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The use of internal state variablesin modeling of inelastic solids is
gaining widespread usage in current research. Therefore, it is useful to con-
struct a well-definedframework for internal state variable models which is
based in continuummechanics. The objectiveof this paper is to review and
clarify the general theory of internal state variables and to apply it to in-
elasticmetals currently in use in high temperatureenvironments. In this
process, certain constraintsand clarificationswill be made regarding internal
state variables.

It will be shown that the Helmholtzfree energy can be utilized to con-
struct constitutiveequationswhich are appropriatefor metallic superalloys.
Furthermore,internal state variables will beshown to representlocally av-
eraged measures of dislocationarrangement,dislocationdensity, and inter-
granular gracture. Finally, the internal state variablemodel will be demon-
strated to be a suitable frameworkfor comparisonof several currentlypro-
posed models for metals and can thereforebe used to exhibit history depen-
dence, nonlinearity,and rate as well as temperaturesensitivity.

INTRODUCTION

The prediction of inelasticbehavior of structuralmaterials at elevated
temperatureis a problem of great importancewhich has accordinglybeen given
a great deal of interest by the research community in recent years. These
materials exhibit substantial complexityin their thermomechanicalconstitu-
tion. In fact, so complex is their material response that it could be argued
that without useful a priori information,experimentalcharacterizationis fu-
tile. The purpose of this paper is to show how the thermodynamicswith in-
ternal state variables can be utilized to emplace certainconstraintson the
allowable form of thermomechanicalconstitutiveequations, thus providing some
limited insight regardingexperimental=equirements.

Historically,there have been two distinct approaches to the modelling
of inelasticmaterials: i) the functional theory [i], in which all dependent
variablesare assumed to depend on the entire history of independentvariables;
and 2) the internal state variable (ISV) approach [2],wherein history depen-
dence is postulated to appear implicitly in a set of internal state variables.
Lubllner [3] has shown that in most circumstancesISV models can be considered
to be special cases of functionalmodels. For experimentalas well as ana-
lytic reasons numerous recently proposed models for the classesof materials
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d i scussed  h e r e i n  have been proposed i n  ISV form. The re fo re ,  i n  t h i s  paper  
t h e  ISV method w i l l  be  reviewed as w e l l  ' a s  c l a r i f i e d  and i t  w i l l  be shown t h a t  
t h i s  g e n e r a l  framework is  u s e f u l  i n  modeling metals a t  e l eva t ed  temperature.  

The paper  begins  w i th  a review of ISV t heo ry ,  and t h i s  i s  supplemented 
w i t h  a s e c t i o n  d e s c r i b i n g  t h e  procedure f o r  c o n s t r u c t i n g  macroscopica l ly  av- 
eraged i n t e r n a l  s t a t e  v a r i a b l e s .  These concepts  a r e  then  a p p l i e d  t o  me ta l s  
a t  e l e v a t e d  tempera tures .  F i n a l l y ,  a p p l i c a t i o n s  t o  boundary v a l u e  problem 
s o l v i n g  techniques  a r e  d i scussed .  

REVIEW OF THE INTERNAL STATE VARIABLE (ISV) APPROACH 

The concept  of i n t e r n a l  s t a t e  v a r i a b l e s ,  sometimes c a l l e d  hidden v a r i -  
a b l e s ,  w a s  a p p a r e n t l y  f i r s t  u t i l i z e d  i n  thermodynamics by Onsager [ 4 , 5 ]  and 
numerous a p p l i c a t i o n s  a r e  recorded s i n c e  t h e  second world war [2,6-141. A l -  
though no t  o r i g i n a l l y  desc r ibed  f o r  a p p l i c a t i o n  t o  s o l i d s ,  t h e  approach which 
w i l l  be d i scussed  h e r e i n  is due t o  Coleman and Gur t in  [ 2 ] .  

I n  t h e  theory  of i n t e r n a l  s t a t e  v a r i a b l e s  a p p l i e d  t o  s o l i d s  t h e  follow- 
i n g  s t a t e  v a r i a b l e s  a r e  r equ i r ed  i n  o r d e r  t o  f u l l y  c h a r a c t e r i z e  t h e  s t a t e  of 
t h e  body a t  a l l  p o i n t s  x and a t  a l l  times t:* 

1 
1) t h e  displacement  f i e l d  

2) t h e  s t r e s s  t e n s o r  0 = 0 ( x ~ , ~ )  
i j i j 

; ( 2 )  

3) t h e  body f o r c e  p e r  u n i t  mass f i  = f i ( & A , ~ )  ; ( 3 )  

4)  t h e  i n t e r n a l  energy pe r  u n i t  mass U = u ( \ , t )  ; ( 4 )  

5) t h e  h e a t  supply  p e r  u n i t  mass r = r ( x k , t )  ; (5)  

6 )  t h e  en t ropy  pe r  u n i t  mass = ; (6) 

7 )  t h e  a b s o l u t e  tempera ture  T a T(xk , t )  ; (7) 

8) t h e  h e a t  flux v e c t o r  qi * qi (xk , t )  ; (8) 

and 

k where ai a r e  a s e t  of n i n t e r n a l  s t a t e  v a r i a b l e s  which a r e  neces sa ry  t o  
account  t o r  i n e l a s t i c  m a t e r i a l  behavior .  Although they  a r e  l i s t e d  h e r e  as 
second o r d e r  t e n s o r s ,  they  may be t e n s o r s  of o t h e r  rank a s  w e l l  [15]. 

* For convenience, o n l y  i n f i n i t e s i m a l  deformat ions  w i l l  b e  cons idered  he re ,  
a l though t h e  g e n e r a l  t heo ry  a p p l i e s  t o  f i n i t e  deformat ions  a s  w e l l .  



The method of Coleman and Noll [16] may be used to obtain the spatial

and time distribution of the body force fi and heat supply r from =he conser-
vation of linear momentum and energy, respectively, assuming the displace-

ments ui and the temperature T are specified independent variables. Subse-
quently, it is hypothesized that constitutive equations of state may be con-
structed for the state variables described in (I) through (8) in terms of

ui and T and their spatial derivatives:

_ij(xk'=) = qiJ (_mn(Xk't)' T(Xk't)' gm(Xk 't)' ¢_Pmn(Xk't)) ; (I0)

U(Xk,t) =' U(_mn(Xk,t), T(Xk,t), gm(Xk,t), =Pmn(Xk,t)) ; (ii)

S(Xk,=) = s(_mn(Xk,t), T(Xk,t), gm(xk,_), cmPn(Xk,=)) ; (12) and

qi(xk,=)= qi(_mn(Xk, t), T(Xk,t), gm(Xk,t), =Pmn(Xk,t)) ; (13)

where gm is =he spacial temperature gradient T,m and

_ij - ½(ui,j + uj,i) (14)

The form of equations (ii) through (13) implies that all constitu-
tive equations are evaluated in the specified state (Xk,t). For this rea-

son qi_, u, s, and qi are =armed observable state variables since they
can be-determined from equations of state even though there is implicit

history dependence via the internal state variables _n, which are defined
to be of the form:

•k _k £
' T,  ma) ;

where time and spacial dependence have been dropped for notational con-
venience. If equations (15) are at all times integrable in time, then
the following form is equivalent to (15):

aijk(Xm,t) = flijk(Xm,t,)dt, ; (16)
--OO

where t is the time of interest and t' is a dummy variable of integra-

tion. Therefore, it is apparent that azgjare not directly observable
at any time and must therefore be considered to be hidden or internal.

Although the above framework has been shown to be applicable to rate
dependent crystalline solids [17,18], it is often misconstrued that the ab-
sence of explicit strain-rate dependence renders the model inappropriate
for use in vlscoplastlclty theories. It is alternatively hypothesized that

Oij = ciJ(amn ' _mn' T, gin'_mn) (17)
is an appropriate form of thermomechanical constitutive equations (I0). Al-

though metals at elevated temperature certainly exhibit strain-rate depen-
dence, =here are several reasons why equations (17) are less desirable than
equations (I0). First, equations (17) are not actually equations of state
since the inclusion of strain rate implies knowledge is required at some time
other than the current time =. Secondly, as demonstrated in discussions of
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materials similar =o (17)but without internal state variables [19], very
little useful informationwill come from thermodynamicconstraints. Finally,
explicitstrain rate dependence is actually redundant £or the materials dis-
cussedherein, as will be shown later. Therefore, although this is certainly
a semantical issue, equations (I0) through (13)and (15)are utilized as the
constitutivemodel in the balance of this paper.

It should also be pointed out that internal state variable growth laws
(15) could contain explicit strain-ratedependence:

k

as in the example of a rate independentelastic-plasticmaterial, in which
equationsof the above form are linear in strain rate:

•£ _k Z •
_ij = _ijpq(_mn' T, gm' _mn)_pq (19)

Such a form, although not excludedby the principle of equipresence [20],
is only necessary in the circumstancewherein specific rate independenceis
required,as can be demonstratedbydlrect substitutionof (19) into (16).
Furthermore,although the thermodynamicconstrain=swill vary somewhat when
(19) are utilized [21,22],the results will be quite similar to =hose described
below.

On the basis of the Coleman-Mizelprocedure [23] it can be shown that
satisfactionof the first and second laws of thermodynamicsfor =he class of
materials detailed above will lead =o the followingconclusions:

k
h s u- rs = h(_mn,T, _) ; (20)

where h is the specific Helmholtz free energy;

_h

_k£ TM p _ ; (21)

s =- _-_ ; (22)

and

qi TM -kij gj + 0(gi) . (23)

Equations (21) should not be interpreted as defining as hyperelastic material

since the Helmholtz free energy, described by (20), is dependent on =he in-

ternal state and thereforepath dependent.

Although not directly related to our problem, it is useful =o note =ha=
the path dependence of the Helmholtz free energy precludes the usefulness
of equations (21) in Rice's J-integral for fracturemechanics [24]. However,
in the case wherein the loading path is radial:

- £ Z- -
£ij = kijc ; _ij = kij£ ; £ £ _ gijgij , (24)

86



£
where kij and kij are constant coefficients,then it is well known =ha= equa-
tions (13) are direc=ly integrableso =hat =he free energy can be described
by

i h T ai (£mn))= h(£mn T) (25)h = h(£mn, T, _pq) - (£mn' ' pq

Thus, for the case of proportionalloading only, the constitutiveequa-
tions are derivabledirectly from a potential functionand the J-in=egral
method is applicable.

THE LOCALAVERAGINGPROCESS

Constitutiveequations(I0)through(13)and (15)are theoretically
poin=wisein nature;=hatis, they are applicableto fixedinfinitesimal
materialpoints. However,practicallyspeaking,thereis no way toconstruct
experimentson materialpointssinceat themicroscopiclevelthe continuum
assumptionbecomesinvalid. Rather,it is consideredacceptableto construct
constitutiveequationsby subjectinglocalspecimensto surfacedeformations
(ortractions)whichlead to spaclallyhomogeneousstressesand strainsso
thatsome localaverageof the pointwiseobservablestatevariablescan be
determineddirectlyfrom the effectson theboundaries_f the specimens.

As shownin Fig. i, the scaleof the smallestdimensionof a localspeci-
men is generallyconstructedso as to be at leastan orderof magnitudelarger
thanthe scaleof the largestmaterialinhomogeneity.This sizinghelpspre-
servethe continuumassumptionwhileat the same timeaveragingout the effects
of pointdefectssuch as crystallatticedislocations.Conversely,the scale
of the largestdimensionof a typicalspecimenshouldbe as smallas possible
comparedto the scaleof the globalboundaryvalueproblemof interest.This
constraintis necessaryin orderto pre-
servethenotionthat constitutiveequa-
tionsare indeedpointwisein nature,but . __
it is pragmaticin that it is a simple _ global
matterof economy. '° O :domainof

- , | "', interest

The localratherthanpointwisecon- ! 1

\

stitutiveequationsthatresultfrom ex- '. -
perimentatlonare assumed=o be of _he _

sameformas pointwiseequations(I0) Xl_ !through(13)and (13). For example,in T1 B

ittheisuniaxialcustomaryteSttodeScribeddefinein Fig. i _/-----x3 |_,"_,aZ./I
I

T
x2 I • '. local |

f '"_Ii - X Olldx2dx3 , (26) Inhomogen_ .,/w L

BI .'. I

-- _ if TI£Ii = _ £11dXl ' (27)
L Figure 1
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and

= T(al, a2, a3) , (28)

where L is the loca! specimen gage length, A is the cross-sectlonal area in

=he x2-x3 plane, and (aI, a2, a3) is _ome arbitrary point on =he surface of
=he specimen. Utilizing these quantities, it is then hypothesized that

=iI(_ii, T, amn) - qll amn) , (29)

where

i fa__mn - --V _'dx 1 dx 2 dx 3 , (30)
V

and all quantities with bars represent the local!y measured state variables.

Although equations (29) represent an often used way of relating point-
wise equations =o experimental results, the local averaging process is never-
theless fraught with shortcomings since definitions (26) through (28) all re-

resent nonunique relations between pointwise state variables _lj, _ij, T, =ki4
and =heir locally defined counterparts _i'" _i _' _, and _k . There are in J
fact an infinite number of distributions _(x_, x 2, x3) w_ich will result

in identical values of _m" However, assumingz=hat =he scale of inhomogen-
eities is small and that =he distribution of _.z_ is random =he specimen will

be statistically homogeneous and =he re!ation b_=ween _n and _n will be
reasonably one =o one.

For example, suppose that during some monotonically _ncreasing local
strain history _-'iIa particular internal state variable all such as a single
dislocation arrangement is governed on a pointwise basis by the almost dis-
continuous behavior shown in Fig. 2. Suppose further that the time = at
which =he internal scare begins =o change
is determined by the pointwise stress _Ii_
state. Then =he numberof dislocation
rearrangements occurring in =he local
specimen as a function of time might be
distributed as shown in Fig. 3. If the
local specimen is large compared =o =he
scaleof the dislocation,and =hereare
numerous dislocation rearrangements, as - t

is usually the case in testing of metals, 1
then the peak of the curve shown in Fig. _i
3 will be several orders of magnitude
greater than unity. I= follows from
equations (30) =hat =he locally averaged I
value of the internal state variable

/represented in Fig. 2 will be as quali-
tatively shown in Fig. 4.

. tl t t

cI dt

Figure 2
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APPLICATION TO METAL CONSTITUTION

In order to describe the class of metals discussed herein, the free en-
-E and the temper-ergy maybe expanded in terms of the elastic strain tensor _kl

ature T in a second order Taylor series _xpansionas follows:

E I T

- - , (31)

where Eli is the thermal strain tensor and E_i is the inelastic strain tensor,
considered to be an internal state variable [_7,18,22,25],and

c
i E E v

h = hR +_ _ijDijkl_l - -_- (T - TR) , (32)

where the subscriptR refers to quantities in the reference state, Di_kljis/:A Zh
the linear elast±cmodulus tensor,and Cv _ -TI_--_)is the specific heat a=

constant elastic strain. Substitutionof equation (32) into (21) will result
in

=Dklm - - (33)

The above equations, togetherwith internal state variable growth laws (15),
will be shown to be a suitable framework for comparison of al! of the models
to be discussed herein.

InternalStateVariablesin Metals

I= is now generally agreed in the literature that in single crystals there

are two locally averages internal state variables: =he back stress (_i )

representingdislocationarrangement;and the drag stress (e2) representing
dislocationdensity; where the bars have been dropped for convenienceand the
superscripthas been convertedto a subscript in order to avoid the confusion
which would arise if a state variable were raised to some power. For obvious
reasons the back stress is a second,order tensor,whereas the drag stress is
a scalar. In specimens composed of multiple crystals it is generallyagreed
that a third internal state variable loosely termed damage (e3.) is neces-

z3
sary in order to account for intergranularmechanisms such as grain boundary
sliding and microvoid growth and coalescencethat may occur at high tempera-
ture and/or large strain. Although damage is obviously a directionallyre-
lated quantity and therefore tensorialin nature, it is difficult to distin-
guish phenomenologlcallybetween damage and drag stress since both are pri-
marily stiffnessreducing mechanisms.

Within the thermodynamicframeworkdescribed earlier it is also possible
to define the inelastic strain tensor to be an internal state variable. How-

ever, this interpretationis not generallyutilizedwithin the materials
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literature. It is hypothesizedthat the no. of dislocation
rate of growth of the internal state vari- rearrangementsin
ables does not depend on the inelastic a local 6
strain tensor so that specimen

•k k (£mn,T ,_2,e3 ) (34)"

W/% mn /_

Due to the form of equations (34) it is
said that since the inelastic strain ten-

f

sot does not appear on the right hand / \
side it is not an internal state vari- \able However, within the framework de- /"• 10 -"t
fined herein, it is still possible to d_
constructan internal state variable
growth law of the form Figure 3

£ij'l_ nijl(£mn,T,Em,=l 'e2'e3 ) , (35)mn ran --i

which is precisely in agreementwith def-
initions (15).

In order to qualitativelyverify the

supposition that: the inelastic strain ten- !
sot can be regarded to be an ISV, consider i t

l i
the example of a uniaxial bar subjected co
applied displacementssuch that the end --
tractionswill be evenly distributed. !t I j/
is customary to deduce the inelastic strain i _i -
in an experimentof this type by utilizing dt

the output from a load cell to determine Figure 4
the stress and then making use of equations
(33) to determine the elastic strain. This result and the total strain mea-
sured by an extensometerare then substitutedinto equations (31) to deter-
mine the inelastic strain. Nevertheless,this does not imply that the inelas-
tic strain tensor in an obsam:able state variable. This result can be arrived
at only in constitutiveexperimentssuch as uniaxial bar tests in which the
stress and strain tensors are spatiallyhomogeneous. In heterogeneousboun-
dary value problems,only two state variablesmay be input (temperatureand
either stress or strain), and for this case equations (31) and (33) muse be
supplementedwi_h an ISV growth law of the form of equations (35) in order
to determine the inelastic strain tensor. Therefore, in the con_ex_ of the
current thermodynamicframework the inelastic strain tensor may be interpreted
to be an ISV.

A Framework for Current Metals Models

In order to establish that currentmodels can be constructedfrom equa-
tions (33), consider the standard solid shown in Fig. 5. The governingdif-
ferential equation for this analog is

E
E (36)a+nH + [i+_--]

EM
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where by convention the stress is denoted
and the strain is _. Equation (36) may

be written in _he following equivalent

form_= O" Eli [O'-Eco F'] /!lllliti.,i / 1! I'_111_..

[EM+EJ +rt M [F_,M+Eoo] (37) • EM

In accordancewith the instantaneouslin-

sumedearelastiCrha=behavior of metals, it is as- E=o_ t!

_+E= - E = Young's modulus = cons=ant, (38) I {4-I-"qM"--T--"

Iso that it is clear that equation (37) can i
be integrated in time to give the following ._ I
s_ress formulation _ J

_(tl) zl_(tl) " T + (tl) (39) Y va ,y

where _I is the inelasclcscraln, defined
by

tI

zM [-EjI  igure5= z d= (40)%

Equation (39) may be solved for the stress and substituted into equation (40)
so that i_ is clear tha_ equation (40) is in accordancewith ISV growth laws
(16). Fur=her, it can be seen from the standard solid analog in Fig. 5 that
since C-E_ representsthe stress in =he Maxwell element, _l is no= observ-
able, so =hat £_ satisfies the two conditions required for it to be an internal
state variable.

Equation (39)may be written equivalentlyin =he following strain for-
mulation:

C(=I) - Z[_(tl) - _Z(=t)] , (41)

which is an equation of state compatiblewi=h constitutiveequations (i0) as
well as equations (33). Since no other internal state variablesare present
in this equation,and also, no additional internal state variables are present
in growth law (40) it is apparent that the standard solid analog with constant

coefficientsEM, % and E is a single internal state variable model.

It has been no_ed by several researchersthat the standard solid is an
appropriateanalog for thermoviscoplasticmetals if the springs and dashpo=
are nonlinearlzed [26,27]. In order to demonstratethis feature, considera
multiaxial extension of equation (36):
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O + K $ = G -Z + M $ , (42)
pq pqmn mn pqmn mn pqmn mn

where by convention =he small strain tensor gij is used in conjunction with

=he work conjugatestress tensor o...zjIn order =o model metals Kpqmn, Gpgmn,
and Mpqmn are required =o be nonlinear in some as yet unde=ermine_ way. in
addition, in accordancewith constraint equation (38), it is required that

-I
Kijmn Mmnkl - Dijkl , (43)

where Dijkl is the linear elastic modulus tensor. Equations (42) .maybe re-
written in a strain formulationequation of state form as follows:

I
_ij = Dijkl [_kl - _kl ] , (44)

where 5_ is the inelastic strain tensor,defined by

_llj = Mijpq-I[_pq_Gpqmn_mn]dt . (45)

Substitutingequations (43) and (44) into equations (45) will result in

t1

_I f -I l -_ G _ } dt (46)-iJ " {Kijmn[_mn- gmn] - Mi pq pqmn mn

so =hat equations (46) are in accordancewith growth laws (16). The number
of internal state variables containedin the model will depend on the degree

of nonlinearityproposed in the nonlinear tensors _qmn, Gpqmn' and _^mn'
and this will be discussed in the followingsection'.-However, before"_ontinu-
ing, it should be pointed out that the constitutiveequations developed in
this section assume that the elastic and inelasticstrain tensorsmay be lin-
early deooupled. It has been shown that this assumption is invalid for finite
deformation [28]. However,even under finite deformationconditions the in-
elastic strain is decoupled from the elasticstrain in such a way that the
inelasticstrain tensor may be consideredto be an internal state variable.

Current Models for Metals

The framework for metals models discussed in the previous section can
be used to describe numerous models currently under development [26,27,29-58].
For example, the microphysically based isothermal model proposed by Krieg,
et al., [30] is of the form described by equations (33):

I (47)
Oij " Dijkl(_kl - _kl )

where
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- _' _kl .
•I ikl ij_..- $ , , (48)

O' - g'l O' - _
Pq pq Pq pq

and _o and m are ma=erlal constants, and _i is =he devia=orlc stress censor
of =he back stress tensor. Since equa-and el.. is the devia=orlc ¢omponen= Jz3

=ions (48) contain the stress censor, subs=itucing equations (33) into (48)
will result in equations consls=ent ei=h grow=h laws (15). In addiclon, K=leg,
ecal., give the back stress and drag stress co be, respectively,

= A -I i_ , (49)

and

a2 N4 j- ci]_ - rR , (5o)

where A_ and AR are hardening constants, and r_ and rR are recovery functions
of temperature and internal state variables. It can be seen chac since ISV
growth laws (49) and (50) are conslscenc with equations (15), =he model pro-
posed by Krieg, et al., contains =hree internal state variables: =he inelastic
strain tensor, the b_ck stress tensor, and the drag stress tensor.

Furthermore, classical plasticity theories can be described by =he gen-
eral form

I
oij " Dijmn (_mn - _mn) , (51)

where

"I =, _ _F

_lj _ . (52)

is a scalarvaluedfunctionof state,and F is a scalarvaluedstatefunc-
tion for inelastic behaviour often taken to be the yield function. If F is
described by the von Mises yield criterion [53], given by

2

F(°ij - _lij) = ½(Oij - _lij) (Oij - _lij) = k , (53)

where _lij is a tensor describing the yield surface center in stress space and
k is a constant representing the yield surface size, then equations (52) can
be written as
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- ) , (s4)
$ij= Z( ij =llj

resultingin a klno,_tic hardeningmodel with constant yield surface size.
Substitutionof equations (51) into the above will yield a resul_ consistent
with rate independent ISV growth laws (19).

Furthermore,if the yield surface translationis derived from the Ziegler
modification[60] of the Prager work hardening rule [61], it may be described
by

&lij = ) , (ss)(°ij- =lij

where _ is a scalar valued functionof state. By use of equations (51), equa-
tions (55) can also be shown to be consistentwith equations (19). Therefore,
a classicalplasticity-basedkinematichardening model contains _wo internal
state variables: the inelastic strain tensor and the yield surface transla-
tion tensor representingthe back s_ress.

In order to fur=her illustrate the applicabilityof equations (33), (35)
and (15) to currentmodels for metals, ten of these models have been cast in
uniaxial form in Tabl'eI, wherein i= is shown =hat although the frameworkfor
each model is identical (Valanls'model is in simplified form), the ISV growth
laws vary widely both in number and form.

CONCLUSION

The main contentof =his paper has been to review and clarify the continuum
and thermodynamicsbased internal state variable model for applicationto ther-
moviscoplastl¢metals. In this process the followingpoints have been made:

i) the definitionof an internal state variable utilized in this model
has been clarified;

2) internal state variables in metals representlocal averages of dis-
location arrangement,dislocationdensity, and intergranulardamage,

3) in the contextof the ISV definition given here, inelasticstrain may
also be interpretedas an internal state variable;

4) the path dependentHelmholtz free energy may be expanded in a second
order expansionin elastic strain and temperaturein order co obtain a stress-
strain equation of state;

5) rate dependence enters the constitutiveequationsimplicitlyvia the
inelastic strain,as demons=ratedby the nonlinear standard solid analog; and

6) a three-dimenslonalgeneralizationof the standard solid may be used
as a means of comparisonof the general form of several currentlyproposed
models.
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Furtherramificationsof the ISVmodeldiscussedare also of importance,
althoughnot detailedherein. For example,thismodelmay be utilizedto con-
structa coupledheat conductionequationwhichmay be utilizedto predict
heat generationin thermoviscoplastlcmetals [62]. Furthermore,the concept
of internalstatevariablesmay be utilizedto consuructmodelsfor themech-
anicalconstitutionof compositeswith damage[63,15,65,66].
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