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AB ST RACT -- 
NASA involvement i n  p h o t o v o l t a i c  energy conversion research, development, 

and s p p l i c a t i o n s  spans over two decades o f  continuous progress. 
Lewis Research Center 's  Pho tovo l ta i c  Branch, Agency programs i n  s o l a r  c e l l  
resedrch and development have produced a sound technology base f o r  a broad 
range o f  space appl icat ions.  
dependent, t h e r e  are fundamental o b j e c t i v e s  which guide t h e  NASA pho tovg l ta i c  
prograe. They are t o  improve ef f ic iency,  increase : i fe,  reduce mass, and 
reduce the  cos t  o f  p h o t o v o l t a i c  energy conver ters  and arrays.  
t h e  programs i n  p lace a t  Lewis Research Center range from fundamental 
research on advanced concepts t o  technology advances f o r  improving t h e  
space-worthiness of s o l a r  arrays. T h i s  paper w i l l  descr ibe several  key 
a c t i v i t i e s  i n  tne  Lewis program. 

Led by t h e  

Although space power requirements are miss ion 

Consequently, 

I NTRODUCT I ON 

The c e l l  research a c t i v i t i e s  a: Lewis d i v i d e  roughly  i n t o  the  f o l l o w i n g  
categor ies:  advanced devices, g a l  1 ium arsenide and other  111-V compound 
s o l a r  c e l l s ,  and h i g h  e f f i c i e n c y  s i l i c o n  c e l l s .  
ca tegor ies  w i l l  be described. P a r t i c u l a r  a t t e n t i o n  w i l l  be g iven t o  a new 
s t r a t e g y  f o r  e f f i c i e n t  s o l a r  energy conversion which seeks t o  overcome t h e  
fundamental l i m i t a t i o n s  inherent  w i t h  a l l  semiconductor pho tovo l ta i c  
converters.  
l i g h t  i n  t h i n  m e t a l l i c  f i l m s  o f  common metals, such as aluminiim o r  s i l v e r :  
t h e  coup l i ng  o f  l i g h t  t o  sur face plasmons. 
s u i t a b l e  ranges f o r  energy t ranspor t ,  (up t o  cent imeters i n  the  IR), aad can 
absorb f rom the u l t r a v i o l e t  t o  the i n f r a r e d .  
by t r a n s f e r i n g  t h e  surface plasmon energy t o  an a r ray  o f  i n e l a s t i c  tunnel  
diodes, where a cu r ren t  o f  t unne l i ng  e lec t rons  can be created. 
b a r r i e r s  have been i d e n t i f i e d  and w i l l  be discussed, along w i t h  recent  
r e s u l t s  aimed a t  e l i m i n a t i n g  them. 

i n  F igu re  1. 
missions have been a t  the 2 o r  3 k i l o w a t t  l e v e l  o r  below. Future NASA 
missions may be an e n t i r e l y  d i f f e r e n t  s tory ,  however. 
sophis t icated,  longer- l ived missions r r i l l  push power requirements up an order  
o f  magnitude and more. 
example, might r e q u i r e  up t o  125 k i l o w a t t s  o f  power i n  the s t a t i o n  i t s e l f .  
Th i s  would, i n  tu rn ,  r e q u i r e  a s o l a r  a r ray  output  capac i t y  i n  excess o f  300 
k i l o w a t t s ,  and would r,?resent over two and one-half t imes the power 
generat ing capac i t y  t h a t  NASA has launched i n  t h e  pas t  20 years. Such an 

Work i n  a l l  o f  these 

The approach e x p l o i t s  a well-known mechanism f o r  absorpt ion o f  

Surface plasmons can have 

Energy conversion then occurs 

Key t e c h n i c a l  

The magnitude o f  NASA's p h o t o v o l t a i c  space power a c t i v i t i e s  can be seen 
With t h e  except ion o f  the Skylab launch i n  1973, most NASA 

The d e s i r e  f o r  more 

A low-earth o r b i t i n g  manned space s ta t i on ,  f o r  
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array w i l l  be the dominant phi :*- ical  f e a t u r e  o f  t he  Space Stat ion,  and w i l l  
p lace a 9remium on reducing the  area, weight, and c o s t  o f  l a rge  space arrays. 

f uiuPe power .requirements f o r  geosynchronous a p p l i c a t i o n s  are a l so  
expected t o  r i s e  i n  the  coming decades, al though few such missions w i l l  be 
so ley NASA's .  
m i l i t a r y  comnunications networks. I n  these a p p l i c a t i o n s  i n  p a r t i c u l a r ,  a 
premium i s  placed on h igher  e f f i c i e n c y ,  l i g h t e r  weight, and longer l i f e .  
Cost i s  important, bu t  i s  n o t  as impor tant  a d r i v e r  as i t  i s  f o r  l a r g e  LEO 
arrays. A key f i g u r e  o f  m e r i t  f o r  GEO ar rays i s  t h e  r a t i o  o f  power out  t o  
t o t a l  a r ray  mass i n  W/kg. NASA's most recent  GEO s a t e l l i t e ,  TDRSS, had an 
approximate beg inn ing -o f - l i f e  s p e c i f i c  power o f  35 h'lkg, w i t h  a 63L power o f  
abolri 3 k i l o w a t t s .  f u t u r e  communications s a t e l l i t e  power requirements are 
expec%ed t o  be from 3 t o  5 t imes t h a t  l eve l .  
c o n s t r a i n t s  o f  cu r ren t  and proposed GEO launch veh ic les  make i t  des i rab le  t o  
increase both e f f i c i e n c y  and s p e c i f i c  power s i g n i f i c a n t l y  beyond present 
l eve l s .  End-,'-life s p e c i f i c  powers approaching 250 W/kg may w e l l  be 
requ i red  t o  meet such cons t ra in t s .  
terms o f  increases i n  the  a c t i v e  payload c f  the s a t e l l i t e .  

% #  .*. t; ." 

The pr imary uses o f  GEO spacecraf t  w i l l  be f o r  commercial and 

Moreover, volume and weight 

The payoff  w i l l  be measured d i r e c t l y  i n  

The foregoing diSCUSSiOn i s  by no means exhaust ive o f  a l l  f u t u r e  space 
pho tovo l ta i c  appl icat ions.  
r a t i o n a l e  behind the  cu r ren t  major t h r u s t s  o f  NASA's s o l a r  c e l l  research and 
development program. 

It i s  intended o n l y  t o  p u t  i n t o  context  t he  

HIGH EFFICIENCY SILICON SOLAR CELL RESEARCH 

f i g u r e  2 sumnarizes the s i t u a t i o n  w i t h  regard t o  space s o l a r  c e l l s  s ince  
approximately 1960. 
made from 10 ohm-cm s t a r t i n g  ma te r ia l ,  and had AM0 e f f i c i e n c i e s  on the  order  
of 10 percent. 
(Reference 1) w i t h  an e f f i , i e [ i cy  approaching 15 percent, b u t  i t  q u i c k l y  
became c l e a r  t h a t  h igher  e f f i c i e n c i e s  could no t  be achieved w i thou t  improving 
the open-c i rcu i t  voltage, and t h a t  Could no t  be done w i thou t  lowering t h e  
r e s i s t i v i t y  o f  t he  s t a r t i n g  ma te r ia l .  Current d e n s i t i e s  i n  the  n igh 
e f f i c i e n c y  10 ohm-cm c e l l s  approached 50 ma/cmZ, and could no t  reasorably  
be expected t o  go muLh h igher  i n  t h a t  ma te r ia l .  I n  the  mid 1970's, 
therefore,  Lewis Research Center i n i t i a t e d  a concerted e f f o r t  t o  develop an 
18 percent AM0 c e l l ,  which had been est imated by Brandhorst (Reference 2 )  t o  
be the  maximum p r a c t i c a l  e f f i c i e n c y  f o r  s i l i c o n .  The e f f o r t  concentrated on 
r a i s i n g  the  open-c i rcu i t  vo l tage t o  t h e  7c)O m i l l i v o l t  range. The i n i t i a l  
work r e s u l t e d  i n  open c i r c u i t  vo l tages o f  n e a r l y  650 mV, but  e f f i c i e n c i e s  
were lower than des i rea because o f  the lower current-generat ing capabi 1 i t i e s  
o f  t he  low r e s i s t i v i t y  c e l l s .  

E s s e n t i d l l y ,  a l l  space c e l l s  f lown a t  t h a t  t ime were 

Work i n  the  e a r l y  1970's r e s u l t e d  i n  the  COMSAT v i o l e t  c e l l  

Several techniques have been advanced f o r  r a i s i n g  the vo l tage i n  low 
r e s i s t i v i t y  c e l l s .  Among them i s  the mu l t i - s tep  d i f f u s i o n  process developed 
a t  Lewis Research Center, which produced a Voc approaching 650 mV (,Reference 
3). The process was l a t e r  used by COMSAT t o  produce a 14.5 percent AM0 c e l l  
(Reference 4) .  Th i s  achievement was q u i c k l y  fo l l owed  by the development o f  
c e l l  designs a t  t he  U n i v e r s i t y  o f  New South Wales, under a NASA grant, which 
achieved 16 percent AMO, and Voc's approaching 680 mV. 
developed by M a r t i n  Green and co-workers (References 5, 6 ) ,  have been 

These c e l l s ,  
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subjected t o  an i n t e n s i v e  ana lys i s  a t  Lewis Research Center ir; an attempt t o  
e l u c i d a t e  the  mechanisnr( s )  responsib le  f o r  t h e i r  improved performance. That 
work, repor ted by Weizer (Reference 3 )  a t  the  l a s t  Pho tovo l ta i c  S p e c i a l i s t s  
Conference, has produced some s u r p r i s i n g  r e s u l t s .  I n  b r i e f ,  i t  was shown 
tha t :  

1. It i s  no t  t he  p e r f e c t i o n  o f  the emi t te r ,  b u t  a p rev ious l y  
unrecognized imprwement i n  the base t h a t  i s  responsib le  f o r  t he  h i g h  
Voc's obtained i n  the  M I N M I S  c e l l .  

2. The h igh vo l tage i n  the  MINP c e ' l  i s  the r e s u l t  o f  the same 
improveient i n  t h e  base as i n  t h e  M I N N S  c e l l ,  coupled w i t h  a 
reduct ion i n  the e m i t t e r  lo.  

3. The enhanced basc c h a r a c t e r i s t i c s  o f  both c e l l  designs are t h e  r e s u l t  
o f  a reduced mSnori ty c a r r i e r  m o b i l i t y  i n  the s t a r t i n g  s i l i c o n  
m a t e r i a l  used f o r  these c e l l s .  

Based on these r e s u l t s ,  i t  now appears t h a t  vo l tages approaching 800 mV 
are achievable i n  0.1 ohm-cm s i l i c o n  c e l l s  w i t h  f u l l  u t i l i z a t i o n  of t h e  MI ' IP 
surface pass i va t i on  techniques. APO e f f i c i e n c i e s  approaching 20 percent may 
y e t  be poss ib le  i n  s i l i c o n .  Work toward t h a t  goal  w i l l  be cont inued i n  t h e  
Lewis Research Center program. 

111-V CELL RESEARCH 

Emphasis i n  the  NASA s o l a r  c e l l  research program has s h i f t e d  from s i l i c m  
du r ing  the  past  few years t o  t h e  wide v a r i e t y  o f  semiconducting compounds 
formed from elements i n  colucrls t h ree  and f i v e  i n  the  p e r i o d i c  tab le.  The 
program ranges from basic ma te r ia l s  science t o  pre-:- i lot c e l l  design 
op t im iza t i on  studies.  The a c t  t v i t i e s  f a l l  roughly  i n t o  th ree  categor ies:  
(1) GaAs concentrator c e l l s ;  ( 2 )  t h i n  f i l m  c e l l s ;  arld ( 3 )  m u l t i - j u n c t i o n  
c e l l s .  
na tu ra l  space environment i s  a major cona ide ra t i on  i n  t h e  111-V c e l l  area, 
and along w i t h  e f f i c i e n c y ,  forms an important p a r t  o f  t he  J u s t i f i c a t i o n  f o r  
i t . 

Resistance t o  the  d a a g e  caused by charged p a r t i c l e  r a d i a t i o n  i n  t h e  

NASA's i n t e r e s t  i n  111-V concentrator c e l l s  a r i s e s  i n  p w t  because of 

The p l o t  o f  

t h e i r  p o t e n t i a l  f o r  lowering the cos t  o f  very l a rge  s o l a r  arrays, such as a re  
a n t i c i p a t e d  f o r  a f u tu re  Space Stat ion.  F igu re  3 summarizes the r e s u l t s  o f  a 
study of mult i-hundred k i l o w a t t  a r ray  designs (Reference 8). 
combined c e l l  and component cos ts  versus concentrat ion r a t i o  shows the  
ex is tance o f  a broad minimum between approximately 2Ox and 2OOx. 
i l l u s t r a t e s  a concentrator  design c u r r e n t l y  under development a t  TRW, under 
c o n t r a c t  t o  Marshal l  Space F l i g h t  Center. 
cassegrainian system c a l l  f o r  a 4 mm diameter c e i l  capable of 20 percent a t  
125x and 85'C. 
Varian and one w i t h  Hughes Research, t o  design and produce such c e l l s .  
19 percent. a l ready demonstrated, t he re  appear t o  be no apparent t echn ica l  
"show-stoppers" which w i  11 prevent r e a l  i z a t i o n  of  the program goal o f  22 
percent a t  operat ing condi t ions.  
t he  higher e f f i c i e n c y  arid higher temperature c a p a b i l i t i e s  of G&4s compared t o  
s i l i c o n .  

F igu re  4 

S p e c i f i c a t i o n s  f o r  t h i s  m in ia tu re  

With 
Lewis Research Center has two con t rac ts  i n  place, one w i t h  

Th is  appl i c a t i o n  dramat ical  l y  i 1 l u s t r a t e s  

GaAs concentrator  c e l l s  w i l l  have over t w i c e  the  e f f i c i e n c y  o f  

7 
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s i l i c o n  ac t h e  operat ing temperatures p r o j e c t e d  f o r  t h i s  a r ray  design. 
phys i ca l  dimensions o f  t he  c e l l  are i l l u s t r a t e d  i n  F igu re  5. Tne l i a m e t e r  GF 
t he  i l l u m i n a t e d  area i s  4 mm, wh i l e  the l eng th  of one edge i s  5 mn. The 
approximately 60 t o  1 reduc t i on  i n  processed semiconauctor area com~~ared t o  a 
p lana r  o f  equal output  i s  the pr imary reason f o r  t he  p ro jec ted  lower cost  o f  
t h i s  a r ray  design. An a d d i t i o r 3 1  assumption, of course, i s  t h a t  t h e  cos t  per  
u n i t  area o f  t he  concemrator  o p t i c s  w i  11 be s i g n i f i c a n t l y  lower than the  
equ iva len t  area o f  @r--. --d semiconductor m a t e r i a l  The a n t i c i p a t e d  c e l l  
output  a t  operzt; I . I t i ons  i s  approximately 0.4 watts. 8ased 3n i n fo rma l  
est imates, the prcJected cost o f  such c e l l s  could be on the order o f  30 t o  50 
$/watt .  

The 

Cost i s  n o t  the o n l y  reason f o r  i n t e r e s t  i n  concentrator  arrays f s r  space 
app l i ca t i on .  A second very impor tant  reason, again depending on miss ion 
requirements, i s  t he  inherent  sh ie ld ing  prov ided by the concentrator  element 
against  t he  na tu ra l  r a d i a t i o n  enviranaent encountered i n  many o r b i t s .  
Although n o t  important f o r  LEO appl icat ions,  t h e  design may make poss ib le  the 
use o f  pho tcvo l ta i c  power generators i n  some o f  t he  m id -a l t i t i i de  o r b i t s  t h a t  
have p rev ious l y  bee:: dismissed bpcause o f  t h e i r  h igh  dens i t y  r a d i a t i o n  
environment. Beyond tha t ,  i f  h i y h  e f f i c i ency  can be coupled w i t h  l i g h t w e i g h t  
concentrator opt ics ,  such arrays could t v e n t u a l l y  be f lown i n  GEO. 

Research on t h i n  f i l m  s o l a r  c e l l s  i s  Gi rected toward improving t h e i r  
performance, no t  on l y  i:! terms o f  t h e i r  e f f i c i e n c y ,  but  a lso i n  terms o f  
t h e i r  r a d i a t i o n  res is tance.  An important t h r u s t  f o r  t he  NASA space power 
program .is t he  development o f  t?ct inology f o r  t he  next generat ion o f  GEO 
communications spacecraft.  A t  present, about 23 percent of  t h e  s a t e l l i t e  
mass launched t o  o r b i t  must be dedicated t o  the power system, vh i ch  i s  
approximately the same f r a c t i o n  t h a t  i s  a v a i l a b l e  f o r  the payload i t s e l f .  
The b e n e f i t s  de r i vab le  f ram reducing the power system mass dre d i r e c t l y  
t r a n s l a t a b l e  i n t o  revenue f o r  commercial s a t e l l i t e s ,  and i n t o  increased 
c a p a b i l i t y  f o r  non-commercial s a t e l l i t e s .  One approach under - i nves t i ga t i on  
a t  the present t ime f o r  producing u l t r a l i g h t w e i g h t  s o l a r  c e l l s  i; t h e  CLEFT 
procesq developed a t  the L i n c o l n  Laboratory by John Fan and co-workers 
(Keferknces 9, 10, 11, 12). 
detai!ed d iscuss ion need no t  be inc luded here. The NASA goal i s  t o  
demonstr2te a 4 micron t h i c k  GaAs c e l l  w i t h  a t  l e a s t  20 percent AM0 
ef f ic iency,  which s u f f e r s  no more than a 10 percent loss o f  power a f t e r  10 
years o f  exposure t o  the  GEO r a d i a t i o n  environment. 
bu t  achieving i t  could r e s u l t  i n  s i g n i f i c a n t  reduct ions i n  the  mdss o f  the  
s o l a r  a r r a y  f o r  GEO systems. The c e l l  developnetit work a t  L i n c o l n  Laboratory  
i s  supported I t  Lewis Research Center by in-house c e l l  e%ta luat ion 
measurements and r a d i a t i o n  damage studies.  The best c e l l  s p e c i f i c  power 
demonstrated to-bate i s  5400 w a t t d k g ,  achieved w i t h  a 5.5 micron t h i c k  c e l l  
w i t h  gr idded back contacts  w i t h  an AM0 e f  l ' ic iency s l i g h t l y  g rea te r  than 14 
percent. A cross-sect ion o f  t he  c e l l  i s  shown i n  F igure 6. Th? i l l u m i n a t e d  
area i s  0.51 c d .  There are many technologica l  chal lenges t o  overcome 
be fo re  the  CLEFT c e l l  can be considered a v i a b l e  candidate f o r  use i n  space. 
Chief among them are the  f o l l o w i n g :  development Jf a UV-resistant adhesive t o  
use i n  the f i l m  t r a n s f e r  process; improving the  open-c i rcu i t  vo l tage and 
f i l l - f a c t o r ;  e s t a b l i s h i n g  the r a d i a t i o n  to le rdnce  o f  the c e l l ;  and perhaps 
the most f o r m i d i b l e  among them, d e w l o p i  ng a s u i t a b l e  in terconnect  technology 
f o r  j o i n i n g  5 m.cron t h i c k  cziis together i n  an array!  

Progress i n  t h i s  area i s  well-known, and a 

The goal i s  ambit ious, 
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As i s  well-knwn, the ef f ic iency o f  a t y p i c a l  s ing le  jiir t i o n  so lar  c e l l  
i s  l im i teo  fundamentally by the loca t ion  o f  i t s  bandgap witt,,n the so lar  
spectrum, i n  t h i s  cast: the a i r  mass zero (AKO) spectrum. Ear ly  ca lcu la t ioos  
o f  multi-bandgap c e l l  e f f ic ienc ies a t  AM0 (Reference 13) ind icated tha t  a 
t o t a l  conversion ef f ic iency of approximately 30 percent coula be achieved i n  
a three-cell stack under lOOx i l l umina t ion .  The c e l l  s t ruc tu re  i n i t i a l l y  
selected Ly NASA i s  shown i n  the f i r s t  column of the tab le  below, and was 
dr iven by the assc;med requirement tha t  the s t ruc tu re  had t o  be 
1 attice-matched throughout. T h e  second column shows the current  d i s t r i z u t i o n  
o f  bandgaps f o r  the structure,  acd i s  a r e s u l t  o f  the successful 
demonstration o f  composition grac' i~ iq between the various act ive layers o f  the 
c e l l .  
bandgaps t o  chieve shor t -c i rcu i t  currrnx matching from each const i tuent  c e l l  
i n  the stack. The lower bandgaps should produce a s l i g h t l y  higher e f f i c i e n c y  
than those o f  column one, and should make fab r i ca t i on  o f  the tunnel j unc t i on  
between the bottom and q idd le  c e l l s  somewhat easier.. 
densi t ies required f o r  a tunnel junc t ion  interconnect are easier t o  achieve 
i n  a lower bandgap mater ia l . )  The interconnect between the middle and top 
c e l l s  can be sone sor t  o f  metal interconnect, such as the Varian-developed 
M I C  (Reference 14). 

The l a t t e r  technique allows f o r  greater f l e x i b i l i t y  i n  the choice o f  

(The high doping 

TABLE 1 

-- Mult i -Junct ion Cel l  Bandgaps 

C -G - L-M - C e l l  - 
Lower 1.15 1.15 
M -1 dd 1 e 1.55 1.43 
Upper 2.05 1.95 

An in te res t ing  s i m p l i f i c a t i o n  o f  the above s t ructure i s  t o  ~ l s e  j u s t  two 
junctions, and t b  iechan ica l l y  stack them. As has been pointed out by Fan 
(Refererlce 15), such a s t ructure can be e i the r  a two, three, o r  four terminal  
device, without introducing much complexity i n t o  i t s  fabr ica t ion .  The 
monol i th ic stack, on the other  nand, i s  most eas i l y  made i n t o  a two terminal 
device. 
junc t ion  ce l l ,  but  there may alsc be a t rade-of f  i n  the rad ia t i on  hardness o f  
the two s t ructure-  which favors a two-junction, f ou r  terminal  device. I f  the  
end-of-1 i f e  performance o f  a series-connected mul t i - junc t ion  c e l l  i s  t o  be 
maintained a t  reasonable levels,  i t  becomes necessary t o  develop const i tuent  
cel:s which degrade by i n  a qatched fashion i n  a rad ia t i on  environment. 
Although possible i n  p r inc ip le ,  i t  presents a Formidable challenge t o  real' lze 
i n  pract ice.  
current-matching altogetners and does not, therefore, su f fe r  any addi t iona? 
degradation beyond tha t  o f  each o f  the const i tuent  ce l l s .  

There i s  some loss o f  e f f i c i ency  i r l  the AM0 spectrum f o r  a two 

A four terminal  device avoids the requirement f o r  

AOVANCED CONCEPT - SOLAR CE!-LS 

The calculated e f f i c i e n c r  o f  -0 - ;dl cascade so lar  c e l l  reaches a 
maximum when more than s i x  bandgap3 rlave beer, incltided i n  the stack, and can 
approach 60 percent i n  the AMC spectrum (Reference 16). 
system losses i n t o  account, however, shows t h i t  the maximum has been passed 

Taking the rea l  

151 



I 

after three bandgaps have been included (Reference 17). A s  mentioned above, 
the practical m a x i m u m  AM0 efficiency of a three cell stack i s  expected to  be 
30 percent, even under lOGx illumination. The question t h a t  naturally arises 
i s  whether that efficiency limit, which appears t o  be inherent w i t h  
semiconductor p-n junctions, can be transcended by some means. 
i s  t h a t  the ordinary p-n junction solar cell  i n  effect converts the incoming 
broadband solar rad ia t ion  i n t o  a f low of monoenergetic electrons (and holes), 
the energy of which i s  determined by the semiconductor bandgap. 
coup1 ing mechanism, i.e. the creation of electron-hole pairs,  i s  broadband i n  
nature, the excess kinetic energy imparted t o  the electron-hole pairs by 
photons w i t h  energies greater t h a n  the barldgap i s  essentially not 
transportable. I t  i s  lost i n  collisions w i t h  l a t t i ce  phonons i n  a matter of 
picoseconds, resulting i n  very short ranges f o r  the excited carriers. A n  
in i t ia l  requirement, then, f o r  any cajor increase i n  efficiency, is to  
identify a mechanism for broadband absorption of the solar spectrum which 
creates a corresponding spectrum of electronic excitations i n  the absorber 
w i t h  ranges long enough that energy can be extracted from them. 
of c m n n  metals such as si lver,  aluminum, and gold can support i quantized, 
oscillatory excitation of their two-aimensional quasi-free electron gas knowrl 
as a surface plasmon. The surface plasmons are produced by exterior electric 
f ie lds  incident on the bounaary between the metal f i l m  and a dielectric 
medim. 
waves: their electromagnetic f ie ld  i s  concentrated around the boundary w i t h i n  
a distance of approximately 10 angstroms. 
extend f a r  i n t o  space, asd resemble more and more those of  a p h o t o n  
propagating along the boundary. 
like a guided electromagnetic wave i n  a aielectric waveguide, except t h a t  the 
waveguide i n  t h i s  case i s  a metal f i lm,  and tnerefore very lossy. The 
la t ter  fact  limits the range of the surface plasmolis a t  the h i g h  energy end 
of the spectrum t o  distances on the order of 70 t o  190 wicrons. 
lengths f o r  surface plasmons i n  the infrared, ho,.wer, can anproach several 
centimeters (keference 18). 
describes the properties of surf ace plasmons, and discusses several 
experiments i n  which they can either be observzd or btilized. 
monograph by RGether, Reference 19) .  The coupling between surface plasmons 
and photoiis can be very strovg under the proper conditions, and is  well 
understood theoretically. 
component of the incident r a d i a t i o n  can be coupled t o  a smooth f i lm  f o r  
example, and i n  such a way t h a t  the k ' d t h  of the acceptance angle i s  very 
small. I n  a d d i t i o n ,  the -.cceptance ar.yle i tselr  varies with wavelength. 
Such properties have a l l  been verified experimentally. 

The problem 

While the 

Thin films 

For large wave vectors the plasma waves behave like real surface 

Fo!- sniall wave vectors the f ie lds  

The surface plasma wave oehaves very much 

Propagation 

A large body of l i terature exists which 

(See e.g., the 

I t  can be shown t h a t  only the p-polarized 

Conceptually, the direct conversion of solar energy t o  e lectr ic i ty  
requires the fo l lowing  processes: photon absorption, which  either creates 
"free" charges (electron-hole pairs, photoelectrons, etc.) or imparts kirietic 
energy t o  a cnarge carrier ( the surface plasmon, e.9.); and charge 
separation. The la t ter  occurs by creating a potential barrier f o r  some of 
the charge carriers while others are allowed t o  pass (the p-n junction f o r  
electron-hole pairs, e.g., and a tunnel diode for energetic electrons). I f  
photon absorpt ion does not occur i n  the region where the charges are 
separated, t h t , ]  energy transport must occur from the absorption region t o  the 
barrier region. Charge collection and flow i n  ar, external circuit  complete 
the picture. 
oscillation o f  a two dimensional electron gas, the m o w n t u m  imparted t o  the  

Since the surface plasmon i s  a quantizec', collective 
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surface plasmon by the i ncming  photon must be t racs fer red  t o  a mobile, f ree 
e lec t ron  belcw the stirface before any charge separation can ncciw- 
l a t t e r  requires, therefore, some sor t  o f  i n te rac t i on  mechanism between the 
surface plasmon and a free electron. 

The 

It i s  c lear  from the preceeding discussions t h a t  any attempt t o  create a 
so lar  energy conversion device based on surface plasmon absorption of  the 
so lar  spectrum must address f o r  key technica l  bar r ie rs :  (1) broadband 
coupl ing of sunl ight  t o  surface plasmons a t  a s ing le acceptance angle; ( 2 )  
low-loss energy t ransfer  from the absorption t o  the b a r r i e r  region; ( 3 )  
coupling between the surface plasmons and mobile charge c a r r i e r s  i n  the 
res ion o f  the po ten t i a l  bar r ie r ;  and ( 4 )  e f f i c i e n t  charge t ransfer  from the 
low t o  the high energy s ide o f  the  po ten t i a l  ba r r i e r .  A possible approach 
f o r  deal ing w i th  the f o u r t h  problem involves i n e l a s t i c  e lec t ron  tunnel ing 
through a t h i n  f i l m  metal-insulator-meta! structure.  I f  the f i l m  thicknesses 
have been proper ly  chosen, such a s t ructure supports a coupled mode between 
surface plawnons i n  both metal f i lms .  This coupled mode, o r  j unc t i on  
plasmon, i s  able t o  propagate along the length o f  the structure,  and by 
J i r t u e  o f  the strong e l e c t r i c  f i e l d  i t  creates i n  the oxide, can provide an 
i n e l a s t i c  tunnel ing channel f o r  an e lect ron impinging on the b a r r i e r  a t  t ha t  
instant .  Prel iminary ca lcu la t ions  ccnducted a t  Lewis Research Center 
ind ica te  such a mechanism, whi le  possible i n  p r i nc ip le ,  i s  beset w i th  
d i f f i c u l t i e s .  
tunnel ing current  t o  acceptably low levels,  and the very l i m i t e d  range o f  the 
j unc t i on  plasmon i n  general ( t y p i c a l l y  a few tenths o f  a micron). A su i tab l y  
chosen sm,iconductor t h i n  f i l m  can be incorporated on the low energy side o f  
the junc t ion  i n  such a way tha t  i t s  bandgap el iminates the f i n a l  states f o r  
the reverse tunnel ing process, but  the impact o f  doing so on the a b i l i t y  o f  
the s t ruc tu re  t o  support a j unc t i on  plasmon i s  unknown a t  present. I n  order 
f o r  the process t o  go a t  a l l ,  i t  i s  f i r s t  necessary t o  t rans fer  energy from 
the surface t o  the junc t ion  plasmons. Here the problem i s  t h a t  the j unc t i on  
plasmon has a much lower v e l o c i t y  than a surface plasmon o f  the same 
frequency, so some so r t  of momentunwnatching t rans fer  mechanism i s  required. 
Figure 7 shors schematically one p o s s i b i l i t y .  Calculat ions show tha t  a 
g ra t  i ng can promote energy t rans fer  between mwoenerget i c  sur f  ace and 
junc t i on  plasmons w i th  be t te r  than 90 percent e f f i c i e n c y  (Reference 20). The 
f e a s i b i l i t y  o f  doing the sm,e w i t h  a broad spectrum o f  plasmons has ye t  t o  be 
f i rm ly  established. 
as an intermediary between the surface plasmons and tunnel ing electrons. 
What i s  s t i l l  required, however, i s  experimental v e r i f i c a t i o n  o f  the 
approaches tha t  have been ou t l ined  here. 

Not the least  among them iire the need t o  l i m i t  the reverse 

The proposed approach i n  e f f e c t  uses a junc t ion  plasmon 

Mechanisms which a f f e c t  surface pl3smon coupling and range (ba r r i e rs  1 
and 2) are r e l a t i v e l y  well-known and understood. 
l a t t e r  obtained i n  the NASA program are sumnarized i n  Figure 8 (Reference 
21), which contains a p l o t  o f  surface plasmon range as a func t ion  o f  
wavelength w i th  filni thickrless as d parameter. The s t ructure f o r  which the 
propagation distances have been ca lcu lated i s  shown i n  the inset .  
important r e s u l t  i s  t ha t  the ca lcu lated damping matches experimental resu l t s  
on d i r t y  f i ' ns ,  and seems t d  i nd i ca te  tha t  ohmic losses have been 
overestim; J i n  previous ca lcu lat ions.  A ser ies o f  experiments aimed a t  
explor ing surface plasmon propagation i n  such s t ructures has been started. 
The i n i t i a l  work w i l l  i nves t iga te  the so-called end-f i re coupling technique 
f o r  i n j e c t i n g  surface plasmons i n t o  the s t ructure shown i n  Figure 8. The 

Recent resu l t s  f o r  the 
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technique i s  well-known i n  i n t e g r a t e d  op t i cs .  I ns tead  o f  matching the  
i n c i d e n t  f i e l d  t o  a surface plasmon wave vec to r  along t h e  d i r e c t i o n  o f  
propagation, t he  f i e l d  c i s t r i b u t i o n s  are matched across the end face  o f  t h e  
sample. That i s ,  the i n c i d e n t  f i e l d  i s  focussed onto the end face o f  t he  
s t r u c t u r e  w i t h  a f i e l d  d i s t r i b u t i o n  which matches as c l o s e l y  as poss ib le  t h a t  
o f  a sur face plasmon. I n  a d d i t i o n  t o  i n v e s t i g a t i n g  t h e  generat ion o f  
long-range surface plasmons, t h e  same experiments w i l l  i n v e s t i g a t e  the  
coupl ing e f f i c i e n c y  o f  t he  technique. 
p e r t u r b a t i o n  theory c a l c u l a t i o n  are shown i n  F igu re  9 (Reference 22) .  The 
s a l i e n t  p o i n t  i s  t h a t  an opt imized i n c i d e n t  f i e l d  d i s t r i b u t i o n  y i e l d s  a 
g rea te r  than 80 percent coup1 ing  e f f i c i e n c y  f o r  a s i  l v e r  f i l m  f o r  wavelengths 
f rom 0 4 microns t o  if?ore t h m  1.2 microns, and as the  f i g u r e  shows, t h e  
e f f i c i e n c y  i s  r e l a t i v e l y  independent o f  t h e  i n c i d e n t  spot size. 
approach has several  important features.  For example, a l l  o f  t h e  modes 
o r i g i n a t e  a t  t h e  same po in t ,  and the re fo re  t h e  propagat ion d is tance can be 
used t o  d i s c r i m i n a t e  wavelength reg ions f o r  a b s o r p t i m .  
beam shaping and focussing can be done by external ,  m in ia tu re  op t i cs .  
o f  these have impact no t  o n l y  on t h e  experimental e f f o r t s  j u s t  described, b u t  
a l so  on t h e  ac tua l  c o n f i g u r a t i o n  o f  such a dev ice should i t  become a 
r e a l i t y .  Is i s  conceivable, f o r  example, t h a t  such a device could be used i n  
t h e  m in ia tu re  cassegrainian concentrator  >ystem descr ibed e a r l i e r  i n  t h i s  
paper- 

The r e s u l t s  o f  a f i r s t  order  

T h i s  

I n  addi t ion,  t h e  
Both 

A second approach f o r  i n v e s t i g a t i n g  t h e  coupl ing o f  s u n l i g h t  t o  sur face 
plasmons i s  shown schemat ica l ly  i n  F igu re  10. i n  t h i s  approach, t he  f i l m  on 
which sur face plasmon generat ion i s  des i red i s  evaporated onto a g lass prism, 
and i s  covered w i t h  a d i e l e c t r i c  l aye r  onto which 2 w t a l - i s l a n d  f i l m  i s  then 
evaporated. The e f f e c t  of t he  i s l a n d  f i l m  i s  t o  broaden the  acceptance angle 
from a few ten ths  o f  a degree t o  as much a f i v e  degrees a t  half-maximum i n  
t h e  absorpt ion (Reference 23) .  The measurements a l so  show t h a t  as much as 90 
percent  o f  the p-polar ized component o f  t he  top  quar te r  of t h e  s o l a r  spectrum 
can be absorbed by a s i l v e r  i s l and - f i lm ,  w i t h  s i m i l a r  r e s u l t s  f o r  t h e  
mid-quarter w i t h  a go ld  i s l a n d  f i l m .  
o f  an i n c i d e n t  r a d i a t i o n  f i e l d  i n t e r a c t i n g  w i t h  d i p o l e  located near a 
conduct ing t h i n  f i l m ,  w i t h  s u i t a b l e  m o d i f i c a t i o n s  which take the macroscopic 
s i z e  o f  t h e  meta l - is land i n t o  account. 
sur face plasmon d i spe rs ion  curve f o r  rl s i l v e r  f i l m  and measuremenus o f  t h e  
d i p o l e  frequency s h i f t s  ( i s o l a t e d  d i p o l e  vs. a d i p o l e  n t  
w i t h  theory, the coupl ing e f f i c i e n c y  between the  r a d i a t -  
plasmons can be estimated. (The d i p o l e  absorbs energy fr, the  
normal ly- incident,  unpolar ized l i g h t  beam and loses i t  oy m e  o f  t h ree  
processes: r e r a d i a t i o n ;  sur face plasmon gezerat ion i n  the  t h i n  f i l m ;  and 
ohmic heating.) The e a r l i e r  r e f l e c t i v i t y  data i n d i c a t e d  t h a t  as much as 97 
percent  o f  t h e  i nd i cen t  r a d i a t i o n  was absorbed by a s i l v e r  i s l a n d  f i l m .  
However, the d e t a i l e d  c a l c u l a t i o n s  i n d i c a t e  t h a t  a maximum o f  about 40 
percent o f  t he  t o t a l  incoming energy i s  t rans fe red  t o  sur face plasmons i n  the  
under ly ing s i l v e r  f i l m  (Reference 24) .  Moreover, t he  maximum i s  a f u n c t i o n  
o f  both the  wavelength o f  the i n c i d e n t  l i g h t ,  and o f  t h e  spacer-layer 
th ickness. An important f e a t u r e  o f  t h i s  approach, however, i s  t h a t  both t h e  
s and p p o l a r i z a t i o n s  can couple t c  the s t ruc tu re .  
requ i red  t o  asr?ss the importance o f  the shape o f  t he  meta l - is lands on t h e  
absorption, and t o  determi ne the  optimum s t r u c t u r e  f o r  maximum e f f i c i e n c y .  

The r e s u l t s  can be expla ined i n  terms 

By combining measurements of t he  

3 condiict ing f i l m )  
i e l d  and sur face 

A d d i t i o n a l  work i s  
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As the preceeding discussiorr demonstrates, there are several key ba r r i e rs  
tha t  must be addressed j u s t  t o  determine the f e a s i b i l i t y  of  a surface plasmon 
so lar  converter. Although we have made s t r i des  i n  our basic understanding o f  
many o f  them, the f i n a l  outcome i s  f a r  from clear .  Work w i l l  continue on '-,he 
key questions tha t  have thus f a r  been iden t i f i ed .  
"show-5toppers" are i den t i f i ed ,  the progran w i l l  be brought t o  an end. U n t i l  
such time, towever, the e f f o r t  presumes success. 

I f  and when any technica l  

CONCLUSION - 
The NASA space photovol ta ic  research and technology prograri has i t s  roo ts  i n  
the days o f  the f i r s t  rea l  so la r  c e l l .  
(1954-1984), the Agency's program has not on ly  developed technology f o r  the 
current  generation of photovol ta ic  power systems i n  space, i t  continues t o  
l a y  foundations f o r  the fu ture.  
program i s  i t s  overr id ing philosophy tna t  the m a t  important d r i ve r  i s  h igh 
ef f ic iency.  Without exception, program object ives are t o  achieve high c e l l  
e f f i c i ency  f i r s t ,  and t o  address balance-of-system considerations second. 
The success o f  t h i s  approach i s  a t tested t o  by the many appl icat ions o f  space 
photovoltaics, from NASA t o  m i l i t a r y  t o  comnercial missions. Once the path 
t o  high e f f i c i ency  has been demonstrated, aadi t ional  developments fo l l ow  
which reduce i t  t o  p rac t ice  i n  a cost -ef fect ive manner. I n  many i x t a n c e s  
those developments are encouraged w i th  government funding. 
instances such developments have occurred a t  the i n i t i a t i v e  o f  the comnercial 
sector. The net r e s u l t  has been steady progress f o r  near ly  three decades. 

I n  the three decades since then 

A k e j  element i n  the  success 9 f  the NASA 

I n  many other 
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Figure 1. Total Space Power Launched for NASA Missions. 
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Figure 2. Space Quality Solar Cell Technology. 
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Figure 6. CLEFT Cell C r o s s  Section. 
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Figure 7. Surface to Junction Plasmon Grating Coupler 
Concept. 
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Figure 9 .  Endfire Coupling Efficiency as a Function of the 
Ratio R of the Beam Width Plasmon Field Penetration Depth. 
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