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A literature survey has been conducted to assess the state-of-the-art of 
time-temperature dependent elastia-viscoplastic constitutive theories which 
are based on the unified approach. This class of constitutive theories is 
characterized by the use of kinetic equations and internal variables with 
appropriate evolutionary equations for treating all aspects of inelastic de- 
formation including plasticity, creep, and stress relaxation. The review 
identifies more than ten such unified theories which are shorn to satisfy the 
uaiqwness and stability ariteria imposed by DruckerOs postulate and PonterOs 
inequalities. These theories are compared on the basis of the types of flow 

. law, kinetic equation, evolution8ry equation of the internal variables, and 
treatment of temperature dependence. The similarities and differences of 
these theories are first outlined in t e a s  of nuthematical formulations and 
then illustrated by comparisons of theoretical calculations with experimental 
results which inalude monotonic stress-strain o w e s ,  cyclic hysteresis loops, 
creep and stress relaxation rates, as well as thermomechanical loops. Numer- 
ical methods used for integrating these stiff time-temperature dependent con- 
sti tutive equations are a1 so briefly reviewed. 

Constitutive theories based on the classiaal concepts of plasticity and 
creep generally deaompose the inelastic strain rate into a time-independent 
plastic strain rate and a timedependent creep rate with independent constitu- 
tive relations describing plastic and creep behavior. While this approach can 
be rationalized on historical grounds and perhaps on computational conve- 
nience, experimental evidence collected on structural alloys at elevated tern- 
peratme indicates inherent time-dependenay and ~ r e e p / ~ l a s t i c i t ~  interactions 
[I]. This suggests that inelastic deformation might be primarily controlled 
by a single overall mechanism and should be treated in a unified manner. 

In recent years, a nmnber of formulations of elastic-viscoplastic con- 
stitutive equations have been presented in the engineering literatoto. Such 
equations are sometimes referred to as "unifiedu since inelastic deforma- 
tions are represented and treated by a single kinetic equation and a discrete 

This work was performed under NASA Contract No. NAS3-23925. 



se t  of i n t e rna l  var iables .  I n  t h i s  context, creep, s t r e s s  re laxat ion,  and 
p l a s t i c  f l m  are  d i f f e r en t  manifestations of time-dependent i n e l a s t i c  defonna- 
t ions  under pa r t i cu l a r  loading conditions with conseqrrontly d i f f e r en t  response 
charac te r i s t ias .  

There a re  more than ten unif ied cons t i tu t ive  theor ies  i n  the l i t e r a t u r e .  
These cons t i tu t ive  equations have some common propert ies  and some essen t ia l  
d i f ferences  which have been reviewed recent ly  by Walker 121. Since then, 
there have been more advanoes i n  the development of the unif ied theories .  The 
purpose of t h i s  survey i s  t o  update Walker's previou= work by reviewing the 
state-of-thwart  m d  the nxmerical in tegrat ion techniques f o r  these an i f ied  
theories .  This survey also semes  t o  iden t i fy  areas f o r ' f u r t h e r  model devel- 
opments. 

The unif ied theor ies  which are reviewed i n  t h i s  survey include those of 
Walker 121, Bodner and Partom [3,41, Miller Krieg, Swearengen and mode 
161, Chaboche 171, Robinson 181, Hart and co-rorkors [91, Stooffer and Bodner 
[lo]. Lee and Zaverl [Il l ,  Ghosh [12], and $agars and Asada's modification of 
Mil ler8 s model 113 I . 

cRAaA-STICS OF UNIFIED CON- EQUATIONS 
FOB PWSSTIC-VISCOPLASTIC MATERIALS 

Consti tutive equations f o r  e las t ic-viscoplast ic  mater ia l  could be formu- 
la ted  e i t h e r  with or without the use of a y i e ld  c r i te r ion .  A basic  assumption 
f o r  t h i s  c l a s s  of cons t i tu t ive  theories  i s  t ha t  i n  the range where i n e l a s t i c  
s t r a i n s  a re  present ,  the t o t a l  s t r a i n  r a t e  ii can be divided i n t o  e l a s t i c  and 
i n e l a s t i c  components which are both nonzero, 1.e. 

This equation i s  applicrrblo f o r  the m a l l  s t r a i n  case and a  s imilar  decompo- 
s i t i o a  i s  assumed t o  hold f o r  the deformation r a t e s  i n  the case of large 
s t ra ins .  Those are equivalent t o  s t r a i n  r a t e s  i f  the s t r a i n s  are  small. 

For the small s t r a i n  aase considered here, tho e l a s t i o  s t r a i n  r a t e  i s  
given by the time der ivat ive of Hooke's Law. An important question re la ted  t o  
Equation (1) i s  an appropriate de f in i t i on  of iiP. Ono p o s s i b i l i t y  i s  t o  de- 
f ine  li! a s  tho t o t a l  s t r a i n  r a t e  contr ibot iod {hat i s  both thennodynamically 
and geometrically i r r eve r s ib l e  , i.e., non-elastic i n  a l l  respects.  An a l t e r  
nat ive d e f i n i t i o n  of the incremental p l a s t i c  s t r a i n  i s  the res idual  s t r a i n  
upon loading and unloading from a s t r e s s  increment. This seems t o  be the de- 
f i n i t i o n  adopted by E. H, Lee i n  h i s  treatment of large p l a s t i c  s t r a i n s ,  see 
e.g. 1141. Since non-elastic s t r a i n s  are  a l so  generated during unloading, 
cons t i tu t ive  equations based on t h i r  de f in i t i on  would be d i f f e r en t  than i n  the 
fonner case. Each approach seems possible,  but the proper de f in i t i on  and use 
of the i iy t e rn  should be indicated and be consis tent  with the cons t i tu t ive  
equations. 



The expression "unified" appl ied  t o  sach t heo r i e s  i s  general ly  taken t o  
mean t h a t  a l l  aspects  of i n e l a s t i c  behavior sach as  p l a s t i c  flow, creep, and 

P s t r e s s  r e l axa t i on  a r e  inoluded i n  the  i i  funct ion and a r e  p a r t i c u l a r  response 
c h a r a c t e r i s t i c s  f o r  d i f f e r en t  loading h i s t o r i e s .  This broad d e f i n i t i o n  of 
"unified" would admit theor ies  wi th  and without a y i e l d  c r i t e r i o n  and a l terna-  
t i v e  spec i f i c a t i ons  of i iP.  Separation of the n o w e l a s t i e  s t r a i n  r a t e  i n t o  
geometrical ly revers ib le  t a n e l a s t i c )  and n o r r e v e r s i b l e  components could be a 
convenient procedure and does not d e t r a c t  from the "unif ied"  concept. 

Cons t i tu t ive  theor ies  which a r e  formulated without the use of a y i e l d  
c r i t e r i o n  include t h a t  of Bodner and h i s  assoc ia tes  [3,4], Walker [21, Mi l l e r  
[SI, and Krieg, Swearengen and Rhode t61. Since these models do not con ta in  a 
completely e l a s t i c  r e g h e ,  the funct ion t h a t  descr ibes  the i n e l a s t i c  s t r a i n  
r a t e  should have the property t h a t  the i n e l a s t i c  s t r a i n  r a t e  be very small f o r  
low s t r e s s  l eve l s .  

For t heo r i e s  wi th  a y i e l d  c r i t e r i o n ,  iig is  i d e n t i c a l l y  zero u n t i l  an 
invar iant  funct ion of the s t r e s s  reaches a prescr ibed value;  the funct ion,  by 
de f i n i t i on ,  i s  independent of s t r a i n  r a t e .  For s t r e s s e s  a t  o r  exceeding the  
y i e l d  value,  Equation (1) app l ies  add i i f  and the  s t r e s s  o i j  a r e  function- 
a l l y  re la ted .  The f u l l y  e l a s t i c  s t a t e ,  r.e. iil = 0. would apply only f o r  
s t r e s s  s t a t e s  l e s s  than the r a t e  independent y i e l d  value,  and loading and un- 
loading paths  above t h a t  a r e  con t ro l l ed  by the loading condi t ions  through the  
cons t i t u t i ve  equations. Theorios of t h i s  type have been developed by Perzyna 
[IS] f o r  the case of i so t rop i c  hardening and by Qaboche t71, Robinson [8], 
and Lee and Zaverl [I11 f o r  the case of both i so t rop i c  and d i r ec t i ona l  h a r d e r  
ing . 

A l l  the  un i f i ed  models a r e  formulated on the  b a s i s  of i n t e rna l  va r i ab l e s  
which depend on the  loading h i s t o ry .  The e s s e n t i a l  f ea tu res  of these un i f i ed  
theor ies  are:  (1) a flow law which funct ional  form depends on the  method of 
treatment of d i r e c t i o n a l  (kinematic) hardening, (2)  a k i n e t i c  equation which 
i s  the temperature dependent func t iona l  r e l a t i onsh ip  betneen the s t r a i n  r a t e  
and s t r e s s  i nva r i an t s  and includes i n t e r n a l  va r iab les ,  and (3 )  a s e t  of evo l r r  
t i o n  equations f o r  descr ib ing the  growth of the i n t e rna l  va r iab les .  Here, the  
i n t e r n a l  va r i ab l e s  a r e  used t o  represent  the  current  res i s t ance  t o  i n e l a s t i c  
flow of the deformed so l id .  Trro deforming s o l i d s  with i den t i c a l  values of 
t h e i r  i n t e rna l  va r i ab l e s  would have i d e n t i c a l  i n e l a s t i c  responses under the  
same imposed s t r e s s  s t a t e .  Both the choice and the numbor of i n t e rna l  var i -  
ables  vary  wi th  the un i f i ed  models.. Most of the un i f i ed  models use two i n t e r  
~1 va r i ab l e s  o r  one va r i ab l e  wi th  two components: one t o  represent  i s o t r o p i c  
hardening and another t o  represent  d i r eo t i ona l  (kinematic) hardening. I n  most 
models, the i so t rop i c  hardening va r i ab l e  i s  represented by a s ca l a r  quan t i ty ,  
e i t h e r  the drag s t r e s s  (XI o r  the y i e l d  s t r e s s  (Y), r h i l o  d i r ec t i ona l  harden- 
ing i s  represented by a second order  tensor  Oij o r  a  s ca l a r  funct ion of sach a 
tonsor. 

Basic Flow Laws 

Four ba s i c  forms of the  i n e l a s t i c  flow law have bean i den t i f i ed .  Plas- 
t i c  incompress ibi l i ty  is  always assumed and these  flow laws are :  



where S i j ,  a i j  and C i j  a re  the deviatoric,  d i rec t  and ef fec t ive  s t resses ,  
respectively. The tensor Qij represents the Ifequilibrium s t r e s sM which has 
8 1 ~ 0  been referred t o  as  the ''back s t r e s sn  and the Ifrest  stress." The para- 
meter f i s  a y i e ld  function or  a flow potent ial .  It should be noted tha t  the 
f i r s t  three laws can be considered o r  can be derived from Equation ( 2 d ) . i f  
they are associated with a flow potent ial .  

Equation (2.1 is the Prandtl-buss flow law assooiated with the von 
Mires y ie ld  or i ter ion.  However, it can be considered a s  a basic material  
equation i n  i ts own r igh t  independently of a y i e ld  oonditiont As such, t h i s  
equation i s  usually taken to  be applioable f o r  proportional loading conditions 
f o r  which isotropic  hardening would be appropriate. The equation s t a t e s  tha t  
the material response (i.e., the p l a s t i c  s t r a i n  r a t e )  t o  s t r e s s  i s  isotzopio 
even though 51 could be s t r e s s  h is tory  dependent. Since s t r e s s  i s  direo- 
tio.1, aould have a d izec t ionr l  character within the context of inoremen-, 
t a l  isotropy a d  therebp ~aoount  f o r  induced direot ional  hardening ef fec ts .  

Equation (2b) is  the flow law obtained by iotroduoing the kinematic 
hardening variable  of Prager 1161 in to  the c l a s s i ca l  p l a s t i c i t y  formulation t o  
account f o r  d i reo t ionr l  hsrdening ( the Bausohinger e f f eo t ) .  I n  t h i s  context, 
the term Pi would represent the new or ig in  of a t rans la t ing  von U s e s  y ie ld  a surfaae i n  ev ia to r i e  s t r e s s  space. and Equation (2b) would be the assoaiated 
flow rule. A s  before, Equation (2b) can be taken t o  be a basic material  eqw- 
t ion  i n  a formulation without a y i e ld  c r i t e r ion  and the "equilibrium stress"  
tensor O i j  i s  generally intended t o  s e n e  the following fuaotions: (a )  t o  
account f o r  d i rec t ional  hardening (the multi-dimensional Bauschinger e f f ec t ) ,  
and f o r  the non-coaxirlity of ii ahd S i j  wider nonproportional loading his- 
t o r i e s  (Pigrue 1); (b) t o  aocoua : f o r  reversed p l a s t i c  s t raining e f fec t s ,  8.g. 
reversed creep, re laxat ion through zero s t r e s s ,  when the e f fec t ive  s t r e s s  z i j  
i s  negative; (c )  f o r  theories without a f u l l y  e l a s t i c  range (i.e., a y i e l d  
c r i t e r i o n ) ,  t o  aocowit f o r  l o r  p l a s t i c  s t raining within a given range. 

Equation (2c) i s  the generalized anisotropic form of the Prandt l-buss  
flow lrr which can be rsrrftten i n  a 60 s t r e s s  and s t r a i n  r a t e  space to  take 
the form, 



where Ea and TB are re la ted  t o  the usual p l a s t i c  s t r a i n  r a t e s  and s t r e s se s  i n  
a simple manner, see [ I O J ,  and ~4 is the 6x6 matrix of coeff ic ients .  I f  the 
mater ia l  i s  i n i t i a l l y  i so t rop ic  and the law f o r  p l s s t i c a l l y  induced d i r e o t i o w  
a1 hardening does not lead t o  off  diagonal terms, then AN i s  i n i t i a l l y  and 
remains diagonal. Under these conditions, Equation (20) is equivalent t o  
Equation (2b) since 6 material  constants determine the anisotropic  flow behao- 
io r .  A l l  the flow equations, Equations (2a,b,c), would be equivalent f o r  the 
case of proportional loading, including cyc l ic  conditions. The r ea l  d i f fe r -  
ences i n  those equations would shor up f o r  nonproportional loading h i s to r i e s .  

For cons t i tu t ive  theories  with a f l w  poten t ia l ,  both the flow law and 
the growth law of the d i rec t iona l  (kinematic) hardening var iable  O i j  a re  do- 
r ivable  from a s ingle  flow poten t ia l .  The associated flow law of a bas ic  form 
of such a flow poten t ia l  is  181. 

n-1 - 
1 2  ii: - -F (=id - Oij) f o r  i n e l a s t i c  loading (4a) 

2lJ 

and ii7 - 0 f o r  e l a s t i c  loading1aloading (4b) 

where F i s  the von Mises y i e l d  function,  n and p are  material  parameters. The 
conditions f o r  i n e l a s t i c  loading and e l a s t i c  unloading have been idenf i f ied  
i n  181. It can be ea s i ly  seen t h a t  (4.) and (2b) are  equivalent. In both 
cases, the d i r ec t ion  of the i n e l a s t i c  s t r a i n  r a t e  vector i s  coaxial with the 
current e f f ec t ive  s t r e s s  veator (see Figure 1 ) .  

Kinetic E ~ o a t i o n s  

The flow laws, Equations (28) and (2b) can be squared t o  give respec- 
t ive ly ,  

rhere  DZP i s  the second invar iant  of the p l a s t i c  s t r a i n  r a t e ,  DZP - (112) iJ 
iig,  and J 2  and 3; a t e  the second invar iants  of the devia tor ic  s t r e s s  and 
sf$eotive d n i a t o r i c  s t r e s s ,  respectively.  



Fundamental t o  a11 "uaified" v i scoplas t ic  formulations based on f l o r  
laws of the fonns l i s t e d  i n  Equations (2) 'is tha t  i n e l a s t i c  deformations are  
governed by a funat iorul  r e l a t i o n  between %P and J 2  (or  J i )  t h a t  could ix~ 
volve load h is tory  dependent var iables .  These var iab les  are  intended t o  re- 
present proper t ies  of the i n e l a s t i a -  s t a t e  with respect t o  res is tance t o  plas- 
t i c  f l o r ,  8.0. hardening, and damage. Some functions t h a t  have been suggested 
a re  the f o l l w i n g .  

where x = 3 s 2 / 2  . or 3 1 ; l t  

md  n, m, and Do are constants. The i n e l a s t i c  s t r a i n  r a t e  components can then 
be obtained a s  a funation of the s t r e s s  by the use (2a) o r  (2b) and one of 
Equations. (7). Expression (7b) would seem t o  have some advantage over (7a) 
o r  (70) in theories  without a y i e ld  c r i t e r i o n  i n  t b a t  the v a l w  of D ~ P  i s  
almost zero f o r  some r a g e  of J2  regardless of the value of a. I n  (7b), 
Do i s  the l imi t ing  v a l w  of the i n e l a s t i c  s t t a i n  r s t e  i n  shear; (7.1 a d  
(7b) do not contain such a l i m i t .  These differences  between the k ine t i c  equa- 
t ions  a r e  i l l u s t r r t s d  i n  a normalized p l o t  of log (D2P/D0) vs X i n  Figure 2 
f o r  the case of n = 3 and n = 1.0. 

I n  a l l  the greceding equations (7a,b,c) the exponent n influences the 
slope of the h, J2  r e l a t i o n  and therefore  has the major influence on s t r a i n  
r a t e  s ens i t i v i t y .  That garameter a lso a f f e c t s  the w e r r l l  level. of s t ress-  
s t r a i n  curves although the l eve l  a l so  depends on the hardening parameter K. 

Temperature (T) dependence of p l a s t i c  flor is a f - i r s t  order phenomenon 
comparable t o  s t r a i n  r a t e  s e n s i t i v i t y  and should appear d i r e c t l y  i n  the ki- 
ne t i c  equation. I n  the case of Equations (7a,b) ,  t h i s  can be achieved by 
taking the exponent n t o  be a function of To 8.g. n - ck/T (k i s  Boltunann's 
constant and c a mater ia l  constant)  which leads t o  strong temperature depend- 
ence of the s t r e s s  parameter x = 3 s 2 / s  (or  3 ~ i 1 ~ 2 ) .  Numerical r e s u l t s  f o r  t h i s  
dependence are  shorn i n  Pigure 3 f o r  both the power law and exponential kinet- 
i c  equations a t  d i f f e r en t  non-dimensiorulized s t r a i n  ra tes .  

The method of including temperature dependence i n  Equations 7a,b i s  cont- 
parable t o  an ac t iva t ion  energy formulation. Table I l is ts  temperature- 
dependent k i n e t i e  equations based on four d i f f e r en t  functional expressions f o r  
the ac t iva t ion  energy. Some of the conseqwnaes of the various r e l a t i ons  a r e  
discussed i n  t171. 

Another procedure f o r  including temperature dependence i n  the k i n e t i c  
equations i s  t o  multiply the s t r e s s  function,  the r i l h t  hand side of equa- 
t ions  ( 9 )  by a temperature function. The temperature f ac to r  can again be 
motivated by thermal ac t iva t ion  considerations and the k r h e n i u s  expression 
seems t o  be the seasonable function t o  use (Table I). This i s  the approach 
taken by Miller 151. 



Evolutionary Equations f o r  In te rna l  Variables 

The general ftamework of the evolutionary equstions of i n t e rna l  vari- 
ables  i s  based on the nor well-accepted Bailey-Orman theory 118,191 which 
theorizes i n e l a s t i c  deformation t o  occur uader the act ions  of t r o  simoltan- 
eoosly competing mechanisms, a hardening process proceeding with deformation 
and a recovery or  softening process proceeding with time. The evolution r a t e  
of an in t e rna l  var iable  i s  then the difference between the hardening r a t e  and 
the recovery r a t e  as  given by 

where f i  i s  the .  evolution r a t e  of the in te rna l  var iable  X i .  and hl and rl are 
the hardening and the thermal recovery functions, respectively.  hi and r l  are  
functions of X i .  temperature, T, and the hardening measure, hl is  e i t he r  
ii) or  ilp depending on the model. 

(1.) I so t rop ic  Hardening 

The quant i ty  K i n  Equation (7) is usually interpreted a s  the iso- 
t rop ic  hardening in t e rna l  var iable  and i s  of ten referred t o  as  the drag 
s t ress .  Evolutionary equations f o r  the isotropio hardening psrameter general- 
l y  f o l l w  the hardening/reoovery forrmat shorn i n  Eqorti on (8) .  A comparison 
of these hardening and recovery functions i n  various unif ied theories  i s  shorn 
i n  Table 11. The r a t e  of i so t rop ic  hardening i s  usually given by a function 
of the hardening var iab le  K, rh ich  may sa tura te  t o  a l imi t ing  value, shown a s  
K l  i n  Table 11, multiplied by a measure of the hardening r a t e .  Both the in- 
e l a s t i c  work r a t e  and the e f fec t ive  i ne l a s t i o  s t r a i n  r a t e  have been proposed 
as  the sca la r  hardening measure. On the other hand, the r a t e  of softening 
o r  reoovery is  of ten taken t o  be a power function of K and a temperatnre- 
dependent constant KO r h i c h  value represents the reference s t a t e  f o r  t ha t  par- 
t i c u l a r  temperature. This recovery model, sometimes credi ted t o  Friedel E201, 
theorizes t h a t  recovery occws  only when the current in te rna l  s t a t e  exceeds 
the reference s t a t e .  

(2.) Directional or  Xiztmatio Hardening 

Probably the main difference i n  the various unif ied theories  i s  
the treatment of direot ional  o r  kinematic hardening. Differences ex i s t  not 
only i n  the choice of the flow law but a lso i n  the evolutionary equations. 
The general framework of these evolutionary equations follows the hardening/ 
recovery formulation represented i n  Equation (8) with indexes t o  indicate  
the direot ions  of hardening and recovery. 

where h2, d, and r2  are the hardening, dynamic recovery , and s t a t i c  thermal 
recovery functions, respectively.  8 represents hardening and/or recovery as- 
sociated with the r a t e  of temperature change. Pijr N i j 0  Vij and Wi are the 
d i r ec t ioaa l  indexes of h2., d, r2, and 8, respectively.  The main di i ferences  



among the various theories ,  as  summarized i n  Table 111, are i n  the choices of 
the d i rec t iona l  index and the hardening and recovery functions. 

As indicated i n  Table 111, unif ied models based on the equilibrium 
s t r e s s  u t i l i z e  the i a e l a s t i o  s t r a i n  r a t e  a s  the d i rec t iona l  index f o r  h rden-  
ing and contain a "dynamic recovery" term i n  the hardening function. The pro- 
posed hardening r u l e  i s  thus s imi la r  t o  the Prager ru l e  [I61 i n  conventional 
p l a s t i c i t y  which requires  the t r ans l a t i on  of a y i e l d  surface to  occur i n  the 
d i rec t ion  of the p l a s t i c  s t r a i n  increment. On the other hand, the evolution- 
ary equation proposed i n  conjunotion with Equation (28) is  based on the d i r e c t  
s t r e s s  a s  the index f o r  d i rec t iona l  hardening [3,41. This formulation avoids 
the aross-softening e f f e c t  associated with i n e l a s t i c  s t r a i n  r a t e  a s  the index 
and the theory is more compatible with Ziegler ' s  modification [211 of the 
Prager hardening rule .  The d i rec t iona l  index f o r  "dynamic recovery" is  gene- 
a l l y  i n  the opposite d i r ec t ion  of the d i rec t iona l  hardening var iab le  n i j .  The 
lldyrramic recovery" term i s  t rea ted  i n  [3,41 as  a sa tura t ion  term i n  the direc- 
t i on  of the d i r e c t  s t r e s s  but the index has recent ly  been modified t o  be i n  
the d i r ec t ion  of - Qii also  [221. The. un i t  vector which represents the direc- 
t i o n  cosines of the d rec t iona l  hardening var iable  i s  usually taken t o  be the 
d i r ea t ion r l  index f o r  s t a t i c  them81 recovery. b o w e r y  always occurs i n  the 
opposite d i r ec t ion  of the unit veotor and tends t o  reduce the magnitode of the 
d i rec t iona l  (kinematie) hardening var iable .  Most uuif ied theor ies  u t i l i z e  
Fr iede l ' s  recovery model sad take zero magnitude of O i j  a s  the reference 
s t a t e .  Table I11 shows thmt a temperature r a t e  t e w  is a l so  included i n  the 
theories  of Walker and Chaboche. I n  pr inciple ,  s imilar  teims could be added 
t o  the other theories.  

The temperature dependence of the in te rna l  var iables  i s  a lso important. 
The experience with the unif ied models t o  date indicates  t h a t  a11 the mater ia l  
constants i n  the fonaulations would depend on temperature and must be evalu- 
ated a t  a number of base temperatures. 

Uniqueness and S t a b i l i t y  Cr i t e r i a  

For s t a b i l i t y ,  unif ied theor ies  with i n t e rna l  var iab les  mast, according 
t o  Ponter [231, obey the following inequali ty:  

. 
where da i  di i j r  dXi, and dXi represent incremental changes i n  s t r e s s ,  i~ 
e l a s t i c  s i r a i n  r a t e ,  the current value and the evolution r a t e  of the i n t e rna l  
variables.  The inequal i ty  admits c l a s s i ca l  p l a s t i c  flow, creep, and s t r e s s  
re laxa t ion  behavior. It also admits recoverp phenomena involving negative 
i n e l a s t i c  work provided t h a t  the corresponding changes i n  the i n t e rna l  vari- 
ables a re  su f f i c i en t ly  large t o  make the inequal i ty  i n  Equation (10) remain 
v a l i d ,  Tho bas ic  requir-oat of Equation (10) is  t h a t  the d i ss ipa t ion  r a t e  
must be nonnegative. 



For a constant intern81 s t a t e ,  a $ ~ I ~ a l i  ohange i n  u i j  r e s ~ i t s  i n  a o o r  
responding change i n  iiy so t h a t  [231 

The i n e l a s t i o  work inequal i ty  i s  iden t i ca l  t o  Druoker's postulate  [241 i n  
o l a s s ioa l  p l a s t i c i t y  t h a t  f o r  a s tab le  material  flow the p l a s t i o  work done 
must be nonnegative. For proportional loading the k i n e t i c  equations represen- 
ted i n  Equation (7.1 t o  Equation (70) a l l  y i e ld  convex "flow poten t ia l s"  t o  

.whioh the i n e l a s t i o  s t r a i n  r a t e  veotors a r e  1~0m81. The oonseqwnoe i s  t h a t  
the i m l a s t i o  work i s  always posi t ive ,  and unif ied theor ies  based on Equation 
(7.1 t o  (70) obey the ine l a s t i o  work inequali ty.  

For uniqueness, it appears t ha t  the i ne l a s t i o  s t r a i n  r a t e  m o s t  be a 
singlo-valued function of s t r e s s  and in te rna l  variables.  To s a t i s f y  the re- 
quirement f o r  s tab le  flow, Equation (10) dio ta tes  t h a t  s t ress -s t ra in  cumes a t  
oonstant s t r a i n  r a t e  nust  have pos i t ive  slope but must deorease r i t h  increas- 
ing s t ra in .  On the other h.nd, s t ress -s t ra in  curves a t  constant p l a s t i o  
s t r a i n  o r  p l a s t i c  work must have pos i t ive  slop., but the slope may e i t h e r  
inorease or  decrease r i t h  inoreasing s t r a i n  r a t e  [23]. 

Most, i f  not a l l ,  of the unif ied theor ies  l i s t e d  i n  Table If s a t i s f y  tho 
Ponter inequa l i t i es  and mot the uniqwness and s t a b i l i t y  requirements. The 
s t a b i l i t y  requirement is, hwere r ,  not e s sen t i a l  fo r  oons t i tu t ive  theory de- 
velopments. Unified theor ies  admit onstable i ne l a s t i o  flaw and a re  generally 
modeled by includina softening meohanisms suoh as thermal softening and con- 
tinuum damage i n  tho evolution and/or k ine t i c  equations.. 

IWMEXICAL -ODs FOB -BATING 
UNIFIEO CON- EQUATIONS 

The unif ied cons t i tu t ive  equations can be charaoterized a s  mathematioal- 
l y  "stiff." That is,  i n  these equations, dependent var iab les  a re  suscept ible  
t o  la rge  changes from small inarments  of the independent var iab les  o r  from 
small time steps.  This " s t i f f "  behavior occrrrs usually with the onset of a 
s ign i f ican t  amount of i ne l a s t i o  s t r a i n s  i n  the loading cycle and i s  due t o  the 
generally nonlinear nature of the functional forms t h a t  a re  employed i n  the 
k i n e t i c  equations of these theories.  

A systematio oomparison of a va r i e ty  of approaohes f o r  in tegra t ing  
unif ied cons t i tu t ive  equations has been reported by Kumar, Morjaria, and 
Molrherjee [251. This study conoluded t h a t  f o r  the oons t i tu t ive  theory of 
Hart, a r e l a t i v e l y  simple Euler in tegra t ion  method, together with a time 
s tep  control  s t ra tegy,  was optimal when compared with the more sophistioated 
methods. The Walker c o n s t i t a t i r e  theory has been intograted using the Euler 
s ingle  s tep approach usually without automatic time s tep  control ,  but ra ther  
by determining an optimum s tep  s i z e  f o r  each problem. Efficiency obtained by 
using t h i s  approach has been acoeptable m d  has shown considerable improvement 
wer more sophis t icated approaches moh as  higher order Rungo-Kutta methods. 



Tanaka and Miller reaent ly  daveloged a noni terat ive,  self-aorreating 
solut ion (NONSS) method f o r  integrat ing s t i f f  time-dependent cons t i tu t ive  
equations (261. In t h i s  approaah, impl ia i t  quan t i t i e s  a re  remwed by Taylor 
expansions of cr, i ,  md f through the inaorporation of the in tegra t ion  opera- 
t o r  a. The method whiah reduaes t o  the k p l i a i t  Euler method when a = 0 and 
t o  the implie i t  Euler method when a > 0 is uaaonditionally s t ab l e  f o r  a > 1/2  
and i s  noni te ra t i re .  Aoauraay is  maintained through self-adaptive time aon- 
t r o l  a d  by aorreat ing previous e r ro r s  a t  the aurrent step. 

A s-ry of thesa various numerical teohniqws and t h e i r  appl iaat ions  
t o  several  unif ied theor ias  a s  well  a s  t o  Norton's law f o r  integrat ing a uni- 
ax ia l  s t ress -s t ra in  a w e  t o  a t o t a l  s t r a i n  of 1.2% is shorn i n  Table IV. A s  
i l l u s t r a t e d  i n  Table IV, the e x p l i a i t  Euler i s  atable  rhea  the s i ze  of the 
s t r a i n  inarement i s  kept below 10-4. The s i ze  of the s t r a i n  iaorement aan be 
increased by using an impl ia i t  method soah as the NONSS or  a-method with a = 1 
(impl ic i t  Euler) .  By r e s t r i a t i n g  the compirison t o  the e x p l i c i t  methods only, 
it appears t ha t  there  i s  no s u b s t m t i a l  differenae batreen the in t eg rab i l i t y  
of Walker and Miller theor ies  nor between these unif ied theor ies  and the 
a l a s s i aa l  Norton law. The s i za  of the s t r a i n  inorerent is, h m e ~ e t r  sorawhat 
sens i t ive  t o  the v a l w s  of model aonstants which dasaribo mater ia l  s t r a i n  
r a t e  s ens i t i v i t y .  

Four of the on i f ied  models rh i ah  have been suaaessfully applied f o r  s i ~  
u la t ing  and/or prediat ing nonotonia, ayal ia ,  areap, and s t r e s s  re laxa t ion  be- 
havior are thosa of Robinson (81, Walker (21, BodnerPar tm [3,41, aad Miller 
[51. Robinson's model is based on a y i e l d  aondition and u t i l i z e s  loading a d  
unloading a r i t e r i a ,  while tha l a t t e r  three do not. The k ina t io  equations a o r  
monly used i n  nn i f ied  thaor ies  without a y i e l d  surfaae o r  flow pa tan t i a l  a re  
based on the powerlaw, expoaential, and hpperbolia s iaa  fuaations;  thesa 
k ine t i a  equations ara  ropresanted i n  Walker, Bodaa rPa r tm  and Mil ler  theo- 
r i e s ,  respeatively.  These four theories  w i l l  be used t o  i l l u s t r a t a  the simu- 
l a t i v e  and prediat ive aapab i l i t i e s  of the unif ied theories.  

(1) Monotonia Stress-Strr ia  Behavior 

A l l  on i f ied  theor ies  a re  aapable of reproduaing tha monotonia s t ress-  
s t r a i n  o-e., Figure 4 shows an experimental uniaxial  t e n s i l e  s t ress -s t ra in  
aurpe of Haste1lay-X deformed a t  a s t r a i n  r a t e  of 1.3 x 10-4 sea-1 a t  922 K 
and model simulation using BodnerPar tm theory. The aomputed a w e  inoludes 
contr ibut ions  frum both work hardening and thermal reaovery. 

(2) Cyalia Stress-Strain (Hysteresis) Behavior 

Bausohinger Effeat  i s  repreranted i n  most ua i f ied  theor ies  by a kine- 
m t i a  o r  d i rea t iona l  hardening in t e rna l  variable.  q a l i a  hardening, however, 
asn be represented by inoreases i n  the i so t rop ic  hardening var iable ,  the 
d i rec t iona l  hardening var iable ,  or  both. These d i f f e r en t  types of cyal ia  



hsrdening behavior are illustrated in Figure 5 for BodnerPartom theory which 
does not use an equilibrium stress. The use of different evolutionary equa- 
tions for the equilibrium stress in different regions of stress spaae allows 
Robinson's model to reproduce rounded hysteresis loops. Examples of cyclic 
saturated hysteresis loops calculated using Robins6n's model are compared with 
experimental results of 2-1/2CrlMo steel in Figure 6 1271. 

(3)  Creep Responses 

Most of the unified models can predict primary and secondary creep re- 
sponses of material subjected to constant load. Steady state areep rates are 
predicted by these unified models to occur when the evolutiorury rates of the 
isotropia and/or directional hardening variable vanish as the hardening terms 
are balanced by the thermal recovery. Examples of calculated steady state 
creep rate m d e r  constant stress and comparison with experimental data are 
shorn in Figure 7 for BodnerPartom's model. According to the unified theo- 
ries, the steady state creep rate is a function of stress and temperature 
only; it should not depend on the loading histories. This is demonstrated in 
both experimental data and predictions by Miller's model in Figure 8 1281. 

(4) Stress Relaxation Rasponso 

The behavior of unified constitutive models under stress relaxation is 
u m l o g o b  to the creep behavior. Under a constant strain condition, the re- 
laxation rate would, again, depend on the current values of the internal vari- 
ables and on the growth laws which describe their changes with tima and in- 
elastic deformation. Stress relaxation calculations based on Walker theory is 
oompared with experimental data of EastellopX [21 in Figure 9. 

S Thennomechanical Response 

The behavior of unified constitutive theories under thezmomechanical 
cycling depends critically on the change of material constants with tempera- 
tore. In particnlar, the shape of the predicted theirnomechanical loop is 
sensitive to the growth of the kinematia hardening variable (the equilibrium 
stress) with temperatnre. Walker's model prediction of thermomechanical loop 
of Eastellay-X is shown in Figure 10. 

( 6 )  Multiaxial Behavior 

All the unified theories utilize single-valued kinetic equations formu- 
lated in tenns of either 3 ~ ~ 1 x 2  or 3~iIfl. For a constant value of the i n t e r  
nal variable K and under proportional paths, these kinetic equations predict a 
locos of constant inelastic strain rate invariant in stress space; the shape 
of the predicted "yield surface" or "flow potential" is identical to von Mires 
yield function. For unified models formulated based on the equilibrium 
stress, the size of the "yield surface" is proportional to K, while the center 
of the "yield surface" is at Qij and translates aacording to the evolution 
rate of Qij . 



Recent s tudies  E22,291, indicate  t ha t  mater ia ls  exhib i t  considerably 
more oyolio hardening when tes ted  under nonproportional paths of combined ten- 
sion a d  to rs ion  than under proportional paths of tension o r  to rs ion  only. As 
a r e su l t ,  most i f  not a11,of the aons t i tu t ive  yodels need t o  be modified t o  
take in to  aocoorrt the hardening behavior due t o  out-of-phase loading. 

SJMMAU AND CONCLUSIONS 

1. A review of more than ten  time-temperature dependent e las t io -  
visooplast io  cons t i tu t ive  theor ies  indicates  t h a t  these theories  
d i f f e r  i n  the choioe of flow law, k ine t i c  equation, and evotu- 
t ionaiy equation of the in te rna l  variables.  

2. The unif ied approach t r e a t s  a l l  aspects of i n e l a s t i c  deformation 
inoluding p l a s t i o i t y ,  creep, and s t r e s s  re laxat ion using the same 
s e t  of flow l a ~ r  k ine t io  equation, and in t e rna l  variables.  

3. T h e o n i f i e d o o n s t i t u t i v e  theor ies  s a t i s f y  the uniqueness and 
s t a b i l i t y  o r i t e s i a  imposed by Drrroker8s postulate  f o r  r a t e  in- 
dependant s t ab l e  p l a s t i a  flow and Ponter'r i nequa l i t i e s  f o r  con- 
s t i t u t i v e  theories  based on in t e rna l  variables.  

4. Tho unif ied theor ies  oan be i o d a t e d  e i t h e r  with or  without the 
use of a y i e ld  or i te r ion .  Three basic  flow laws a re  i den t i f i ed  i n  
theories  without a y i e ld  c r i t e r ion .  Por theories  with a y i e ld  
or i te r ion ,  the associated flow law is  derived from the y i e ld  
funation o r  the flow poten t ia l .  

5 .  Thtee d i f f e r en t  fomula t ions  of the k ine t i c  equations are  iden t i f ied ,  
and they include the exponential, power law, and hyperbolic sine 
funotions. The exponential formulation gives a l imi t ing  i n e l a s t i c  
s t r a i n  r a t e  a d  appears t o  give b e t t e r  r e s u l t s  f o r  high s t r a i n  r a t e  
applioations. 

. AI? three  forms of k ine t i c  e q ~ t i o n s  are  functions of ) J ~ / K ~  (o r  
~ J ~ / K ~ )  m d  r e s u l t  i n  "yield  surfaces" and equi-creep r a t e  . s u p  
faoes which are described by the J2-based von Mires c r i te r ion .  

7.  The number of in te rna l  var iables  va r i e s  among the unif ied theories .  
&st unif ied theor ies  use two in te rna l  var iables ,  one t o  repre- 
sent isotropio hardening and one t o  present kinematio o r  direc- 
t i o n r l  hardening. The measure of hardening i s  e i t h e r  the i n e l a r -  
l a s t i o  s t r a i n  r a t e  o r  the i n e l a s t i c  work ra te .  

8. Direotiozul (kinematic) hardening can be modeled with or  without the 
osa of an equilibrium s t r e s s .  The d i rec t iona l  index of kinematic 
hardening can be based on e i t h e r  tho i n e l a s t i c  s t r a i n  r a t e  o r  the 
d i reo t  s t ress .  



9. Material aonstmts in the unified models are necessarily temperature- 
dependent and required to be evaluated at the temperatures of ,inter 
ert. There are 'indiaations that a temperature rate torm is 8 1 ~ 0  re- 
quired in the unified theories. 

10. All of the unified theories whiah are reviewed do not automatiaally 
prediat additional ayalia hardening under nonproportional loading 
paths. Additional t e a s  are needed in the unified thoories to in- 
elude suah hardening behavior. 

11. The equi1ibriol~-stress-based unified theories can describe teverse 
areep and/or reverse stress relaxation behavior withomt further 
modifications. Unified models which are not based on the equilibrium 
stress would require modifiaation by adding an anelastia term in order 
to take into aacount these types of behavior. 

12. The uaified aonstitutive equations are stiff but can be integrated using 
either expliuit or impliuit methods. 
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•TABLEI

FIVEFORMSOFTEMPERATURE-DEPENDENTKINETICEQUATIONSWITH
THECORRESPONDINGACTIVATIONENERGYFUNCTION

ActivationEnergy Temperature-DependentKinetic'Equations

oo[H°vg J l_-! = H0 - Vg(J2) DP= exp, kT

• IAH = H-K2 H* K2
3J--'2" O_= Ooexp .._

_H= kT13-_21c/kT O_ = Ooexp \3--_-2)

n

whereC, DO, H*, HO, Q, m, and n are constants;V is the activation
volume;and k is the Boltzmann'sconstant.
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TABLEII

THESPECIFICFORMSOF ISOTROPICHARDENINGANDSTATICTHERMALRECOVERY
FUNCTIONSUSEDIN THESELECTEDUNIFIED CONSTITUTIVETHEORIES

,_ K = hl(K)_lI - rI(T,K)

"°: where Ml --_; _ - _i

or M1 = SVp(Bodner-Partom'sTheory)

_ _ StaticThermal

Model Hardenln9 Functlonlhl(K) RecoveryFunctlon_rl(T,K)

Bodner-Partom Cl(Kl- K) C2(K-Ko)p

Walker Cl(Kl- K) -

Krleget al Cl C2(K-Ko)P

Robinson C1 .

Chaboche CI(K1- K) + fl(_,€, (llj) -

Lee and Zaverl : CI(KT-K>/€_2

Hart Cl o

Ghosh ClK"q C2(K-Ko)p

Hiller CI[Kl-C4(sinh'Ic3(_l)q_] C2[sinhC3Km]P

where CI, CI, C3, C4, C5, m, p, q, Ko, and K1 are materialconstants;KT

is the saturatedvalueof K; Kl is governedby an evolutionaryequation

which is functionof _ and J2"
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TABLEIll

THESPECIFICFUNCTIONSOFANISOTROPICHARDENIHG,DYHAHICRECOVERY,STAT]CTHE_4AL
RECOVERY,ArIDTHETEHPEPATUREPATETERHIN SELECTEDUNIFIEDCOfiSTITUTIVETHEORIES
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TABLEIV

COHPARISONSOF THEINTEGRATABILITYOF VARIOUSCONSTITUTIVEHODELS

Comparisonis basedon the size of the average strain increment per step for
integrating a untaxial tensile stress-strain curve to a total strain of 1-2Z

Constitutive Strain Increment Automtlc Timeor
Hodel Integration Rethod Per Step Strain Increment Stability ReferenceControl

Walker Explicit Euler 10.5 to 10-4 No Stable Walker [2];
Cassentl [30]

HmSS(o-Hethod)
n - .I 1 x 10-4 Stable

Bodner-Partom Present
-_ n = .5 I x 10.4 No Stable Investigationco

n - I I x I0 "3 Stable

Explicit Euler 4 x 10.4 No Unstable Lee eL al [31]

Hiller Tayler Series Ilodlfled Euler 4 x 10.4 No Stable Lee et al

NOHSS(o-Hetlmd, n-l) 3 x IO-31 Yes Stable Tanaka [26]

Explicit Euler 2 x 10.5* Yes Stable Kum_retal [25]
Predictor-Correcter 3 x 10.5* Yes Stable KumareL al

I_rt
IIIgh Order Predictor-Correcter 3 x 10-5* Yes Stable KumareL al

Two-StepAdam 2 x 10.5* Yes Stable Kw.ar eL al

I x IO-3 No Unstable Lee et al [31]
Explicit Euler

Norton 5 x I0 -4 No Stable Lee eL a]

Taylor Series Hodlfled Euler ! x 10-3 NO Stable Lee et al

* Averagestrain Increment per step = total strain/number of time steps.



DEVIATORIC STRESS SPACE 

Figure 1. Graphical representation o f  the  basic 
' f l ow laws used i n  the u n i f i e d  const i -  

t u t i v e  theories. For theories based 
on an equi l ibr ium stress the inelas- 
tic s t r a i n  r a t e  vector L Q ~  i s  coax la l  
w i t h  the e f f ec t i ve  stress b i j  and nor- 
mal t o  the f low potent ia l  f -if such a . 
concept i s  used. For t heo r i es  which 
do not include an equi l ibr ium stress, 
t e -  i s  coaxial w i t h  the dev ia to r i c  
e S j j  f o r  both i so t rop i c  and i n -  
cremental y i so t rop ic  cases bu t  i s  
noncoaxial w i th  S t 3  f o r  general ized 
anisotropic cases. 

KINETIC RELATIONS 

4 ,  I I I 1 I I 

Figure 2. Functional behavior o f  the k i n e t i c  
equations used i n  the  u n i f i e d  con- 
s t i t u t i v e  theories. The exponential 
formulation i n  Bodner-Partom's theory 
i s  seen t o  give  a l i m i t i n g  i n e l a s t i c  
s t r a i n  r a t e  o f  Do. 



Figure 3. Functional behavior of temperature- Figure 4. A monotonic stress-strain curve
dependentkinetic equations utilized simulated by Bodner-Partom's
in Bodner-Partomand Walker theories. Model for Hastelloy-X at 1200°F.
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Figure 5. Cycl i c  stress-strain hysteresis loop 
simulated by Bodner-Partom's Model 
for  Haste1 loy-X a t  1600°F. 

Figure 6. Stable hysteresis loops o f  
2-1/4Cr-1Mo steel for AE = 
~ 3 2 %  a t  various stra in 
rates a t  538OC. The calcu- 
lated curves (sol i d  1 ines) 
are generated with Robinson's 
Model , from [27]. 



Figure 7. Steady creep rates as a Figure 8. Miller's Hodel prediction
function of stress stmu- comparedwith experimental
lated by Bodner-Partom's data for a creep test with
Hodel. a suddendecrease in ap-

plied stress, from [28].
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Figure 9. Negative stress relaxation responseof Figure 10. Thermomechantcalstress-strain pre-
Hastelloy-Xat 871°C(1600°F)initiated dictionby Walker'stheory.
froma steadystatehysteresisloopexe-
cutedat a constantstrainrateof
+ 1.35x I0-3sec-Iwith a strainampli-
tudeof -+.4%. The calculatedcurves
are basedon Walker'stheory,from [2].




