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Abstract

In this paper the general problem of a rectangular plate clamped along
two parallel sides and containing a crack parallel to the clamps is consid-
ered. The problem is formulated in terms of a system of singular integral
equations and the asymptotic behavior of the stress state near the corners
is investigated. Numerical examples are considered for a clamped plate
without a crack and with a centrally located crack, and the stress intensity
factors and the stresses along the clamps are calculated.

1. Introduction

A long strip containing a central or an edge crack and a rectangular
block with an edge crack are two of the more widely studied geometries in
fracture mechanics. The former -generally simulates a single-edge-notched
or a center-notched specimen and the latter the compact tension specimen.
These specimens are often used for fatigue crack growth and fracture charac-
terization of engineering materials. Typical studies using a variety of
methods such as finite elements, Wiener-Hopf, weight function, Laurent
series, conformal mapping, boundary collocation, and integral equations may
be found in references [1]-[13]. In all these and similar studies the
external loads are usually assumed to be such that the boundary conditions
may be prescribed in terms of tractions only. However, in some cases the
loads are applied to the specimen through "grips". In these problems it
would be more appropriate to prescribe the boundary conditions along the
grips in terms of displacements rather than tractions. The problem of a
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rectangular strip without a crack loaded through two rigid grips was con-
sidered in [14], where it was shown that the contact stresses along the
grips are singular at the corners. In this paper the problem of a strip
containing a crack is considered by using a technique which is somewhat
different than that of [14] and which may be used to solve the clamped
plate problem for an arbitrarily oriented crack.

2. Formulation of the Problem

We will first formulate the problem described in Fig., 1 where the
clamped strip contains three cracks as shown. The "external load" in the
problem is the relative clamp displacement Uge One may express the stress
and displacement components in the strip as follows:

by
6
O'-ij(x’.V) = US'ij(x’y) + k£1 J Gijk(x"y’sk’t)fk(t)dt ’
q
(1,3=x,y 3 k=1,...,6), (1)
6 by
u; (x,¥) = ug;(x,y) + & J Vi (xy,sp,t)f (t)dt
ay
(i=(x,y) , k=1,...,6) (2)
where %513 and ug; are associated with an infinite strip without any cracks

and the functions Gijk and Vik represent the stresses and displacements

in an infinite plate at the point (x,y) due to dislocations fk distributed
along the cuts (ak<t<bk). In terms of the crack surface displacements the
functions f, are defined as follows (Fig. 1):

f'l(x) - a—ax- [Uy(X,S,i'l'O) - uy(X,Si-O)] ’ (1=1 ,2)

fa(y) = 25 [u,(s540.y) - u,(s3-0.0)] ,

£5(x) aix[ux(x,s,jm) u,(x,55-0)1 , (j=4,5)

fo(y) = 5y [uy(s5+0.y) - u (s6-0.¥)] (3a-d)
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where

S:4354> 85437255 b1+3 =bs, a; <s; <b R (1 1,2,3) (4)

and the Green's functions G ik and V 3 are given in Appendix A.
The solution which corresponds to an infinite strip may be expressed
as follows:

[

) g | O g A
ugy (%:y) ='%; f [(A1+A2x)e'ax-+(A3+A4x)eax]e'1ayda , (5a,b)

-0
(=]

+ - + s
oxx(X¥) = f t [a(A1+A2x)4']2K Aple - La(A 3AgX) '1—5'A4]eax}e 1%%da,

Gsyy(x,Y)‘=ﬁ%-[ {f- §§E-A2+a(A]+A2x)] c"X+[3'K Agta(Agth,x)1e* e da,
oy (%) =2 [ (-La(Ay#hpx) + 551 A Je X4 Ta(Agtp0)- 551 Ay Tere e,

-co

(6a-c)

The unknown functions f1,...,f6 and A1(a),...,A4(a) are determined from the
boundary conditions prescribed on the crack surfaces and the plate boundar-
ijes x=0 and y=H. In the actual problem the crack surfaces are free from
tractions and along the boundaries of the plate we have (Fig. 1)

ux(oa.Y) =0, uy(osy) = 0, UX(H:.V) = uO’ Uy(H,.Y) = 0, ~ocy<m , (7)

The superposition technique may be used to solve the problem by first
obtaining the stress state in a clamped plate without any cracks under the
boundary conditions (7). The equal and opposite of the stresses found in
this solution may then be used as crack surface tractions in the perturba-
tion problem. The ten unknowns f1,...,f5, A1...A4 would then have to be
determined from



Ux(oay)‘:Os uy(os.V)=Os ux(Hs.Y)=0, uy(H’.Y)=09 <Y< , (8)

-¢ Mg b i=]
_H_' s (.yj"sj:s‘XQaj<S< j’J" 32) s

w

cyy(x,yj) = pj(S) = -

—

A

(x ) = (S) = - k] ﬂ ( =¢$..5=V.a~.<5<b )
Oyx\X32¥) = P3 =1 H * \X3753:57Y»83<5<D3) »

Oy (X5¥3) = P5(s) = 0, (y;=5;_3.5%X,25_3<s<b;_5,3=4,5) ,

opy(X3s¥) = Pgls) = 0, (s=y,ages<bs) . (9)

By substituting from equations (2), (5) and (A13)-(A20) (of Appendix
A) into (8), by inverting the Fourier integrals and by evaluating the rela-
ted infinite integrals, the functions A.l,...,A4 may be expressed in terms
of integrals of the following form:

6 bj

h) = E [ Bijlatis (e L (=108 (10)
%
where the functions Bij depend also on the constants S1s Sps S3o H, and «.
From (10) and (6) the stress components og
as follows:

ij (1,j=x,y) are then obtained

by

6
Gsij(x"Y) = kil J C‘ijk(x"y’sk’t)fk(t)dt » (1,3=x,y) (11)
d
k

where the kernels Cijk are given in Appendix B.

The integral equations for the unknown functions f],...,fs are
obtained by substituting from (1) and (11) into the crack surface boundary
conditions (9) and may be expressed as



by

6
k§1 f hnk(s,t)fk(t)dt = pn(s) R (an<s<bn, n=1,...,6; ap=a._ s>
a
k = =
b=b._3 n=4,5,6) (12)

where the kernels hnk (n,k=1,...,6) are known in terms of Gijk and Cijk
(1,3=x,y; k=1,...,6) (see equations (1), (11), (9), Appendix A and Appen-
dix B). For the crack problem shown in Fig, 1 (i.e., for 0<ak<bk<H,

k=1,2 and 52<a3<b3<s]) from appendices A and B it can be shown that the main
diagonal elements of the kernels hnk which are contributed by Gijk are
Cauchy kernels and consequently hnk can be expressed as follows:

)
. 2u nk -
hnk(S,t) = T ]+K 'f:?'*' knk(s,t) ’ (n,k"],...,ﬁ) (13)

where Gnk=1 for n=k, Gnk=0 for n#k, and knk’ (n,k=1,...,6) are known bounded
functions in the closed intervals, a <(t,s)<b,, (k=1,...,6). If one wants
to solve the problem shown in Fig. 1 for any crack geometry provided
0<ak<bk<H, k=1,2 and 52<a3<b3<s], one could let

Fi ()

, (k=1,...,6) (14)

£ (t) =
/(t—ak)(bk-t)

and use a Gaussian integration formula to determine the unknown bounded
functions Fk(t), (k=1,...,6)[15]. From the definition of the unknown func-
tions fk(t) as given by (3) and from Fig. 1 it is clear that the integral
equations (12) must be solved under the following singlevaluedness con-
ditions:

bk

[ fieae =0 L (1) (15)

A



3. The Clamped Plate

From Fig. 1 it may be seen that the problem would reduce to that of a
clamped plate if one lets ai=0 and bi=H, (i=1,2). In this case techni-
cally the integral equations (12) and the singievaluedness conditions (15)
are still valid and the input functions pn(s) are still given by (9).
However, the form of the solution is no longer given by (14). To deter-
mine the fundamental functions of the system of integral equations (12)
the singular nature of the kernels knk(s,t), (n,k=1,...,6) for 2,=0,
bk=H, (k=1,2,4,5) must be investigated. This may be done through the asymp-
totic analysis of the infinite integrals giving the appropriate functions
Cijk in Appendix B which are related to knk (see, for example, [14] and
[15]). First we observe that from (1), (11), (9), (12), (13) and Appen-
dices A and B, the kernels knk(s,t) may be expressed as follows:

kk(5:t) = Ky (s5t) + kS (s,t) 5 (nyk=1,...,6) (16)
Glsst) = [ Kls,toadda s (naket,.s6) (17)

]

where kG are the nonsingular parts of Gy jk (see equation (1) and Appendix
A) and knk are thg kernels contr1buted by C k- If we now denote the asymp-
totic values of Kpg for o=« by Knk (s,tsa), the singular and Fredholm parts
of the kernels kgk may be separated as follows:

kC(55t) = K0y (s5t) + KE (5,t) , (nak=1,...,6) (18)
Gilsat) = [ K (s,tiadda  (nakeToeens6) (19)
K (s,t) = J (K, (s,t,a)-KE, (s,t,0)Tde 5 (mgk=l,...,6) (20)

o]

where the kernels kgk(s,t) (n,k=1,...,6) are bounded in their respective
closed domains. For sz<a3<b3<s], after a relatively straightforward analysis
it may be shown that

koi(sst) = k> (s,t)s & (n.k=T,...,6) , (21)
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k3g(sst) = 0, kgglsst) =0 (22)
s =1 rra.2 d 2 424 1

2e [(3-62)-12(H-s) g + a(H-s)” é%éﬂ 2t
(n=1,2,4,5) . (23)

Because of (21) and (22) the dominant part of the integral equations
(12) for n=3 and n=6 has only Cauchy type singularity and the unknown
functions f3 and f6 have the form

Fs(t)
/(t-25)(b4-T)

» (3=3,6) . (24)

fj(t)

Expressing now the remaining unknowns aé
F (t)
-a. YB(p. -t)Y
(t-a,)P(b,-t)

£ (t) = » (k=1,2,4,5), 0<Re(B,¥)<1 , (25)

through a function-theoretic analysis it may be shown that (see, for exam-
ple [15])

B = v, 2xcoswR-(1+c2)+4(g-1)2 = 0 , (26)

The characteristic equation (26) is identical to that found in [14] and
in, for example, [16] for a quarter elastic plane fixed along one of its
straight boundaries.

4. The Stress Intensity Factors

In the crack problem shown in Fig. 1, once the functions f1,...,f6
giving the crack surface displacement derivatives or the bounded functions
F]""’FG defined in (14) are determined, the Modes I and II stress
intensity factors at the crack tips may be obtained from the following
standard relations:



F.(a.)

2u vy .
k.(a;) = 11m Y2 (t- 5 f (t) = » (i=1,2,3)
1Y ]+K br=a.)/2
F.(a.)
_ 2u - J 3
k,(a;) = 11m V2(t- 5 f; (t) .
AR T+e ]+K -
>33 /1bs-a3]72

(a52a5_3> by=bs_5» 3=4,5,6)

2 1 /25T Fi(bs) -
k](b_i) = = ]+K ]1m -t f (t) ]+K - s (1_132,3),

F.(b.)
- _ 2u J'J
ko(b;) = Tim V?(B -t) f (t) = s
2 J ]+K ]+)< -
tb; (by-3;172
(aJ J -3° b bj_3s J=43536) . (27a-d)

These relations are based on the definition of the stress intensity factors
in terms of normal and shear cleavage stresses at the crack tips of the
form (Fig. 1)

k](a1) = 1im v2(a -x5 oy (x 51) s eee

X+
ko(aq) = 1im v2(@as-x) o (x s ) s eee (28a,b)
2'\71 X 1

94

In the "clamped plate" problem it -was shown that at the corners ¥=S5s
x=0, x=H, (i=1,2) the displacement derivatives have a singularity of the
order r'B, where r is a small distance (in x direction) from the corners
(see eqs. (25) and (26)). This implies that at the corners the stresses
may also have a singularity of the order r'B, r now being the radial dis-
tance from the corner. In practical applications one may be particularly
interested in the behavior of interface stresses Ty and Oy along the
clamps. We first observe that the stress state at any point in the medium
is given in terms of the density functions f1, f6 and the kernels G1Jk

-8-



and Cijk (see (1) and (11)). Next, we note that the singular behavior of
the stresses is determined by the dominant parts of the related kernels
only and these dominant kernels can be separated through a relatively sim-
ple asymptotic analysis of Gijk and Cijk given in the Appendices A and

B. Also, the singular behaviors of the stresses in the medium at all

four corners have the same form. Thus, after following a procedure simi-
lar to that described by the equations (16) through (23), for a small
distance r from the corner x=0, y=s; the stresses along the clamp x=0

may be expressed as
H

H
o051 E =B I S Ry (0t + [ KSyvat)fy(t)ae]
o 0

H H
y(0rs771) 2 2B 1] KE 0 (81t + | KGy(y 00Ty (0)ee]
o

o

(y=s1-r) » (29a,b)

tftz-rzg [Gc-l)t + 2t(t2-r2)J
t<r 2K teare (te4re)ed 2
r(r2+3t2 T+k4)r tzr
e s Akl
_ r r2_t2) - 1 [(]"’Kz)r t2r ]
(t%#r2)2 ~ 2c VT T (tHr7) 7 0
2_p2 2 2¢(t2-r2
Bt ¢ g (et - B (302-0)

The kernels given in (30) are "singular" in the sense that they become
unbounded as t and r approach the end point (t=0, r=0) simultaneously and
have the order ’t:'.l or r'1, To evaluate the stresses given in (29) we
first note that by substituting f1(t) and f4(t) from (25), the leading
terms of the typical integrals in (29) may be expressed as follows (see,

for example [15]):

where

K?](S]-r,t)

S

S




dt =
2
e
0 2
Hotr, (1) 78F(0)
_d_[ 1 5 ™ 1
d tor 2HBsin Z2 B
0 2
JH rfglt) TR0 4
Toer dt = —+ 1,
tor 2HBcos I8 p o
0 2
H -
t) =(8+1)F,(0)
d J Tyl 4
r2 4 dt = = —on (31a-d)
dr ] T 2HPcos 22 rP

Thus, it is seen that the leading terms in the expressions of the
interface stresses Ty and Oyy around the corner x=0, ¥=sq have a singu-
larity of the form r #. Similar to (28), defining now the "stress intensity

factors" by

k](O) = 113 vZ P Oy (O 2S1- -r) ,
r

k2(0) = 1im /2 rf oy (O s]-r) s (32a,b)
r-0

and substituting from (30) and (31) into (29), we obtain

(0) = —222 [(H1-28)cos T2 F,(0)-(x+3-28)sin I8 F,(0)] ,
kH sinmg
ky(0) = - ~2E__ [ic1428)sin 22 F (0)+(x-3+28)cos T& F,(0)]. (33a,b)

KHBSiNnB

The stresses elsewhere along the interfaces x=0 and x=H, of course, may be
evaluated from eqs. (1) and (11) by using the appropriate kernels from
Appendices A and B. The stress intensity factors in the other corners may
be obtained by following a procedure similar to that described in (29)-
(33).
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5. The Results

The first example considered is the probiem of a clamped plate with-
out a crack in order to compare the results with that given in [14] where
a different technique was used to soive the problem, In [14] the measure
of the external loads was the resultant force rather than the displace-
ment uy used in this paper. Hence, the easiest direct comparison may be
made for the ratio of the stress intensity factors, k2(0)/k](0) (see (32)
for the definitions). For the length to width ratio H/25.I = 2 and

k=3-4v this comparison is shown in Table 1.

Table 1. Comparison of ko(0)/kq(0) obtained in this paper
3in [

(second row) and in [14] (third row), H/2sy=2.

v 0 0.1 0.2 0.3 0.4 0.5
-k2/k1 0 | 0.118610 | 0.212352 | 0.302276 | 0.396751 0.504213
('kz/k])

(from [14]) | O | 0.118614 | 0.212355 | 0.302280 | 0.396751 | 0.504209

For various relative plate dimensions and for «=1.8, the normalized
stress intensity factors defined by (32) are shown in Table 2. In this
case (26) gives the power of stress singularity as 8=0.28882.

Table 2. Normalized stress intensity factors at the corner x=0,
y=sq7 of a rectangular clamped plate for «=1.8, plate
length=H, plate width=2s7 (see insert in Fig. 3)

HUGS 1 uuos]B
H/sq k](O)/( 55 ) k2(0)/(-—g;-—0 -k2(0)/k1(0)
1 2.030255 -0.613697 0.302276
2 1.024510 -0.309685 0.302276
4 0.478944 -0.144773 0.302276
6 0.318621 -0.096312 0.302276
8 0.240840 -0.072800 0.302276
10 0.194190 -0.058699 0.302276

-11-



Figures 2 and 3 show the normalized stresses cXX(O,y) and cxy(o,y)
along the clamp for the case of plane strain and for «=1.8. The cor-
responding Mode II stress intensity factor is shown in Fig. 4.

The second example considered is a clamped plate containing a cen-
tral crack (see the insert in Fig. 5). The normalized Mode I stress
intensity factor calculated at the crack tips y=¥c, x=H/2 is shown in
Table 3 for «x=1.8 and x=2.2. For comparison the results obtained in
[6] by using the technique of conformal mapping for «x=2.2 are also
included in the table. The agreement seems to be fairly good for small
cracks. However, for larger cracks there is some discrepency. For k=2.
and H/2$1=1 the normal stress along the clamp is shown in Fig. 5.

Table 3. Crack tip stress intensity factor k](a3) in clamped
plate containing a symmetrically located central
crack, H/2s1=1, c=(b3-a3)/2 (Fig. 5).

k](a3)/(%(l /c)

%% «=1.8 k=2.2 «=2.2 (Ref. 6)
0.1 3.15135 2.60029 2.60000
0.2 3.00550 2.49602 2.50000
0.4 2.78474 2.17958 2.17391
0.5 2.34322 2.00829 2.01724
0.667 1.98095 1.73227 1.78663
0.8 1.71592 1.52883 1.64815
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The Green's Functions

Sexk(XsYs¥ot) =

Syyk(Xs¥s¥yot) =

Seyk (Xs¥s¥ot) =

GXX3(x,y,x3,t) =

Byy3(xsyoxgst) =

Byy3(Xs¥sxgst) =

By (Xa¥sy5ot) =

APPENDIX A

Gijk which appear in equations (1) and (2).
oy (t=x)[(t=x)2-(y-y, )21
m( 1+k) [(t-x)‘+(y4yg)2]4 » (k=1,2; yk=sk) .
(A1)

oy (EX)[Bly=y )2+(t-x)2]
ﬂ(]+'<) [(t-X)z'i'(y—.yk)Z]Z s (k-] 323 yk=sk) R
(A2)

oy Wy lly-y)2-(t-x)2]

m(1+k) [(t-x)z+(y-yk)z]z , (k=1,2; yk=sk) ,
(A3)

2u (y-t)[3(x-x3)2+(t-y)2]
~ T(0+x) [(t-y)4+(k-x3)4]2 ’ (X3=S3) f (A4)

o, (¥-t)[(t-y)2-(x-x3)?]

) e ergZlr  » (%37s3) (AS)

(x=xo) [ (x=x5)2=(t-y)?2]
2 3 3
- “(Tﬁé) [(t-y)71(k-x3)7]2’ ’ (x3-s3) s (A6)

(y-y5)[(y-y;)2+3(t-x)?]

ﬂ(]iz) ‘[(t-§72+(y:yj)z]z s> (3=4,5; yj=5j-3)’

(A7)
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oy ey llyyg)2-(ee)?1
A R 4 B (G L U L R R I e

(A8)

) (t-x)[(t-x)2-(y-y;)?]
Sryg Yoy t) = vy T = Grypele 0 (3705 ¥y™s5.5)

(A9)

(x-xg) [(x-x£)2=(t-y)?]
2u 6 6 _
Gxx6(X,.YsX5st) = - Tr('|};.K) [(E-Y17+(x-xg )22 s (X6-S3, (A10)

(x=xc ) [(x-x2)2+3(t-y)?]
2 6 6 -
nys(X9st6at) = ﬂ(]zK) [(t-y)2+(x_xs)2]2 s (x6'53) ’ (A11)

2y (y-t)[(t-y)2-(x-x4)?]
Sxye (XY 2%get) = = Ty ey tengrze > (X6™s3) - (M12)

ka(x,y,yk,t) = - m{ 41 Tog[(x~ t)2+(.Y'.Yk)2] (x-t)Q(z-;-t(:})/-y )2}’

(k=1,2; yk=sk) s (A13)

Vyk(x’y’yk’t) ;17;77'{ 2 Arctan X-t (X‘ )2+(y'y )2 ’

(k=1,2; yk=5k) s (A14)

) : 1 x-x3 (t-y)(x- X3)
VX3(x,y,x3,t) = - SO {—2— Arctan " T2+ (x-x ),_ s

(x3=s5) » (A15)
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Vyaltyig,t) = oy (5 Toal (t)24 (1)1 - (g Sty AL

(x4=s5) » (A16)

Y-Y; (x-t)(y-y )

Vg (ayayyot) = = sy 5 Arctan To6+ 1o S AL

ofe

(i-4,5; Y5785 3), (A17)

-1 -1 (x-t)2
V3 (Xs¥s¥55t) = oy (57 Togl(x-t)2+(y-y;)2] + (x-f)z+(y-yj)2}’

(3=4,5; Y5783- 3) » (A18)

Vyg(%asXgot) = = =ripey (551 Togl (t-y) 24+(x-x4)2]

(t-y§§;%i_x 71 (xg7s3) (A19)

+

o o+ X'X6 (t-y)(x- Xs)
Vy6(x"y’x6’t) = m'l'—n)- {T Arctan t-y (t-y)2+(x-x )z ’

(xg=s3) - (A20)



APPENDIX B

The kernels Cijk which appear in equation (11)

o«

= u
CXXk T w(14k) f [mxxk(x’t’“)'mxxk(H‘xsH'tsG)JCOSd(Y'yk)daa
(o]
(k=1,2; y;=s,) » (1)
Cyx3 = 7 11K I [m,, 3(x>x3.0)4m , 2(H=X,H-X350)Isina(t-y)da,
o}
(X3-53) s (BZ)
Cxxj = 7 {1K f [mxxj(Xstaa)+mxxj(H-x,H-t,a)]sina(y-yj)da R
o)
(3=4,5; y47s5_3) (B3)

[}

Cxx6 ~ FT%;ET J [m, i (xsXgs0) M,y (H-x,H-X3,0) Jcosa(t-y)da,

o]

(x57s4) (B4)

Cyyk = FTT%ET'f [myyk(x,t,a)-myyk(H-x,H-t,a)]COSa(y-yk)da,
(o]

(k=1,2; yk=sk) s (B5)

-]

ny3 = ;T%;ET J [myy3(x,x3,a)+myy3(H-x,H-x3,a)]sina(t-y)da R
[o]
(X3=53) ’ (B6)

©

nyj - w{(1+K) J [myyj(x’t’a)+myyj(H'X’H'taa)]S1na(Y'Yj)dd s

0
(i=4,5; yj=sj-3) s (87)

-17-



- _ o )
Cove = T015a) f [my 6 (Xs%350)-m 6 (H=X,H-x5,a) Jcosa (t-y)da

0

(x47s3) » (B8)

(-]

Cogk = L J [myyi (Xstsa)tmy p (Hex,Het,a) Isina(y-y) )do

ks
o

(k=1,2; yk=sk) s (B9)

-]

CX.Y3 - W(]'hcj J [mxy3(x’x3’a)'mxy3(H'X,H-X3,a)]COSa(t-y)da s
[o]

(x57s3) » (810)

©

= .1 o (Hex He v
nyj poy & f [mxyj(x,t,a) mny(H X,H-t,a)Jcosa(y yJ)da ,

(o]

(3=8,53 y4=s5_3) »  (B11)

(=]

= U .
ny5 = Ty j [mxys(x,XB,a)+mxy6(H-x,H-x3,a)]s1na(t-y)da ,

o]

(X3=S3) s (B12)

mxxk=D-](“){[K(92aH'1)(-1+K2-2ax+2at+4a2tx)+4KuH(ax+at-aH)]e'a(t+x)

+[2K2(e-2aH‘])(GX‘Gt)+2dH(]-Kz-2aH+2at+2ax-4a2xH+4a2tx)]e“(t'x)}’

(k=1,2) , (B13)
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mxx3=D-](“){[K(92aH-1)(-1-K2-2ax-2aX3"4a2xX3)+4KaH(-1—ax+aH-aX3)]e-“(X+x3)

+[2K2(e-2aH-1)(1+ax-ax3)+2aH(-T-K2-2ax-2aH+2ax -4a2xH+4a2xx3)]e'“(x'X3)},

3
(814)

mxxj='D_](a){[K(ezaH-1)(-1-K2-2ax-2at-4a2tx)+4KGH(-1-ax_at+aH)]e-a(t+x)

+[2K2(e'2dH_])(1+aX'at)+2aH(-1-KZ_ZaH+2at_2ax_4a2xH+4a2tx)]ed(t-X)}’

(j=4,5) (B15)

M. =D V() {Lk(e22M-1) (1-k2+20x-20x, ~Ba2xx 4 ) +hkaH(~ax-ax aH) Je @ (XH¥3)
Xx6 3 3 3
of=20H 2 2 2 ~a(X=X-)
+[2c2(e -1)(-ax+ax3)+2aH(-1+K -2ax+2aH-20x5+4a?xH-4a xx3)]e 3},
(B16)

myyk=D-](a){[K(e2aH-1)(-3-K2+6at+2ax-4a2xt)+4KQH(2-ax-at+aH)]e-a(t+x)

+[2K2(e-2aH-])('ax+at+2)-2aH(-K2-3+2ax-6at+6aH+4a2xt_4a2xH)]ea(t-x)},

(k=1,2) , (B17)

myy3=D'] (C!) {[K(ezaH_] ) (-3+K2+2ax-6ax3+4a2xx3)+4KaH(_-] +0LX-GH+C!X3)]e-a(X+X3)

+[2K2(e_2aH-1)(1'QX+GX3)+2aH(‘3+K2+2ax+6ax3-6aH+4a2Hx_4a2xx3)]e'a(X-X3)}

(B18)
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m -=-D-1(a){[K(ezaH-l)(-3+K2-6at+2ax+4azxt)+4KaH(-]+ax+at-aH)]e_a(t+X)

YyJ

+[2K2(e-2aH-1)(1-ax+at)+2uH(-3+K2+2ax+5at-6aH-4a2Xt+4a2XH)Jea(t-x)},

(j=4,5), (B19)

myy6=D'1(a){[K(ezaH-l)(K2+3-2ax-6ax3+432xx3)+4KaH(-2+ux+ux3_aH)]e~a(x+x3)

+[2K2(e-2aH-1)(-2+ax-ax3)+2aH(-3-K2+2ax-6ax3+6aH-4a2XH

+4a2xx3)]e'“(x'x3)} , (B20)

mxyk=D'1(a){[K(e2aH-1)(1+K2-2ax-2at+4a2tx)+4KaH(-1+ax+at-aH)]e'“(t+x)

+[262 (" 2H_1) (T +ax-at )+20H(~1-k2+20H-2at+20x-do2xH o 2tx) e (EX) g

(k=1,2) , (B21)

=D-](a){[K(ezaH-])(1-K2-2ax+2ax3-4a2x3x)+4KaH(-ax+aH-ax3)]e-a(X+x3)

mxy3 \

+[2K2(e'2““-1)(ax-ax3)+2au(1-K2-2ax-2ax3+2aﬂ+4a2x3x-4a2Hx)]e'“(x'xs)},

(B22)

mxyj--D-] (C!) { [K(EZGH_~, ) ('K2+] '2(!X+2at‘4d2tX)+4KaH( -ax_at.l.aH) ]e"a( t+X)
+[2x2(e"2M_1) (ax-at ) 2aH( 1k 2+ 2uH- 2at-2ux-4a2xHtaatx) Je ( BX)3,

(j=1,2) , (B23)
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m, 6=-D-](a){[K(ezaH-1)(-1-K2+2ax+2ax3-4a2xx3)+4KaH(1-ax-ax3+aH)]e'“(X+X3)
Yy
+[2K2(e-2ax-1)(1-ax+ax3)+2aH(1+K2-2aH+2aX3-Zax+4a2XH-4a2XX3)]e-a(x-x3)},

(B24)

D(a) = k2[e?®Mre 200 p7 gq2p2 (B25)
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Fig. 2 Normal stress along the clamped boundary in a plate without
a crack («x=1.8).



Oxy (0.y) .
HUo

Fig. 3 Shear stress along the clamped boundary in a plate without
a crack (x=1.8).
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Fig. 4 Normalized Mode II stress intensity factor at the corners of
a clamped rectangular plate without a crack (x=1.8).
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Fig. 5 Normal stress along the clamped boundary in a plate with a
central crack (H/2$1=1), k=2.2,
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