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Abstract

A computer simulation method will be discussed that prcvides for equivalent
simtlation accuracy, but that exhibits significantly lower CPU running time per
bias point comparad to other tecliciques. This new methcd is applied to a wesh
point field as is cus:-omary 7n numerical integration (NI) techniques. The
assumption of a linear approximation For the dependent variable, which is
tyeically used Zn the finite difference aad finite element NI methods, is not
required. Instead, the set of device transport equations is agplied to, and the
closed-form solutions obtained for, sach mesh poiat. The mesh point field is
generated so that the coefficiznts in the set of transport equations erzhibit
small changes between zdiacent mesh points. In contrast to the NI linear
approximation, the closad-fora solutions more accurately represenct the physical
system anc the device phyaics imcorporated in the transport equations.

Application of this method to high-efficiency silicon solar rells is
described; and the met! >d by which Auger recombination, smbipoiar consider-
ations, built-in and induced electric fields, -andgap narrowiag carrier coon-
finement, and carrier diffusivities are treated. Bandgap narrowing has been
investigated using Fermi-Dirac statistics, and these results show thar bandgap
narrowing is more pronounced and that it is temperatu-e-dependent in contrast to
the results based on Boltzmann statistics. It is also suggested that carrier
diffusivity relationships that apply to degenerate materials in thermal equili-
brium may also be applicable to regions in which high injection exists even in
nondegenerate material.

Imposing the appropriate boundary conditions on the o d-form solutions
results in a ser of equations which require simultaneou so.ution. This results
in obtaining the soniution of all constants of integraticn, “rom which, in
principle, all cell characteristics may bLe derived. It has been demonstrated
that recursion reiationship.. exist between the constants of integration. Trial
or '"guess” solutioes are not required in this new -ethod for devices operating
at any injecrion levei, because the closed-form soliu*ions obtained at each mesh
peint, ia fact, fulfull this cole. This carries over to those devices operating
at high injection levels. but the inciusion of Auger re~ombination introduces
nonlinezr terms iu the continuity equations, and special attention must be
devnted to satisfving Poisson's equation. Und r these conditions, an initial
estimace must be made of the value of the indzpendent variable for inclusion in
the . atinuity equations at th. initisl mesh point. An iterative procedure is
then used to obtain a crasistent colutiom.
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INTRODUCTION

Computer wmodeiing simmlations have been shown to be very useful in the
development of semiconductor devices in those cases where the simulation is an
accurate representation of the physical device. However, to be :n effective aid
tc the experimentalist and to become an equal partner in the technologies used
in device deveslopment, it may be required to operate the ccmputer program
frequeatly each day in an active developmental program. For frequent use, as
required in solar cell development, CPU costs must be low. Morecver, low CPU
cost allows for engaging in computer experiments, which can be made to bc a very
useful and powerful technique.

Computer modeling using numerical integration (NI) methods in Si device
technolozy have usually shown fair-to-good agreement with experimental data.
However, CPU costs ior the execution of computer programs that are based on
mmerical integration methods are prohibitively high for their use as a labora-
tory or manufacturing tool [l}. The mwmber cf bias peints that are required to
study optimized device designs usually exceeds 5,000 runs. Similarly, a com~
preheasive study involving device structures or mew t:pes of devices may exceed
19,000 runs. Increased CPU cost results if cenvergent preoblems arise. In most
cases, the cost of such studies, fcr the benefits gained, may not be attractive.

Simulation accuracy is determined by both the accuracy of the algorithm/
analytical wmethod representing the device transport equaticns, and the accuracy
»f the phencmena submodels in representing the corresponding experimental data
r~lated tc material properties. For most efficient use ¢f the CPU, the accuracy
of the algorithm/aralytical method and of the phenomena submodels shoull be
commensurate. For example, even if the algeorithm/analyvical method accurately
represents the device, simulation results may not agree with experimental data
if the phenomena submodels are accurately represeunte The reverse is aiso
true. In solar cells, the pkenomena submodels that produce first-order effects
in termiral cparacteristics are: abs' -ption curve, built-in and induced elecrcric
fields, bandgep, lifetime, mobilities, diffusivities, photoexcited carrier
concentrations, surface recombination velocities, junction transpert, etc. The
representation of the phenomena submodels must take on an importance equal to
the analytical method used to represent the system.

Under some operating conditions and for a number of solar cell structures,
two-dimensional modeling may be required to obtain improved agreement between
simulation results and experimental data. Although the results presented above
apply generally tc one~ and two-dimensional modeling, the CPU execution time is
signi.icantly greater for two-dimensionat simulations.

In this parer, a new method is described which has been used to simulate
semiconductor device characteristics. Although this mechod share. similaritizs
with some aspects of NI methods, it differs markedly in othar aspects.
Abbreviated forms of analytical relatiomships representing the solution of solar
cell transport equations that are cobtained using this new methcd are presenced
and discussed. The similarities and differences between the methods are also
discussed.
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SIMULATION METHODS

In this section, the transport equations are discussed as they relate to
the simplifications and approximations that are required to be made in order to
use NI methods and the new method, which is the application of closed-form
solutions applied to a mesh pnint field. The finite difference (FD) and finite
elevent (FE) wethods, which are considered NI methods, are briefly discussed
tacause they are most similar to this new method. Arn outline of these methods
is presented and the procedures are developed to apply them.

Numerical Integration Methods

The most commonly used transport model in semiccnductor devices is due to
Van Roosbroeck and is represented by the set of equations:
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The above set of relationships is applicable to nondegenerate and degenerate
materials, low and high injection levels, dc and ac operation, and to most
semiconductor device structures.

The Van Roosbroeck transport equations comprise a system of coupled partial
differential equations that descrihe a semiconductor carrier concentration and
current density in position and tiame. The net balance of generation sources and
recombination sinks of electrons and holes are described by the respective
continuity equations, and the Poisson equation describes the electric field
distribution that is produced by the charge distributior within the semiconductor.
For solar cells, the steady-state condition is assumed., which greatly simplifies
the transport set because 3n/3t and 3p/%t vanish. Device phenomena submodels
may be added to tne transport equativns to accurately describe a variety of
carrier dynamical and other internal physical processes.

However, the Van Roosbroeck equatic~s must be significantly modified i..
order to describe the effects ari<iuy from velocity overshoot, ballistic irans-
port, and very tnin surface laycrs [3.. 1In solar cells, only th. latter may
needa consideration. The phenome-zon ir thin n-tvpe surface layers, where an
oxide charge insulator (OCI) prodices an electron accumulation, may int -cduce
sidebands within the conduction anJ where each sideband corresponds to 2
quantized level for electron transport in a dire~tion normal to tha surface.
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Solution of the transport equations is more difficult for higher order
models; i.:., time-dependent requirements, and two- and three~dimensional
geometries [2-11]. Morecver, this difficulty is brought into sharp focus ia
two-dimensional modeling when comprehensive phenomena submodels are considered
[2,12].

In comprenensive representations, the complexity of the Van Roosbroeck
transport equation: does not allow for closed-form solutions which accurately
simulate semiconductor devices. Accurate solution of the transport equations
requires a method that simplifies these equations. The most popular approach is
to divide the device structure intc small parts [2-15]. 1In one-, two-, and
three-dimensional sclutions, these small parts are defined as infinite slabs,
areas, and volumes, respectively. Each of these small parts is assigned a mesh
po:nt, which is identified by one, twe, or three indices corresr-mding to a one-,
two~, or three-dimensional representation of the device. These small parts must
be made sufficiently smzll so that ail dependent variables in the tramspnrt
equations exhibit samall changes in value between adjacent mesh points [2,4,5,8,
15]. 1In addition, the coefficients in the transpocrt equations also exhibit
small or negligible changes betweer adjacent mesh points [15]. If either of
these conditions is not met, a solution is not obtained because convergence does
not occur. NI methcds and the closed-form solutions may be applied to mesh
point fields.

In applying the FD method, all derivatives are replaced by finite differences
be veen discrete points in an active domain in the intericr of the structure.
The residue of the newly establishea difference equation is set to zero at each
me: 1 point. Thus, the differential equations are transformed into difference
op -rator equations. The value of the dependent variable is determined at each
m sh noint from the set of 2quations obtained [2,4].

For examp e, the differential equation t¢ determine the temperature distri-
bution is given by [4)

d2
_%=o . (6)
dx

The difference operation is represented by

Tivg " T T 0
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where Ti’ Ti+1’ and Ti+2 are the values of the dependent variable, T, at the

mesh points i, i+l, and i+2, and 4x is the independent variable representing the
separation of the mesh poirts i and i+l, and i+l and i+2, assumed to be equal.
A cor --ponding equation is constructed at cach mesh point. The resultant set
of eq.ations requires tne simultareous solution for Tl’ TZ’ - Ti’ ——. Thus,

av vel-e of the devendent variable, T, is obtained only a. the mesh points 1,

1

- .. ==. The value for T in the region between the mesh points is not
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obtained explicitly and may only be approximated by one of the established
methods. Typically, a linear approximation is used.

In the FE method, a typical assumption made is that the dependent variable
is a linear function, where, for the system discussed above involving temperature

(41,
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417 %1

This relationship is substituted into an equarion, called the "functional," that
describes the system to obtain a set of equations. Simultaneous solution of
this set results in discrete values of the dependent variable at each of the
mesh points. Between the mesh pecints, the dependent variable is g-vernmed by a
linear relationship similar to that represented in Eq. (8).

The full numerical solution of partial differenti.. equations as described
above, which is applied to a physical system and which describes all regions of
this system in a unified manner, was first suggested by Gummel [5]. In this
work, Gummel applied his method to a one-dimensional bipolar transistor.
Subsequently, the method was further developed by DeMari [6,7] who applied it co
p-n junctions, and by Scharfetter and Gummel [§] to IMPATT dicdes. Although
this initial work was confined to one-dimensional structures, the Gummel appruach
has also been adapted to two-dimensional modeling [3,9-12]. However, the two-
dimensional algorithm requires excessive CPU execution time [3,12].

Phenomena submodels may be imposed on the coupled nonlinear partial
differential equations which may result in nonlinear transport equations; 1i.e.,

band-to-band Auger recombination introduces a term involving n2 or p2, and the
electric field in the quasi-neutral region depends on the injection level. 1In
NI numerical methods, the transport reiationships are linearized. Two schemes
have been used and both require initial "guess" solutions. The decoupled method
proposed by Gummel [5] is to assume tbe coupling is weak so that the equations
are solved serially. While the method is not difficult to implement, it fails
to give accurate results for highly nonlinear systems. The coupled method,
proposed by Hach-=l et al. [14], solves the transport equations simultaneously.
However, this is more difficult to implement. The implementation of the
algorithm becomes cowplex when recombination-generation and electric field drif
terms are included [4]. In addition, this results in significantly higher CPU
execut.on time and increased main memory requirements.

As discussed above, . ..ng N1 methods results in values for the dependent
variables, such as the ¢ - _zr concentrations and electric field, at discrate
points in the semiconductor; i.e., at the mesh points. Thus, the -~ontinuum of
the dependent variables, described by the transport equations, is trausformed
into a discontinuous or discrete set cf values representing these variables at
each of the mesh points. 1In cuntrast, the method that is proposed in this papet
does not resort to this transformaticn.

355



closed-rorm Solutions Applied to a Mesh Point Field

The major point of departure between the algorithms of the new method and
NI methods is that the new method uses a closed-form solution which is applied
to a mesh point field that defines the system in space and in time [15]. This
Tequires the gpplication of the transport equations to each mesh point. In
order to obtain a closed~form solution to the transport equations, the mesh
point field is generated so that the equations accurately represent each mesh
point. The closed-form relationships represent analytical solutio-s and result
in a continuum of values for the dependent variables in the region between
adjaceat mesh points. Analytical sol-itions of adjacent mesh points also provide
a continuum of values for the dependent variables in their corresponding regions.
Analytical solutions of neighboring mesh points satisfy the usual boundary
conditions that are demanded in semiconductor devices in accordauce with the
electronic/optical model under consideration. The analytical solutions repre-
senting the dependent variables zt each mesh point contain constants of integra-
tion, which are dc-ermined by imposing the boundary conditions on each of the
solutions.

A procedure has been established in applying the closed-form solutions to a
mesh point field. The procedure is as follows [15]: (1) establish the elec-
tronic/optical model of the solar cell within the generic transport equations;
(2) impose the phenomena submodels, represented in analytical or tabular form,
on the transport equations; (3) develop mesh point field distribution of order f
which reduces the complexity of, and makes the coefficients thzt are present in,
the continuity equations constant or nearly comnstant, so that a closed-form
solution is obtained at each mesh point with minimum restrictions; (4) establish
2f-boundary conditions on the mesh point field; (5) apply the 2f-boundary
conditions on the f-closed-form solutions; and (6) solve the resultant 2f--
equations simultaneously to obtain the 2f-constants of integration through
recursion relationships. In principle, the transport equations are uniquely and
completely solved after the relationships for the 2f-constants of integration
are obtained. Electron current is calculated at the depletion region edge; the
hole current is determined by a similar relationship. Adding the electron and
hole currents results in the J-V relationship from which most of the terminal
characteristics are recovered.

The well-established solar cell electronic/optical model is imposed on the
transport equations; i.e., optical pair generation of carriers, and minority
carrier collection and transport across a p-n junction. This is followed by
imposing the phenomena submodels which are subsequently discussed. A mesh point
distribution is established so that the electric field, lifetime, mobi'ity,
diffusivity, absorption coefficient, and bandgap exhibit small changes between
adjacent mesh points. Figure 1 show~ the subdivision of a one-dimensional solar
cell structure. The n-region (O, XZ) and the p-region (X3, XS) are subdivided

into fn- and fp-mesh points, respectively. To illustrate the method, the p-

region transport solution is discussed below. The electron continuity equation
is represented bLy

-~

XC x dzn (x) an e(x) n () -n 0
S aNOexp (- S adx') dy + D —E + unE P& _ PP .y (9)

e
0 0 dx2 P Ta

356



hy —————n

LSt

Depletion

ocCi Region
«+—— n-Type —— -Type .

Y ———-—;—» | P Z
| l /
| ' /
| | /
1 ¢
I 4
| | 2

[ I O B | ' | [ D R | ;
i= 1,2 38— o, =12 3l —— e "

x=0 x=2 x=3 x

dpn2 dn
Jp2 = QpoPpoEnp — @ Dpp e Jna = Qingps€ps + a Opy d_s4
pn2 = A1zew12x + A229w22x + Aaz(X) ilp4 = B14e“’14x + 8249w24x + BM(X)
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where the Poisson equation takes its usual form. The symbols have their usual
definitions, where np and npe represent the total and photoexcited electron

concentrations, respectively. Implicit in Eq. (9) is that the subdivision
results in a condition in which the slope of the electric field, dEp/dx, is

small and may be neglected in a region between adjacent mesh points. Although
the electric field slope is assumed to be negligible, the electric field itself,
in general, is allowed to vary from mesh point to mesh point. Moreover, under
these conditions the remaining material properties also exhibit small changes
between neighboring mesh points for low injection levels. These changes become
large under high injection levels, in which case a2 more dense mesh point field
may be required to maintain comparable changes. As a rcsult, a near-exact
closed-form solution is obtained at each mesh point for the photoexcited electron
concentration, which is an exact solution of Eq. (9) and is represented by

npej(x) = Bljexp (mljx) + szexp(mzjx) + Bjj(x) , (10)

where the terms comprising Eq. (10) are given in Table 1.
®
The subscripts, j, iz Eqs. (10)-(30) repr :sent the jth mesh point in the p-

region as indicated in Figure 1. Correspondingly, in Eq. (10), B1j and sz

represent the constants of integration, and B3j in Eq. (11) represents the
photoexcited electron concentration, prcduced by -“oton absorption in cthe region

.th o : .
of the j mesh point. In the context of the conditicrns imposed on the continuity

equations at each mesh point, mlj and m2j in Eq. (14) are constants. Photo-

excited electron concentration, Eq. (10), is governed by .he exponential tern.
and B3j which are all functiouns of pesition; in addition, Bji is alsc a function

-

of wavelengtn through Eqs. (12) and (13). Egq. (10) provides for continuous
values of npe through the assignment of values to x, where the range of x is

restricted to the region between .ne (j-1) and j mesh points. In contrast to
numerical integrati. methods, the continuum of values describing the behavior
of npe is preserved ir the cloced-form scheme as was the original intent pro-

posed by the Van Ronsbroeck concept related to the use and the interpretation of
the transport equations.

It is clear that the relationship used in the closed-form metnod, to
represent the photoexcited electron concencration, Fg. {i0), is an analytical
solution that is demanded by, and has its suppurt in, the transport equations.
Moreover, this relationship may also incorporate a comorehensive set of phenomena
submodels as dictated by the transport equations, imposed boundary conditioms,
and the representations . the material properties coupled with the mesh point
field. The phenomena submecdels that influence Eq. ‘10) are represented in the
relationships for the parameters, Eq. (11)-(30), that describe their behavicr in
the region bounded by the (j-1) and j planes in Figure 1. Egs. (11 .7) describe
the photon absorption generation rate and the redistribution of t' photoexcited
electron-hole pairs, while Eq. (14) goverus the electron effective diffusion
length in the presence of an electric field, D~ift and diffusion components of
the electron current are represented in Eq. (15, and the electric field u:sed in
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Table 1. List of relationships of terms appearing in tli- solution of
the electron concentration, Equation (10).

1
B3j(x) i r— [Glj(x)exp(wljx) + sz(x)exn\uzjx)] (11)
25 = Y13
1 x Ac(x') '
= — - 1 - T '
’lj(x) =3 exp( wljx ) ajNOjexp( ajdx )didx (12)
nj
o o o
1 X A (x") x!
sz(x) = -ii:- s exp(-mzjx') ajNojexp(-s ajdx")dkdx' (13)
3 Jo o o
(1)1J 2 1
v _.E . v .E .
- ipi o, [f{IniTei \ +1 .2 (14)
2L -, 2D . nj
nj nj /
(L)Zj
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., = E . + gD . Rl 15)
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b J
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n o]
. - E R 18
PBNj ¢ PJ Ep)ij pBNoj (18)
T 2 dniej
E = - = , (19)
pBNoj q niej dx
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Table 1 (continued).
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the drift term is given by Eq. (16). The electric field com nents are defined
in Zgqs. (17)-(27), arieing under equilibrium and nonequilibriuw conditicns, and
iaclude cffects produced by ohmic wvoltage drops in the quasi-neutral regions,
bandgap narrowiag, impurity concentration prcfile, and phkotoexcitad electron
concentration distribution. Eq. (29) describes the intrinsic concentration with
respect to temperature and bandgap narrowing.

In contrast, the relationship that is _.ed in n. methods, corresponding tu
Eq. (10), is typicrally linear and ‘s of the form given by

n_ (x,

r X
- e j pe j-1
ne = npe(xj_l) + e (31)

where .. is the independent variable in the region bounded bv the (j-!) and j

planes. The photroexcited carrier concentrations, n and n ,, , do not
pej pe{j+l)

normally represent algebraic expressions, but represent discrete values ani
require initial estimates of the concentrations at their cesignated positions.
The richness cf Eq. (10) and its associatecd parameters, defined in Eqs. ('1)-
(20), in representing device physics is clearly evident in contrast to the
representaticn in Eq. (31). This relationship, Eg. (31), is used in i1 methods
because it simplifies the matrix equation that requires soiution, but it is
artifical in its representation of the photoexcited elzctron criucentcetion
because it has been constructed independent of the transport equations.

The differeuce iu cle results obtainzd by applying Egs. (10) and (31) .o
tt. same mesh poiat distribution, which defines the solar cell structure, is
siynificant. Applying Eq. (10) results in the determiration of the constante of
intecration, Blj and sz, assigned to the carrier aralytical relationship at

each mesh point. Substituting Bl* and sz in Eq. (10) provides for an analy-
3
tical relationship at each mesh point, descriting the behavior of n e for a

continuum of values of x in the range x and x In contrast, the results

(;-1) i

of applying Eq. 7?1) is a set of discrete values for npej at each m:sh point.

In the work reported in this paper, the genaral case is treated as it
relates to injection level. The information of injection l¢ sel is contained in
the electric field and its coirponents, Ers, (16)-(30), lifetrime through the
diffusion length, Ln’ and boundar; conditions at the depletion edges bounding

the p- a junction, and in the carrier mobiliries and diffusivities. Appl-caticn
of ¥1. (10) requires negligibly small changes in electric field tetween adjacent
mesh points. Under these conditions, Eq. (10) is an excellent appvuximation to
the exact solution .t “he 1essigned mesh point region. The measure for which

Eq. (10) approaches th: exact solution is the seli-consistency obtained from tne
solution of the Poisson e sation using the analytical relati:aships for n and

pej

the numbe of itcrations 1-quired to obtiin values of B,, and sz.

13
The fp-mesh point disvritution in che p-type region o. the rolar cell
cemprises (fp-l) internal bor-~daries, and external boundaries at x. and xs. At

3
the external boundaries, the usual p-n junction bourdary condition on minority
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carrier concentration applies. At each of the (fp—l) internal boundaries, the

electron concentration and electron current, separately, are continuous and are
represented by

PoeiYos? = Bpe(s+1) 0Ky (32)
where

kj - eAEcj/kT (33)
and

Jnj(yoj) = Jn(j+1) o ., (34)

where yoj is the s¢: aration between the (j-l)th and jth mesh points. A surface
recombination velocity boundary condition is imposed at the X boundary. This
results in 2fp-boundary conditions, from which 2fp—equations are obtained that
must be solved simultaneously to obtain the solution of the 2f -constants of

integration.

Aptlying the boundary conditions using Eqs. (10) and (15) results in 2f -
equations which are represented in matrix form by

1 0 o 0 B, NoefX3)
ok, 1k, -3 -1 0 B?l Fm
5|"n Gy —8y - 0 ) Foo
[+] 0 oyky Ty -V -3 8,, Fos
0 0 b,0, &1, -8, -¢4 B, Foe

8y Fos
n‘ﬁ 7k, -1 -1 ga ima-u
6|"| e, - bul T4 1+ o2)
5, +S F
a'pl '90 A r'plt'p+sn|_ Laap 4
(35)
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The constants of integration are denoted Bll’ BIZ’ -, s and the

Blf ? BZf
relationships for the other factors contained in Eg. (35) aPe thePmaterial and
structure properties at correspording mesh points. The Fletcher boundary

condition [16] is used at X3, because it represents the bondary for the com-

plete range of conditions that may exist: from equilihrium (i.e., the photo-
voltage VJph = 0) through increasing positive values of VJph up to and including

high injection levels where VJph N Vbi'

In Eq (33), AEcj represents the bpand edge discontinuity located at the j
mesh point. If AECj 1s positive, the boundary condiction describes minority

carrier confinement (i.e., electrons confined to the junction region).

The factors wlj and ij’ Eq. (14), ars the reciprocals of the effective

electron diifusion length in the p-type region, and deszribes the recombination
of electrons in the presence of an electric field in the region bounded between
the {(j-1) and j mesh point. It describes the recombination related to those
electrons entering tkis region zcross the planes defined by the (j-1) and j mesh
points as well as those photoexcitzd carriers produced by photon absorption

within that region. If the electric field, Epj = (0, then wlj = —w2j and are

equal in magnitude to the reciprocal of the diffusion length, Ln = Vﬂnrn .

Similarly, for degenerate material or for high injection levels, low values of
the electric field are obtained, and wlj ¥ IR Ir. both cases, elactron drift

toward the junction occurs by means of diffusion rather than a combination of
diffusion and field-assisted drift. Eq. (10) reduces to the more familiar form
to represent photoexcited carriers.

The constants of integration are obtained by solving Eq. (35). While the
matrix in Eq. (35) may be inverted to obtain the solution, a recursion relatien-
ship exists between the constants of integration. As a result, there is a
significant reduction in CPU execution time to obtain the values of these
constants through the recursion relationships. For example, in certain iteration
procedures, some of the terms ir these relationships that depend on geometry and
materials properties may not ch.nge and need not be calculated for every
iteration. There are probably other benefits, which will be revealed as more
experience is gained in using this type of modeling program.

The recursion relaticnships for the constants of integration are given by
the following =quations:

Fooe y™SpBys (g ) — 9 B¢ (O #5)

B z_—P PP pp 'p ,

2fp Te (ef +Sn) = Yo % (5f +Sn)
p 'p pp

(36)
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- __Dp p P P
B = L) (37)
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P P P P P

Bz(i+l)[6(j+1)-e(j+l)] FZ_J 1) (J+l) (21) 17n3[ (j+1) nj Gj]

2j 508578 a1y Kng 1030 18578 (541y Ky )

(38)

B1j = enj-YnjBZj . (39)
i € )*F0152'F02'°19n1(52 nl L
L A (e SN EACAGE , (40)
17895010 n1%1 (61 8ok
and

Biy % P mbBar o (41)

There also exists recursion relationships for the Snj's and the ynj's which are

functions of material properties at their assigned mesh points.

Having obtained the constants of .ntegration and substituting them into the
relationship represeniing the appropriate mesh pnint, there results fp-

relationships which fully describe the behavior of npe in the p-region. 1In

principle, all device properties may be recovered through the manipulation of

npejs' Using Eqs. (10) and (15) and the corresponding relationships for holes

in the n-region, the hole current Jl’ Eq. {28), is obtained. Eq. (28) represents

a relationship relating photocurrent versus photovoltage. The photovoltaic J-

VJph curve may be obtained from which maximum power and efficiency is calcu-

lated. Moreover, the effects on the J-V curve of the phenomena submodelcg,

Jph
and material and structure parameters may be investigated through B

B
137 723°
and B3j'

SUMMARY

A new computer modeling method is described and is zpplied to silicon solar
cells. The method is similar to numerical integration (NI) methods in that
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both require the use of a mesh point field. The set of transport equations

is applied to each mesh point, and through a judicious selection of the mesh
point distribution, an accurate closed-form analytical function is obtained at
the assigned mesh point. Application uvf the boundary conditions, to an f-mesh
point field, results in 2f-equations that require simultaneous solution. This
solution is manifested through the determiration of the 2f-constants of integra-
tion, where each closed-form solution, representing a mesh polnt, contains two
constants of integration. Solar cell transport solution is represented by the
complete set of constants of integration obtained in the n- and p-regionms,
Substituting the constants of integration into the correspcnding closed-form
analytical function, representing an assigned mesh point, results in a set of
analytical functions that is applicable only to its assigned region in the mesh
point field. As a result, the complete set of closed-form functions describes
the behavior of the photoexcited carrier concentration for a continuum of x-
values in the n- and p-regions. The photoexcited c:arrier relationship is used
to obtain the current-voltage relationship, from which the maximum power point
and conversion efficiency are determined. Effects of temperature, solar concean-
tration, submodel parameters, and structure pavameters may be studied through
changes at each mesh point in wlj’ ij’ Blj’ sz, and B3j'
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DISCUSSION
{LAMORTE)

LINDHOLM: I have a number of small questions. You put your attention on the
dependent variables, which you treat as the hole and electron densities.
I'm wondering how you enter the external boundary conditions since you
are not feeding in hole and electron densities at the ends of the
device.

LAMORTE: At the junction side cf the end region, for example, meaning the
emitter, the boundary condition becomes the Fletcher boundary condition
for the photo-excited holes, because we are treating the general case of
high injection level. At the surface region we are calculating the re-
combination velocity, by means of a Ax divided by the lifetime at the
center of the first mesh point. And we have gotten some interesting
results there, in that it appears that even for calculating the surface
recombination velocity in that manner, it may not be consistent with the
slope of the photo-excited holes at the surface. 1If you don't recal-
culate the surface recombination velocity, the solution will oscillate.
We're just putting a fix in that, and the fix is that you want to update
the surface recombination velocity at the surface by the exact relation-
ship. Meaning the product of the surface recombination velocity times
the photo-excited hole concentration at the surface, and that is equal to
the surface recombination current, which includes a drift field component
and a diffusion component. So that becomes the left-hand boundary.

LINDHOLM: 1T have a related question. If you are going to do a non-iliuminated
analysis where you apply a voltage, then how do you get into the external
boundary conditions? 1I'm not now concerned with the edge of what you call
the depletion region but rather the contacts of the device.

LAMORTE: I don't know whether it will work for that, but we cun probably make
it work. We have not given that any consideration.

LINDHOLM: Would you integrate _.he electric field? Would that be the way of
doing it? Getting integrated, the electric field through the material,
and setting that equal to zero, and then you would have to iterate, I

suppose.

LAMORTE: Yes, we have that in the model because under high injection level
you want to determine what the voltage drop is across the quasi-neutral
region.

LINDHOLN: When you say the Fletcher boundary condition, you mean the Fletcher
Magewa boundary condition as modified by Houser?

LAMORTE: No, the Fletcher and Masaws conditions are separate. They account
for the same thing, but they require different information. The Fletcher
boundary condition applies to the edges of the depletion region and thats
what we are using. The Masawa uses the right-hand edge of the depletion
region and the left-hand contact.
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LINDHOLM: How do you define the edge of the depletion region in your numerical
analysis?

LAMORTE: We calculate the depletion region for either a giaded case or the
abrupt case.

LINDHOLM: You calculate it how? Depletion approximation?
LAMORTE: Yes.

LINDHOLM: That won't work, I'm afraid, because you probably need to make a
correction because of the free electrons and holes in that region. We
could discuss that privately. Thaet is probably an updating of the physics
that goes into the model.

LAMORTE: Well, that is updated.

LINDHOLM: Oh, I see. You don't use the depletion approximation to calculate
the depletion thickness?

LAMORTE: We use it to get it started.

LINDHOLM: Oh, 1 see, then you update. Okay. Then how do you define the edge
of the depletion region once you get it updated? Somehow you have to use
some criterion to define the edge of the depletion region.

LAMORTE: Then we use the depletion approximation.

LINDHOLM: Okay, I don't understand the answer to that, but maybe we could
di.cuss that privately, unless you want to elaborate on it now. What I
thought you said was, as your starting point to get the edge of what you
call the depletion region, you would use the depletion approximation and
then you would iterate up in, including the electron hole densities, in
order to redefine the depletion approximation. Then I asked you what the
criterion was after you did the updating.

QUESTION: Maybe that's something the two of you could discuss.

LINDHOLM: I have one last question. This is a very interesting idea to me. I
have been sounding very negative; I'm sorry to sound negative. I just
was looking at some small points. I don't do numerical analysis, but I'm
somewhat familiar with what Mike did, and Gummel, and all these other
people, and the only place I have ever seen this done previously, similar
to this, is in a book by some Russians. 1 wonder if this is the first
time this method has been used?

LAMORTE: I have not seen it anywhere else, and I h-ve spoken to abcut a dozen
people who have done computer modeling in oth¢ v ~reas, other than semi-
conductors, as well, and they claim that they nave not seen it. And I
have not seen it elsewhere.

LINDHOLM: This Russian book is not quite numerical analysis, so I guess I
haven't seen it either, but that's as close 8s I have 2ome to seeing it.
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L's very interesting.

LAMORTE: One of the things that this does for you, and what we showed in the
avalanche photo diode -- because you're reflecting a lot of the physics
in the closed form solution -- whor you look at the convergence of the
solution as a function of mesh points, you find that you do not need as
many mesh points, for exemple, in the avalanche photo diode. We didn't
need to go above 15 to 20 mesh points when we had a half-micrometer
depletion width, and we went all the way up to 80 mesh points, and at 15
to 20 we were within 1% of the asymptotic solution with 80" mesh points.
I'm fully convinced that since you have a closed-form solution, which is
a good approximation, the physical system, that it's forgiving in term:
of using a lesser number of mesh pcints. And so, therefore, that combined
with the recursion formulas, the CPU time is reduced greatly.

LINDHOLM: I was wondering if you could describe the output that you got from
your model and do you have it set up to give you graphs of carrier dis-
teibutions and so forth?

LAMORTE: No, we haven't done that yet. We almost have the model working,
meaning that with one of your cells we got something like 38 milli-
amperes, and it's about 20% too high, so we have gotten it that far and
we are still trying to debug and determine where that is. Aand it may be
just a simple matter that the lifetime we are using is too high.

LINDHOLM: So the code doesn't give ysu plots of carrier distributions and
things that help one see what's going on in the physics of the device.

LAMORTE: We get discrete points, for example, of carrier concentration, okay,
at the mesh points, and we get it at two points actually, we got it at
each of the mesh points and in between. But if you wanted to, by taking
the relatiorship that applies to that particular region of the cell in
combination with the appropriate constants of integration, you could plot
the entire thing on the continuum if you wished.

369



