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A CLAMPED RECTANGULAR PLATE CONTAINING A CRACK 

by 

* Renji Tang and F. Erdogan 

Department of Mechanical Engineering and Mechanics 
Lehigh University, Bethlehem, PA 18015 

Abstract 

In this paper the general problem of a rectangular plate clamped along 
two parallel sides and containing a crack parallel to the clamps is consid­
ered. The problem is formulated in terms of a system of singular integral 
equations and the asymptotic behavior of the stress state near the corners 
is investigated. Numerical examples are considered for a clamped plate 
without a crack and with a centrally located cracK, and the stress intensity 
factors and the stresses along the clamps are calculated. 

1. Introduction 

A long strip containing a central or an edge crack and a rectangular 
block with an edge crack are two of the more widely studied geometries in 
fracture mechanics. The former ~enera11y simulates a single-edge-notched 
or a center-notched specimen and the latter the compact tension specimen. 
These specimens are often used for fatigue crack growth and fracture charac­
terization of engineering materials. Typical studies using a variety of 
methods such as finite elements, Wiener-Hopf, weight function, Laurent 
series, conformal mapping, boundary collocation, and integral equations may 
be found in references [1]-[13]. In all these and similar studies the 
external loads are usually assumed to be such that the boundary conditions 
may be prescribed in terms of tractions only. However, in some cases the 
loads are applied to the specimen through IIgripsll. In these problems it 
would be more appropriate to prescribe the boundary conditions along the 
grips in terms of displacements rather than tractions. The problem of a 
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rectangular strip without a crack loaded through two rigid grips was con­
sidered in [14J, where it was shown that the contact stresses along the 
grips are singular at the corners. In this paper the problem of a strip 
containing a crack is considered by using a technique which is somewhat 
different than that of [14J and which may be used to solve the clamped 
plate problem for an arbitrarily oriented crack. 

2. Formulation of the Problem 

We will first formulate the problem described in Fig. 1 where the 
clamped strip contains three cracks as shown. The "external load" in the 
problem is the relative clamp displacement uo• One may express the stress 
and displacement components in the strip as follows: 

bk 
°ij(x,y) = °sij(x,y) + k!l J Gijk(x,y,Sk,t)fk(t)dt, 

ak 
(i,j=x,y; k=l, •.• ,S), 

bk 
ui(x,y) = usi(x,y) + ~ J Vik{x,y,Sk,t)fk(t)dt. 

k=l ak 

(i=(x,y) , k=l, .•. ,S) 

(1) 

(2) 

where 0sij and usi are associated with an infinite strip without any cracks 
and the functions Gijk and Vik represent the stresses and displacements 
in an infinite plate at the point (x,y) due to dislocations fk distributed 
along the cuts (ak<t<bk). In terms of the crack surface displacements the 
functions fk are defined as follows (Fig. 1): 

f;(x) = d~ [uy(x,s;+O) - uy(x,s;-O)] , (;=1,2) 

f3(Y) = d~ [ux(s3+0,y) - ux(s3-0,y)] 

fj(x) = :x [ux(x,Sj+O) - ux(x,Sj-O)] , (j=4,5) 

fS(Y) = ;y [uy{s6+0,y) - uy{sS-O,y)] , (3a-d) 
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where 

SO+3=So, ao+3=a o, bo+3=b o, ao<s.<b., (;=1,2,3) 
111111111 

and the Green1s functions Gijk and Vij are given in Appendix A. 

(4) 

The solution which corresponds to an infinite strip may be expressed 
as follows: 

ex> 

usx(x,y) = 2!i J {[Al+(~ + x)A2]e -aX + [-A3+(~ - x)A4]eax e -iay da, 

ex> 

USy(X,y) = in J [(Al+A2x)e-ax + (A3+A4x)eaxJe-iaYda , (Sa,b) 

(Sa-c) 

The unknown functions fl, ••• ,fS and Al (a), ••• ,A4(a) are determined from the 
boundary conditions prescribed on the crack surfaces and the plate boundar­
ies x=O and y=H. In the actual problem the crack surfaces are free from 
tractions and along the boundaries of the plate we have (Fig. 1) 

The superposition technique may be used to solve the problem by first 
obtaining the stress state in a clamped plate without any cracks under the 
boundary conditions (7). The equal and opposite of the stresses found in 
this solution may then be used as crack surface tractions in the perturba­
tion problem. The ten unknowns fl, .•• ,fS' Al .•. A4 would then have to be 
determined from 
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(8) 

3-1<: llUo = - ""-1 -H ' (y.=s.,s=x,a.<s<b.,j=1,2) 
" J J J J 

(9) 

By substituting from equations (2), (5) and (A13)-(A20) (of Appendix 
A) into (8), by inverting the Fourier integrals and by evaluating the re1a­
ted infinite integrals, the functions Al , .•• ,A4 may be expressed 
of integrals of the following form: 

6 
Ai(a) = E 

j=l 

b. 

J J Bjj(a.t)fj(t)dt • (;=1 ••••• 4) • 
a. 
J 

in terms 

(10) 

where the functions Bij depend also on the constants sl' s2' s3' H, and 1<:. 
From (10) and (6) the stress components asij' (i,j=x,y) are then obtained 
as follows: 

, (i ,j=x,y) , (11) 

where the kernels Cijk are given in Appendix B. 
The integral equations for the unknown functions f 1, ••• ,f6 are 

obtained by substituting from (1) and (11) into the crack surface boundary 
conditions (9) and may be expressed as 
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(12) 

where the kernels hnk (n,k=1, ••• ,6) are known in terms of Gijk and Cijk 
(i,j=x,y; k=1, ••• ,6) (see equations (1), (11), (9), Appendix A and Appen­
dix B). For the crack problem shown in Fig. 1 (i.e., for O<ak<bk<H, 
k=1,2 and s2<a3<b3<sl) from appendices A and B it can be shown that the main 
diagonal elements of the kernels hnk which are contributed by Gijk are 
Cauchy kernels and consequently hnk can be expressed as follows: 

2 °nk hnk(s,t) = ~(l~K) t-s + knk(s,t) , (n,k=1, •.• ,6) (13) 

where 0nk=l for n=k, 0nk=O for n~k, and knk , (n,k=1, ••• ,6) are known bounded 
functions in the closed intervals, ak~(t,s)<bk' (k=1, ••• ,6). If one wants 
to solve the problem shown in Fig. 1 for any crack geometry provided 
O<ak<bk<H, k=1,2 and s2<a3<b3<sl' one could let 

(14) 

and use a Gaussian integration formula to determine the unknown bounded 
functions Fk(t), (k=1, ••• ,6)[15]. From the definition of the unknown func­
tions fk(t) as given by (3) and from Fig. 1 it is clear that the integral 
equations (12) must be solved under the following singlevaluedness con­
ditions: 

bk 
J fk(t)dt = 0 , (k=1, •.• ,6). (15) 

ak 
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3. The Clamped Plate 

From Fig. 1 it may be seen that the problem would reduce to that of a 
clamped plate if one lets ai=O and bi=H, (i=1,2). In this case techni­
cally the integral equations (12) and the singlevaluedness conditions (15) 
are still valid and the input functions Pn(s} are still given by (9). 
However, the form of the solution is no longer given by (14). To deter­
mine the fundamental functions of the system of integral equations (12) 
the singular nature of the kernels knk(s,t), (n,k=1, ••• ,6) for ak=O, 
bk=H, (k=1,2,4,5) must be investigated. This may be done through the asymp­
totic analysis of the infinite integrals giving the appropriate functions 
Cijk in Appendix B which are related to knk (see, for example, [14] and 
[15]). First we observe that from (l), (11), (9), (12), (13) and Appen­
dices A and B, the kernels knk(s,t) may be expressed as follows: 

( 16) 
Q) 

k~k(s,t) = f K~.k(s't,a)da, .(n,k=l , ••• ,6) (17) 

o 

where k~E are the nonsingular parts of Gijk (see equation (1) and Appendix 
A) and knk are the kernels contributed by Cijk . If we now denote the asymp­
totic values of K~k for a~ by K~kQ)(s,t,a), the singular and Fredholm parts 
of the kernels k~k may be separated as follows: 

CD 

k~k(s,t) = f K~kCD(s,t,a)da, (n,k=1, ••• ,6) , (19) 
o CD 

k~k(s,t) = I [K~k(s,t,a)-K~kCD(s,t,a)]da , (nbk=1, .•• ,6) (20) 
o 

where the kernels k~k(s,t) (n,k=1, •.• ,6) are bounded in their respective 
closed domains. For s2<a3<b3<sl' after a relatively straightforward analysis 
it may be shown that 

k~k(S,t) = k~n(S,t)onk ' (n,k=1, ..• ,6) , (21) 
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(22) 

s ( _ 1 2 d 2 d2 J 1 knn s,t) - 2K [(3-K )+12s ds + 4s W s+t 

1 d 2 d2 1 
- 2K [(3-K2)-12{H-s) ds + 4(H-s) ds Z] 2H-s-t ' 

(n=1,2,4,5) (23) 

Because of (21) and (22) the dominant part of the integral equations 
(12) for n=3 and n=6 has only Cauchy type singularity and the unknown 
functions f3 and f6 have the form 

F .(t) 
f. (t) = J , (j=3,6) 
J l(t-a3)(b3-t) 

(24) 

Expressing now the remaining unknowns as 

(25) 

through a function-theoretic analysis it may be shown that (see, for exam­
ple [15]) 

B = y, 2KcosnB-(1+K2)+4(S-1)2 = 0 • (26) 

The characteristic equation (26) is identical to that found in [14] and 
in, for example, [16] for a quarter elastic plane fixed along one of its 
straight boundaries. 

4. The Stress Intensity Factors 

In the crack problem shown in Fig. 1, once the functions f1, ••• ,f6 
giving the crack surface displacement derivatives or the bounded functions 
F1, •.. ,F6 defined in (14) are determined, the Modes I and II stress 
intensity factors at the crack tips may be obtained from the following 
standard relations: 
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2 2 F.(a.) 
kl (a

1
.) = -ll-lim 12{t-a.) f.(t) =...9:!.... 1 1 , (i=1,2,3) 

l+K t4a
i 

1 1 1+K l{b
i
-a

i
J/2 

(a.=a. 3' b.=b. 3' j=4,5,6) , 
J J- J J-

2 2 Fi(bi ) 
kl(b;) = - f.tL lim 12(b;-t) fi(t) = - 1: ' (i=1,2,3), 

K t~. K l(b.-a.)/2 
111 

2 2 F.(b.) 
= - 2.. lim 12(b.-t) f.(t) = - -r- J J , 

l+K t~. J J +K l(b.-a.)/2 
J J J 

(27a-d) 

These relations are based on the definition of the stress intensity factors 
in terms of normal and shear cleavage stresses,at the crack tips of the 
form (Fig. 1) 

, ... 

(28a,b) 

In the "clamped plate" problem it-was shown that at the corners y=si' 
x=O, x=H, (i=1,2) the displacement derivatives have a singularity of the 
order r- S, where r is a small distance (in x direction) from the corners 
(see eqs. (25) and (26». This implies that at the corners the stresses 
may also have a singularity of the order r- S, r now being the radial dis­
tance from the corner. In practical applications one may be particularly 
interested in the behavior of interface stresses crxx and crxy along the 
clamps. We first observe that the stress state at any point in the medium 
is given in terms of the density functions f l , .•. ,f6 and the kernels Gijk 
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and Cijk (see (1) and (11». Next, we note that the singular behavior of 
the stresses is determined by the dominant parts of the related kernels 
only and these dominant kernels can be separated through a relatively sim­
ple asymptotic analysis of Gijk and Cijk given in the Appendices A and 
B. Also, the singular behaviors of the stresses in the medium at all 
four corners have the same form. Thus, after following a procedure simi­
lar to that described by the equations (16) through (23), for a small 
distance r from the corner x=O, y=sl the stresses along the clamp x=O 
may be expressed as 

H H 
°xx(O,sl- r ) - TI(~¥K) [J K~l(y,t)fl(t)dt + J K~4(y,t)f4(t)dtJ 

o 0 

H H 

°xy(O,sl-r) - TI(~¥K) [J K~l(y,t)fl(t)dt + J K~(y,t)f4(t)dt] 
o 0 

(y=sl-r) , (29a,b) 

where 

(30a-d) 

The kernels given in (30) are "singular" in the sense that they become 
unbounded as t and r approach the end point (t=O, r=O) simultaneously and 
have the order t-l or r- l . To evaluate the stresses given in (29) we 
first note that by substituting fl(t) and f4(t) from (25), the leading 
terms of the typical integrals in (29) may be expressed as follows (see, 
for example [15]): 
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(31a-d) 

Thus, it is seen that the leading terms in the expressions of the 
interface stresses 0xx and 0xy around the corner x=O, y=sl have a singu­
larity of the form r- S• Similar to (28), defining now the "stress intensity 
factors" by 

and substituting from (30) and (31) into (29), we obtain 

k,(O) = 12 ~ [(K+1-2s)cos ~2S Fl (0)-(K+3-2s)sin ~2S F4(0)] 
KHSsin~s 

(32a,b) 

~ ~ ITK-1+2s)sin ~: F1(0)+(K-3+2S)cos ~: F4(0)]. 
K Sln~s 

(33a,b) 

The stresses elsewhere along the interfaces x=O and x=H, of course, may be 
evaluated from eqs. (1) and (11) by using the appropriate kernels from 
Appendices A and B. The stress intensity factors in the other corners may 
be obtained by following a procedure similar to that described in (29)­
(33) . 
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5. The Results 

The first example considered is the problem of a clamped plate with­
out a crack in order to compare the results with that given in [14J where 
a different technique was used to soive the problem. In [14J the measure 
of the external loads was the resultant force rather than the displace­
ment Uo used in this paper. Hence, the easiest direct comparison may be 
made for the ratio of the stress intensity factors, k2(O)/kl (O) (see (32) 
for the definitions). For the length to width ratio H/2s1 = 2 and 
K=3-4v this comparison is shown in Table 1. 

v 

Table 1. Comparison of k2(0)/kl(0) obtained in this paper 
(second row) ana in [14J (third row), H/2s1=2. 

0 0.1 0.2 0.3 0.4 0.5 

- k2/kl 0 0.118610 0.212352 0.302276 0.396751 0.504213 

(- k2/k1) 
(from [14]) 0 0.118614 0.212355 0.302280 0'.396751 0.504209 

For various relative plate dimensions and for K=1.8, the normalized 
stress intensity factors defined by (32) are shown in Table 2. In this 
case (26) gives the power of stress singularity as 8=0.28882. 

Table 2. Normalized stress intensity factors at the corner x=O, 
y=sl of a rectangular clamped plate for K=1.8, plate 
1ength=H, plate width=2s1 (see insert in Fig. 3) 

~u s 8 ~u s 8 
Hlsl k (0)/( 0 1 ) k (O)/( 0 1 ) -k2(0)/k1(O) 

1 sl 2 51 

1 
2 
4 
6 
8 

10 

2.030255 
1.024510 
0.478944 
0.318621 
0.240840 
0.194190 

-0.613697 
-0.309685 
-0.144773 
-0.096312 
-0.072800 
-0.058699 

-11-
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Figures 2 and 3 show the normalized stresses crxx(O,y) and crxy(O,y) 
along the clamp for the case of plane strain and for K=1.8. The cor­
responding Mode II stress intensity factor is shown in Fig. 4. 

The second example considered is a clamped plate containing a cen­
tral crack (see the insert in Fig. 5). The normalized Mode I stress 
intensity factor calculated at the crack tips y=+c, x=H/2 is shown in 
Table 3 for K=1.8 and K=2.2. For comparison the results obtained in 
[6] by using the technique of conformal mapping for K=2.2 are also 
included in the table. The agreement seems to be fairly good for small 
cracks. However, for larger cracks there is some discrepency. For K=2.2 
and H/2s1=1 the normal stress along the clamp is shown in Fig. 5. 

Table 3. Crack tip stress intensity factor kl(a3) in clamped 
plate containing a symmetrically located central 
crack, H/2s1=1, c=(b3-a3)/2 (Fig. 5). 

2c 
If 

O. 1 
0.2 
0.4 
0.5 
0.667 
0.8 
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APPENDIX A 

The Green's Functions Gijk which appear in equations (1) and (2). 

(t-X)[(t-X)2-(Y-Yk)2] 
Gxxk(x'Y'Yk,t) = n(~~K) [(t-x)2+(Y-Yk)zJ 2 , (k=1,2; Yk=sk) , 

(Al) 

2 (t-x)[3(Y-Yk)2+{t-x)2] 
Gyyk(x'Y'Yk,t) = n(l~K) [(t-x)z+(Y-Yk)Z)Z , (k=1,2; Yk=sk), 

(A2) 

2 (Y-Yk)[(Y-Yk)2_(t-X)2] 
Gxyk(x'Y'Yk,t) = n(l~K) [(t-x)z+(Y-Yk)Z]Z , (k=1,2; Yk=sk) , 

(A3) 

(A7) 
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(AB) 

(A9) 

_ 1 K+1 x-x3 (t-y)(x-x3) 
Vx3 (x,Y,X3 ,t) - - 'IT(1+K) {-2- Arctan t-y - (t-y)2+(X-x

3
)2}, 

(x3=s3) , (A15) 

-15-



1 1+K Y-Yj (x-t)(Y-Yj) 
Vxj(x'Y'Yj,t) = - 1T(l+K) {-2-Arctan x-t + (x-t)2+(y-y.)2} , 

J 

(j-4,5; Yj=Sj_3)' (Al?) 

( ) 1 K-l [( )2 ( )2J (X-t)2 
Vyj X'Y'Yj,t = 1T(l+K) {~log x-t + Y-Yj + (x-t)Z+(y-y.)Z}, 

J 

(A19) 

(A20) 
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APPENDIX B 

The kernels C;jk which appear in equation (11) 

ex> 

Cxxk = ~(l~K) f [rnxxk(x,t,a)-rnxxk(H-x,H-t,a)]cosa(Y-Yk)da, 
o 

ex> 

Cxx3 = ~(l+K) J [rnxx3(x,x3,a)+mxx3(H-x,H-x3,a)]sina(t-y)da, 
o 

(B2) 

ex> 

Cxxj = ~(l+K) J [rnxxj(x,t,a)+mxxj(H-x,H-t,a)]sina{Y-Yj)da , 
o 

(j=4,5; y.=s. 3) (B3) J J-

ex> • 

Cxx6 = ~(l+K) J [rnxx6(x,x3,a)-mxx6(H-x,H-x3,a)]cosa(t-y)da, 
o 

(B4) 

ex> 

Cyyk = ~(l~K) J [rnYYk(x,t,a)-rnyyk(H-x,H-t,a)]cosa(Y-Yk)da, 
o 

ex> 

Cyy3 = ~(l+K) J [myy3(x,x3,a)+rnyy3(H-x,H-x3,a)]s;na(t-y)da , 
o 

(B6) 

ex> 

Cyyj = ~(l~K) J [rnyyj(x,t,a)+myyj(H-x,H-t,a)]sina(y-Yj)da 
o 

-17-



<X> 

Cyy6 = rr(l+K) I [myy6(x,x3,a)-myy6(H-X,H-x3,a)]cosa(t-y)da , 
o 

(B8) 

<X> 

Cxyk = rr(1+K) J [mxyk(x,t,a)+mxyk(H-x,H-t,a)]sina(y-Yk)da , 
o 

00 

Cxy3 = rr(l~K) J [mXy3(x,x3,a)-mxY3(H-x,H-X3,a)]cosa(t-y)da , 
o 

(810) 

<X> 

Cxyj = rr(l~K) I [mxyj(x,t,a)-mXyj(H-X,H-t,a)]cosa(y-Yj)da , 
o 

<X> 

Cxy6 = rr(l+K) J [mXy6(x'X3,a)+mXy6(H-x,H-X3,a)]sina(t-y)da , 
o 

(812) 

(k=1,2) , (813) 
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(B14) 

(j=4,5) (B15) 

rnXX6=O-1(a){[K(e2aH_1)(1-K2+2aX-2aX3-4a2xx3)+4KaH(-ax-aX3+aH)]e-a(X+X3) 

+[2K2(e-2aH_1)(-ax+ax3)+2aH(-1+K2-2aX+2aH-2ax3+4a2XH-4a2xx3)]e-a(x-x3)}, 

(B16) 

(k=1,2) , (B17) 

(B18) 
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(j=4,5), (819) 

(820) 

(k=1,2) , (821) 

mXY3=O-1(a){[K(e2aH_l)(1-K2-2aX+2ax3-4a2x3x)+4KaH(-ax+aH-ax3)]e-a (X+X3) 
\ 

(822) 

(j=1,2) , (823) 

-20-



mXY6=-D-l(a){[K(e2aH_l)(-1-K2+2aX+2aX3-4a2XX3)+4KaH(1-ax-aX3+aH)]e-a(X+X3) 

+[2K2(e-2ax_l) (1-ax+ax3)+2aH(1+K2-2aH+2ax3-2ax+4a2xH-4a 2xx3)]e-a(X-X3)}, 

(824) 

(825) 

-21-
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Fig. 2 Normal stress along the clamped boundary in a plate without 
a crack (K=1.8). 
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Fig. 3 Shear stress along the clamped boundary in a plate without 
a crack (K=1.8). 
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Fig. 4 Normalized Mode II stress intensity factor at the corners of 
a clamped rectangular plate without a crack (K=1.8). 
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Fig. 5 Normal stress along the clamped boundary in a plate with a 
central crack (H/2s l =1), K=2.2. 
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