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A literature survey has been conducted to assess the state—of-the—art of
time~temperature dependent elastic—viscoplastic constitutive theories which
are based on the unified approach. This class of constitutive theories is
characterized by the use of kinetic equations and internal variables with
appropriate evolutionary equations for treating all aspects of inelastic de—
formation including plasticity, creep, and stress relaxation. The review
identifies more than ten such unified theories which are shown to satisfy the
uniqueness and stability oriteria imposed by Drucker’s postulate and Ponter’s
inequalities., These theories are compared on the basis of the types of flow
law, kinetic equation, evolutionary equation of the internal variables, and
treatment of tempersture dependence. The similarities and differences of
these theories are first outlined in terms of mathematical formulations and
then illustrated by comparisons of theoretical calculations with experimental
results which include monotonic stress—strain curves, cyclic hysteresis loops,
creep and stress relaxation rates, as well as thermomechanical loops. Numer—
ical methods used for integrating these stiff time—temperature dependent con-
stitutive equations are also briefly reviewed.

INTRODUCTION

Constitutive theories based on the classical concepts of plasticity and
creep generally decompose the inelastic strain rate into a time—-indepeandent
plastic strain rate and a time-dependent creep rate with independent constitu—
tive relations describing plastic and creep behavior. While this approach can
be rationalized on historical grounds and perhaps on computational conve-
nience, experimental evidence collected on structural alloys at elevated tem—
perature indicates inherent time—dependency and creop/plasticity interactions
[1]. This suggests that inelastic deformation might be primarily comtrolled
by & single overall mechanism and should be treated in a unified manner,

In recent years, a number of formulations of elastic-viscoplastic con-
stitutive equations have been presented in the engineering literature. Suckh
equations are sometimes referred to as "unified" since inelastic deforma-
tions are represented and treated by a single kinetic equation and a discrete
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set of internal variables. In this context, creep, stress relaxatiom, and
plastic flow are different manifestations of time—dependent inelastic deforma-
tions under particular loading conditions with consequsntly different response
characteristics.

There arec more than ten unified constitutive theories in the literature.
These constitutive equations have some common properties and some ossential
differences which have been reviewed rocently by Walker [2]. Since then,
there have been more advances in the development of the unified theories. The
purpose of this survey is to update Walker's p:evioui work by reviewing the
state—of-the—art and the numerical integration techmiques for these unified
theories. This survey also serves to identify areas for further model devel-
opments.

The unified theories which are reviewed in this survey include those of
Walker [2], Bodner and Partom [3,4], Miller [5], Krieg, Swearengen and Rhode
{61, Chaboche [7], Robinson [8], Hart and co-workers [9], Stouffer and Bodner
[10], Lee and Zaverl [11], Ghosh [12], and Kagawa and Asada’s modification of
Miller’s model [13].

GENERAL CHARACTERISTICS OF UNIFIED CONSTIITUTIVE EQUATIONS
FOR ELASTIC-VISCOPLASTIC MATERIALS

Constitutive equations for elastic-viscoplastic material could be formu-
lated either with or without the use of = yield criterion. A basic assumption
for this class of constitutive theories is that in the range where inelastic

strains are present, the total strain rate &j; can be divided into elastic aand
inelastic components which are both nonzero, 1i.e.

. - 2 © ]
843 &3 + iij _ (1)
This equation is applicable for the small strain case and a similar decompo-
sition is assumed to hold for the deformation rates in the case of large
strains. Those are equivalent to strain rates if the strains are small.

For the small strain case considered here, tho elastic strain rate is
given by the time derivative of Hooke’s Law. An important question related to
Equation (1) is an appropriate definition of éip. Ono possibility is to de-
fine éi as the total strain rate contribution %hat is bothk thermodynamically
and geometrically irreversible , i.e., non—elastic in all respects. An alter—
native definition of the incremental plastic strain is the residual strain
upon loading and unloading from a stress increment. This seems to be the de-
finition adopted by E. H, Lee in his treatment of large plastic strains, see
0.g. [14]. Since non—-elastic strains are also generated during unloading,
constitutive equations based on this definition would be different than in the
former case. Each approach seems possible, but the proper definition and use
of the iip term should be indicated and be consistent with the constitutive
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The expression "unified" applied to such theories is generally takea to
mean that all aspects of inelastic behavior such as plastic flow, creep, and
stress relaxation are included in the &;; function aand are particular response
characteristics for different loading histories. This broad defimition of
"snified" would admit theories with and without a yield criterion and alterna—
tive specifications of éiP. Separation of the nom—elastic strain rate into
geometrically reversible {anelastic) and non-reversible components could be 2
convenient procedure and does not detract from the "unified" concept.

Constitutive theories which are formulated without the use of a yield
criterion include that of Bodner and his associates [3,4], Walker [2], Miller
(5], and Krieg, Swearengen and Rhode [6]. Since these models do not contain a
completely elastic regime, the function that describes the inelastic strain
rate should have the property that the inelastic strain rate be very small for
low stress levels.

For theories with a yield criterion, 519 is identically zero until an
invariant function of the stress reaches a prescribed value; the function, by
definition, is independent of strain rate. For stresses at or exceeding the
yield value, Equation (1) applies and ii? and the stress o;; are function-
ally related. The fully elastic state, 1i.co. iif = 0, would apply only for
stross states less than the rate independent yield value, and loading and un-
loading paths above that are controlled by the loading conditions through the
constitutive equations. Theories of this type have been developed by Perzyna
[15] for the case of isotropic hardening and by Chaboche [7], Robinson (8],
and Lee and Zaverl [11] for the case of both isotropic and directional harden—
ing.

All the unified models are formulated on the basis of internal variables
which depend on the loading history. The essential features of these unified
theories are: (1) a flow law which functional form depends on the method of
treatment of directional (kinematic) hardening, (2) a kinetic equation which
is the temperature dependent functional relationship between the strain rate
and stress invariants and includes internal variables, and (3) a set of evolu~
tion equations for describing the growth of the internal variables. Hers, the
internal variables are used to represent the current resistance to inelastic
flow of the deformed solid. Two deforming solids with identical values of
their internal variables would have identical inelastic responses under the
same imposed stress state. Both the choice and the number of internal vari-
ables vary with the unified models.. Most of the umified models use two inter—
nal variables or one variable with two compoments: one to represent isotropic
hardening and another to represent directional (kinematic) hardening. In most
models, the isotropic hardening variable is represented by a scalar quantity,
either the drag stress (K) or the yield stress (Y), while directional harden—
ing is represented by a second order tenmsor nij or a scalar function of such a
tonsor.

Basic Flow Laws

Four basic forms of the inelastic flow law have been identified. Plas-
tic incompressibility is always assumed and these flow laws are:



1) &7 = A8, iy =0 (2a)
2 &7 = ATy (S, = 80 » #F =0 (2b)
(3) ii? = Ayjpg S i0g " ili,jkk =0 (2¢) .
@ &7 - 5%;— . &2 =0 (24)

where Sjj, oij, and Iij are the deviatoric, direct and effective stresses,
respectively. The tensor Q3; represents the '"equilibrium stress" which has
also been referred to as the 'back stress' and the '"'rest stress.” The para-
meter f is a yield function or a flow potential. It should be noted that the
first three laws can be considered or can be derived from Equation (2d)- if
they are associsted with sz flow potemtial,

Equation (2a) is the Prandtl-Reuss flow law associated with the von
Misss yield criterion. However, it can be considered as a basic material
equation in its own right independently of a yield conditions As such, this
equation is usually taken to be applicable for proportional loading conditioms
for which isotropic hardemning would be appropriats. The equation states that
the material response (i.e., the plastic strain rate) to stress is isotropic
even though A3 could be stress history dependent. Since stress is direc-
tional, Ay could have 2 directionsl character within the context of incremen—~
tal isotropy and theresby :ccount for induced directional hardening effects.

Equation (2b) is the flow law obtained by introducing the kinematic
hardening variable of Prager [16] into the classical plasticity formmlation to
account for directional hardening (the Bauschinger effect). In this context,
the term O3; would represent the new origin of a translatiang von Mises yield
sucrface in iavintoric stress space, and Equation (2b) would be the associated
flow rule. As before, Equation (2b) can be taken to be a basic material equa-
tion in a formulation without a yield criterion and the "equilibrium stress’
tensor Q;; is generally intended to serve the following functioms: (a) to
account for directional hardening (the multi-dimensional Bauschinger effect),
and for the non-coaxiality of &;37 and sij under noaproportional loading his-
tories (Figure 1); (b) to account for reversed plastic straining effects, eo.g.
reversed creep, relaxation through zero stress, when the effective stress I;
is negative; (c) for theories without a fully elastic range (i.e., a yield
criterion), to account for low plastic straining within a given range.

Bquation (2¢c) is the generalized anisotropic form of the Prandtl-Reuss
flow law which can be rewritten in a 6D stress and strain rate space to take
the form,



EP = T = 1,—6 3
a Aap Tp ; - T (3)

where E; and Tg are related to the usual plastic strain rates and stresses ia
a simple manner, see [10], and Agg is the 6x6 matrix of coefficients. If the
material is initially isotropic and the law for plastically induced direction—
al hardening does not lead to off diagonal terms, then Agg is initially and
remains diagonal. Under these conditions, Equation (2¢) is equivalent to
Equation (2b) since 6 material constants determine the anisotropic flow behav-
ior. All the flow equations, Equations (2a,b,c), would be equivalent for the
case of proportional loading, including cyclic conditioms. The real differ—
ences in those equations would show up for nonproportional loading histories.

For constitutive theories with a flow potential, both the flow law and
the growth law of the directional (kinematic) hardening variable Q;; are de-
rivable from a single flow potential. The associated flow law of a2 basic form
of such a flow potential is [8]. '

n-1
: P, 1.2 -
845 ZuE' (aij nij) for inelastic loading (4a)
and ii§ - 0 for elastic loading/unloading (4b)

where F is the von Mises yield function, n and g are material parameters. The
conditions for inelastic loading and elastic unloading have been identified

in [8]. It can be easily seen that (4a) and (2b) are equivalent. In both
cases, the direction of the inelastic strain rate vector is coaxial with the
current effective stress vector (see Figure 1).

Kinetic Equations

The flow laws, Equations (2a) aand (2b) can be squared to give respec—
tively,

- P 1/2

ll [D2 /12] (5a)
- P,y 1/2

A, [D2 /12] (5b)

vhere sz is the second invariant of the plastic strain rate, Dp¥ = (1/2) &ig
2;7, and J5 and J3 are the second invariants of the deviatoric stress and
ef%ective deviatoric stress, respectively,

12 = (1/2) 8ij Sij (62)
IZ = (1/2) (Sij - Qij)(sij - gij) (6b)



Fundamental to all "unified" viscoplastic formulations based on flow
laws of the forms listed in Equations (2) ‘is that inelastic deformations are
governed by a functional relation between D9P and J9 (or J3) that could in-
volve load history dependent variables. These variables are intended to re—
present properties of the inelastic state with respect to resistance to plas-
tic flow, e.g. hardening, and damage. Some functions that have been suggested
. are the following.

P .
() D,°= DX (7a)
P _(L\ =
(b) D2 Do exp [ (—i-) ] (™)
(c) nzp - D [sinh(x)"]“ | (7¢)
where X = 3:r2/1:2 , or :a.r;n:2

and n, m, and D, are constants. The inelastic strain rate components can then
be obtained as a function of the stress by the use (2a) or (2b) and ome of
Equations (7). Expression (7b) would seem to have some advantage over (7a)

or (7¢) in theories without a yield criterion in that the value of DpP is
almost zero for some range of J5 regardless of the value of n. Ia (7b),

Do is the limiting value of the inelastic strain rate in shear; (7a) and

(T) do not contain such a limit. These differences between the kinetic equa-—
tions are illustrated in a normalized plot of log (DzP/Do) vs X in Figure 2
for the case of n = 3 and m = 1.0,

In all the preceding equations (7a2,b,c) the exponent n influences the
slope of the D3, J7 relation and therefore has the major influence on straia
rate sensitivity. That parameter also affects the overall level of stress-—
strain curves although the level also depends on the hardening parametsr K.

Temperature (T) dependence of plastic flow is a first order phenomenon
comparable to strain rate semnsitivity and should appear directly in the ki-
netic equation. In the case of Equations (7a,b), this can be achieved by
taking the exponent n to be a function of T, e.g. n = ck/T (k is Boltzmann's
constant and ¢ a material constant) which leads to strong temperature depeand-
ence of the stress parameter X=3J5/K2 (or 3J75/K2). Numerical results for this
dependence are shown in Figure 3 for both the power law and expomential kinet-
ic equations at different non—dimensionalized strain rates.

The method of including temperature dependence in Equations 7a2,b is com—
parable to an activation energy formulation. Table I lists temperature-
dependent kinetic equations based on four different functiomal expressioms for
the activation energy. Some of the consequences of the various relations are
discussed ian [17].

Another procedure for including temperature dependence in the kinetic
equations is to multiply the stress function, the right hand side of equa-
tions (9) by a temperature function. The temperature factor can again be
motivated by thermal activation considerations and the Arrhenius expression
seoms to be the reasonable function to use (Table I). This is the approach
taken by Miller [5].



Evolutionary Equations for Internal Varisbles

The general framework of the evolutionary equations of internal vari-
ables is based on the now well-accepted Bailey-Orowan theory [18,19] which
theorizes inelastic deformation to occur under the actions of two simultan—-
eously competing mechanisms, a hardening process proceeding with deformation
and a recovery or softeming process proceeding with time. The evolution rate
of an internal varisble is then the difference between the hardening rate and
the recovery rate as givem by

I, = @) H - (X, D (8)
where X; is the evolution rate of the intermal variable X;, and by and rqy are
the hardening and the thermal recovery functioms, respectively. by and rj are

functions of Xj, temperature, T, and the hardening measure, Mjis either
éi? or Wp depending on the model.

(1.) Isotropic Hardening

The quantity K in Equation (7) is usunally interpreted as the iso-
tropic hardeaning intermal variable and is often referred to as the drag
stress. Evolutionary equations for the isotropic hardening parameter gemeral-
ly follow the hardening/recovery format shown in Equation (8). A comparisoa
of these hardening and recovery functions ia various unified theories is shown
in Table II. The rate of isotropic hardening is usunally given by a function
of the hardening variable K, which may saturate to a limiting value, shown as
Ky in Table II, multiplied by a measure of the hardening rate. Both the in—
elastic work rate and the effective inelastic strain rate have been proposed
&8s the scalar hardening measure. On the other hand, the rate of softening
or recovery is often taken to be a power function of K and a temperature—
dependent constant Ky which value represents the refersnce state for that par—
ticular temperature. This recovery model, sometimes credited to Friedel [20],
theorizes that recovery occurs only when the current internal state exceeds
the referencs state.

(2.) Directional or Kizsmatic Hardeaning

Probably the main difference in the various unified theories is
the treatment of directional or kinematic hardening. Differences exist not
only in the choice of the flow law but also in the evolutionary equations.
The general framework of these evolutionary equations follows the hardening/
recovery formulation represented in Equation (8) with indexes to indicate
the directions of hardening and recovery.

] ))’ti + 8(a,

-d4(9,,, N, - =.(0,,,T)V 9% | (9)
i i i i

=1, (Q
ij 2 ij i) i b 2 i i 3 J
where hy, d, and rj are the hardening, dynamic recovery , and static thermal
recovery functions, respectively. © represents hardening and/or recovery as—
sociated with the rate of temperature change. Mij;, Njj, Vjj snd Wy; are the
directional indexes of hy, d, rj, and 6, respectively. The main differences



among the various theories, as summarized in Table IIXI, are in the choices of
the directional index and the hardening and recovery functions.

As indicated in Table III, unified models based on the equilibrium
stress utilize the inelastic strain rate as the directional index for harden—
ing and contain a "dynamic recovery' term in the hardening function. The pro—
posed hardening rule is thus similar to the Prager rule [16] in conventional
plasticity which requires the translation of a yield surface to occur in the
direction of the plastic strain increment. On the other hand, the evolution—-
ary equation proposed in conjunction with Equation (2a) is based on the direct
stress as the index for directional hardening [3,4]. This formulation avoids
the cross—softening effect associated with inelastic strain rate as the index
and the theory is more compatible with Ziegler’s modification [21] of the
Prager hardening rule. The directional index for "dynamic recovery' is gener—
ally ia the opposite direction of the directional hardening variable nij. The
"dynamic recovery' term is treated in [3,4] as a saturation term in the direc-
tion of the direct stress but the index has recently beenm modified to be in
the direction of =~ Qj; also [22]. The unit vector which represents the direc-
tion cosines of the directional hardening variable is ususlly taken to be the
directional index for static thermal recovery. Recovery always occurs in the
opposite direction of the unit vector and tends to reduce the magnitude of the
directional (kinematic) hardening variable. Most unified theories utilize
Friedel's recovery model and take zero magnitude of Qj; as the reference
state. Table III shows that a temperature rate term is also included in the
theories of Walker and Chaboche. In principle, similar terms could be added
to the other theories.

The temperature dependence of the intermal variables is also important.
The experience with the unified models to date indicates that all the material
constants in the formulations would depend on temperature and must be evalu—
ated at a2 number of base temperatures.

Uniqueness and Stability Criteria

For stability, unified theories with internal variables must, according
to Ponter [23], obey the following inequality:

s D _ . .
daij dcij daXi 4Xi > 0 (10)

where doy;, diij, dXi, and 4Xi represent incremental changes in stress, in—
elastic_s%rain rate, the curreat value and the evolution rate of the intermal
variables. The inequality admits classical plastic flow, creep, and stress
relaxzation behavior. It also admits recovery phenomena involving negative
inelastic work provided that the corresponding changes in the internal vari-
ables are sufficiently large to make the inequality in Equation (10) remain
valid, The basic requirsment of Equation (10) is that the dissipation rate
must be nonnegative.



_ For a constant internal state, a small change in gij resuits in a cor—
responding change in 51? so that [23]

doyy iy} 30, Xy = 0 (11)

The inelastic work inequality is idemtical to Drucker’s postulate [24] ia
classical plasticity that for a stable material flow the plastic wozrk done
must be nonnegative. For proportional loading the kinetic equations represean—
ted in Equation (7a) to Equation (7¢) all yield convex "flow poteatials" to
.which the inelastic strain rate vectors are normal. The consequence is that
the inelastic work is always positive, and unified theories based on Equation
(7a) to (7c) obey the inelastic work inequality.

For uniqueness, it appears that the inelastic strain rate must be a
single—valued function of stress and internal variables. To satisfy the re-
quirement for stable flow, Equation (10) dictates that stress—strain curves at
constant strain rate must have positive slope but must decrease with increas-
ing strain., On the other hand, stress—strain curves at constant plastic
strain or plastic work must have positive slope, but the slope may either
increase or decrease with increasing straia rate [23].

Most, if not all, of the unified theories listed in Table II satisfy the
Ponter inequalities and met the uniqueness and stability requirements. The
stability requirement is, however, not essential for constitutive theory de~-
velopments. Unified theories admit unstable inelastic flow and are generally
modeled by including softening mechanisms such as thermal softening and com—
tinnum damage in the evolution and/or kinetic equations.

NUMERICAL METHODS FOR INTEGRATING
UNIFIED CONSTITUTIVE EQUATIONS

The unified constitutive oquations can be characterized as mathematical~-
ly "stiff." That is, in these equations, dependent variables are susceptible
to large changes from small increments of the independent variables or from
small time steps. This "stiff" behavior occurs usually with the onset of a
significant amount of inelastic strains in the loading cycle and is due to the
gonerally nonlinear nature of the functional forms that are employed in the
kinetic equations of these theories.

A systematic comparison of a variety of approaches for integrating
unified constitutive equations has been reported by Kumar, Morjaria, and
Mukherjee [25]. This study concluded that for the constitutive theory of
Hart, a relatively simple Euler integration method, together with a time
step control strategy, was optimal when compared with the more sophisticated
methods. The Walker constitutive theory has been intsgrated using the Euler
single step approach usually without auntomatic time step control, but rather
by determining an optimum step size for each problem. Efficiency obtained by
using this approach has been acceptable and has shown considerable improvement
over more sophisticated approaches such as higher order Runge—Kutta methods.



Tanaka and Miller receatly dsveloped a nomiterative, self-correcting
solution (NONSS) method for integrating stiff time—dependent constitutive
equations [26]. In this approach, implicit quantities are removed by Taylor
expansions of g, ¢, and X through the incorporation of the integratiom opera-
tor a. The method which reduces to the explicit Euler method when a = 0 and -
to the implicit Euler method when a > 0 is unconditionally stable for a » 1/2
and is noniterative. Accuracy is maintained through self-adaptive time con-
trol and by correcting previous errors at the curreant step.

A summary of these various numerical techniques and their applicatioms
to several unified theories as well as to Norton’s law for integrating a uni-
axial stress—strain curve to a total strain of 1-2% is shown in Table IV. As
illustrated in Table IV, the explicit Euler is stable when the size of the
strain increment is kept below 10~4, The size of the strain incremeat can be
increased by using an implicit method sunch as the NONSS or a-method with a = 1
(implicit Euler). By restricting the comparison to the explicit methods omly,
it appears that there is no substantial difference between the integrability
of Walker and Miller theories nor between these unified theories and the
classical Norton law. The size of the strain increment is, however, somewhat
sensitive to the values of model constants which describe material strain
rate sensitivity.

PREDICTIVE AND SIMULATIVE CAPABILITIES OF UNIFIED
CONSTITUTIVE THEORIES

Four of the unified models which have been successfully applied for sim-
ulating and/or predicting monmotomic, cyclic, creep, and stress relaxation be-
havior are those of Robinson [8], Walker [2], Bodner—Partom ([3,4], and Niller
[5]. Robinson’s model is based on a yield condition and utilizes loading and
unloading criteria, while the latter three do not. The kinetic equations com~-
monly used in unified theories without a yield surface or flow potential are
based on the power—law, exponeantial, and hyperbolic sine functions; these
kinetic equations are represented in Walker, Bodner—Partom and MNiller theo—
ries, respectively. These four theories will be used to illustrate the simu~
lative and predictive capabilities of the unified theories.

(1) Monotonic Stress—Strain Behavior

All unified theories are capable of reproducing the momotonic stress—
strain curve. Figure 4 shows an experimental uniaxial tensile stress—strain
curve of Hastelloy-X deformed at s strain rate of 1.3 x 104 seo~l at 922 K
and model simulation using Bodner—Partom theory. The computed curve includes
contributions from both work hardening and thermal recovery.

(2) Cyclic Stress—Strain (Hysteresis) Behavior

Bauschinger Effect is represented in most unified theories by a kine-
matic or directional hardening intermal variable. Cyclic hardening, however,
can be represented by increases im the isotropic htrdenin; variable, the
directional hardening variable, or both., These differeat types of cyclic
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hardening behavior are illustrated in Figure 5 for Bodner~Partom theory which
does not use an equilibrium stress. The use of different evolutionary equa-
tions for the equilibrium stress in different regions of stress space allows
Robinson’s model to reproduce rounded hysteresis loops. Examples of cyclic
saturated hysteresis loops calculated using Robinson’s model are compared with
experimental results of 2-1/2Cr-1Mo steel in Figure 6 [27].

(3) Creep Responses

Most of the unified models can predict primary and secondary creep re-
sponses of material subjected to constant load. Steady state creep rates are
predicted by these unified models to occur when the evolutionary rates of the
isotropic and/or directional hardening variable vanish as the hardening terms
are balanced by the thermal recovery. Examples of calculated steady state
creep rate under constant stress and comparison with experimental data are
shown in Figure 7 for Bodner—Partom’s model. According to the unified theo—
ries, the steady state creep rate is a function of stress and temperature
only; it should not depend on the loading histories. This is demonstrated in
both experimental data and predictions by Miller’s model in Figure 8 [28].

(4) Stress Relaxation Response

The behavior of unified constitutive models under stress relaxzatiom is
analogoas to the creep behavior. Under a comstant strain condition, the re—
laxation rate would, again, depend on the current values of the internal vari-
ables and on the growth laws which describe their changes with time and in—-
elastic deformation. Stress relaxation calculations based on Walker theory is
compared with experimental data of Hastelloy-X [2] in Figure 9.

(5) Thermomechanical Response

The behavior of unified constitutive theories under the-momechanical
cycling depends critically on the change of material constants with tempera-
ture, In particular, the shape of the predicted thermomechanical loop is
sensitive to the growth of the kinematic hardening variable (the equilibrium
stross) with temperature. Walker’s model prediction of thermomechanical loop
of Hastelloy-X is shown in Figure 10.

(6) Multiaxial Behavior

All the unified theories ntilize single-valued kinetic equations formu-
lated in terms of either 3J2/K2 or 3J3/K2. For a constant value of the inter—
nal variable K and under proportional paths, these kinetic equations predict a
locus of constant inelastic strain rate invariant in stress space; the shape
of the predicted "yield surface'" or "Fflow potential' is identical to von Mises
yield function. For unified models formulated based on the equilibrium
stross, the size of the "yield surface'' is proportional to K, while the ceanter
of the "yield surfacs" is at 8;; and translates according to the evolution
" rate of nij'

1



Recent studies [22,29], indicate that materials exhibit comsidersbly
more cyclic hardening when tested under nonproportional paths of combined ten-—
sion and torsion than under proportional paths of temsion or torsion only. As
s result, most if not all,of the constitutive models need to be modified to
take into account the hardening behavior due to out—of-phase loading.

SUMMARY AND CONCLUSICNS

1. A review of more than ten time—temperature dependent elastic—
viscoplastic constitutive theories indicates that these theories
differ in the choice of flow law, kinetic equation, and evolu~
tionary equation of the intermal variables.

2. The unified approach treats ail aspects of inelastic deformation
including plasticity, czreep, and stress relaxation using the same
sot of flow law, kinetic equation, and internal variables.

3. The unified constitutive theories satisfy the uniqueness and
stability oriteria imposed by Drucker’s postulate for rate in—-
dependent stable plastic flow and Poater’s inequalities for con—
stitutive theories based on internal varisbles,

4. The unified theories can be formulated either with or without the
use of a yield criterion. Three basic flow laws are ideatified in
theories without a yield criterion. For theories with a yield
criterion, the associated flow law is derived from the yield
function or the flow potential.

5. Three different formulations of the kinetic equations are identified,
and they include the exponential, power law, and hyperbolic sine
functions. The expomential formulation gives a limiting inelastic
strain rate and appears to give better results for high strain rate
applications.

6. All three forms of kinetic equations are functioms of 375/K2 (or
312/12) and result in "yield surfaces" and equi-creep rate .sur—
faces which are described by the Jo—~based von Mises criterionm.

7. The number of intermal variables varies among the unified theories.
Most unified theories use two internal variables, one to repre—
sent isotropic hardening and ome to present kinematic or direc-—
tional hardening. The measure of hardening is either the inelas— .
lastic strain rate or the inelastic work rate.

8. Directional (kinematic) hardening can be modeled with or without the
use of an equilibrium stress. The directional index of kinematic
hardening can be based on either the inelastic strain rate or the
direct stress.

12



9.

10.

11.

12.

fully

Material constants in the unified models are necessarily temperature—
dependent and required to be evaluated at the temperatures of inter—
est. There are 'indications that a temperature rate term is also re~
quired in the unified theories.

All of the unified theories which are reviewed do not automatically
predict additional cyclic hardening under nonproportional loading
paths. Additional terms are needed in the unified theories to inm—
clude such hardening behavior. ‘

The equilibrium—stress—based unified theories can describe reverse
creep and/or reverse stress roelaxation behavior without further
modifications. Unified models which are not based on the equilibrium
stress would require modification by adding an anelastic term in order
to take into account thess types of behavior.
The unified constitutive equations are stiff but can be integrated using
either explicit or implicit methods.
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TABLE I

FIVE FORMS OF TEMPERATURE-DEPENDENT KINETIC EQUATIONS WITH
THE CORRESPONDING ACTIVATION ENERGY FUNCTION

Activation Energy Temperature-Dependent. Kinetic Equations

2 | 34

- K 2
AH = Cn o = p|—=
(3"]2) 2 0[ KZ]

C/kT

: D : Hg - Va(J2
8H = Hq = Vg(J,) D5 = Dyexp S
2 ' WA
= H*K p = - B:. —K—
3, | i <3J2)}

2 C/kT
K
= kT[—]

2 >C/ kT
3J,

P - (X
D2 = Dgexp (:m2

AH

"
. -

m
0} = Doexp[- éf][sinh (3—:21) ]

where C, Dg, H*, Hg, Q, m, and n are constants; V is the activation
volume; and k is the Boltzmann's constant.
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TABLE II

THE SPECIFIC FORMS OF ISOTROPIC HARDENING AND STATIC THERMAL RECOVERY
FUNCTIONS USED IN THE SELECTED UNIFIED CONSTITUTIVE THEORIES

K‘f h](K)M1

r] (T!K)

”\/%'é1§ &:f

(Bodner-Partom's Theory)

X
b=~
M
-3
m
X
-
"
Med
-
™

Static Thermal

Model Hifdening Function, hy(K) Recovery Function, r1(T.K)
Bodner-Partom C1(K1- K) CZ(K KO)p
Walker - Cy(Ky - K) -
Krieg et al - ¢ CZ(K--KO)p
Robinson o ¢y -
Lee and Zaverl . C1(K;-K)//G§ -
Hart C1' ' -
-q ' p
Ghosh C,K Co(K-Ky)
y N - . . ) p
Miller Cq Ky = C(sinh™ c41E]) K™ C,Lsinh C4 K™

" where C], C2’ C3, C4, CS’ m, P, q, K o and K1 are material constants; K1
is the saturated va]ue of K; K] is governed by an evolutionary equation
which is function of € and J2
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TABLE III

THE SPECIFIC FUNCTIONS OF ANISOTROPIC HARDENING, DYNAMIC RECOVERY, STATIC THERMAL
RECOVERY, AHD THE TEMPERATURE RATE TERM IN SELECTED UNIFIED CONSTITUTIVE THEORIES

By« Wiy Vi -ty 0 DR - el Theyy o oluyg, Dy,
wweres vy = a2 1 2 a0 (oo talier, v, < 9y)
TR TR TR W

lhr‘enln‘ fuactlon, & Oynanic Recovery N Static Wherma) Recovery

S| NN S - functlon, 4. fenstlen, lemperaturg Ratg fumction, & _Y))_..
Soduer-Parton ", by (1,02 v IR A -
Walker " e i " sy, gl %’ "'z ::'1 g 9y
Krieg et o) 8 ¢ npenpl-fo/n,) 1“ - - .’l"
Aok Inson "ty 1, - . nl?
Chabocke "ot i, "ty in,, ety A 0y,
Lee and Zaver) 1.sa 02, "2 (A W in, ) - -
o OIS N
Ghosh - .
Willer " ly a/ty lo,, wyfstah 0, 0"
:ne:o- v;—-—(;;,_-u: ;)'u. s vy = oglluy oy "2

"yt u‘up(-a‘i)
cay {0 - n‘)up(-nsi)

I T’ SO T T B

LY R L T

- sluh"h‘i).

8= 1,2, or 4/), depanding on the made)

Mo By By, Byo Bg, g, b, ond s are materia) coni»n.

ui, are the saturated values of nul n:, ara governed by evalutionary equations which are functieas
of & and 3,°.
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TABLE IV

COMPARISONS OF THE INTEGRATABILITY OF VARIOUS CONSTITUTIVE MODELS

Comparison is based on the size of the average strain increment per step for
integrating a uniaxial tensile stress-strain curve to a total strain of 1-2%

Automatic Time or

Cons':)idt:‘tlve Integration Hethod Stra'i,:rlgtt::saent Strain Increment | Stability Reference
Control
Walker Explicit Euler 10°5 to 10~4 No Stable [Walker [2!;
Cassent! [30]
NONSS (a-Hethod)
= "‘

Bodner-Partom a=,l ¥ x 10_4 Stable present
a=.5 1 x10 No Stable Investigation
a=] 1 x 1073 Stable

Explicit Euler 4 x 1074 Ho Unstable |Lce et al [31]
Miller Tayler Series Hodified Euler 4 x 104 , No Stable Lee et al
NONSS (a-Method, a=1) 3 x 10-3* Yes Stable Tanaka [26]
Explicit Euler 2 x 10°5* Yes Stable  |kumar et al [25)
lart Predictor-Corrector 3 x 105" Yes Stable Kumar et al
High Order Predictor-Corrector Ix 10-5* Yes Stable Kumar et al
Two-Step Adam 2 x 10-5* Yes - Stable Kumar et al
-3
Explicit Euler 1 x 10 No nstable |Lee et al [31]
Norton 5x 104 No Stable Lee et al
Taylor Serles Modified Euler 1 x 10-3 No Stable Lee et al

* Average strain increment per step = total strain/number of time steps.
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Figure 2. Functional behavior of the kinetic

equations used in the unified con-
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is seen to give a limiting inelastic
strain rate of DO.
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are generated with Robinson's
Model, from [27].
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cuted at a constant strain rate of

+ 1.35 x 10-3 sec-! with a strain ampli-
tude of *+ .4%. The calculated curves
are based on Walker's theory, from [2].
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diction by Walker's theory.





