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A numericalalgorithmbased on the finiteelement

method of analysisof the boundaryvalue problemin a

continuumis presented,in the case where the plastic

responseof the materialis given in the contextof en-

dochronicplasticity. The relevantconstitutiveequation

is expressedin incrementalform and plasticeffectsare

accountedfor by the method of an inducedpseudo-force

in the matrix equations.

The resultsof the analysisare comparedwith observed

values in the case of a platewith two symmetricnotches

and loadedlongitudinallyin its own plane. The agreement

betweentheoryand experimentis excellent.

INTRODUCTION

The greatestdifficultyencounteredin the application

of the classicaltheoryof plasticityis the lack of

knowledgeof the configurationof the subsequentyield

surfacefor the particularmaterialat hand, and the

experimentaldifficultiesencounteredin findingit in the

fullythree dimensionalcase. More importantly,however,
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it has been observed by many experimenters that the shape

of the subsequent yield surface and its position in stress

space depends very strongly on the definition of the yield

point, particularly in situations following prior deform-

ation [i-3].

The essential premise of the classical plasticity

theory is the assumption of an a priori existence of a

yield surface. This implies a finite elastic domain.

From the mathematical standpoint, a finite domain is

necessary because of the requirement that the increment

in plastic strain be normal to the yield surface. Thus,

the direction of the plastic strain increment is dictated

by _he yield surface configuration.

If plastic effects were to begin immediately upon

loading, perforce, the domain of the yield surface would

collapse to a point, thus making the direction of the

plastic s_rain increment indeterminate since all directions

are normal to a point. Thus, the classical plasticity

theory cannot deal with materials that yield immediately

upon loading. There are other difficulties associated with

experimental attempts to describe and analyze a two-or

three-dimensional response of a material [4]. For instance,

investigations in the hardening rule are much discussed in

the current literature, but definitive functional forms out-

side the Prager-Ziegler rule are very few, and lack firm

experimental verification. This rule specifically can have

only limited application, and is inappropriate for
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complicatedloadinghistories. Moreover,it gives rise to

largediscrepanciesbetweencalculatedand experimentaldata

in loading-unloadingprocesses[1]. O_hernumerical

difficultiesarise from the fact that the loadingincrements

cannothe assignedarbitrarilya priori. When the current

loadingincrementmakes the stress state of a particularelement

traversethe yield surfaceit is necessaryto come back to

the preyiousloadingstateand adjust the magnitudeof the

new incrementof loadingto ensure that the new stressstate

is locatedjust on the yield surface. Certainly,this process

increasesthe time of computation.

In 1971,Valanisproposedan alternativetheory of

viscoplastioitycalled "endochronictheory" [5,6],which

is based on irreversiblethermodynamicsand the conceptof

intrinsictime. The theoryprovidesa unifiedpoint of view

to describethe elastic-plasticbehaviorof materialssince

it placesno requirementfor a yield surfaceand a "loading

function"to distinguishbetweenloadingand unloading.

In a seriesof recentworks, Valanis,Wu and others

[7_i0]demonstratedthat the endochronictheory could apply

more preciselyto situationsinvolvingunloadingand cyclic

behaviorof metals,as well as wave propagationin the plastic

region.

However,in all of the works, involvingmore than one

dimension,where the loadingwas quasi-static,the stress

fieldswere homogeneous.
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In the present paper a numerical algorithm is first

implemented in a computer program, which can be used to

analyze the material response in monotonic and cyclic loading

in the case of plane stress or plane strain. The calculated

results are then compared with the data obtained from a

specially designed experiment on a notched plate cyclically

loaded in its own plane. The validity of the endoch_onic

analysis, using this numerical algorithm, is thereby

demonstrated.

AN INCREMENTALFORMOFTHEENDOCHRONICELASTOPLASTIC

CONSTITUTIVE EQUATION IN TERMS OF [do} and {de}

The following are the formulae concerning the endoch-

tonic constitutive equations for plastically incompressible

isotropic materials and small deformation [7]

z _ep

= I p(z-z')d-_dz' (2.1)
o

-lldePll (2.1a

d_

where p(z) and f(_) are two material functions namely the kernel

function and hardening function respectively.

Ukk = 3K_kk (2.2)
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By definition

deij = d_ij - ½ d_ij (2.4a)

dsij = d_ij - _ d_uu_ij (2.4b)

In this paper the formof p(z)given by equation (2.5)

was used in equation (2.1)

-_rZ (2.5)p(z) = [ cre .
r=l

with the conditions that 8r and Rr are positive for all

r and

C

[ Cr = = , _ ___--r< = . (2.6a,b)
r=l r=l r

Thisformof p(z)iscontinuousanddifferentiablein (0,=)

and therefore the incremental form of equation (2.1) specified

below can be used in conjunction with a finite element code.

Specifically in the case where the infinitely large value

of p(0) is approximated by a suitably large value, as is done

in this paper, one may differentiate equation (2.1) with

respect to z to obtain the following differential form of

the endochronic constitutive equation:

ds = p(0)dep + h(z)dz (2.7)

where z ^ aep

h(z).= f dz' (2.8)
o
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and

^ do (2.8a)_(z)= d-_

The elastoplastic constitutive equations (2.3) and (2.7),

can then be combined and expressed in the differential form

1
dsij = 2_{deij + _ hij(z)dz} (2.9)

where

p(0)_-i= 0(0){1+-_-u_ (2.9a)

Alternately, for computational purposes the incremental

form given by equation (2.10) may be used, i.e.,

ASij = 2U {_eij + p_ hij(z) _z} (2.10)

Substituting (2.4a,b) into (2.9) and using (2.2) one obtains

the operational incremental form of the elastoplastic con-

stitutive equation in matrix notation as follows:

{d_}= {D}{dz}+ {drip} (2.11)

where cI c2 0 ]

{D} = c2 cI 0 i (2.12)

A

o o u_
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and

_px

{drip}= LdHpx_dHpy (2.13)

In plane stress

12KU + 4U2
cI = ^ (2.14)3K + 4_

- (2.15)
3K + 4_

A A

D1_ 2_(3k-,2_) (2.16)3k + 4u

A

dHpx = {2_hx(Z)- Dlhz(Z)}dz/_(0) (2.17)

A

_tpy = {2_hy(Z)"- Dlhz(Z)}dz/p(0) (2.18)

A

dHpxy = 2_hxy(Z)dz/_(0) (2.19)

In plane strain
A

3K + 4U
Cl = 3' (2.20)

A

= 3K - 2U (2.21)c2 3
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A

dHpx " 2_ hx(Z)dz/p(0) (2.22)

dHpy " 2; hy(Z)dz/p(0) (2.23)

A

dHxy " 2g hxy(Z)dz/p(0) (2.24)

We note that [D} is an adequate approximation to the elastic

matrix {E}. It is evident from equation (2.9a) that when

p(0) _ =, {D} becomes the elastic matrix {E}. Take plane

stress as an example on the simple tension curve (Fig. l) draw

2 2v 0

E
lim (D} _ [E} = 2(l+v)(l-v) 2v 2 0 "(2.25)

p(0)_ 0 0 (l-v)

We use axial tension to show the geometric meaning of equation

(2.11). From a point A on Simple tension curve (Fig. i) draw

a straight line AB, the slope of which is Young's modulus

E and its horizontal projection is d_. For simple tension

{D} (d_} = Ed_ (2.26)

and

BD = EdE

so BD can be considered as the first term of right hand in

(2.11). Since CD is equal to d_, the geometric meaning of

dH is represented by the segment BC the value of which isP

negative for simple tension.
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A FINITEELEMENTCODEFOR THE ENDOCHRONICTHEORYOF PLASTICITY

Using (2.11)and the principleof virtualwork [ii],one

may formulatean initialstressfiniteelementcomputational

algorithmof the endochronictheory. In fact,we have

fff£_}T£_}dv=={pex}T_{q} (3.1)
v

and {Pex} and {q} are respectively the vectors of nodal external

forces and displacements of the element. Substituting (2.11) into

(3.1) one finds that

[K} {Aq} = {APex] + {App] (3.2)

where {K} is the stiffness matrix of the element and ks the same

as the stiffness matrix of an element in the usual elastic analysis

but the constants CI, C2 are obtained from equations (2.14 - 2.16)

or (2.20- 2.21).

The quantity {APp} is the incremental plastic pseudo-force

vector for a typical triangular element used in the analysis and

has the form

(APpx)i - _ (_iAHpx + _iAHpxy)

i = 1,2,3 (3.3)
t

(APpy) I . _ (SiAHpy + _iAHpxy)i
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Where the componentsof (AHp_are given in equations(2.17-19)

or (2.22-24)by changingoperator"d" to "4". _i and 8i are

relatedto the differencesof nodal coordinates,i.e.,

(3.4)

where _Yjk = YJ'Yk ' _Xjk I xj-xk and eijk is the permutation

symbol.

From equations(3.2)and (3.3)one obtainsthe total

stiffnessmatrix [k}, totalplasticpseudo forcematrix

[(APp}and the linearsimultaneousequationsfor the structure.

THE CALCULATIONOF h(z)

Equations(2.17)through (2.19)show that h(z) plays

a centralrole in the calculat.ionof CAHp}and plasticpseudo-

force (APp}. To calculateh(z) numerically,we divide the
domainof integration(0,z)in equation (2.8)into n subregions

whereupon
Z.

Zl _ep • _ep
^h(zm)_ SP(Zm-Z')_-_dz'......+ [ (zm-z') dz'.....

o zi_1

zm ^ _ep
...+f p(zm-z')_ dz' (4.1)

Zm-i

where Zi_l, zi are the intialand end values,respectively,
of the intrinsictime scale of ith interval,which corresponds

135



to the ith incrementalloadingprocess,and zm is the current

valueof the intrinsictime scale.

The mean value theorem,and the smoothnessof ep allows

the approximation

zi zi ,

zi-I
(4.2)

providedthat there is no strainreversalAn the interval

considered. In the presentwork we approximatethe series

on the right handsideof equation (2.5)by three terms,i.e.,
3

-_r Z
P(Z) = _ Cre (4.3)

Substitutingequation (4.3)into equation (4.1)and

usingequation (4.2)we obtain the result

3 m _ep! € ) _r €

r i i z=zi
(4.4)

This form of h is unsuitablefor numericalcompulation.me

The term er(Zm-Zi_l)may in the courseof calculationbecome

very large of ther order of 5 x 104. Consequently,the

value of the functionexp(-_r(Zm-Zi_l)}becomesa very

small number leadingto serious_runcationerrors. To avoid

this difficultywe proceedas follows. By mathematical

inductionthe followingformulacan be shown:
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3 3 3ep

_€'i_" [hC'i_l_e'%_'i+ ICrCe-%_'i-l__ z_zi Ci-1,.._r=l rml

(4.5)

whereh(0)_= 0 and Azi - zi-zi_I.

This is an important result to the effect that the

history dependence of the material response (through h(zi)) at

the intrinsic time zi will be determined by h(zi_I) and the

_ep

new incremental step (through _-- and zi). This formula
z--zi

is also of value in the computer program, because (a) one need

only store the information at zi_1 to obtain results at zi, and

(b) when using (4.5) instead of equation (4.4), the value

of the term exp(UrAZi) is no longer small thus avoiding

truncation errors present in the previous formulation

(equation 4.4).

THE ITERATIVE PROCESS

For every increment of loading or unloading an initial

value AzO is assigned to the increment of intrinsic time.

The linear simultaneous equations are then solved and the

displacement increments are obtained, from which the total

deviatoric strain Ae is calculated. Also As and Aep are
i

calculated using equations (2.10) and (2.3) respectively.
_eP

Upon use of equations (2ola), (2.1b) and (4.5) Az, _ and

h are obtainedo Also, from equations (2.17)-(2°19)or (2.22)-
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(2.24) _Hpx, _Hpy, _Hpxy and finally (_Pp) are obtained.

Substituting {_Pp} into the simultaneous equations (4.2)we

then obtain a new solution for the displacement increments

as well as the other variables, including dz. The iteration

process is continued until the difference in two consecutive

values of _z, corresponding to two consecutive iterations, is

less than some defined tolerance. Results are stored for

the next step. The new loading process is then repeated.

In this initial stress method of classical plasticity

one [12] usually stops the iteration process if the difference

in the magnitudes of the plastic pseudo-force vector corresponding

to two consecutive iterations is sufficiently small. We use

the scale _z as a criterion of convergence instead of the pseudo-

force vector, not only because of its simplicity but because

of its crucial role in endochronic plasticity.

CONVERGENCE ANDTOLERANCE

The rate of convergence is very important because it

relates to consumption of computer time, truncation error

and other related considerations. The key of accelerating the

convergence rate is how to choose the initial _z in order to

begin the iteration process of a new incremental loading

(unloading)step. An accelerator Ka was used to determine

the starting value of the increment of intrinsic time _z_ by

the relation

zI_1 "16.11
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where the subscript I denotes the current incremental loading

step and I-1 denotes the preceding step. The superscript o

denotes the initial value, L denotes the last value and KIa

is called the accelerator for the I'th increment. Equation

(6.1) is not suitable for reversal points, at which _z_ is

taken equal to zero, because at the onset of unloading the

response is elastic. The value of the accelerator was determined

by the ratio of the final value of _z in the two previous

steps, i.e.,

I _z_-i
ga = L (6.2)

_zi_2

With the exception of the first few (three) increments

the value of KI was substantially constant. To illustratea

its utility and average value of 1.24 was used and the number

of iterations needed for convergence was compared in cases

where KI = 1 and KI = 0 See Fig. 2 where n pertains toa a "

the fifteenth increment and €yp is the plastic strain near the

tip of the notch. Curve 1 (Ka = 0) shosws that the convergent

process is very slow. The reason is that at the first iteration

_zIo= 0 since Ka = 0 and therefore {_P}P = 0, i.e., the loading

process so initiated is elastic and is far away from the real

case. Curve 2(Ka = i) shows the convergent rate is much better

than in curve i, because it takes the final value of _z in the

previous incremental loading step as the initial value of _z

in the current step. However, in this procedure the plastic

pseudo-load is underestimated. A value of Ka greater than
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unity does increase the rate .ofconvergence as shown in curve

3 (Ka = 1.24). Figure 3 shows the effect of accelerator

factor Ka on the average iteration number Nave per incremental

loading step.

By definition the relative error ERR is defined as

_Zn-AZn_1ERR = (4.41)
Azn

where n is the number of iteration steps• Tolerance

is defined as the maximum acceptable value of ERR.

Figures 4 and 5 show the effect of tolerance on the

accuracy and rate of convergence. In the example shown

the smaller the tolerance the higher the accuracy (Fig. 4),

but the number of iterations increases (Fig. 5). One however

must guard against an excessively small tolerance, which may

lie outside the inherent accuracy of the numerical computation

and computer capability, leading to accumulation of truncation

errors. In the present work the tolerance was 1%.

COMPARISONBETWEENEXPERIMENTALDATAAND CALCULATEDRESULTS

To verify the validity of the endochronic analysis, using

the present numerical algorithm, the distribution of strain of

a notched specimen (made of OFHC copper) cyclicly loaded in

its own plane was calculated and measured. One quarter of

the specimen is shown in Fig. 6. The material functions p(z)

and f(_) were determined by means of an experiment on a round
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specimenof preciselythe samematerialas thenotchedspecimen,

in terms of purity, grain size and treatment. The method of

determination of these functions will not be given here but

may be found in Ref. 13. Suffice it to say that they are of

the following form: 3
--_EZ

p(z)- Are (GPm
r=l

where AI,2,3 = (592, 220, 46) and _! = (275 11.5 7 67),2,3 • , , •
x 103 and

f(_) = 1 + 0.53_0"72

The calculations were conducted on an electronic computer

(AMDAHL 470 V/7A, close to IBM 370) in the computer center of

the University of Cincinnati. There are 413 elements and 230

nodes in one quarter of the specimen (Fig. 6). The side of

the smallestelement is 0.25 mm. By "varying band storage" the

amount of storage for the total stiffness matrix is 17698.

The incremental loading for each step is 4% of the maximum

load. The average number of iterations for each incremental

loading was about 10, varying from 3 to 20. The computer time

for each iteration was about 3.36 see., most of which is used

to solve the 460 simultaneous equations. The experiments were

conducted in Metcut Research Associates Corporation. The

strain distribution was measured using strain gauges, the

smallestnominal length of which was 0.2 ram. Since the locations

of the elements and the strain gauges did not coincide exactly,

we compared the calculated results with experimental data in

terms of plotted curves. Comparisons were made over a wide
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range of magnitudeof appliedmaximumstress,locationand type

of histories.

Measured and Calculated_Strain Distributions.cy Along the Notch

Center Line oo'.are Sho.wn,for Applied Stress Amplitude 3.7 x 107pA

(i) at first tensile peak A. Fig. 7

(ii) at first unloading point C. Fig. 8

(iii) at first compressive loading peak B. Fig. 9

Letter designations as shown in those Figures.

Measured and Calculated Strain Distributions £ Along the
| i|i y

Vertical Line ob are Shown for Applied Stress Amplitude 2.3 x 107pA

(i) at first tensile peak E. Fig. i0

(ii) at first compressive peak L. Fig. ii

(iii) at second loading peak H. Fig. 12

Letter designations as shown in above figures.

Despite the complexity of the boundary value problem and

the inherent experimental difficulties the agreement between

_xperimental and calculated results is excellent both from

the aspect of tendency and magnitude.
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