal for the conditions
chosen. The resulting solutions show characteristics of turbulence, such as
the linear and nonlinear excitation of small-scale fluctuations. For the
stronger fluctuations the initially nonrandom flow develops into an apparently
random turbulence. Thus randomness or turbulence can arise as a consequence
of the structure of the Navier-Stokes equations. The cases considered include
turbulence that is statistically homogeneous or inhomogeneous and isotropic or
anisotropic. A mean shear is present in some cases. A statistically steady-
state turbulence is obtained by using a spatially periodic body force. Various
turbulence processes, including the transfer of energy between eddy sizes and
between directional components and the production, dissipation, and spatial
diffusion of turbulence, are considered. It is concluded that the physical
processes occurring in turbulence can be profitably studied numerically.

I. INTRODUCTION

Nearly all of the flows occurring in nature, as well as those that are
manmade, are turbulent. For instance, the boundary between a column of rising
smoke and the surrounding atmosphere is generally irregular and contains a
range of scales of motion, indicating the presence of turbulence. The atmos-
phere itself is usually turbulent, as shown by the irregular appearance of many
of the clouds present in it. Jets, wakes, astrophysical flows, and flows over
surfaces are commonly turbulent, as is the region downstream of a grid in a
wind tunnel or downstream of a waterfall. 1In general, turbulent flows are the
rule and Taminar flows the exception.

Because of the importance and challenge of the turbulence problem a great
deal of research has been done over the past century. Basic ideas have been
set forth, for instance, in papers by Reynolds (1883, 1895), Taylor (1921,
1935), von Karman (1937a, 1937b), and Heisenberg (1948). That work, together
"with more recent research, is discussed in books by Batchelor (1953), Hinze
(1975), Frost and Moulden (1977), and others.

In spite of considerable research activity there is no general deductive
theory of high-Reynolds-number (strong) turbulence. (Reynolds number is
defined as the product of a velocity and a Tength divided by the kinematic
viscosity of the fluid. It is a measure of the ratio of inertial to viscous
effects.) Most of the analytical theories depend on a closure assumption for

~*Also published in Reviews of Modern Physics, vol. 56, no. 1, part I,
April 1984.
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a hierarchy of averaged equatﬁons.1 This immediately calls into question the
appropriateness of referring to the analytical theories as deductive, except

at Tow Reynolds numbers or in the final stage of decay, where nonlinear effects
are small (Batchelor, 1953; Deissler, 1977).

One way in which a closure assumption can be avoided is by closure by
specification of sufficient random initial conditions (Deissler, 1979). That
method can successfully predict turbulence decay, and in the sense that the
evolution of all initially specified quantities can be calculated, gives a
complete solution. To use it, however, the initial conditions must be fully
turbulent, and a large amount of initial data is required to satisfactorily
specify the initial turbulence. The method does not seem capable of extension
to some cases of turbulence maintained by mean gradients, where the effect of
initial conditions may eventually become negligible (e.g., in fully developed
turbulent pipe flow).

In view of the foregoing comments it seems desirable to consider numerical
solutions of the unaveraged Navier-Stokes equations that display features of
turbulence. MNumerical methods and computers can be considered as tools for the
solution of equations, just as can Fourier transforms and series expansions.

It might be pointed out that it is more appropriate to refer to a numerical
solution of the unaveraged equations as deductive than it is to so refer to
most of the analytical theories, which are based on averaged equations and
require closure assumptions. Moreover, most of the analytical theories are so
complicated that a large amount of numerical work is required to obtain results
from them. Attempts to obtain analytical solutions of the unaveraged equations
have not been successful, mostly because of the nonlinearity of those equa-
tions. Herring (1973) mentions that the simplest turbulence theory is just the
Navier-Stokes equations. Since most turbulence calculations are numerical
anyway, no insight is lost by considering direct integration of the Navier-
Stokes equations forward in time, starting from some suitable initial data.

Numerical solution (or numerical simulation) has sometimes been called
experiment. It seems, at least to this writer, that there is an important
difference between numerical solution and experiment as generally practiced.
The former uses directly, and attempts to solve, a given set of constitutive
equations, in this case the Navier-Stokes equations. The latter ordinarily
does not, although both methods may arrive at the same result if the constitu-
tive equations are congruous with the portion of nature to which they are
applied. 1In general, it appears that experiment works directly with nature,
whereas numerical solution works with a set of constitutive equations that
should represent at least a portion of nature.

Several numerical solutions of the unaveraged equations have appeared that
use a spectrum of random initial fluctuations (e.g., Orszag and Patterson,
1972; Clark et al., 1979; Rogallo, 1981; and Feiereisen et al., 1982). These
studies, which appear to demonstrate the feasibility of carrying out turbulent
solutions with present-day computing equipment, represent major advances.

TThe hierarchy of correlation (averaged) equations obtained from the
unaveraged Navier-Stokes equations is unclosed because of the nonlinearity of
the latter. That is, there are more unknowns than equations, so that a
closure assumption is required to obtain a solution.
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Because of the difficulty of specifying realistic turbulent initial con-
ditions (experimentally or analytically), it may be more appropriate to ini-
tially specify a simple regular fluctuation with a single length scale (as
actually occurs downstream of a grid in a wind tunnel). This should be better
for studying the development of small-scale fluctuations (and of turbulence in
general) than would a spectrum of initial fluctuations, since for the latter,
smali-scale fluctuations are already present in the inittal flow. Moreover,
much higher Reynolds number flows can be calculated with a given numerical grid
when a single length scale is initially present, at least for early and moder-
ate times. Taylor and Green (1937) and others (e.g., Deissler, 1970a;

Van Dyke, 1975; Corrsin and Koliman, 1977; and Deissler and Rosenbaum, 1973)
have used a perturbation series to calculate the nonlinear development of
higher harmonics from lower ones, but the calculations could not be carried
very far in time. 1In these analyses the directional components of the initial
fluctuation intensity were not equal. Orszag and Fateman (Orszag, 1977a) have
recently used Taylor and Green's initial conditions and obtained a numerical
solution for higher Reynolds numbers and longer times. The inviscid (infinite
Reynolds number) case was investigated in some detail by Betchov and Szewczyk
(1978).

The present review considers the nonlinear physics of turbulence numeri-
cally. Although the initial conditions used herein are nonrandom, the flow at
higher Reynolds numbers breaks up into an apparently random turbulence. Unlike
the problem of Taylor and Green all three of the directional components of the
mean-square velocity fluctuations are equal at the initial time. 1In the
absence of mean shear they are also equal at later times. Taylor and Green's
directional components, on the other hand, do not approach equality, even at
long times (Orszag, 1977a).

To study the processes in turbulence, first some background on the basic
fluid flow and turbulence equations is given in section II and on numerical
methods and solutions in section III. Four cases of turbulence are then con-
sidered, starting in section IV with the simpliest one, in which mean gradients
are absent (Dejssler, 19871a). In this case no energy sources are present and
the turbulence decays freely. (By contrast the presence of mean gradients
would imply energy sources in the flow.) Here (in section IV) one can study
viscous dissipation and the nonlinear transfer of energy between wave numbers
or eddy sizes, as well as the randomization of the flow. Next, in section V a
uniform mean shear is appliied to study turbulence production and maintenance,
and the linear and nonlinear transfer of energy between wave numbers and
between directional components (Deissler, 1981c). The transfer of energy
between wave numbers (both linear and nonlinear) is manifested by the creation
of small-scale structure in the turbulence. Then, in section VI, the spatial
diffusion of the inhomogeneous turbulence in a developing shear layer is con-
sidered (Deissler, 1982). Finally, by using a spatially periodic body force a
turbulence that is statistically steady state at long times is studied in sec-
tion VII. The first three of these cases have also been studied, but with a
spectrum of random initial fluctuations and in some cases with an assumption
for the small eddies, in Orszag and Patterson (1972), Clark et al. (1979),
Rogallo (1981), Shannan et al. (1975), and Cain et al. (1981). Here we will
confine ourselves to the development of turbulence from nonrandom initial
conditions with a single length scale.

One of the problems in the numerical study of turbulence is that of accu-
racy, because of the small scale of some of the turbulent eddies. As the
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Reynolds number (strength) of the turbulence or the time increases, smaller
eddies are generated. No matter how small the numerical mesh size, one can
always pick a Reynolds number or time large enough that the results will be
quantitatively inaccurate. One way of improving the accuracy is by extrapola-
tion to zero mesh size, as will be done here. The effectiveness of that pro-
cedure depends to some extent on the accuracy of the unextrapolated solution.
If the solution has to be extrapolated too far, the results may not be accu-
rate. Another popular method (not used here) is to model eddies smaller than
the grid spacing (subgrid modeling) (e.g., Smagorinsky, et al., 1963;
Deardorff, 1970; Clark et al., 1979; and Ferziger, 1977). This method requires
an empirical input, although not as great a one as that for full modeling of
the averaged equations. One might think of subgrid modeling as a useful crutch
that can be phased out as numerical resolution improves. However, when it is
used, it is sometimes difficult to tell which effects come from the equations
of motion and which result from the subgrid modeling. Siggia (1981) has
recently considered the converse problem; he made a numerical study of the
small-scale eddies in which he modeled the larger ones.

Here we are mainly concerned with physical processes and trends, rather
than with highly accurate numerical results (possibly unattainable at very high
Reynolds numbers). Of course some degree of accuracy is necessary; otherwise
we will not even be able to calculate trends. As the numerical mesh size
decreases, quantitative differences in the results might be obtained. It is
to be hoped, however, that the results will not be qualitatively different.
Results to date indicate that to be the case.?2

Other relevant review articles are given by Orszag (1977b), Schumann, et
al. (1980), Eckman (1981), and 0tt (1981).

II. BASIC EQUATIONS AND CONCEPTS

A. The Unaveraged Equations

Turbulent flows of a great many liquids and gases obey the Navier-Stokes
equations. Those equations assume that the fluid is Newtonian (stress propor-
tional to strain rate) and that it can be considered a continuum. The latter

2The attainment of accurate quantitative results appears to be a ques-
tion of improvement of computers and of numerical methods. If state-of-the-art
numerical methods and computers are used, good quantitative as well as quali-
tative results can already be obtained, at least for low and moderate Reynolds
numbers. Orszag and Patera (1981) (as well as Moin and Kim (1982) using sub-
grid modeling) made significant numerical calculations of the velocity profile
in the wall region of fully developed turbulent channel flow. The results
agreed reasonably well with experiment, showing a wall transition region and a
fully turbulent region in which the velocity varies as the logarithm of dis-
tance from the wall. The advent of high-speed computers and efficient numeri-
cal algorithms may be making possible for the first time the use of the
Navier-Stokes equations in the solution of a wide range of realistic
(turbulent) fluid-flow problems.
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s usually a good assumption because in most cases intermolecular lengths are
much smaller than the smallest significant turbulent eddies.

1. Equations in terms of instantaneous quantities

The Navier-Stokes and continuity equations for constant fluid properties
(including incompressibility)3.4 can be written as (e.g., Batchelor, 1967;
or Deissler, 1976)

~ o~ 2
y AW a5 Y M
at axk P ax1 axkaxk _
and
5o
k
— =0 (2)
axk

The subscripts can take on the values 1, 2, and 3, and a repeated subscript in
a term indicates a summation, with the subscript successively taking on the

values 1, 2, and 3. The quantity G1 is an instantaneous velocity compo-
nent, x4y 1is a space coordinate, t 1is the time, p 1s the density, » the
kinematic viscosity, and p s the instantaneous pressure. Equations (1) and
(2) are, respectively, statements of the conservation of momentum and of mass.
In order to obtain an explicit equation for the pressure, we take the diver-
gence of equation (1) and apply the continuity equation (2) to get

2 ~ o~
1 82'5 . 3 (uQuk) (3)
P 3%, 3%, 3Xy o%,

In the remainder of the paper it will usually be convenient to use

equations (1) and (3) rather than (1) and (2). Equations (1) (i =1, 2, 3)

and (3) constitute a set of four equations in the four unknowns wuy and p.
Since they are for instantaneous velocities and pressures, they should apply

to turbulent as well as to Taminar flows, subject to the restrictions mentioned
at the beginning of this section. The Navier-Stokes equations have been known
for more than a century, but their use in turbulent flows, other than in a
schematic sense, has been restricted by a Tack of ability to obtain solutions.
Now, with advances in computers and numerical methods the situation appears
somewhat brighter.

3The continuity equation is sometimes included in the Navier-Stokes
equations.

4Most turbulence studies have been carried out for constant properties,
for simplicity. That flow 1s realistic if the turbulence velocities are rea-
sonably low compared with the velocity of sound, and if temperature gradients
are not large.
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The fundamental turbulence problem is an initial-value probliem. That is,
given initial values for the uy as functions of position, a value for v,
and suitable boundary conditions, equations (1) and (3) should be sufficient
for calculating the uy and p/p as functions of time and position. The
initial and boundary conditions used herein are specified in section III.

To interpret the terms in equation (1), it is convenient to muitiply it
through by p, and by the stationary volume element dxj; dxp dx3. Then the
term on the left side of the equation is the time rate of change of momentum in
the element puqy dxy dxp dx3. This rate of change is contributed to by the
terms on the right side of the equation. The first term on the right side, a
nonlinear inertia term, is the net rate of flow of momentum into the element
through i1ts faces. The next term, also nonlinear, is a pressure-force term
and gives the net force acting on the element by virtue of the pressure gradi-
ent in the x4 direction. It is nonlinear because of the nonlinear source
term on the right side of the Poisson equation for the pressure (eq. (3)).
Finally, the last term in equation (1), a linear viscous-force term, gives the
net force acting on the element in the x3 direction by virtue of the
viscosity.

2. Equations in terms of mean and fluctuating components

Following Reynolds (1895) one can break the instantaneous velocities and
pressure in equations (1) to (3) into mean and fluctuating (or turbulent)
components; that is, set

u; = Uy o+ oug (4)
and
p=P+p (5)
where
E1=E=0 (6)
U1 = Uy (7)
and
P=p (8)
The overbars designate averaged values.3

Equation (2) becomes, on using
equations (4), (6), and (7),

du aUk

T (9)
axk
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which shows that both the fluctuating and mean velocity components obey con-
tinuity. Equations (1) and (3) become, on using equations (4) to (9), taking
averages, and subtracting the averaged equations from the unaveraged ones,

au o u au au
i 1 3p i i i .8
- (Uu,) - =~ P Uy — - U, — + ™ u,u (10)
at ax 17k P ax1 axk axk k axk k axk axk 17k
2 32(u u,) au, au 32 u.u
1 _8% kel 5k 2 k8 (11)
p X, Xy ax, dxy axg  dx,  ax, 23Xy

Equations (10) and (11) will be used to study the processes in turbulence, but
not for computational purposes (except in linearized cases). The first four
terms of equation (10) and the first two of equation (11) look 1ike the terms
in equations (1) and (3), although their meanings are exactly the same only

if Uy =P =0 (eqs. (4) and (5)). The first three terms on the right side of
equation (10), which contribute to 3uy/at, can still be interpreted as an
inertia-force (or turbulence self-interaction) term, a pressure-force term, and
a viscous-force term. The remaining terms are, respectively, a turbulence
production term, a mean-flow convection term, and a mean-turbulent-stress term,
which appears when the turbulence is statistically inhomogeneous (when mean

turbulence quantities such as uyu, are functions of position). (The reasons

calling the production and convection terms as such will perhaps become clearer
when the equivalent terms in the averaged equations (eqs. (14) and (15)) are
discussed.) It will be seen that when the mean velocity gradient is not zero,
the term -Up duj/axyx generates a small-scale structure in the turbulence by
vortex stretching. The nonlinear self-interaction term -3(uqug)/axg also
produces a small-scale structure and in addition produces randomization of the
flow. These effects will be considered in sections IV to VI. The Poisson
equation for the pressure fluctuation (eq. (11)) has three source terms: a
nonlinear term, a mean-gradient term, and a mean-turbulent-stress term, which
appears when the turbulence is inhomogeneous.

We have defined an inhomogeneous turbulence as one in which averaged
turbulence quantities are functions of position. Thus, a homogeneous turbu-
lence 1s one in which averaged turbulence quantities are not functions of
position. For instance, in homogenous turbulence

SFor the most general flows the average is usually an ensemble average
over a large number of macroscopically identical flows (i1.e., mean quantities,
but not fluctuating quantities, are the same in all the flows). In most cases,
however, statistical uniformity or stationarity with respect to one or more
coordinates, or with respect to time, obtains. Then, the average is taken with
respect to the one or more coordinates or with respect to time. According to
the ergodic theorem those averages are the same as the ensemble average if the
flow is turbulent. 1In section V (uniform mean shear) three-dimensional spatial
averages are used, even when the periodic boundary conditions introduce some
local inhomogeneity into the fluctuations. Those averages stj11 have meaning
since their values are independent of the position of the boundaries of the
cycle over which the averages are taken.
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Ty Ty ()

u1ujuk # uiujuk (xu)

and

p au1/axj #D au1/axj (xg)

Similar statements apply to other averaged turbulence quantities in a
homogenous turbulence.

B. Averaged Equations

Although the averaged equations will not be solved numerically because
they do not form a closed set, they are useful for studying the processes in
turbulence.

1. Equations for mean flow

First consider the equations obtained by averaging each term of
equations (1) and (3) and using equations (4) to (9).5 This gives

p'ﬂj‘i = ~-pU aU1 _ P b =2 pvaU1 ~ puu (12)
at k axk ax1 axk axk ik
and
2 al 32 u_u
9P - P_é_ U 2\ _ p 8k (13)
axg axg ax2 k axk axg axk

These equations Took 1ike equations (1) and (3) with instantaneous values
replaced by average values, but with the important difference that an extra

term involving the quantity uiuj now appears in each of the equations.

These terms arise from the nonlinear velocity terms in equations (1) and (3)
and are a manifestation of the closure probliem of turbulencel. If those

terms were absent, equations (12) and (13) could be solved, and turbulent flows
would be no more difficult to calculate than laminar ones. Note that terms in
equations (12) and (13) that contain lower-case letters (other than x's) are
turbulent terms.

The form of equation (12) suggests that the quantity —pU1U augments the
viscous stress pvalUy/3xkx. Since it involves the fluctuating o% turbulent

velocity components uy and ug, we interpret it as a turbulent or

Reynolds stress. For instance -pu.u, will, in the presence of a mean-velocity
gradient aUj/ax2, act like a shea} gtress on an xi-x3 plane. 1In the
presence of 3Uj/3xp, uy; will more 1ikely be negative than positive when up
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is positive, so that u1u2 will have a nonzero negative value. The quantity

~pU.U, can be compared with a viscous shear stress obtained in the kinetic
thelrg of gases, where uy and up are now molecular, rather than macros Jpic

velocity components. Similariy pu2 will act like a normal stress on an
x2-x3 plane (similar to a normal s%ress or pressure obtained in kinet.c
theory, where uy 1is again taken to be a molecular velocity component).

2. One-point correlation equations

a. Construction of equations

We can construct equations for the undetermined quantities uiuj in

equations (12) and (13) from the evolution equation for uy (eq. (10)) and
a similar equation for the component uy:

2
au d u aU au
T (“j“k)“lgz*"axai‘”ka‘i’i‘“kﬁl*%”j“
K P 9%y k%K K k k
Multiply equation (10) by uj and the Ereceding equation for u; by
uj, add the two equations, and average. This gives, using continuity
(eq. (9)),
al oul
IR TSTORNY prruiites Bveyeiten B BURTRUNS: MU verres
at U1Yj "<“j”k ax, T W% e T Ykae YiYy
k k k
azu u
) 1 9 d 1]
-~ T/ u,u,u, - —|l— pu, + — pu + v
axk ik p (ax1 3 axj i ) axa axl
+ P +p - 2v (14)
P Xy axj axy axg

Setting 1 = 3 and using continuity, we get, for the rate of change of the
kinetic energy per unit mass,

a (UM} e (M%) s (WY
at 2 I B X, Tk X, 2 X, 2 Tk

1.8 (— 14
T Ay (puk> Y YTax. ax T Yax, ax (15)

As in equations (12) and (13), quantities in equations (14) and (15) that
contain lower-case letters (other than x's) are turbulent quantities.

103



The one-point correlation equation (eq. (14)) gives an expression for the
rate of change of u1uj that might be used in conjunction with equations (12)
and (13). But the situation with respect to closure is now worse than it was

—

before. Whereas without equation (14) we only had to determine u1uj, with it

we have to determine quantities like uiujuk, 3
(au1/axa)(auj/axﬁ). We might use equation (11) to obtain the pressure corre-
lations, but that would only introduce more unknowns. However, equations (14)
and (15) are useful for studying the processes in turbulence in that most of

the terms have clear physical meanings. Moreover, we will be able to calcu-
late terms in those equations from our numerical solutions.

u,, du,/ax,, and
PUy» P ol

b. Physical interpretation of terms

As in the case of equation (1) it is helpful, for purposes of interpre-
tation, to multiply the terms in equations (14) and (15) through by , and

by a volume element dx] dx2 dx3. Then the term on the left side of

equation (14) or (15) gives the time rate of change of pu1uj, or of the

kinetic energy pu.u,/2, within the element. This rate of change is contrib-
uted to by the terms on the right side of the equations. The first of those
terms is equal to the net work done on the element by turbulent stresses act-
ing in conjunction with mean-velocity gradients. It is therefore called a tur-

’bulence production term; it equals the rate of production of pu or of

u
- 1
pu.u,/2 within the volume element by work done on the element. A somewhat
ab réviated interpretation suggested by the form of the term, which is often

given, is that it represents work done on the turbulent stress PU U, by the
mean-velocity gradient.

The next term in each of the equations describes the convection or net
flow of turbulence or turbulent energy into a volume element by the mean veloc-
ity Ug. It moves the turbulence bodily, rather than doing work on it by
deforming it, as in the case of the production term. It vanishes when either
U¢ 1s zero (no mean flow) or when the turbulence 1s homogenous

mtr—

(u1uj # u1uJ (xk)). In the latter case there is no accumulation of turbulence
within a volume element, even with a mean flow.

The next three terms in equation (14) and in equation (15) also vanish
for homogeneous turbulence. Since they do not contain the mean velocity, they
do not convect or move the turbulence bodily. Therefore we interpret them as
diffusion terms, which diffuse net turbulence from one part of the turbulent
field to another by virtue of its inhomogeneity. The pressure-velocity-
gradient terms in equation (14) drop out of the contracted equation (15)
because of continuity (eq. (9)). Therefore, they contribute nothing to the

rate of change of the total energy 5_31/2, but they can distribute the energy

i
energy among the three directional components u?1)/2 (no sum on ). The last

term in equations (14) and (15) is the viscous dissipation term, which dis-
sipates turbulence by the presence of fluctuating velocity gradients.
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3. Two-point correlation and spectral equations

To consider the transfer of turbulence between eddy sizes or wave numbers
(spectral transfer), we must obtain two-point correlation equations. Terms
related to that process do not appear in the single-point equations ((14) and
(15)). To obtain two-point equations, we use in addition to equations (10)
and (11)' written at the point P, the following equations written at the
point P :

] 2! ] ]
a_lil___g_(ulul)_lapl+vauj _ul.a_lil_ula_ul+_a_m—l' (16)
at ~ ax& J7k ax5 axi axé k axé k axi axi Jk

and
2 t ! t { 2 tnt
] azp' 3 (ukug) ) auk aUa 3 Uy Ug a7
- = - - +
P axi axi 3X§ axi axi ax& axé axi

Multiplying equation (10) by ui and equation (16) by u1, adding, taking

averages,? and using equation (16) and the fact that quantities at one point
are independent of the position of the other point result in

aU au!
a_ _ _1 1 _9 : ¢ 9 T -
at YiY3 = - UYs ax, Uy ax; Uy ax, "'3 - Uy axp Y3 7 ax, U
2 — g —
9 u,u!l 3~ u,u!
el Y 1 d ) - 1 1] 13
- ax’ - 5 18
axﬁ u1ujuk P <ax1 puj ¥ axj uyP ) o LI * axi axé (18)

To simplify the equations, the turbulence will be considered homogeneous
(correlations independent of x1). (See Hinze (1975) or Deissler (1961)

for inhomogeneous equations.) Then the two-point correlations (e.q., 1uj)

will,be functions only of ry = X: - %x,, so that a/ax, = —a/ar1 and

a/ax1 = a/ari. In addition, homoaene1ly requires tha% aU1/axj be a con-
t

stant, so that aU'/ax' = al,/ax, and Uk - U, =r, au,/ax,. (If aU1/axj
were a function o} xq, we 10u13 not remove aK] xq dApenAency from
eq. (18).) Equation (18) becomes

au au
a_ T - _J 1/8 -
at Y4y =~ YWYy ax, ~ Uguy ax, " e (ar, ugp’ ar, pu;

9" u,u al 9 u,u!
173 K 173 9 Y ;
+ 20 ary ar, T ax. e ar, - ary, <u1ujuk h uiukuj> (19)

The equations for the pressure-velocity correlations obtained from
equations (11) and (17) are, for homogeneous turbulence,
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2 —— 2
1 3 u1p' _ 3 uiu& aUQ 3 uiuiui (20)
P arsL arn arg axk arsL ark
2 —l— ] 2 i
] d puj . ) ukuj aUk i 9 ugukl{1 (1)
p 3r, ar, ar,  ax, ar, ar,

a. Interpretation of terms

The terms on the right side of the Poisson equations (egs. (20) and (21))
are source terms associated with the mean velocity and with triple correlations
arising from the nonlinear velocity terms in equations (11) and (17). The
right side of the two-point equation (eq. (19)) contains, as in the case of the
single-point equation (eq. (14)), turbulence production, directional distribu-
tion (pressure-velocity), and viscous terms. There are no diffusion terms in
equation (19) since the turbulence is homogeneous. The last two terms in that
equation are new terms that do not have counterparts in the single-point equa-
tions. To interpret them, we convert equation (19) to spectral form by taking

its Fourier transform. Thus, define the following three-dimensional Fourier
transforms:

© > >
T2y - 2> ifk.r o 92
U1Uj (r) ‘—/0; (P:Ij(K)e de (22)
- Moy S vy fm n (:)61?%3 (23)
arj i ar, 3y J, U
aUk ] uﬁui 5 1: ? S
= | *
- %, re ar, = .!:w T1j(n)e dk (24)
and
) > > 16 ? >
_ K.
- 5;; uiuju& - uiukuj = JC Tij(“)e dx (25)

where ¢1j’ Hij’ T%j, and T1 are, respectively, Fourier transforms of the

guantities on the left sides of the defining equations (eqs. (22) to (25)),
« 1s a wave-number vector, and dk = dk, dk, dc,. Physical interpretations
of the Fourier transforms defined by eqult1oﬁs (52) to (25) follow.

Equation (19) becomes, on taking its Fourier transform,

aU au
A i N TS TR
at 13 7 %y ax, T Mtk ax T o Myy(R) = 2ok gy + Tyy + Tyy (26)

If we let =0 fin equation (22), we have
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ﬁi}:f o4y dw (27)

so that we can interpret 2 as a spectral component of u uj. As in
equation (19), terms on the Jight side of equation (26) can Be interpreted as
production, directional distribution, and viscous dissipation terms. They

contribute to the rate of change of a spectral component ¢1j of uiuj.

To interpret the term T%j in equation (26), we let ¥ =0 in

equation (24). This gives
@ >
0 - f iy 0% (28)

Thus, T%j gives zero total contribution to the rate of change of u1uj. But

it can distribute, or transfer between wave numbers or eddy sizes, spectral

contributions ¢1j to u1uj. So T%j' which is proportional to aUk/axQ, is
interpreted as a mean-gradient spectral transfer term (Deissler, 1961). The
term —ra(a 1uJ'/ark) auk/axg in equation (19) 1is therefore the Fourier trans-

form of a mean-gradient spectral transfer term.

To interpret the last term in equation (26), we use equation (25), where
we note that a/3r, = a/3ax' = -3/3x,, that quantities at one point are inde-

pendent of the pos§tion of“the othef point, and that continuity (eq. (9))
holds. Equation (25) becomes

© > 9
T e“'r d: 2 u,ulu - 2. u,u, u!
) o ij ax %37k X 1%

au! du,u

i o] 1k
- —u1u& ax! ~ uj ax (29)
k k
If we let T = 0, equation (29) becomes
[+ > a
[; Ty de = - 5—;(-': ujugu = 0 (30)

since we have assumed homogeneity of the turbulence. Thus, as in the case of

T%j’ T1j contributes nothing to the rate of change of uiuj. It can, how-
ever, transfer spectral components of u1u from one part of wave-number
space to another. So we interpret T aé a spectral transfer term asso-

ciated with turbulence se]f—1nteract133 (as opposed to interaction between
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turbulence and mean gradients). The term —(a/ark)(u1ujuk - uiukuj) in

equation (19) is therefore the Fourier transform of a self-interaction spectral
transfer term. Although the turbulence has been assumed to be homogeneous for
interpreting T1 and T% as transfer terms, it has been shown that similar

interpretations apply when the turbulence is inhomogeneous (Deissler, 1981b) .6

The transfer of turbulence from one part of wave-number space to another,
or from one eddy size to another, produces a wide range of scales of motion in
most turbulent flows as illustrated by the numerical solutions in sections IV
and V (e.g., figs. 2(c), 8, and 24). The state of affairs is neatly summarized
in a nonmathematical way by a poem written long before equations (26), (28),
or (30) was known (Richardson, 1922):

Big whirls have 1ittle whirls,

Which feed on their velocity;

And 1ittle whirls have lesser whirls,
And so on to viscosity.

4. Vorticity and dissipation

For homogeneous turbulence one can obtain a relation between the viscous
dissipation term in equation (15) or (19) (3 = 3) and the vorticity or swirl_ in
the turbulence. The dimensionless vorticity o 1is defined as the curl of u:

> > 5
w(X) = VXu(x) (31)
or
auk
3 = 845k 52; (32)

where e1jk is the alternating tensor.7 Then

OO = €45k pmk E;l Z;& = (84p85 = S4pésp) ::1 ::Q = ::1 iﬁi - ::1 ;;1 (33)
h| m h| m h| axJ h| i
But, because
au
-0 (34)
X3

6The fact that terms related to T or T!. do not appear in the one-
éﬁce 1ndﬁ33t

point eq. (14) for inhomogeneous turbul es that T13 and T;j do

not contribute to au,u,/at. Thus, even for inhomogeneous turbulence they can
only transfer turbu]e&cé from one part of wave-number space to another.
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[P — 2-___.__.
Jdu, du d u,u
173 i3
axj X, =0 (35)

ax1 axJ
for homogeneous turbulence. Equation (33) then becomes

1

OO S = o = (36)

Thus, for homogeneous turbulence the mean-square vorticity is just the rate of
viscous dissipation ¢ of turbulent energy divided by the kinematic viscosity
(eq. (15)). So the more intense the swirl in the turbulence, the faster it
dissipates.

From a closure standpoint we are somewhat better off with the two-point
equations (eqgs. (19) to (21)) than we were with the single-point equation

(eq. (14)), since we no longer have to model terms 1ike p 3u /ax1 and

(au1/axl(auj/axg). However, we still have to evaluate triple-correlation terms

unless the turbulence is very weak or unless the interaction between the turbu-
lence and the mean flow is large compared with the turbulence self-interaction.

5. Remarks

We shall not discuss here the many schemes that have been proposed for
closing the averaged equations considered in this section. Instead, we will
avoid the closure problem by obtaining numerical solutions of the unaveraged
equations (eqs. (1) and (3)). The importance of the averaged equations is
enhanced by these numerical solutions; by using the solutions of the unaveraged
equations, terms in the averaged equations that represent various physical
processes in the turbulence can be calculated. Thus, the averaged equations
appear to be necessary, or at the Teast very convenient for the physical
interpretation of the numerical results.

III. NUMERICAL SOLUTIONS AND METHODS

A. Initial conditions

For most of the numerical solutions considered here, the initial velocity
fluctuation is assumed to be given by

3
:E: a" cos " (37)

n=1
Then, from equation (4)

Te =0 when 1, J, and k are not all different. When the sub-
1jk

scripts are all different, eijk = +1 when they are in cyclic order and -1
when they are in acyclic order.
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The quantity a? is an initial velocity amplitude or Fourier coefficient of
the velocity fluctuation, ¢ 14s an initial wave-number vector, and Uy is

an initial mean-velocity component. To satisfy the continuity conditions
(egqs. (2) and (9)), we set

a?q? =0 (39)

For the present work let

al - k(2, £1, 1), aﬁ - k(1, %2, 1), a? - Kk(1, £1, 2)

(40)
1 2 _ 3
q1 = ("-'v t]’ ])/XOI q1 = (1v +]' 1)/X0, Q1 = (1’ i], '])/XO

where k has the dimensions of a velocity and determines the intensity of the
initial velocity fluctuation. The quantity xg 1s the length scale of the
initial velocity fluctuation. The quantities k and xg, together with the
kinematic viscosity v» and equation (40) then determine the initial Reynolds

—=1/2
number ug XO/”’ since the square of equation (37), averaged over a period,

gives ug. In addition to satisfying the continuity equation (eq. (39)),
equations (37) and (40) give

2 2 2
uy = Uy = U3 = Uy (41)

at the initial time.8 Thus, equations (37) or (38) and (40) give a particu-
larly simple initial condition in that we need specify only one component of
the mean-square velocity fluctuation. Moreover, for no mean shear they give

an isotropic turbulence at later times, as will be seen. Note that it is nec-
essary to have at least three terms in the summation in equation (37) or (38)
to satisfy equation (41). We do not specify an initial condition for the pres-
sure because it is determined by equation (3) and the initial velocities.

B. Numerical grid and boundary conditions

To carry out numerical solutions subject to the initial condition given by
equations (37) or (38) and (40), we use a stationary cubical grid with a maxi-

mum of 323 points and with faces at x; = x1/x0 =0 and 2v. For boundary
conditions we assume periodicity for the fluctuating quantities. That is, let
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(U1) N N = (u'i) . (42)
xj=21r+bj xj=bj
and
Prt-zasbs = Pxyaby (43)

for bg << 2w, where b3 = bj/XO’ xg = Xj/XO’ and b is a variable length.

By using equations (4) and (5) these become

(uy) = (U) + (Uy) - (uy) (44)
* * *_h* *_2u+b* *_ph*
xj 2«+bj xj bj xj n+ 3 xj 3
and
S *_Quth* = E *_p* + P *X=2u+b* P *_p¥ (45)
0 ket T Rt T B B R
In the present work we assume also that P, given by equation (13), is
periodic, so that
Pox_ x = Pow_px (46)
xj_21r+bj Xj-bj
and equation (45) becomes
Pxto2qebt = Pyropy (47)

37 33

These equations are used to calculate numerical derivatives at the boundaries
of the computational grid.

C. Numerical solutions

In carrying out the numerical solutions, we have a choice of solving a
set of equations containing wu,, p, U,, and P (eqs. (10) to (13)), or one
containing u, and p (eqs. (1) and 23)). The latter set, which is much

simpler, is generally used here.3 That is, we solve equations (1) and (3)
subject to initial condition (38) and boundary conditions (44) and (47).

The spatial- and time-differencing s¢hemes (which numerically conserve
momentum and energy) are essentially those used by Clark et al. (1979). For
the spatial derivatives in equations (1) and (3) we use centered fourth-order
difference expressions (e.g., McCormick and Salvadore, 1964). For instance,

the fourth-order difference expression used for au1/axk is

BThe first three terms of eqg. (41) apply at all times when there are no
mean gradients in the flow.

111



= | = (uy) - 8(u,) + 8(u,) - (uy)
axk n 12 Axk L n-2 L n-1 L n+l L n+2

where Axyg 1is the grid-point spacing, and the subscripts n, n + 1, etc.

refer to grid points in the xx direction. Fourth-order difference expres-
sions are often considered more efficient than the usual second-order ones
(Orszag and Israeli, 1974). (Spectral methods devised by Orszag and associates
are still more efficient but may be somewhat trickier to use.) Centered
expressions (same number of points on both sides of n, see preceding expres-
sion) can be used both at interior grid points and at the boundaries of the
grid; when n refers to a point on a boundary, values for outside of the
grid, which are required for calculating the numerical derivai1ves at the
boundary, are obtained from boundary condition (44).

For time differencing we use a predictor-corrector method with a second-
order (leapfrog) predictor and a third-order (Adams-Moulton) corrector
(Ceschino and Kuntzman, 1966). If m represents a time step, and (R ) the

right side of equation (1), then at each grid point in space the second Order
leapfrog predictor for u, at time step m + 1 s

~ (1) ~
(uy) = (uy) + 2 At(R
1 m+1 1 m-1 1)m

and the third-order Adams-Moulton corrector is

@3 - (@) %[S(Rp‘” v BRY) - (R,) ]
m m-1

m+] m+1 m

where At 1is the time increment. The quantity (R )(]) in the preceding
m+1
corrector is calculated by using (u )(1) in the right side of equation (1),
m+1
where (u1)( ) is calculated from the leapfrog predictor. Note that the leap-

frog method 2$o-ca11ed because it Teaps over the time step m), although unsta-
ble for all At when used by itself for Navier-Stokes equations, is stable
when used as a predictor.

The Poisson equation for the pressure (eq. (3)) is solved directly by a
fast Fourier transform method This method of solution was found to preserve
continuity quite well (V. U 0) except near the ends of some of the runs for
no mean gradients, where the solutions began to deteriorate. (Another indica-
tion of incipient solution deterioration near the ends of some of the runs for
no mean gradients was that equation (41) was no longer accurately satisfied. )

9D‘|v1d1ng the velocities and pressures into mean and fluctuating com-
ponents is evidently not advantageous from a computational standpoint except,
possibly, in linearized cases.

112



Two known types of numerical instabilities can occur in the present solu-
tions: a viscous instability connected with the first and last terms in
equation (1), which occurs if v At/(Axk)2 is too large; and a convective
instability connected with the first and second terms (or the first and third
terms through eq. (3)), which occurs if uy At/axy 1is too large. In these
criteria aAt, axy, and uy are, respectively, a time step, distance step,
and velocity. Thus, a particular solution should be numerically stable if, for
a given Axg, the time step is sufficiently small. Numerical stability is
typically obtained when the solution varies smoothly from time step to time
step, with no significant breaks in the slope from one step to the next. This
is the case for all of the results given here.

For the present solution very good temporal resclution is obtained auto-
matically when At 4s sufficiently small to give numerical stability. That
temporal resolution is much better than the three-dimensional spatial resolu-
tion, which 1s more severely limited by the storage and power of the computer.
However, as will be seen (fig. 19), sufficient spatial resolution is obtained
to give reasonably accurate averaged results for times not excessively large.
Some of the averaged results are extrapolated to zero spatial mesh size in an
effort to obtain more accuracy. The fourth-order method of extrapolation
(consistent with the fourth-order differencing used here) is given in Deissler
(1981a, 1981c).

IV. HOMOGENEOUS FLUCTUATIONS AND TURBULENCE, NO MEAN FLOW

For this case (U1 =3 uiu /3x, = 0), equations (10) and (11) reduce to (1)
and (3) without the ~'s over 1hstahtaneous quantities. We thus solve
numerically

2
i e o LA IS (48)
at axk P ax1 axkxk
and
2 az(u u, )
.]_.._a_.L_ = - .___Q'._k_ (49)
P ax2 axg axﬁxk

subject to initial conditions (37) and (40) and boundary conditions (42) and
(43). 1In equation (40) for the coefficients in the initial conditions, we
choose the first set of signs.

A. Dimensionless form of eguations

For carrying out the numerical solutions and presenting the results in as
general and compact a form as possible, we nondimensionalize equations (48)
and (49) as

2
Egi a(u#u; ap* 3 u; .
at* T T Taxt T axj ¥ axxaxs (48a)
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and

2*
_E_ai**z_a_(ﬂ (49a)
ax2 axSL axa axﬁ

where
X

ur = Oy gk o 2oy
i v i X2
0

%4 X(ZJ
X¥ = ==, p*¥ = ——p

i xo’ 2

pv

and xg 1is the initial fluctuation length, which first appeared in
equation (40). Note that all of the quantities have been nondimensionalized
by xg and the kinematic viscosity w.

The initial and boundary conditions in equations (37), (40), (42), and
(43) become in dimensionless form

3
u* = > a" cos a"*.i* (37a)
i i
n=1
1% 2% 3*
a1 = k*(2,+1,1), ay = k*(1,+2,1), a1 = k*(1,+1,2)
(40a)
ay = (1,210, @2 - 0,7, - e
(u:) = (u#) (42a)
x5=2«+b5 x;:bg
and

3 J 37
where, in addition to the dimensionless quantities defined above,

X0

X
n* 0 n _n*_ n x _ O
q1 = x0q1, and k* = " k.

= — a N
i v i
Note that k* has the form of a Reynolds number, where xg 1s the length and
k 1s the velocity. The initial Reynolds number appearing in the figures of
this paper,\u0> xo/v, where (UO) is an initial root-mean-square velocity

component, is obtained by choosing a value for k* 4in equations (40a) and

a
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space averaging u*2 over a period, by using equation (37a). The value of
i

—‘51/2 —2‘1/2
(ua > =(u0> xo/v so obtained is also used in the ordinates of figures 1

——21/2 “-‘51/2
and 2, where u /gu* ) = u*/gu* ) , and u¥* 1is calculated from
equations (48a} ng (49a) (sla thg with 1n1t131 values from eq. (37a)).

B. Development of random fluctuations

Figure 1 shows the calculated evolution of velocity fluctuations (normal-
ized by the initial root-mean-square velocity) at two fixed points in space
for the initial Reynolds number shown in the figure (no correction for discre-
tization error). Since there is no input of energy, the fluctuating motion
eventually decays to a state of rest. 1In spite of the nonrandom initial con-
dition (eq. (37) or (37a)), the velocity fluctuations have the appearance of
those for a random turbulence. It is important to point out that the fluctua-
tions are not due to numerical instability since a large number of time steps
(typically about 20) 1ie between changes of sign of duj/dt. 1In connection
with the high Reynolds number in figure 1 it might be pointed out that Betchov
and Szewczyk (1978) obtained reasonable turbulent-Tike numerical results even
for infinite Reynolds number for times not excessively large (see also
Schumann et al., 1980).

1. Randomness as sensitivity to initial conditions

~—51/2
The dashed curves of u1/(ug> are for initial conditions perturbed

approximately 0.1 percent. (The coefficients a? and q? given by eq. (40)

are changed by 0.1 percent of their values.) The perturbed curves follow the
unperturbed ones for a short time and then depart sharply. Thus, a very small
perturbation of initial conditions causes a large change in the values of uj
(except near t = 0). On the other hand, the root-mean-square values of the
velocities (spatially averaged) decrease smoothly and are unaffected by the
perturbation of the initial conditions. A1l of these features are character-
istic of turbulence. (The observed sensitivity of the instantaneous flow to
small changes in initial conditions may have unfavorable implications for
detailed long-term weather predictions (Lorenz, 1963).)

We note that the spatially averaged values in figure 1 follow

approximately the decay law u2 ~ t'n, where n ~ 2.5. This 1ies between the
value for n of 3.3 observed for turbulence downstream of a waterfall (Ling
and Saad, 1977), and the value of 1.2 generally observed for turbulence gener-
ated by flow through a grid in a wind tunnel (Uberoi, 1963). The decay law is
evidently very much dependent on the initial condition for the turbulence.

2. Effect of numerical mesh size on randomness

To get an idea of the effect of mesh size in the numerical grid on the
—1/2
apparent randomness of the velocity fluctuations, values of u1/<ug>

at the center of the grid are plotted against t* 1in figure 2 for three mesh
sizes. A1l three of the curves have a random appearance. However, as the
number of mesh points increases (as the mesh becomes finer), smaller scale
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fluctuations are resolved and the randomness appears to be greater. This
trend indicates that the observed randomness is not due to the use of too
coarse a grid.

€. Further evidence for randomness and indications of isotropic turbulence

For turbulence the correlation between velocities at two times
u](t)u](to) should go to zero as the separation of the times t and ¢tg

increases. Figure 3 shows that this occurs for the present high-Reynolds-
number calculations. For true turbulence the correlation should probably
decrease smoothly with time. This is nearly the case for the larger ¢t
(fig. 3(b)). (tp 1is the time in the correlation coefficient in fig. 3 that
remains fixed as the other (variable) time t 1increases.) At early times
there is probably some nonrandom structure in the turbulence caused by the
nonrandom initial conditions (fig. 3(a)).

As a further indication that the high-Reynolds-number flow breaks up
into turbulence, we calculate the evolution of the cross correlation u1u2.

Although u$ = ug = ug at all t‘imes,8 the initial u,u, given by equations

(37) and (40) is not zero. However, figure 4 shows that because of the

1u2 goes to zero as time increases.

The fluctuations in the curve at early times (as also in the curve of
fig. 3(a)) are probably caused by nonrandom structure in the flow at early
10

apparent randomization of the flow

times.

Figures 1 to 4, together with the fact that the three components uf1)

are equal, show that at later times we appear to get a reasonable approxima-
tion to isotropic turbulence, although the initial conditions are nonrandom.

One of the consequences of isotropy is that the cross correlations,say u1u2,
are zero, as in figure 4 at later times. These calculations differ from
others where turbulence was obtained by using random initial conditions.

Because the initial conditions for the present calculations are nonrandom,
the turbulence must arise as a result of the structure of the Navier-Stokes
equations. In particular the nonlinear terms play a crucial role. It is easy
to verify that if nonlinear terms are neglected for the present case,
equations (48), (49), (37), and (40) give

*

-3t

uy = (u1)0 e (50)

So if the equations are linear, the flow given by the nonrandom initial
condition (37) remains nonrandom. The nonlinear terms must be present in
equations (48) and (49) if the development of turbulence is to take place.

10411 averaged values would be expected to vary smoothly only for
highly random fluctuations.
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Qur calculations at lower Reynolds numbers give results that are less 1like
turbulence. Thus, the fluctuations develop apparent randomness only at the
higher Reynolds numbers.

Calculated values of velocity-derivative skewness factor for a high
Reynolds number (fig. 5) also appear to be of reasonable magnitude when com-
pared with experimental values for isotropic turbulence. Values of that quan-
tity of the order of 0.4 have been obtained experimentally and have long been
considered an indication of true moderately strong or strong isotropic turbu-
lence. The falloff near the end of the curve may be due to a more laminar
flow there, where fluctuation levels are lower. A longer period of agreement
with experimental values is obtained by Clark et al. (1979), apparently because
they used turbulent initial conditions, so that the turbulence was already
partially developed at t = 0.

D. Origjn of the randomness (strange behavior)

A question remains as to how the nonlinear terms in equations (48) and
(49) produce the randomness observed in figures 1 to 4. Until recently, it was
generally assumed that randomness in a turbulent flow is due to randomness in
the initial conditions, to random external fluctuations, or to the presence of
so many eddies or harmonic components (or of so many degrees of freedom) that
the identity of the individual eddies is lost (Monin, 1978; Rabinovich, 1978).
In the present results the first of these is absent. Concerning the second,
roundoff errors might be considered a form of external fluctuations. However,
when the calculations were repeated using double precision, so that roundoff
errors were reduced by a factor of about 106, the mean-square velocities were
practically unchanged. The instantaneous velocities were different, although
sti11l as random as before. Thus, the effect of a large decrease in roundoff
errors s similar to the effect of a small perturbation of the initial condi-
tions (fig. 1). Since roundoff errors do not affect the turbulence level or
the randomness, they cannot be considered a major sustaining cause of the tur-
bulence or randomness observed here, although they may in some cases affect the
initial transition. 1In the present case the transition is so rapid that the
effect appears to be small.

This leaves only the proliferation of eddies or harmonic components as a
source of apparent randomness. That might well produce the randomness observed
in figure 1, since the nonlinear production of harmonics tends to be explosive,
particularly at high Reynolds numbers (each harmonic component interacts with
every other one) (Deissler, 1970a). However, the randomness may be produced,
at least partially, by strange attractors or, more properly, by analogous
strange behavior (Eckmann, 1981; 0tt, 1981). (We talk about analogous strange
behavior here, rather than strange attractors, since, strictly speaking,
strange attractors exist only for steady-state turbulence (section VII-A).
Here, analogous strange hehavior refers mainly to apparent randomness in flows
where a iarge number of degrees of freedom or harmonic components are not a
necessary ingredient and randomness occurs by a loss of hydrodynamic stabil-
ity.) Lorenz (1963) and others (Monin, 1978; Rabinovich, 1978; Ruelle, 1976;
Lanford, 1982) have shown that a system of nonlinear ordinary differential
equations similar to the spatially differenced form of the Navier-Stokes equa-
tions used here, or to the spectral form of those equations (Orszag, 1977b),
can develop an apparently random behavior in time as a result of the loss of
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stability of the solutions.?! 1In conjunction with this, regions appear in

the phase space of the system to which solutions are attracted. Randomness
arises in those regions, which are known as strange attractors, from a haphaz-
ard movement of the phase point among the neighborhoods of various critical
points in the phase space (steady-state points of unstable equilibrium where
dugy/at = 0). (The presence of critical (or fixed) points is not always con-
sidered a necessary ingredient of strange attractors, but randomness or sensi-
tivity to initial conditions is essential. However, the spatially differenced
and spectral forms of the Navier-Stokes equations do appear to have critical
points, as do the Lorenz equations.) Unlike randomization by proliferation of
harmonic components, randomization by strange behavior can occur either with a
few or with many degrees of freedom. 1In the present case both processes may be
important. At any rate, as mentioned earlier, the results show that the struc-
ture of the Navier-Stokes equations is such that apparently random or turbulent
solutions can arise from nonrandom initial conditions. With the results from
the low-order models, in which apparent randomness appears with as few as three
degrees of freedom (e.g., in the Lorenz equations), the turbulence observed to
be manufactured by the Navier-Stokes equations shouid perhaps not come as a
surprise.

The presence of strange behavior may be fortunate from a numerical stand-
point in that it should enable turbulent solutions that are quaiitatively cor-
rect (at least insofar as they appear random in time) to be obtained with a
relatively coarse grid. The use of a fine three-dimensional grid, of course,
requires the use of a large amount of computer time.

Figure 6 shows a dimensionless velocity component uj; plotted against
component up (forming a plane in phase space) for one point in physical
space. Although the behavior here is much more complicated than that observed
for the low-order models that are usually used to observe strange attractors
or strange behavior (here there are not welil-defined orbits around fixed crit-
ical points, possibly because there may be an almost infinite number of criti-
cal points), there are similarities. Both the present turbulent results and
those for the low-order models show trajectories consisting of loops and cusps,
with frequent changes in the sign of the curvature of the trajectory (e.g.,
Franceschini, 1983). (Note that the present turbulent results ultimately
decay, whereas the low-order models usually do not, since they contain forcing
terms.) Although there are large changes in the direction of the trajectory,
particularly in the regions of the cusps, the density of calculated points in
those regions is very high, so that the numerical results should be reasonably
accurate. Curves for uy versus t (the numerical integrations are with
respect to t) are, in fact, smooth. Note that wu; and up start out equal
(on a 45° Tine) but that their equality is quickly destroyed when randomness
sets in.

1TResults from the differenced or spectral forms of the Navier-Stokes
equations become arbitrarily close to those from the original equations as the
number of grid points or Fourier components increases (assuming convergence of
the numerical method). Theoretically, the Navier-Stokes equations correspond
to an infinite number of ordinary differential equations or to an infinite
number of degrees of freedom.
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Randomization by strange behavior, or by a loss of hydrodynamic stability,
almost certainly occurs in the present high-order turbulent results (high order
here meaning many numerical grid points and thus many equations and degrees of
freedom). This follows, first, from the fact that such randomness has been
demonstrated to occur in low-order models (few equations and few degrees of
freedom), such as that of Lorenz (1963) or Franceschini (1983), and second,
from the fact that with the many more degrees of freedom present here than in
the low-order models, many more critical points exist, and thus many more
opportunities for randomization or loss of stability occur. Of course, because
of the many degrees of freedom here, there will also be randomization by pro-
Tiferation of harmonic components (so many harmonic components or eddies pres-
ent that the identity of the individual eddies is lost and the flow appears
random). The present large number of degrees of freedom encourages both types
of randomness, and both very likely: occur.

E. Evo]ut1on of mean quantities

In the results given so far, no correction for discretization error due to
the finite numerical mesh size was applied. The primary purpose of the present
work, of course, is to study the physics of turbulence rather than to obtain
highly accurate results (possibly unattainable at very high Reynolds numbers).
For lTow Reynolds numbers surprisingly good results for the decay can be
obtained even with coarse grids (fig. 7). At higher Reynolds numbers the
results, although less accurate, should sti11 be qualitatively correct. Their
accuracy can be improved by applying fourth-order extrapolations to zero
numerical grid spacing (in consistency with the fourth-order numerical differ-
encing used in the calculations (Deissler, 1981a)). This is done in ljeu of
subgrid modeling (making an assumption for the eddies smaller than the numer-
ical grid spacing), e.g., Clark, et al., 1979. The method is related to sub-
grid modeling in that it assumes that the subgrid eddies are closely related to
the calculated eddies but does not require the introduction of a subgrid eddy
viscosity (which is, in effect, a kind of closure assumption). 1In all of the
remaining results in this section the fourth-order discretization corrections
are applied by extrapolating results for three mesh sizes to zero mesh size.
However, the corrections are negligibly small except at the highest Reynolds
number.

1. Mean-square velocity fluctuations

Figure 8 shows the calculated evolution of mean-square velocity fluctua-
tions (spatially averaged) for a series of initial Reynolds numbers. As the
Reynolds number increases (v and initial length scale xg held constant),
the rate of decay of u2 increases sharply, as in experimental turbulent flows
(Deissler, 1979). This can be attributed to the nonlinear excitation of small-
scale turbulence-1ike fluctuations at the higher Reynolds numbers. The high
shear stresses between the small eddies cause a rapid decay.

2. Microscales and nonlinear transfer of turbulence to smaller eddies

The development of the small-scale eddies is seen more clearly in
figure 9, where the microscale A\, normalized by its initial value, is plotted
against dimensionless time. The microscale is defined by
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au,, au,‘ u1u,‘

o« - (51)
axg axﬁ 2

>

For homogeneous turbulence and Uy = 0, » can be calculated from
equation (15) as

Y
/dt

(52)

A« ~p 1
du,uy
As the Reynolds number increases, the small-scale structure becomes finer. The
microscale decreases until the fluctuation level (inertial effect) is low
enough so that viscous forces prevent a further decrease. After A\ decreases
to a minimum, it begins to grow. (Results for coarser grids were not qualita-
tively different from these, but the minimums were somewhat higher.) The
increase of A at later times i1s due to the selective annihilation of eddies
by viscosity, the small eddies being the first to decay. Thus, at large times
only the big eddies remain. It is this period of increasing A that is gen-
erally observed experimentally in grid-generated turbulence (turbulence
observed downstream of a grid of wires or bars whose plane is normal to the
flow in a wind tunnel). The increases of A with time observed experimentally
(Batchelor, 1953, fig. 7.2) are generally of the same order as those in
“figure 9 (doubling the time increases A\ by a factor of about 1.5). The early
period, in which A decreases with time, is of interest as 11lustrative of
inter-wave-number energy transfer. To generate the smali-scale structure,
turbulent energy must be transferred from big eddies to small ones.

For homogeneous turbulence the equation for the rate of change of
turbulent kinetic energy (eq. (15)) reduces to

u.u 3u, au
F- I i I 1 WS S |
at< 2 > = 7Y ax, ax (53)

That 1s, only viscous dissipation contributes to the rate of change of kinetic
energy, there being no indication that nonlinear transfer of energy between
scales of motion is taking place. There may seem to be a paradox here in view
of the large transfer of energy to smaller eddies indicated in figure 9. This
is as it should be, however, since energy transfer between wave numbers or
scales of motion should not contribute to the rate of change of total energy.
To consider inter-wave-number energy transfer, two-point equations must be
used Thus, equation (30) shows that the self-interaction transfer term
1j(x) in the two-point spectral equation (eq. (26)) has the property that

® >, o
[; T1J(K) de = 0
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as a spectral transfer term should. The quantity % is the wave—number vector.
The spectral transfer term T1j(n), or its Fourier transform

—a(u1u5ui - u1uku5)/ark in equation (19), is responsible for the generation of

the small-scale structure in figure 9. Those terms come from the nonlinear
term -a(u1uk)/axk in the unaveraged equation (48). As mentioned earlier, the

term -a(uiuk)/axk produces randomization, as well as spectral energy transfer.

Although equation (30) shows that T1j can transfer energy between wave
numbers without contributing to the rate of change of total energy au1uj/at,

it says nothing about the direction of the transfer or how important it is.
For that we need calculations such as those in figure 9, which show that sig-
nificant energy is transferred to smaller eddies. 2 The energy transfer can
be thought of as due to a breakup of big eddies into smaller ones or as a
stretching of vortex filaments to smaller diameters. 1In spite of this transfer
to smaller eddies, experimental results generally show a growth of scale
(Batchelor, 1953, fig. 7.2). The reason is that those results are usually for
the Jater period shown in figure 9, where, although energy is transferred to
smaller eddies, the annihilation of small eddies by viscous action eventually
wins out. The early period shown in figure 9, and in figure 2 of Taylor and
Green (1937), is of particular interest in that the nonlinear transfer effects
are truly dominant there; a sharp decrease in scale actually occurs as energy
is transferred to smaller eddies.

3. Dissipation, vorticity generation, and pressure fluctuations

The energy dissipation term, the only term contributing to the rate of
change of kinetic energy for homogeneous turbulence without mean gradients
(eq. (53)) is plotted in figure 10. That is also the mean-square vorticity
(eq. (36)), but the two are distinct physical entities. Although the curve for
zero Reynolds number, where nonlinear effects are absent, decreases monotoni-
cally to zero, the curves for higher Reynolds numbers increase sharply for a
while and then decrease. Thus, the nonlinear terms in the Navier-Stokes equa-
tions are very effective vorticity generators and greatly enhance the dissipa-
tion at short and moderate times. For long times they appear to have the
opposite effect, evidently because the turbulence itself decays rapidly to
zero. Nonlinear effects, although they do not appear explicitly in the evolu-

tion equation for u1u1 (eq. (53)), thus alter greatly the evolution by alter-
ing the dissipation term.

127 direct numerical calculation of T43 by Clark et al. (1979) for
random initial conditions, and corresponding to the region of increasing A
in fig. 8, shows the same thing. Calculated values of Tj4 are negative at
small wave numbers (large eddies) and positive at large wave numbers (small
eddies), so that energy is transferred from big eddies to smaller ones.
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Figure 11 shows mean-square pressure fluctuations plotted against dimen-
sionless time. The enhancement of the pressure fluctuations, although not as
great as that of the vorticity or dissipation, again is due to nonlinear
effects: 1in this case the nonlinear terms on the right side of the Poisson
equation for the pressure cause the effect.

4., Further discussion and summary of the processes in isotropic turbulence

Nonlinear velocity and pressure terms do not appear in the evolution

equation for wu,u, (eq. (53)). But we can calculate root-mean-square values
of the non]inea? %erms in the instantaneous evolution equation (eq. (48)), as
well as of the linear term. Three measures of the relative importance of
inertial (nonlinear) and viscous effects are shown for a moderate Reynolds
number in figure 12. The ratio of the nonlinear velocity term to the viscous
term and the ratio of the pressure to the viscous term in equation (48),
together with the microscale Reynolds number, are plotted against dimensionless
time. The terms are space-averaged root-mean-square values. A1l of those
measures show a variation from a rather inertial to a weak fluctuating flow.
For instance, R, varies from about 90 to 0.7. This is a much greater var-
fation than has been obtained experimentally for a single run. The curves for
the term ratios lie somewhat below that for R,. They indicate that except

at early times the nonlinear inertial effects associated with velocity and with
pressure do not differ greatly.

The importance of both nonlinear velocity and pressure effects in
figure 12 is somewhat paradoxical in view of equation (53), which says that

neither contributes directly to oau u1/at. The nonlinear velocity effects were
already discussed in this section; 1t was pointed out that such effects should
not appear in equation (53), since they only distribute energy in wave-number
space and so do not directly alter the total energy. Although there is no
nonlinear velocity term in equation (53), such a term appears in the two-point

equation for auiu%/at. That equation, for the present case, is obtained from
equation (19) as

32u U,
L E (uguiu! —u,u ul) =3 3 u,u;
ar,  ary 1717k 17k at "i7(1)

= 2v

a_ "
at Ysli = 2 3p (54)

k

where T is again the vector extending from the unprimed to the primed point,
and the pressure terms drop out because of continuity. The last term, where
the parenthesis indicates no sum on 3, is a consequence of the isotropy of the
turbulence. The equation for the rate of change of each component of uiu% is

contributed to by the nonlinear velocity term —(a/ark)(u1u%ui - u1uku;), but

there is ' no contribution from the pressure. The strong effect of pressure
shown in figure 12 must be contained in higher order equations in the hierarchy
of averaged equations (moment equations) (Deissler, 1958 and 1960). Thus,
although two-point averaged equations contain a nonlinear effect of velocity,
we must consider higher order multipoint equations to obtain an effect of pres-
sure. Terms in the unaveraged equations shown in figure 12 (averaged over
space after the solution has been obtained) include effects of all orders.
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(Effects contained in the numerical results may, however, be limited by the
fineness of the numerical grid.)

Although there is a strong effect of pressure in figure 12, the physical
significance of that effect is somewhat elusive in contrast to the effects of
viscous dissipation and spectral energy transfer. If the turbulence is aniso-
tropic, a clear effect of pressure fluctuations is that they transfer net
energy among directional components (eqs. (14) and (15) and the discussion
following those equations). That is discussed in the following section. If,
in addition, the turbulence is inhomogeneous, pressure can produce a net spa-
tial diffusion of energy (eq. (15)). Those are evidently the only physical
effects of pressure fluctuations (at least that we know about). Thus, if the
turbulence is homogeneous and isotropic, as it is here, it seems reasonable to
attribute the observed pressure effects in the unaveraged equations to those
processes. Even though there is no net interdirectional transfer or spatial
diffusion of turbulence when the turbulence is isotropic, those processes can
sti11 be instantaneously or locally operative. They could, for instance, cause
a diffusion of tagged particles. According to figure 12, they have a signifi-
cant indirect effect on the evolution of the turbulence.

From the findings of the present section we conclude that the following
processes occur in jsotropic turbulence: nonlinear randomization by prolifer-
ation of harmonic components or by strange behavior, nonlinear spectral trans-
fer of turbulence among wave numbers or eddy sizes (mainly to smaller eddies),
spatial diffusion and transfer of turbulence among directional components by
pressure forces (with zero net diffusion and transfer into each component),
generation of vorticity or swirl, and dissipation of turbulence into heat by
viscous action.’3 From this description the 1ife of isotropic turbulence
appears interesting and includes many aspects.

V. UNIFORMLY SHEARED FLUCTUATIONS AND TURBULENCE

In the preceding section the evolution of nonrandom initial fluctuations
into isotropic turbulence was examined numerically. The nonlinear transfer of
energy to smaller scales of motion, the zero net (but not zero) spatial diffu-
sion and transfer of energy among directional components, the generation of
vorticity or swirl, and viscous dissipation were studied.

Another important process is the production of turbulence by a mean shear.
Most turbulent flows, both those occurring in nature and those which are man-
made, are in fact shear flows, where the turbulence is produced and maintained
by the shear. Because of the added complexity the nonlinear problem of turbu-
lent shear flow is even more difficult than that of fisotropic turbulence. So
it is not surprising that 1ittle progress has been made in obtaining an ana-
lytical solution from first principles. An attempt to obtain a numerical
solution would seem to be in order.

Conceptually, the simplest turbulent shear flow, although certainiy not
the simplest to produce experimentally (Champagne, et al., 1970), is one in
which the turbulence is uniformly sheared. At least two significant numerical
studies of that type of turbulence have recently been made (Rogallo, 1981;

13According to eq. (36), the vorticity and the dissipation are
numerically the same, but they are physically distinct.
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Shaanan, et al., 1975). In both of those studies random initial conditions
with a range of eddy sizes were used.

In the spirit of the preceding section the present numerical study of
uniformly sheared turbulence starts with simple determinate initial conditions
that possess a single length scale. As in the preceding section, we can in
this way study how the turbulence develops from nonturbulent initial condi-
tions. Again, much higher Reynolds number flows can be calculated with a given
numerical grid when a single length scale is initially present, at least for
short and moderate times.

Several interesting results that could not be obtained in the previous
work on turbulent shear flow are obtained here. One of the significant find-
ings is that the structure of the turbulence produced in the presence of a
strong shear is much finer than that produced in its absence.

A. 1Initial and boundary conditions

In carrying out numerical solutions for uniformly sheared turbulence the
instantaneous equations (1) and (3), subject to initial condition (38) and
boundary conditions (44) and (47) are used. Since we are considering a
uniform shear, we let

dU1
U1 = 51] E;; Xo (55)
in the initial condition (38) and
dU1
(U,) - (Uy) = 8,821 — (56)
L x§=2u+b L xk=b 1173270 dx,

in boundary condition (44). for the coefficients in equation (38) we use
equation (40), where we choose the first set of signs. Equations (1) and (3)
are written in terms of the total velocity Uy, but we can calculate the
fluctuating component wu, from equation (4). It should be emphasized that we
consider here not a sawtooth type of mean velocity profile, but a continuous
profile in which the mean-velocity gradient is uniform at all points. Even
with a uniform mean velocity gradient, some local inhomogeneity is introduced
into the fluctuations by the periodic boundary conditions. We will not concern
ourselves with that inhomogeneity, however, since we can still calculate prod-
ucts of velocities and pressures averaged over a three-dimensional period.
Those values are independent of the position of the boundaries of the cycle.
Note that for constant uniform mean-velocity gradient and mean pressure the
last terms in equations (10) and (11) are zero even though the fluctuations may
be inhomogeneous (eqs. (12) and (13)).

The up component of the velocity fluctuation (in the direction of the
mean-velocity gradient) is crucial in maintaining the turbulence against the
dissipation (Deissler, 1970b and 1972). Therefore, when for brevity only one
component of the velocity fluctuation is discussed, that component is chosen
as up. More will be said about the maintenance of the turbulence later.
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B. Development of random fluctuations

-=\/2 '
Figure 13 shows the evolution of u2/<ug) at a fixed point in space for

a high Reynolds number, as calculated from the full nonlinear equations. As
in the preceding section asterisks on quantities indicate that they have been
nondimensionalized by using tae initial length scale xp and the2k1nemat1c

viscosity v. Thus t* = (v/xo)t, x; = x1/x0, and (dU1/dx2)* = (xolv)dU1/dx2.

Again the velocity fluctuations have the appearance of those for a random
turbulence in spite of the nonrandom initial condition (eq. (37)). The dashed

1/2
curves for u2/<ug> are again for initial conditions perturbed approximately

0.1 percent. The perturbed curves at first follow the unperturbed ones but
eventually depart sharply. Although the the curves in figures 13(a) and (b)
differ considerably in appearance, the perturbed curves in the two figures
take about the same length of time to break away from the unperturbed ones. A
very small perturbation of initial conditions causes a large change in the
values of wus except at small times. On the other hand, the root-mean-square
values of the velocities change smoothly with time and are unaffected by the
perturbation of the initial conditions. These features are characteristic of
turbulence. (Although the root-mean-square curve in fig. 13(a) appears almost
horizontal, it eventually goes smoothly to zero when extended.)

C. Shear-related small-scale structure

—\1/2
A striking feature of the curves for u,/ u2 in figure 13 is the
small scale structure exhibited for sheared tarbu9ence (fig. 13(b)) when
compared with the structure for no shear (fig. 13(a)). This shear-related
small-scale structure is produced by the term -Ug auy/axg in equation (10)
which, for uniform shear, is -(dUy/dxp)xp auy/axy. Equation (10) becomes, for
a constant uniform mean-velocity gradient and a uniform mean pressure,

2
s igl . dU] ) au,l L 3 u1
at i1 dx2 2 dx2 2 ax1 axk

13p_
1 + p ———
P aX1 axk axk

(u1uk) - (57)

where equation (12) is used. Note that equation (57) is obtained without the
assumption of homogeneity. From the term -(dUy/dx2)xp 3uy3/3xy 1in
equation (57), we get the term

(58)

in the two-point correlation equation (19). For periodic boundary conditions
x4y dependency is not present in equations (19) and (58) because averages

are taken over a three-dimensional period with r4y held constant. This is

so even though the periodic boundary conditions may introduce some local inho-
mogeneities. 1If we take the Fourier transform of that term, we obtain the
mean-gradient transfer term T! in the spectral equation (26). Its effect in
transferring energy to sma]]-séale components is similar to that of the non-
1inear transfer term T1j in equation (26) (the Fourier transform of the
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triple correlation term in eq. (19)). The production of small-scale structure
by the shear might be thought of as due to stretching of the random vortex
1ines in the turbulence by the mean gradient or to stretching of mean vortex
Tines by the turbulence.

Although we first discussed a mean-gradient transfer term more than two
decades ago (Deissler, 1961), the present results give the first graphic
demonstration of the effectiveness of that term in producing a small-scale
structure in turbulence. Since that is a linear effect (when the mean gra-
dient is given), we can study it either by the full nonlinear solutions
already considered in figure 13 (which contain linear as well as nonlinear
effects) or by linearized solutions.

Equation (11) becomes, for uniform shear and uniform mean pressure,

2
a2 - ) (ukug) . 2 aU1
axg axk axk axa ax1 ax2

ou

(59)

where equation (13) is used. As in the case of equation (57), equation (59)
is obtained without the assumption of homogeneity.

D. Some linearized solutions and comparison with nonliinear solutions

Equations (57) and (59) are linearized by neglecting the terms
-3(ujuy)/axy and ~92(ugug)/axydxy. The numerical solution, with initial and
(periodic) boundary conditions given by equations (37), (40), (42), and (43),
then proceeds as in the nonlinear case.

We can obtain an analytical solution for unbounded linearized fluctuations
by using unbounded three-dimensional Fourier transforms (Deissler, 1961). The
solution does not satisfy constant periodic boundary conditions. Instead of
working with the averaged equations (Deissler, 1961), it is instructive to work
with the unaveraged ones and use the initial condition given by equation (37).
In this case the Fourier transforms must be generalized functions (a series of
delta functions), but the method of solution is the same as that in the earlier
work. Equation (57) for wup and equation (59), when linearized, are inde-
pendent of uy and wu3z. The solution obtained by using the initial
condition (37) is

3
n >n - n
u, = E U, cos ( X - aq1tx2> (60)
n=1
3
p = E P" sin (3".; - aq?txz) (61)
n=1

where
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nn
Ug = Wi 5 exp -vt (qn2 ~ aq?qgt + % a2q?2t2> (62)
" - 2adqdt + a%q) t° L
n n n’ [
P - ; T2P330 Y. exp|-vt (Q"z - aq?qgt + % a2q?2t2> (63)
(qn - 2aq?q2t + azqq t2> L
2 2 2 2

n n n n n n
a = dU1/dx2, 9 =40 +4d, *+d;, and the ay and q; are given in the

initial conditions (eqgs. (37) and (40)) (with the first set of signs). Mean
values are obtained by integrating over all space. For instance,

3
pu, = E % AT (64)

It is clear from the form of equations (60) and (61) that the solution
does not satisfy constant periodic boundary conditions. By omitting the term
-(dUy/dxp)xp3u4/9x7 as well as the nonlinear terms in equations (57) and (59),

we can, however, obtain a simple analytical pseudo solution that satisfies
those conditions:

3
nn
a5 4 2
u, = E ag exp |[vt|2a —153 - qn cos 3“.2 (65)
n
n=1 q
3
2paq?ag q?qg nl an >
p = - —— exp vt [2a 5 -4 sin q .x (66)
n n
n=1 q q

This solution is useful for checking the numerical calculations and for study-
ing the effect of the term (dUy/dxp)x53up/axy on the fluctuations.

Velocity fluctuations obtained from linearized solutions (numerical and
analytical) were plotted (fig. 14). The presence of small-scale structure in
the curves for (dUyj/dxp)* = 4434 and its absence in those for
(dUy/dxp)* = 0 are apparent. The curve for no shear (eq. (50)) decays
monotonically to zero when extended. This is in contrast to the nonlinear case
in figure 13(a) for no shear, where at least larger fluctuations are present.
The linearized curves for (dUj/dxp)* = 4434 in figure 14 follow closely
the nonlinear ones in figure 13(b) for short times. Likewise the linearized
curves in figure 14 for periodic boundary conditions follow closely those for
unbounded conditions for short times. For longer times the fluctuations for
unbounded conditions continue to decay, whereas those for constant periodic
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boundary conditions grow. Small-scale structure in the curves for unbounded
conditions is produced by the term aqPtxp in the argument of the cosine in
equation (60) (a = dU1/dx2). This term arises from the term -axp 3up/dxy
in equation (57), as is evident from its absence in equation (65), where the
term -axp aup/axy has been neglected.

For discussing the linearized case for constant periodic boundary condi-
tions, it 1s convenient to convert equations (57) and (59) to a spectral form
by taking their three-dimensional Fourier transforms. This gives, for wuj,
on neglecting nonlinear terms

P 2 2
2 1 n n 2 n\n
ST - g E & 0g(Kysky = Kp,kq) - ”<a1 t Ky + Qg >¢2
“2
2aq)x 50
+ (67)
n2 2 n2
G+t
where
n,-> 1 " i N> —in.%
1 -lk.
(pz(lc) = —3 / dx2 // u2(x)e dx] dx3 (68)
8w
L "~
or
n, N,y ix.X
uy(X) = J(. wp(k)e - diey dieg (68a)
Ao o]
K‘2=-w
3 3
n n
DI AP I (89
n=-3 n=-3
% is the wave-number vector, and ¢, is the Fourier transform of u Note

that a finite transform is used in tﬁe xp2 direction in order to sa%isfy
periodic boundary conditions at xp/xg = -w,w.

Strictly speaking, equation (67) is for a sawtooth mean-velocity profile,
whereas the numerical results are for a uniform mean-velocity gradient.
Equation (67) should still apply, however, at least for the present discussion
purposes to points inside, but not outside, the numerical grid.

For constant periodic boundary conditions for wu4, small-scale struc-
ture in the fluctuations or the transfer of energy between wave numbers is
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produced by the term containing the summation over «. in equation (67).
That term is the Fourier transform of -ax, au /ax1 (gq. 57)). From its form
we see that 1t can produce a complicated ?ntﬁ?—wave-number interaction. The
quantity @5 at each « interacts with @5 at every other allowable

kp. A difference between the solutions for unbounded conditions and those
for constant periodic conditions is that only fluctuations at integral «;
are possible when periodic conditions are imposed, whereas for unbounded
conditions fluctuations are possible at all values of «j.

Although the linear term -axp aup/axy is effective in producing
oscillations, even in the absence of nonlinear effects (fig. 14), the curves
lack the random appearance of those in figure 13(b). Evidently, as in the case
of no mean gradients (eq. (50)), the only way we can have a linear turbulent
solution is to put the turbulence in the initial conditions (Deissler, 1961).
Both -axp aup/axy; and the nonlinear terms in equation (57) are necessary to
produce the small-scale turbulence in figure 13(b) from nonrandom initial con-
ditions. The former acts 1ike a chopper that chops the flow into small-scale
components. Although the latter also do that, their most visible effect here
is to produce randomization. As in the preceding section the randomization
might occur as a result of the presence of strange attractors (or, more prop-
erly, analogous strange behavior) in the flow, by proliferation of eddies or
harmonic components (with the loss of identity of the individual eddies) or by
both (see section IV for a discussion of these possibilities).

According to the linearized analytical solution given by equation (60),
the manufacture of small-scale fluctuations takes place only in the x,
direction. Figure 15 shows how this has taken place at a moderate time.
Figure 16 is a similar plot for the nonlinear case. The randomizing effect of
the nonlinear terms is evident.

7=/2
For the nonlinear case, u /@2> was also plotted against x, (fig. 17).
The curves show some development'of small-scale structure in the x7 direc-
tion due to the interaction of the directional components in the nonlinear
case. For the linearized flows small-scale structure developed only in the
xo direction.

E. Evolution of mean quantities with shear

1. Cross-correlation coefficients

—51/2 —51/2
Cross-correlation coefficients u1uj/@i> 61) (1 # j) are plotted

J
against dimensionless time for the nonlinear case in figure 17. Although
u2 = ug = u2 at t* = 0, the initial cross correlations are not zero but are
a11 positivé and equal. However, because of the apparent randomization of the

flow and approach zero as time increases. On the other hand, the

Ua's Uyls
values of the turbulent shear stress wu.u, change from positive to negative
and remain negative because of the dyna%igs of the imposed mean shear. The

presence of the mean-velocity gradient dU1/dx2 causes u, to be likely
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negative when u, s positive, so that u,u,, the correlation between the
two, is negative. The waviness in the curveg in figure 18, as well as that in
some of the curves in later figures (e.g., fig. 21), is probably caused by
nonrandom structure in the flow, possibly that produced by the linear term

-(dUy/dxp)xp au3/axy in equation (57) (fig. 14).10

2. Growth and anisotropy of the velocity fluctuations

The evolution of the mean-square components of the velocity fluctuations

is plotted in figure 19, where 2* = (X /v)2 u(. 2. After an initial
adjustment period all of the comﬁa%ents inCrease w!%h time, in agreement with
experiment (Harris, et al. (1977) and the numerical results in Rogallo (1981)).

The numerical results in Shaanan, et al. (1975), on the other hand, show ug
and ug decreasing at all times, a difference that remains unexplained. Our
u? component is the largest of the three, ug is the smallest, and ug lies

slightly above ug, in agreement with experiment Harris, et al. (1977) and
previous numerical results.

3. Accuracy of mean and instantaneous quantities

The effect of discretization error on the numerical results for ug is

shown in figure 20. Curves are plotted for 163, 243, and 323 grid points,
together with a fourth-order extrapolation to zero grid-point spacing (an infi-
nite number of grid points) (Deissler, 1981a, 1981c). The differences between
the results for 323 points and the fourth-order extrapolation are small but
increase somewhat at long times. These results appear to indicate that the
numerical results given here for averaged values are reasonably accurate. On
the other hand the three-dimensional spatial resolution is probably not great
enough (except at early times) to give accurate spatial variations of unaver-
aged quantities, other than that they have a random appearance. However, since
the solutions are hydrodynamically unstable, and extremely sensitive to initial
conditions, the actual values of the unaveraged quantities are probably not of
great significance.

4, Maintenance of the turbulence

For the case considered in this section (uniform velocity gradient
dUy/dxy) the one-point correlation equation (14) becomes

1
- p +p o v
i1 dx2 ax1 dxJ axg axﬁ
where derivatives of averaged values with respect to x5 do not appear
because averages are taken over a three-dimensional period. This is so even
though local inhomogeneities may occur when periodic boundary conditions are
used, as discussed earlier.>

du du au au au, au
u,u, = -4 u,u 8 —luu +-2;(——-1 1)-2‘—4i—'1 (70)
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Figure 21 shows the evolution of pressure-velocity-gradient correlations.
(Parts of some of the curves are omitted to avoid confusion.) The pressure-
velocity-gradient terms in the one-point correlation equation (eq. (70)),
together with the production terms, are responsible for maintaining the
turbulence against the dissipation (given by the last term in eq. (70)).

There are no production terms in the equations for aug/at and aug/at

2
and Uq

— — 2

(81] uju2 aU]/ax2 and aj] UyU, aU]/axzd_ére zero). Thus U,
generally receive energy only from the u? component, whose equation has a

j/ax1 +

P aui/axj must be positive for i = J = 2, 3 and negative for 1 = J = 1.

Figure 21 shows that is actually the case for constant periodic boundary
conditions except for an initial adjustment period, so that the turbulence is

nonzero production term. Equation (70) shows that to do that, p au

i

maintained (fig. 19). The maintenance of the ug or u, component s par-
ticularly critical because if u, goes to zero, the Reynolds shear stress

uyu, in the production term of the u2 equation (eq. (70)) will go to zero
a*d there will be nothing to keep the lurbu]ence going. A1l of the components
will then eventually decay. That is what happens in the linearized analysis
for unbounded turbulence in figure 21 (see also Deisslier, 1961).

The nonlinear results for ug are compared with various linearized solu-

tions in figure 22. The same initial conditions are used for all of the cases
(eqs. (37) or (38), (40), and (55)). For all of the results, except those for
the unbounded 1inearized case (obtained by using unbounded Fourier transforms
(eq. (60)), the crucial u2 component eventually increases so that the tur-
bulence or fluctuations arg maintained. 1In the unbounded linearized case

ug decreases at all times. That was expected, since the ug results for

that case in Deissler (1961, 1970b) (for different initial conditions)
decreased at all times. Somewhat unexpected are the 1inearized results for
constant periodic boundary conditions, which show that the fluctuations are
maintained for those cases. Whereas figure 21 shows that in the unbounded
case the pressure-velocity-gradient correlations remove energy from the

Uy component and cause the fluctuations to decay as in Deisslier (1961, 1970b)

the imposition of constant periodic boundary conditions changes the sign of
those correlations and brings energy into u2, so that the fluctuations are
maintained. Equation (65), which satisfies ger10d1c boundary conditions,
shows that, at least when the term -(dU]/dxz)xz aui/ax1 in equation (57) is

- 4
neglected, ug increases at large times if 2aq?qg > qn for at least
one n.
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5. Spectral transfer terms as stabilizing

Comparing the linearized case for periodic boundary conditions in
figure 22 with the corresponding nonlinear case shows that the nonlinear
terms have a stabilizing influence. That is, the values of increase
more slowly for the nonlinear case. Moreover comparing the cu?ve for the
1inearized case with periodic boundary conditions and with the term
-(dUy/dxp)xp 3up/axy in equation (57) missing (eq. (65)) with the correspond-
ing curve for that term included shows that the presence of that term also has
a stabilizing influence. Since neglect of that term is equivalent to neglect-
1ng the mean-gradient transfer term T's5 1in the spectral equation for

(eq. (26)), we can consider the latter term as stabilizing. Thus both the
n8n11near spectral transfer term associated with triple correlations Tj»
and the linear mean-gradient transfer term Téz in the spectral equation (26)
for u2 are stabilizing. The reason is that both terms transfer energy to
small eddies, where it is dissipated more easily.

It is of interest that the one-point correlation equation for au1uj/at

(eq. (70)) contains neither a term associated with velocity-gradient transfer
nor one associated with nonlinear transfer. That is, both of those processes

give zero direct contribution to the rate of change of G;U;: they only
change the distribution of energy among the various spectral components or
eddy sizes. This spectral transfer, of course, still affects the way in which
U;U; evolves (fig. 22). Even though equation (70) contains no transfer
terms, the transfer of energy among the various spectral components of the

velocity alters the terms that do appear in equation (70), so that auiuj/at
is affected indirectly. That is not a small effect!

The modified l1inear pseudosolution given by equations (65) and (66) (dash-
dot-dot curve in fig. 21) is the simplest solution in which the fluctuations
can be maintained against the dissipation. In obtaining it the only mean-
gradient term retained in the equations for up (egs. (57) and (59), 1 = 2)
is -2(dUy/dxp)aup/axy, a source term in the Poisson equation for the pressure.
If that term is also neglected, up decays and, as discussed earlier, all of
the components of the fluctuations decay. Moreover, as shown in figure 22 and
already discussed, the term -(dUy/dxp)xp dus/3xy in equation (57) is stabi-
11zing, so it is of no help in maintaining the fluctuations. Thus, at Teast in
the linearized case, the presence of the source term -2(dUy/dxp)aup/axy 1in the
Potsson equation for the pressure is necessary for maintaining the fluctuations.
That term should play a similar important role in the maintenance of nonlinear
turbulence, although in that case it is hard to separate the linear effects
from the nonlinear ones. 1In particular, the role of the nonlinear source term
in the Poisson equation for the pressure remains unclear, although it may have
an effect similar to that of the linear source term.
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F. Return to isotropy

Figures 23 and 24 show the approach to isotropy of nonlinear uniformly
sheared turbulence when the shear is suddenly removed. Although the shear

produces considerable anisotropy, the components uf of the mean-square fluc-

tuation approach equality upon removal of the shear and remain accurately
equal. The pressure-velocity-gradient correlations in equation (70) are thus
successful in transferring energy among the various directional components in
such a way that equality of the u2 is produced. We note that u2 continues
to increase for a short time after the shear is removed, probably gecause it

receives energy from both u$ and 'ug.

In addition to equality of the u?, zero cross correlations u1uj (1 #3)

are required for isotropy. Figure 24 shows that u u,, which is nonzero when

]

the turbulence is sheared, approaches zero when the shear is removed, and
along with the other cross correlations, remains close to zero. The

destruction of u]uz, apparently by nonlinear randomization effects, occurs
over a finite time rather than instantaneously on removal of the shear.

Another expected effect of removal of the mean shear is that the small-
scale structure produced by the chopping term -(dUy/dxp)xp duy/3xy 1in equa-
tion (57) should die out. According to figure 25, that occurs almost immedi-
ately when dUy/dxp goes to zero, evidently because of the large fluctuat-
ing shear stresses between the small-scale eddies. Figure 25 shows, in a
particularly graphic manner, the effectiveness of the mean-gradient chopping
term in equation (57) in producing small-scale turbulent structure.

VI. INHOMOGENEOUS FLUCTUATIONS AND TURBULENCE (DEVELOPING SHEAR LAYER)

Here, the work is extended to an inherently inhomogeneous developing shear
layer so that net diffusion, as well as other turbulence processes, can be con-
sidered. This case is general enough to include all of the dynamical processes
that ordinarily occur in incompressible turbulence.

For the initial conditions we use a three-dimensional cosine velocity
fluctuation, as before, and a mean-velocity profile with a step. Thus, in
equation (38) we set

U1 = «611V[sgn(x5 -w) + 1] (71)

where V is a constant with the dimensions of a velocity. Equation (71) is
plotted against xp/xg 1in the curve for t =0 1in figure 26, where V* =
Vxg/v, and xqg 1is again the initial Tength scale of the disturbance. For
the coefficients given by equation (40) we choose the second set of signs.

With this choice of signs u]u does not have to change sign as a result of
the dynamics of the flow, as 1% did in the last section, and the initial
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adjustment period is eliminated or greatly shortened. If the longer adjustment
period remained, much of the development of the shear layer would be distorted.

In carrying out the numerical solution of equations (1) and (3) we use
boundary conditions (44) and (47), where we let
(Ui) - (Ui) = 2u8 (72)

5.V
1732
* . * *_h*
xj 21r+bj xj bj

Equations (1) and (3) are written in terms of the total velocity wu,, but we
can calculate the fluctuating part from equation (4), which, for_the present
case, 1s Uy = Uy - 61 U1, where U, 1is obtained by averaging u, over X4
and x, for f1xea va]uls of X The fluctuations are 1nhomogene3us in the Xo
d1rec%1on, except at t = 0.

The calculated evolution of the dimensionless mean velocity Up* =
(xg/v)Uy (Up and U3 are zero) is plotted against xp/xg = x§ for a partic-
ular value of V* = Vxg/v 1in figure 26. The results in this section may not
be as accurate as those in the previous sections because of the presence of the
discontinuity in the initial velocity profile, but they should be qualitatively
correct. The shear layer grows (from essentially zero initial thickness)
because of the presence of the turbulent and viscous shear stresses. The ratio
of turbulent to viscous shear stress (averaged over x7 and x3 at the cen-
tral plane x3* = w) s plotted against dimensionless time in figure 27.

Except at early times the growth of the shear layer is almost completely
dominated by the turbulent shear stress.

Figure 28 shows the evolution of the instantaneous velocity component
up and of the root-mean-square value of up (averaged over the central
plane xo* = ). Although the initial conditions are nonrandom, the evo-
lution of wup has a random appearance, as in the preceding sections.

—\1/2
) evolves smoothly. These characteristics are again

On the other hand,(ug

2
cally at small times in contrast to the corresponding curve in section V,

where an initial adjustment period was present. As mentioned earlier, the
initial adjustment period has been eliminated here by using the second set

1/2
representative of a turbulent flow. The quantity <u2> increases monotoni-

of signs in equation (40), so that u1u2 does not have to change sign as a
—=\1/2

result of the dynamics of the turbulence. The decrease in {u near the

end of the curve is caused by a decrease in mean-velocity graa1ent, and thus

of turbulence production, at large times (fig. 26).

As in the case in the preceding section, small-scale fluctuations are gen-
erated in the inhomogeneous turbulence in figure 28 by the interaction of the
mean velocity with the turbulence. This can be seen by comparing figure 28
with figures 1 and 13(a), where mean-velocity gradients are absent. One might
expect this since it has been shown (Deissler, 1981b) that, even for a general
inhomogeneous turbulence, a term in the two-point spectral equation for the
turbulence can transfer energy between scales of motion as a result of the
presence of mean gradients.
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A. Inhomogeneous growth of turbulent energy

A dimensionless plot of turbulent kinetic energy as a function of x2*

ukuk. As for all of the

averaged values in this section, u,u /2 1s averaged over x, and x, for
fixed values of xp. As time increéases, an intense concentration of "turbu-
lent energy develops near the plane xp/xg = w, where the mean-velocity gra-
dient i1s initially infinite. The turbulence is highly inhomogeneous. Inhomo-
geneity, in fact, seems to be the dominant characteristic of the turbulence
generated in the shear layer. The indicated increase in turbulence with time
is similar to that obtained experimentally (Brinich, et al., 1975).

and time is given in figure 29, where ukuk* = (xo/v)2

B. Turbulence processes in shear 1ayer

Terms in the one-point correlation equation for the rate of change of the
turbulent kinetic energy (eq. (15)), which, for the present case, becomes

_a__(____ukuk> =_;—u“igl_l_§_T_L<_ukuku>
at 2 172 dx2 P ax2 2 ax2 2 2
_0° (Y% o Buy
e el B ey (13)
x5 L %

are plotted for t* = 0.000293 1in figure 30. As usual, an asterisk on a
quantity indicates that it has been nondimensionalized by using x, and v.

0
For instance (u 2 du /dx2)* = (x /v ) u1u2 dU]/dxz. The terms that contrib-
ute most to the rate of change of ukuk/z are the production term
U U, dU /dx ‘the pressure diffusion term (—Eﬁuz/axz)/p and the kinetic energy

diffusion term —(1/2)aukuku2/ax . The viscous diffusion term wv3d (u /2)/axg

kUK
and the dissipation tefm -vdu, /ax au /3x. are small in figure 30. At early

times, however, when the mean- 5e10%1ty gra%ient is large, the dissipation term
is appreciable.

The production term, whose form shows that turbulent energy is produced
by work done on the Reyno]ds shear stress by the mean-velocity gradient, is
largest near the plane x2 = v, where the velocity gradient is initially
infinite. The plots of the pressure and kinetic energy diffusion terms show
that those terms are negative near xp = v and positive away from that
plane. Thus, they remove turbulent energy from the maximum-energy region and
deposit it where the energy is lower. Both diffusion terms therefore tend to
make the turbulence more homogeneous.

A comparison of the turbulence diffusion processes with the spectral
transfer processes and the directional transfer processes arising from the
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pressure-velocity correlations (sections IV and V) is instructive. The spec-
tral transfer processes remove energy from wave-number (or eddy size) regions,
where the energy is high, and deposit it in regions of lower energy. The
directional transfer processes remove energy from high-energy directional com-
ponents and deposit it in a directional component (or components) where the
energy is lower. The turbuience diffusion processes, as shown here, remove
energy from regions of space where the energy is high and deposit it in regions
of lower energy. The spectral transfer, directional transfer, and turbulence
diffusion processes tend, respectively, to make the turbulence more uniform in
wave-number space and more isotropic and homogeneous in physical space.

Although one might suppose that turbulence diffusion terms would always
tend to make the turbulence more homogeneous, that supposition is not supported
by all of the experimental data. For instance, measurements of wall-bounded
turbulence (Laufer, 1954) indicate that the pressure diffusion and the kinetic
energy diffusion terms transfer energy in opposite directions, although the
total diffusion is from regions of high to regions of lower energy. On the
other hand, measurements of turbulence in a free jet (Wygnanski and Fiedler,
1969) and in a wake (Townsend, 1949), which are closer to the case considered
here, seem to support the present findings.

VII. A STEADY-STATE HOMOGENEOUS TURBULENCE WITH A SPATIALLY PERIODIC
BODY FORCE

) In all of the cases considered so far the turbulence either ultimately
died out or increased in intensity with time. However, there are many impor-
tant cases in which the turbulence, after some time, reaches a statistically
steady state (e.g., flow in a pipe far from the entrance). Moreover, a discus-
sion of strange attractors (e.g., Eckmann, 1981, and 0tt, 1981) should,
strictly speaking, be based on a steady-state turbulence; a strange attractor
is, roughly, the region of phase space inhabited by the phase point of a system
after the initial transients have died out, where the phase point moves in an
apparently chaotic fashion. For the decaying turbulence of section IV the
attractor would then be only a point in phase space. Of course, we could still
talk about analogous strange behavior, even in an unsteady-state case, as we
did in section IV-D.

One way of obtaining a statistically steady-state turbulence is by adding

a spatially periodic body-force term (forcing term) F4 to the right side
of equation (41). A convenient term for that purpose is

a(u1uk)

ap
3x + v (74)

where the subscript 0 signifies initial values, the u, are given by
equations (38) and (40) with U1 =0 and p by equat1oa (3), and ¢ 1is a

constant. The first set of signs is used in equation (40). Equation (74),
which is time independent, is used for Fy at all times. For ¢ =1, the
the quantities Uy and p, as calculated from equation (1) (with F43 added

to the right side) and equation (3), do not change from their initial equation
(3), do not change from their initial values. To introduce some initial time

136



dependence, we set ¢ = 1.05. The boundary conditions are taken to be
periodic, as in section IV.

Calculated results for,this case are plotted in figures 31 and 32, where
t* is again equal to (v/xg )t and xg is the initial length scale.
—\1/2
Figure 31 shows the time evolution of Uy and <u$> at a point away from
the center of the numerical grid, where as before, overbars indicate space

1/2
averages. The values are normalized by dividing them by (u%) , the initial

=2 172 = 1/2 =2 1/2
value of (u ) = gu 2 = (u ) . Since we are interested in steady-state
solutions a% long t mg it is ngcessary, to obtain reasonably accurate results,.
to use a lower Reynolds number than in the preceding cases, where shorter-time
transient flows were considered.

Figure 30 shows that, for 0 < t* < 0.17, the flow is essentially laminar

with small fluctuations of u]. Then for 0.17 < t* < 0.18 there is a rather

5 1/2
> increases. For

~

sharp transition from laminar .to turbulent flow, as (u]

t* > 0.18 the turbulence 1s statistically steady state, as indicated by the

1/2
nearly constant value of <u$) . Curves for u., and

2 U3
those for 31, inciuding the same location of the transition region and nearly

are similar to

2 1/2
the same values for <u2> and (

~ ~

1/2 1/2
2 2
u3) as for (u]> .

After the transition region (t* > 0.18) the flow appears to lie on a
strange attractor, since it has the following characteristics:14 first, a
volume in the phase space of our system decreases with time, since the Navier-
Stokes equations describe a dissipative system and phase-volume shrinkage can
be shown to occur for the Navier-Stokes equations.'? This implies that an
attractor exists for our system. Second, the chaotic appearance of the veloc-
ity components (figs. 31 and 32) indicates that the attractor is strange.
Finally, the fact that transients have died out for t* > 0.18, leaving a sta-
tistically steady state (fig. 31), indicates that beyond the transition region
the phase point is on the strange attractor.

Figure 32 shows the projection on the u -53 plane (at the center of the
numerical grid) of the trajectory of the phasg point as it moves on the strange
attractor. As in figure 6 the trajectory consists of loops and cusps with fre-
quent changes in the sign of the curvature, but unlike figure 6 the trajectory
does not, of course, tend toward a point. The cusps might be considered as
loops with very small or zero radii. Also, as in figure 6, randomization 1is
very 1ikely associated with the large number of harmonics (eddy sizes) present,
as well as with the strange attractor or strange behavior.

14These characteristics, as well as the possibility of obtaining a
steady-state turbulence with periodic boundary conditions by siightly modifying
the existing program, were pointed out to the author by R.J. Deissler.
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VIII. CONCLUSIONS

From the present review it is concluded that the nonlinear and linear
processes in turbulence can be profitably studied numerically. The results
show that, at least at higher Reynolds numbers, an apparently random turbulence
can develop from nonrandom initial conditions. The numerically calculated
turbulence is not numerical hash, since a large number of time steps correspond
to each fluctuation. For both sheared and unsheared fluctuations the structure
of the Navier-Stokes equations is such that turbulence can develop even when
the/initial flow is nonturbulent. This is indicated by the appearance of the
instantaneous velocity fluctuations and by the sensitivity of those fluctua-
tions (and the insensitivity of average values) to small perturbations in the
instantaneous initial conditions. The randomness appears to increase as the
numerical mesh size decreases. Moreover, the two-time velocity correlation
becomes small as the time between the occurrence of the two velocities
increases. In addition, for no mean shear the correlation between any two com-
ponents of the velocity becomes small as the time increases, as a result of the
randomization. This correlation is not small initially, even though the three
components of the mean-square velocity fluctuation are equal at early as well
as at late times for the initial conditions chosen. Also, calculated velocity-
derivative skewness factors for no mean shear appear to be of reasonable mag-
nitude when compared with those for isotropic turbulence. Thus, except in the
initial period the results for no mean shear evidently give a reasonably good
approximation to isotropic turbulence.

The source of the observed randomness may lie in the presence of strange
attractors or, more properly, of analogous strange behavior (Monin, 1978) in
the phase space of the system, as well as in the occurrence of a large number
of eddies or harmonic components (large number of degrees of freedom). It
appears that no conclusions can be drawn as to the relative importance of the
two processes, but both probably occur. (A strange attractor is a region in
the phase space of the system to which solutions are attracted and in which the
phase point moves in an apparently chaotic fashion. It can occur even with a
small number of degrees of freedom.) Roundoff errors appear not to be a sus-
taining cause of the randomness; a large decrease in roundoff errors did not
appreciably affect the turbulence level or the randomness of the fluctuations,
although the instantaneous values were different. Thus, the affect of a large
decrease in roundoff errors is similar to that of a small perturbation of the
initial conditions. Roundoff errors may in some cases affect the transition
to turbulence. The present turbulent solutions bear some similarity to those
for low-order models in that both have trajectories in phase space that consist
of loops and cusps, with frequent changes in the sign of the curvature of the
trajectory (fig. 6). Moreover, with the results from the low-order models in
which apparent randomness appears with as few as three degrees of freedom
(e.g., in the Lorenz equations), the turbulence observed to be manufactured by,
the Navier-Stokes equations should perhaps not come as a surprise.

At early times the calculated nonlinear transfer of energy from big eddies
to small.ones is almost completely dominant and causes a sharp decrease in the
size of the microscale. This has not been generally observed experimentally
or analytically because the period usually studied is for later times, where
the annihilation of small eddies by viscous action causes the scale to grow,
even though energy is being transferred to smaller eddies. This later period
of scale growth is also observed in the present results.
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The nonlinear terms in the equations of motion, besides transferring
energy among eddy sizes and producing randomization, are very effective vor-
ticity generators and increase the dissipation and the rate of decay. The
increased rate of decay is a result of the nonlinear transfer of energy to
smaller eddies; the small eddies decay faster than the big ones because of the
higher shear stresses between the small eddies. Calculation of (averaged)
terms from unaveraged equations of motion shows, as might be expected, that the
flow is dominated by nonlinear inertial effects at early times and by viscous
effects at later times (fig. 12). The nonlinear effects are associated with
both velocity and pressure terms in the unaveraged equations of motion, even
for isotropic turbulence. Since the one- and two-point averaged or correlation
equations for isotropic turbulence do not contain pressure terms, the effects
of pressure observed for the unaveraged equations must be contained in higher
order averaged equations. The infinite hierarchy of averaged equations should
contain all effects, as do the unaveraged equations. The only physical proc-
esses associated with pressure (that we know about) are interdirectional
transfer and spatial diffusion of turbulence (eq. (14)). It thus seems rea-
sonable to attribute the observed pressure effects in the unaveraged equations
to those processes. Even though there is no net interdirectional transfer or
spatial diffusion in isotropic turbulence, those processes can still be locally
operative.

The processes occurring in isotropic turbulence thus include the follow-
ing: nonlinear randomization, nonlinear spectral transfer (mainly to smaller
scales of motion), zero net (but not zero) spatial diffusion and transfer of
turbulence among directional components, generation of vorticity or swirl, and
viscous dissipation.

If a uniform shear is present in the flow, we have, in addition to these
processes, production of turbulence by the mean-velocity gradient, net transfer
of turbulence among directional components by pressure forces, and linear
spectral transfer among scales of motion by the mean gradient. The last of
these processes results in the production of small-scale fluctuations in the
flow. This can be attributed to a mean-gradient transfer term in the spectral
equation for the velocity fluctuations (eq. (26)). Although we first discussed
that term over two decades ago, the recent numerical results considered herein
give the first graphic demonstration of the effectiveness of that term in gen-
erating a small-scale structure in the turbulence. However, the small-scale
fluctuations produced by that term alone (1linear solution) are essentially
nonrandom. Evidently, the only way we can have a turbulent linear solution,
either with or without mean gradients, is to put the turbulence in the initial
conditions. To produce the small-scale turbulence from nonrandom initial con-
ditions observed herein for shear flow, the presence of both the 1inear mean-
gradient transfer term and the nonlinear terms in the equations is necessary.
The former term, or its equivalent in the unaveraged equation (57), acts like
a chopper that chops the flow into small-scale components. The latter terms,
while they also produce small-scale components, act most visibly here as
randomizers.

In a1l of the uniform-shear cases calculated with constant periodic bound-
ary conditions, including both l1inear and nonlinear flows, the pressure-
velocity-gradient correlations are successful in distributing energy among the
directional components, so that the turbuience or the fluctuations are main-
tained. This is in spite of the presence of a production term in the equation
for only one of the components. Both the 1inear mean-gradient transfer term
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and the nonlinear terms mentioned in the preceding paragraph have a stabilizing
effect. That is, they cause the fluctuations to increase at a slower rate.

The reason is that both terms transfer energy to small eddies, where it is
dissipated more easily. It is shown that, at least for the linearized solution
with constant periodic boundary conditions, a mean-gradient source term in the
Poisson equation for the pressure is necessary for maintaining the fluctuations
against the dissipation. That term should play a similar important role in the
maintenance of nonlinear turbulence, although in that case it is hard to sepa-
rate the linear effects from the nonlinear ones. For the linearized unbounded
solution (obtained by using unbounded Fourier transforms) the fluctuations
decay, as expected from earlier results.

When the mean-velocity gradient is suddenly removed, the turbulent shear
stress goes to zero in a finite time, and the velocity-pressure-gradient cor-
relations cause the turbulence to attain the isotropic state. The intensities
of the directional components become and remain equal. In addition, the small-
scale structure produced by the mean-gradient transfer term quickly vanishes
(fig. 25). Figure 25 shows, in a particularly graphic manner, the effective-
ness of the mean-gradient chopping term in equation (57) in producing small-
scale turbulent structure.

For a developing shear layer the turbulence is inhomogeneous and, in
addition to the processes considered so far, a net spatial diffusion of turbu-
lence occurs. The thickness of the shear layer, which is initially zero,
increases with time because of the presence of turbulent and viscous shear
stresses. Except at very early times the growth of the shear layer is almost
completely dominated by the turbulent shear stress. As time increases, an
intense concentration of turbulent energy develops near the plane where the
mean-velocity gradient is initially infinite. The turbulence is highly inhomo-
geneous. The calculated turbulence production is always positive, and is
largest near the plane where the velocity gradient is initially infinite. The
pressure and the kinetic energy diffusion are negative near that plane and
positive away from it. Thus, they remove turbulent energy from the high-energy
region and deposit it where the energy is lower. Both diffusion processes
therefore tend to make the turbulence more homogeneous.

A comparison of the various transfer and diffusion processes occurring in
turbulence is of interest. The spectral transfer processes remove energy from
wave-number (or eddy size) regions where the energy is high and deposit it in
regions of lower energy. The directional transfer processes remove energy from
high-energy directional components and deposit it in a directional component
(or components) where the energy is lower. The turbulence diffusion processes
remove energy from regions of space where the energy is high and deposit it in
regions of lower energy. The spectral transfer, directional transfer, and
turbulence diffusion processes tend, respectively, to make the turbulence more
uniform in wave-number space and more isotropic and homogeneous in physical
space.

By adding a spatially periodic body-force term to the Navier-Stokes equa-
tions, a solution is obtained in which the flow first passes through laminar
and transition-to-turbulence stages. The turbulence then quickly settles down
to a statistically steady state. In this last stage the flow appears to have
characteristics corresponding to those of a strange attractor.
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Initial conditions use eq. (40} with
first set of signs

3 T Initial conditions perturbed 0.1
percent

] I | ] ] |
6 .002 .004 .006 '00»8: .010 .012 .04 .016
t .

1]
I

(a) x? xg = 9w/8, x; = 3w/8, for unaveraged fluctuations.

(b) xf xg xg = w, for unaveraged fluctuations.

Figure 1. - Calculated evolution of turbulent velocity fluctuations (normalized by initial condition)
—\1/2
for a high Reynolds number uo) x /v = 2217. No mean shear; root-mean-square fluctuations

0
spatially averaged; 323 grid points.
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(a) 83 grid points.
(b) 163 grid points.
(c) 323 grid points.

Figure 2. - Effect of numerical mesh size on calculated evolution of velocity fluctuations. No mean

1/2
shear;(u ) xo/v = 2217; x{ = v (at grid center).
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Figure 3. - Calculated correlation coefficient for velocities at dimensionless times t§ and t§

1/2
plotted against t* - t*. No mean shear; <u ) xo/v = 2217; 323 grid points.
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Figure 4. - Calculated correlation coefficient for two velocity components plotted against dimension-

1/2
2
less time. No mean shear;<u0> xg/v = 2217; 323 grid points.
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Figure 5. - Calculated evolution of velocity-derivative skewness factor. No mean shear;

21/2 3
<u0> xo/v = 2217; 327 grid points.
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Figure 6. - Calculated trajectory of phase point projected on u

- * = xX =
1 u2 plane x‘ x2 9n/8,

x§ = 3w/8, and 0.00236 < t* < 0.0108. Arrows indicate direction of time. No mean shear;

3
32" grid points.
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Figure 7. - Effect of numerical mesh size on evolution of u at low and moderate Reynolds numbers.

No mean shear u2 = u2 = u2 = u2
: I I S

Figure 8. - Calculated evolution of mean-square-velocity fluctuations (normalized by initial value)

for various initial Reynolds numbers. No mean shear; u2 = u? = ug = ug ; extrapolated to mesh

size.
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Figure 9. - Calculated evolution of microscale of velocity fluctuations (normalized by initial
value) for various initial Reynolds numbers. No mean shear; extrapolated to zero mesh size.
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Figure 10. - Calculated development of mean-square-vorticity fluctuations w or dissipation ¢
(normalized by initial value) for various initial Reynolds numbers. MNo mean shear; extrapolated

to zero mesh siZe.
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Figure 11. - Calculated evolution of mean-square pressure fluctuation (normalized by initial value)
for various initial Reynolds numbers. No mean shear. Extrapolated to zero mesh size.
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Figure 12. - Three measures of relative importance of inertial and viscous effects plotted against

— 1/2

- dimensionless time. No mean shear; Yo X
size.

O/v =69.3; i = 1, 2, or 3; extrapolated to zero mesh
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4 — Initial conditions use eq, (40}

with first set of signs
————— Initial conditions perturbed
0.1 percent
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Figure 13. - Effect of uniform shear on calculated evolution of noniinear turbulent velocity

172
fluctuations (normalized by initial value) for a high Reynolds number [(u()) xo/v = 1]08].

Root-mean-square fluctuations are spatially averaged; 327grid points; x* = x* = 9v/8,
. 1 2
xg = 3w/8 for unaveraged fluctuations.
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—-=——Unbounded [eqs. (60) and {62)]
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Figure 14. - Calculated evolution of linearized velocity fluctuations (normalized by initial value).

1/2
2 3 . .
= s xk = x¥ = M = M .
<u0> xolv = 1108; x] )& 9n/8; )& 3w/8; 32 grid points

.4 .8 1.2 L6 n
X3 = Xol%g

172
Figure 15. - Linearized analytical solution for uzl(uo) plotted against x; for unbounded
T\1/2

. . pu— . 2 -—
(eq. (60)). x‘f = 9m/8; xék = 3uw/8; (duI /d)& )* = 4434; Lb )b/v = 1108.
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Figure 16. - Nonlinear solution for uzl(u())

2 1/2
* — .
(dU]/dxz) = 4434,<u0) xO/

3 * = ©oxk = .
plotted against x5 xx = 91/8; X3 3w/8;

v = 1108; 33 grid points.
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plotted against x‘f. x‘5 = 91/8; xg = 3%/8;

> 172
Figure 17. Nonlinear solution for u /(u )
2°\'0
> 1/2
(dU]/dxz)* = 4434;<u ) X

0 /v = 1108; 323 grid points.
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Figure 18. - Calculated cross-correlation coefficients (i # j) plotted against dimensionless time.
—1/2

(dU, /ax,)* = 4434; ug x/v = 1108; 32 grid points.

Figure 19. - Calculated evolution of mean-square velocity components. (dU]/dxz)* = 4434;

—1/2 3
(ug) xo/v = 1108; 32 grid points.
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Figure 20. Effect of numerical mesh size on evolution of u

(du,/dx, )% = 4434;
S\I72
(u ) xo/V = 108,
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Figure 21. - Calculated evolution of pressure-velocity-gradient correlations. (duy/dxp)* = 4434,

> 1/2 3
(uo> xO/v = 1108; 32" grid points.
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Figure 22. - Evolution of u, for various linear and nonlinear solutions. (dUy/dxp)* = 4434;

> 172
<u0) x0/\> = 1108.
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Figure 23. - Calculated approach to isotropy of uniformly sheared turbulence upon sudden removal of

/2 3
the shear. (u‘a') xo/v = 1108; 32" grid points.
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Figure 24. - Calculated evolution of cross-correlation coefficients upon sudden removal of uniform

shear. (u

1/2 3
0) xolv = 1108; 32" grid points.

72
Figure 25. - Effect of removal of uniform shear on structure of turbulence. <u0> x0/1r = 1108;

323 grid points.
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Figure 26. - Calculated development of shear layer mean-velocity profile with dimensionless time.

2172 3
(uo) xo/v = 554; V¥ = 2216 in eq. (71); 32" grid points.
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Figure 27. - Calculated time variation of ratio of turbulent-to-viscous shear stress for developing

/2
2
shear layer at x¥ = w. (l.b) xg/v = 554; vk = 2216 in eq. (71); 323 grid points.
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Figure 28. - Calculated evolution of turbulent velocity fluctuations (normalized by initial value)
for developing shear layer. Unaveraged fluctuations are calculated at center of numerical grid

(x* = ). Root-mean-square fluctuations are averaged over x‘]k and xg at central plane

% 2\/2
Xp = . (uo) x9/v = 554; V¥ = 2216 in eq. (71); 323 grid points.

158



18107

0 .2 .4 6 8 Ir 12 L4 L6 18 or
*
Xz'Xz/Xo

Figure 29. - Development of dimensionless kinetic energy profile with dimensionless time for develop-

172
ing shear layer. (“0) xg/v = 554; V* = 2216 in eq. (71); 323 grid points.
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Figure 30. - Plot of terms in one-point correlation equation for kinetic energy (eq. (73)) for devel-

1/2
2
oping shear layer. (uo) xp/v = 554; V* = 2216 in eq. (71); t* = 0.000293; 323 grid points.
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Figure 31. - Calculated evolution of turbulent velocity fluctuations (normalized by initial condi-

1/2
tion) with a spatially periodic body force. (u > xO/v = 138.6; xf = 55 = 9«/8;)5 = 3v/8 for

0
unaveraged fluctuations. Root-mean-square fluctuations spatially averaged; 323 grid points.
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Figure 32. - Calculated trajectory of phase point projected on uz—u plane at numerical grid

3
-5 1/2
center with a spatially periodic body force. 0.26 < t* < 0.32; ( ) X

Uy /v = 138.6; 323 grid
points. Arrows indicate direction of time.
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