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LIST OF SYMBOLS 
NOT DEFINED IN TEXT 

cutoff distance in derivation of energy-gap model 
divergence operator 
diffusivity or displacement flux density (context determines) 
magnitude of electron charge 
energy of electrons or electric field (context determines) 
kinetic energy of free carriers normalized by kT 
energy gap 
Fermi 1 evel 
generation rate from external source (does not include thermal 
generation rate) 
gradient operator 
thermal energy 
thermal voltage 
Fermi integral of order one half 
convection current density, augmented by subscript N or P means 
electron or hole current density 
rest mass of electron 
effecti ve (or crystal) ma.ss 
ionized acceptor atom concentration 
effective density of states of conduction band 
ionized donor concentrations 
intrinsic carrier concentration 
electron concentration (also used as subscript) 
hole concentration (also used as subscript) 
absolute temperature 
quantum density of states 
quasi-Fermi level 
applied potential or internal potential (content determines) 
total time-varying applied or internal potential 
quasi-Fermi potential for free electrons, equals quasi-Fermi level for 
free electrons when multiplied by -e, prime denotes normalized with 
respect to thermal voltage, N subscript replaced by P subscript means 
hole quasi-Fermi potential 
energy of bound electron in derivation of model for energy-gap 
narrowing 
optical absorption coefficient 
kinetic energy of free electrons, normalized by kT 
energy-gap narrowing 
dielectric permittivity 
optical wavelength or screening length (context determines) 
electron affinity 
space charge density 
recombination lifetime or relaxation time (when symbol is augmented) 
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1. INTRODUCTION 

We survey the theoretical models now available that characterize heavily 
doped (highly conducting) regions in silicon and analytical and numerical 
approaches that try to determi ne the i nfl uence of such regi ons on . the 
conversion efficiency of solar cells. Heavily doped regions are bounded by 
adjoining regions. As one example, a physical surface bounds the front 
surface. This physical surface may consist of a mixture of ohmic-contact metal 
with either an anti-relection coating or with a thermal or deposited oxide. As 
another example the adjoining surface may define a transition between heavily 
doped and more lightly doped silicon. The interplay between the heavily doped 
and adjoining regions constitutes a key to designs for improved performance. 
This will receive attention, as will the multi-dimensionality of variables such 
as current and mobile-carrier density. 

Although dilutely doped silicon is well characterized except for some 
disagreement about optical absorption coefficients, what exists now for heavily 
doped silicon and its interplay with adjoining regions is an incomplete theory 
in whi ch not all contri buters to transport, recombi nati on, generati on, and 
trapping are defined. Further the parameters relating to these mechanisms and 
their values as determined by experiment are subject to various 
interpretations. The presentati on will bear in mi nd these uncertai nti es and 
wi 11 treat the characteri zati on of heavily doped s il i con not as a theory but 
rather as an imperfectly articulated and incompletely formalized body of 
experience. This view is intended to help point the way toward the attainment 
of a more compl ete theory of heavily doped sil i con and thereby toward more 
informed designs of solar cells. Because computer programs constitute tools 
both for design and for estimating performance limits, the review will include 
some remarks pertinent to existing and developing programs. 

2. BASICS 

Highly doped silicon differs fundamentally from silicon of dilute doping 
in several main respects. 

2.1 Quantum 

As the concentration of shallow impurity atoms increases, their ground
state orbitals begin~ to overlap (Fig. 1), resulting in a distorted quantum 
density of states which includes an impurity band (Fig. 2). From an 
experimental viewpoint, one sees the resulting metal-insulator (or Mott) 
transition occuring for common dopant species at about 1018 cm-3 (Fig. 3). The 
theoretical interpretation of Mott and Davies (1967) involves the warped 
quantum density of states shown in Fig. 4. 

At concentrations above about 1019 cm-3, the abundance of majority free 
carriers and the associated screening yields a quantum density of states that 
more closely approximates the standard dependence, QDS(E) ~ ;-(kinetic 
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· energy), which applies for dilute concentrations of the impurity atoms. 
Experimental evidence supporting this conclusion comes from electronic specific 
heat and other observations (Keyes 1979) and (Shibib and Lindholm 1980). 

The random component of the atomic potenti al introduced by the approximate 
random positions assumed by the impurity atoms in the host lattice results in 
band tails, as Lifshitz (1942) first notes. A portion of these band tails 
comprises bound quantum states where trapping of majority and minority carriers 
can occur. 

Macroscopic lattice strain introduced by a high concentration of impurity 
atoms, and the accompanying structural imperf\\=ctions, in principle can also 
i nfl uence the quantum density of states, rna; nly through changes in the energy 
gap. 

Thus we conclude: (a) the warped quantum density of states at the lower 
end of the range of high doping concentrations may decidedly affect device 
performance, particularly near the edge of the pin junction transition reg'ion 
and particularly if the device design emphasizes avoidance of high impurity 
concentrations, as in recent cell designs advanced by Green and Blakers, by 
Wolf, by Spitzer and co-workers, by Rohatgi and by others 1); (b) the 
prevalence of a near standard quantum density of states for concentrations> 
1019 cm-3 admits treatment of the majority carri ers as a Fermi gas, and 
associated simple screening models enter; (c) the existence of bound states 
near the minority-carrier band edge may introduce trapping as an important 
mechani sm if many such states exi st. 

These conclusions receive attention in the sections that follow. 

2.2 Statistics 

Electrons (and holes) are fermions. Thus their distribution in energy is 
described by Fermi statistics. At low enjough carrier concentrations, the 
Fermi functi on tends to\'/ard a Maxwell-Boltzmann function (Boltzmann 
statistics). Fermi statistics contain Boltzmann statistics.. Thus there is no 
fundamental reason to argue the issue whether Botlzmann or Fermi statistics 
apply, as many workers have done. The answer is that Fermi statistics always 
apply. From a practical viewpoint, however, some need exists for further 
consideration. As one example, if past work has used Boltzmann statistics, 
correctly or incorrectly, as a vehicle for framing such experimental results as 
energy-gap narrowing 8EG, then one must take care in the introduction of Fermi 
statistics when using these results. If raw data exist, however, then one can 
USI~ Fermi statistics to reframe the parameters of interest. Such a parameter 
is energy-gap narrowing and its dependence on impurity concentration. As 

1) See the special issue of the IEEE Transactions Electron Devices, May 1984. 
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another example, one may wish to avoid Fermi statistics to obtain expressions 
that yield more easily to analytical or numerical treatment. For numerical 
sol uti on of the fi nite-difference or fi nite-el ement counterparts of the basi c 
differential equations, however, the availability of a variety of accurate 
approximations to the related Fermi integrals (Blakemore 1982) apparently makes 
this unnecessary. 

As a fundamental point, one may remember that Fermi statistics always 
describe electrons or holes. This is not true for Boltzmann statistics which 
introduce considerable error if the majority-carrier density > 1018 cm-3 • 
Incorrect temperature dependence of vari abl es may be one result of mi suse of 
Boltzmann statistics. We would not belabor this issue if it had been discussed 
less in the literature. 

Fermi statistics also describe the occupancy in equilibrium of bound 
states, such as those in band tails. But a difficulty enters here because the 
Fermi statistics must be altered to contain the degeneracy of the bound state. 
This degeneracy apparently is unknown for band tai 1 s. The same diffi culty 
prevails, of course, if one uses Boltzmann statistics. 

Finally we define explicitly the term, Fermi gas, used in Sec. 2.1. The 
concentration of such a. gas ;s determined by the integral of the product of the 
standard Fermi function for delocalized states and the standard quantum density 
of state, QDS~/-(kinetic energy). This integral, the Fermi integral to order 
one-half, will enter later into models for ~EG through the screening length of 
a Fermi gas. 

3. HIGH CONCENTRATIONS 

By high concentrations of shallow acceptor or donor states we mean 
> 1019/cm3, approximately. For such concentrati ons, as suggested above, the 
quantum density of delocalized states of both conduction and valence bands 
obey, 

ODS(E') oc ;-(E')dE' (3.1) 

where Eli s the ki net i c energy measured from the mobil ity edge of the band. 
For developments that follow, note that an electron, or hole, at this band edge 
has only potential energy, according to quantum theory. Thus the band edge 
corresponds to the energy reference for kinetic energy. 

Thus the hole or electron concentration in thermal equilibrium is the 
integra 1, from the band edge to i nfi ni ty, of the product of (3.1) and the 
standard Fermi-Dirac function. For the majority carriers this integral, the 
Fermi integral of order" on~-half, describes a Fermi gas. Because the Fermi 
function goes into a Boltzmann distribution for low particle concentrations, 
the Fermi gas becomes a Boltzmann gas for the minority carriers. 
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3.1 Fenmi Level 

The Fenni level F or Fermi potential of a Fenni gas follows from standard 
expansions (Kubo, 1966, p. 231); the Fermi level shows only a slight 
temperature dependence, which for terms up to the order T4 is 

F(T)/F(T = OK) = 1 - (i/12)[kT/F(O)]2 - (n4/80)[kT/F(0)]4 + ••• (3.1.1). 

The weakness of this temperature dependence will prove useful in the discussion 
below concerning the energy gap, measured electrically. 

3.2 Einstein Relation for Majority Carriers 

For a position-dependent doping concentration, the principles of detailed 
balance requires oppositely directed majority-carrier drift and diffusion 
currents, equal in magnitude, for thermal equilibrium. This requirement, 
together with the position independence of F and with the association of a band 
edge with potential energy (discussed in regard to Eq. 3.1), establishes the 
slope of the majority-carrier band edge and hence the drift field acting on the 
majority carri ers. The energy-gap narrowi ng t£G(x) then determi nes the drift 
field (or quasi-field) acting on the minority carriers (Fig. 5). In general, 
the majority-carrier and minority-carrier fields differ in magnitude and may be 
opposite in sign. This has central importance in the analysis of the 
performance of devices. 

Because of the balance, and for other reasons, the ratio of diffusivity D 
to mobility ~ is significant. For the Boltzmann gas of the minority carriers, 

D/~ = kT/e (3.2.1) 

which is the standard Einstein relation of 1905. If trapping influences the 
transport of minority carriers, as later we shall suggest, the Einstein 
relation remains valid because trapping is spontaneous and random. 

For majority carriers, the Einstein relation of the Fermi gas shows that D 
has a stronger dependence on particle density than does~. Lindholm (1984) has 
suggested that this behavior originates in the kinetic pressure dependence of a 
Fermi gas, the gradient of which is related to the gradient of the chemical 
potent i a 1 and hence to di ffus ion. For T = 300K, the dependence is shown in 
Fi g. 6, fi rst plotted by Lindholm and Ayers (1968). Landsberg (1952) fi rst 
derived the D/~ relation for a Fermi gas as a ratio of Fenni integrals, a 
simple yet accurate approximation of which is due to Kroemer (1978). 

3.3 NP Product if there is no Energy Gap Waff09ri~ 

The hole concentration product with the electron concentration for thermal 
equi 1 i bri urn enters semi conductor devi ce phys i cs because excitations may often 
be assumed to provoke a small perturbation (quasi-equilibrium) of the 
equilibrium condition. Thus use of the PN product in equilibrium often yields 
a pre-exponential constant multiplying a tenn of the form, exp[V/(kT/e)] - 1. 
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For a Boltzmann gas, 

PN = nr(T), (equilibrium) (3.3.1) 

which is often called the law of mass action. For a Fermi gas, the PN product 
falls with increasing majority carrier density. Kleppinger (1970) first 
plotted this dependence (Fig. 7). Because 

, (3.3.2) 

one might think that Fig. 7 implied an increase in energy gap as the majority 
carrier concentration increases. But the construction of Fig. 7 assumed 
independence of the energy gap on majority carrier concentration. Thus the 
result shown deri ves only from use of Fermi rather than the more famil; ar 
Boltzmann statistics. 

Many previ ous workers have interpreted experimental results usi ng 
Boltzmann stati sti cs to deduce the carri er concentrati on dependence of the 
energy gap. Because of the dependence shown in Fi g. 7, when a Fermi gas is 
used to describe majority carriers, larger energy-gap narrowing is inferred 
from experimental data. Thi s partly expl ai ns the di screpancy between the 
results of Neugroschel, Pao, and Lindholm (1982) and those of many other 
workers. A related elaboration appears below. 

3.4 Slope of Mobility Edge for Minority Carriers 

We have discussed this issue above in Sec. 3.2, relating to the inequality 
between the drift fields acting on the majority and the minority carriers. For 
a diffused junction, for example, a huge drift field acts on the majority 
carriers. If this same field were to act on the minority carriers, those 
injected over the pIn junction barrier into the quasi neutral emitter, or front 
layer, would be so signifiantly drifted back toward the junction transition 
region that the probability of reaching the surface would be low (Lindholm, Li 
and Sah, 1975). Experimental evi dence i ndi cates that such mi nority carri ers 
reach the surface in great abundance where they vani sh, if the front surface 
recombination velocity is high, without contributing to current in the external 
circuit (Iles and Sockloff, 1975), (Fossum, Lindholm and Shibib, 1979). The 
inequality of the majority-carrier and minority-carrier quasi fields helps 
explain this result. 

3.5 Energy Gap 

If we restrict consideration to donor or acceptor impurity atom 
concentrations high enough (Sec. 2.1) that a Fermi gas description becomes 
adequate, then an approximate model for the energy-gap narrowi ng t-EG as a 
function of majority-carrier concentration (n or p) emerges. The central 
parameter entering this model is the Debye or Thomas-Fermi screening length A, 
as first suggested by Sah and collaborators (1981) and discussed systematically 
by Landsberg, Neugroschel, Lindholm and Sah (1984). 
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The model starts from the view that the highly doped semiconductor is, to 
some extent, a neutral dielectric continuum in which positive and negative 
particles are smeared out over macroscopic vol~me. This model continuum 
consists implicitly of particles in complicated and correlated motions, the 
correlation coming from the forces among the particles. The correlated motions 
of the actual many body problems incorporate the long-range part of the Coulomb 
forces between the electrons (assuming for concreteness n+ silicon) and between 
them and other charges, both those fixed in the lattice (ions) and those that 
are mobile. The most significant forces are short-range which one can view as 
forces altered by screening of the many electrons. These forces one can 
characterize, with no additional approximation involved, as a screened 
potential, the relation being the equality between the gradient of the scalar 
potential and the vector force field. The introduction of the screened 
potential simplifies discussion, as will be seen. 

We treat the screening length for this potential as a constant, which is 
an approximation (Landsberg, et. al., 1984). Then we consider the creation of 
an electron-hole pair, which at the first instant are in a bound state at 
r = 0, to fix the reference position. Then we imagine the hole to remain 
trapped and the electron to be removed to infinity against the screened Coulomb 
attracti on. The total energy to create the pai r, and to separate it, is 
(Fig. 9) 

ENERGY:: W + (e2/Ea)exp(-M) (3.5.1) 

where W is the energy requi red to create the pai r in the bound state and the 
second term on the right side is the energy required to separate the pair. The 
sum of these two energies then yields a created free electron and free hole. 
Thus this sum is the energy gap,which depends on nand p through the screening 
length "II.. The consequent energy gap narrowing, ENERGY(O,O) - ENERGY(n,p), 
illustrated in Fig. 9, depends only on ~(n,p) because subtraction cancels Wand 
the cut-off distance a (Landsberg et. al., 1984), which are regarded as 
concentration independent. The energy W is concentration independent because 
the model employed attributes energy-gap narrowing only to carrier screening. 

The question remains as to the choice of ~, a parameter that enters many 
part of physics (Landsberg, 1981). Using Debye or Thomas-Fermi screening gives 
the same result in the limit of extreme degeneracy. The result, which in cgs 
units is 

(3.5.2) 

is a function of the effective mass of the majority carriers, E, and n for n+ 
silicon. If one assumes equality between the effective mass and the rest mass, 
E = 11.7, one obtains 

(3.5.3) 
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This energy-gap narrowing exceeds that of Lanyon and Tuft (1979) who 
adopted a different screening model and used a different physical picture 
following the suggestion of Hauser (1969). The difference is a factor of 1.33. 

We note the prediction of an energy-gap narrowing of 215 eV for a car~ier 
concentration of 1020/cm3• 

For a general value of n, and for a parabolic band (Sec. 2.1), the energy 
gap becomes 

(3.5.4) 

where I is the Fermi integral of order one-half and y is the kinetic energy of 
the electrons normalized by kT. If both holes and electrons are numerous, one 
need only add a similar Fermi integral for the holes multiplied by the 
effective density of states for the valence band. 

This last formula we shall adopt for comparison with experiment. Though 
it applies for all levels of concentrations, we shall recall our previous 
discussions (particularly that of Sec. 2.2) emphasizing the inappropriateness 
of the assumed parabolic bands that underlie the origin of the Fermi integrals 
of order one half. MorE;!over, because of physi cs rel ated to the cutoff di stance 
a in (5.3.1)~ the expression holds with good accuracy only for concentrations 
up to 5 x 10~O/cm3 (Landsberg, et al., 1984). 

If we now compare with experiment (Fig. 10) obtained by electrical 
measurements, we note the excellent fit of this theory with the values obtained 
for Si:As by Neugroschel, Pao, and Lindholm (1982), (full circles), and for 
Si:B by Landsberg, Neugroschel, Pao, Lindholm and Sah (1984) (full triangles) 
by the same method. We note that the agreement is good only for majority 
carrier concentration> 5 x 1019/cm3, as expected from the discussions of Sec. 
2.1 and elsewhere above. In constructing Fig. 10, we have assumed for the 
experimental results in full circles and triangles an effective mass of 
electrons and holes that is a factor of 1.1 larger than the electron rest 
mass. The effective masses have uncertain values for highly doped silicon, 
t"hough the assumption just stated agrees with the val ues usually advanced for 
the effective electron mass of dilutely doped silicon. In regard to most of 
the rest of the measurements of energy-gap narrowing in the literature, some of 
which are shown in Fig. 10 without explicit identification, Boltzmann 
statistics were used. We have recalculated these data so as to allow a fair 
comparison. 

The agreement between the model above and the various experiments 
approaches the agreement between different experiments. The agreement tends to 
be better for larger concentrations, as expected (Sec. 2.1). 

The experimental results of workers other than those mentioned are smaller 
than ours cited above. Apparently several reasons exist for this 
disagreement. In some of the work of others, the impurity concentration was or 
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may have been markedly dependent on position. Thus enters the effect of the 
quasi-field on the minority carriers (Sec. 3.4); moreover these workers used 
some spatial average of the impurity concentration. Another significant 
difference between the work referenced above and that of others involves 
assumpt ions about the mi nority carri er mobil ity \.1. The energy-gap narrowi ng 
from electrical measurements pictured in Fig. 10 comes from the minority
carrier current, which depends on the product ~Xp(LlEG/kT). Other workers have 
assumed an equal ity between the mi nority carrier and majority carrier mobil ity, 
which has the convenience that the majority carrier mobility is perhaps 
adequately known from conventi onal measurements. In contrast, in the work 
ci ted above, we assumed only a near temperature independence of iJ. and LlEG ina 
small range of temperatures near 300 K. This leads to evidence that iJ. is about 
one order of magnitude smaller than the majority carrier mobility for 
concentrations of about 1020/cm3 in Si:As (Neugroschel and Lindholm, 1983). 
This contributes to the differences noted. Controversy about these issues 
exists, as evidenced by the communications exchanged between del Alamo and 
Swanson (1984) and Neugroschel and Lindholm (1984). 

Figure 11 compares our model predictions (Eq. 5.3.4) with the recent 5 K 
photoluminescence and photoluminescence excitation data of Wagner (1984). At 5 
K and for these doping concentrations, the effective masses for holes and 
electrons are unknown •. Thus we introduce the noncommital symbol m*/m for the 
effective mass ratio with the electron rest mass. For intrinsic silicon at 
5 K, the ratio is about 1.06 (electrons) and 0.59 (holes). Using the 
temperature dependence implicit in our model above! we find that best agreement 
with Wa!~ner's data occurs for m*/m = 0.45 (Fig. 11). 

3a6 Minority-Carrier Diffusivity and Mobility 

Ex.pl oiti ng temperature dependenci es, Neugroschel and Lindholm (1983) have 
present.ed evi dence, as noted above, for a much lower mi nority-carri er mobil ity 
and diffusi vity than that assumed previ ously. They obtai ned these results for 
Si :As having a doping concentration of about 1020/cm3, for which a customary 
Fermi integral of order one-half was assumed to describe the majority 
electrons. This fixes the electron quasi-Fermi level approximately 100 meV in 
the conduction band above the band edge. In a simple physical picture advanced 
to explain these results, Neugroschel and Lindholm supposed the trapping of 
minority carriers at the bound states of band tails (or at acceptor states in 
the compensated n+ silicon). Holes while trapped do not contribute to current 
of the hole Boltzmann gas. Thus for this mechanism to enter significantly, the 
characteristic time for thermal emission of a hole from a shallow bound state 
must be of the same order as the scattering time of holes within the valence 
band. Although band tails appear near both conduction and valence-band edges, 
trapping of the majority electrons is a negligible mechanism because the 
electrons contributing to curent lie near the Fermi level, about 100 meV away 
from the nearest band tail state. An illustration of the pertinent hole 
trapping appears in Fig. 12. 

- 380 



3.7 Trapping Model 

To explore this mechanism from a theoretical viewpoint, it is useful to 
generalize the Boltzmann equation to include band-bound transitions. This 
generalization, discussed, for example, by Smith, Janak, and Adler (1967) and 
worked out in detail by Sah and Lindholm (1973), involves approximating 'the 
collision integral~ for small departures from equilibrium, by the sum of two 
terms of the form, (f - fo)/'t;{relaxation). This first term is the customary 
relaxation time approximation for the nonequilibrium distribution function f in 
which .. (scattering) = .. (relaxation) is the scattering time that characterizes 
intraband transitions. In the second term, .. (trapping) instead appears, which 
characterizes the mean trapping time of holes for localized states near the 
valence-band edge. Thus .. (trapping) enters into the description of the hole 
current and of f.l(holes), as described by Sah and Lindholm (1973). In 
principle, this enables detailed investigations of the trapping model and of 
the bound states of the minority-carrier band tails. 

3.7 Other Parameters 

Besides the functional dependencies of the energy-gap narrowi ng and the 
minority-carrier mobilities and diffusivities, emphasized in the preceding 
discussions, other par?meters important for solar-cell analysis and design 
remain uncertain for silicon having donor or acceptor atom concentrations in 
the moderately high and high ranges. We point to the absorption coefficient 
a(A), which has importance not only for the obvious reason of detailed 
calculation of photogeneration in the emitter or front layer. It also has 
importance in schemes for measuring other parameters. We have not touched on 
the lifetime in the volume of the heavily doped emitter and have referred only 
tangentially to the front surface recombination velocity. This is intentional, 
based on the assumption that other authors in the JPL Research Forum will focus 
on parameters relating to these mechanisms. In an extensive recent review of 
electri cal current and carri er density in degenerate semi conductors, Marshak 
and van Vliet (1984) have emphasized the need for better knowledge of such 
parameters as the effective masses, dielectric permittivity E, and electron 
affinity x. He agree with their assessment, and refer the reader to thei r 
paper for details. 

4. MlDERATE CONCENTRATIONS 

For impurity concentrations approximately ~ 1Q18/cm3, the metal-insulator 
transition impl ies that the majority-carrier quantum density of states will 
differ sharply from the standard dependence. This occurs partly because of the 
exi stence of impurity bands, accordi ng to the theory that interprets thi s 
transition. 

Thus many aspects of the physical electronics become more difficult and 
less precise. 
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4.1 Fenmi level Saturation and Consequences 

The severe wa rpi ng of the quantum dens i ty of states from the ri gi d-band 
model (parabolic band) results in far less penetration of the Fermi level into 
the majority carrier band as the doping concentration increases. Indeed for a 
range of doping concentrations one may anticipate that the Fermi level nea"rly 
saturates. This leads to (a) a smaller energy-gap narrowing than 
interpretation of data on emitter recombination current by the rigid-band model 
would imply, a.nd (b) a stronger quasi-field on the holes (minority carriers) 
that drifts holes toward the surface. This in turn yields a stronger 
dependence of emitter recombination current (and open-circuit voltage if 
emitter recombination current (and open-circuit voltage if emitter 
recombination current is important in a cell design on the front surface 
recombination velocity. 

Figure 13 illustrates result (b) for a concentration of free electrons 
decreases in the n+ silicon with x from its value at the surface (x=O). 

4.2 Einstein Relation for the Majority carriers 

In its simplest derivation, the Einstein relation for OIl! derives from 
detailed balance between drift and diffusion tendencies in thermal 
equilibrium. Diffusion "depends on the gradient of chemical potential, which is 
related to the kinetic pressure. The kinetic pressure of a Fermi gas having a 
non-standard band differs considerably from that for a standard band. Thus so 
also does the Einstein relation differ from that pictured in Sec. 3.2. 

4.3 Einstein Relation for the Mjnority Carriers 

The mi nority carri ers are a Boltzmann gas, and the Ei nstei n rati 0 is 
standard: D/I! = kT/e. 

4.4 Unsolved Problems and Consequences for Computer Simulation 

These issues are treated in Sec. 5.3. 

5. BASIC EQUATIONS FOR SIMULATION 

The basic equations for analysis or for computer simulation follow from 
the foregoing discussion of the physics for high concentrations of impurities 
(Fermi gas for majority carriers). As the discussion has indicated, these 
equations involve approximations, especially for such parameters as energy-gap 
narrowing and the minority-carrier diffusivity and mobility. The approximation 
becomes more severe for the moderate range of dopings, between approximately 

. 1018 to 1019 per cm3, where impurity bandi ng warps the quantum density of 
states for majority carriers from its standard dependence on energy. Thus the 
position of the Fermi level and consequently the quasi field for the majority 
carriers and the temperature dependence of these variables become more 

• 
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uncertain than they aj'l~ f1r the· higher range of doping concentration. The 
• '. 1 

Einstein ratio for the majority carrier's, the energy-gap narrowing, and other 
quantum and transport paraemters also becomes less accurately known. 

5.1 I~ortance of Time Variations 

Although when delivering power a solar cell operates in the steady-state, 
time variations of the carrier concentrations, quasi-Fermi levels, potential, 
and particle current still have significance for several reasons. Fir:-st, for 
exampl e, many methods of measuri ng parameters such as 1 ifet ime 't i nvol ve either 
a transient or an exp(iwt} variation. As a second example, trapping of 
minority carriers at bound states in the band tails or at impurity states in 
compensated silicon may play a role in determining the minority-carrier 
diffusivity 0 and mobility~. As a third example, inclusion of the full set of 
the Maxwell equat ions among the bas i c equations, when combi ned with 
phenomenological parameters such as E, in principle yields reflection and 
transmission at the heavily doped surface. 

5.2 Conventional Equations 

In the absence of the effects i ndi cated in the precedi ng sections that 
make the physical electronics of heavily doped silicon differ from the phYSical 
electronics of dilute silicon, the conventional equations are: 

'on/ot = div(jN/-e } - Rn + g(external) (5.2.1) 

op/ot = div(jp/e} - Rp + g(external} {5.2.2} 

j = 
N e~nE + eOngrad(n} (5.2.3) 

= -e~Nn grad (v N) (5.2.3a) 

jp = e~pE - eO p grad(p} (5.2.4) 

= -e~pp grad(v p} (5.2.4a) 

div(O} = p (5.2.5) 

= e(p - n + NO~ - NAA} (5.2.5a) 

j = j N + j P + aD/at (5.2.6) 

If recombi nat ion domi nates, the. remova 1 rates, Rn and Rp become equal. For 
electrons and holes from quasineutral regions, this equality defines the 
1 i fetime 't: (R -+- M/'t). 

A seventh equation will describe, for the steady state, some assumed model 
for the recombination rate and hence the lifetime 'to Sah (1977) has expressed 
this equation in its most general form to unify impact-Auger, Shockley-Read-
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Hall and othe.r mechanisms. For greater generality, the kinetic rate equation 
for the time variation of particle density on traps (Sah 1971) supplements the 
equation of the steady state recombination rate. This then provides a 
quantitative characterization of the minority carrier diffusivity D and 
mobil i ty IJ. when the trappi ng rate at bound states becomes comparabl e to .the 
scattering rate within the minority carrier band (Sah and Lindholm, 1973), as 
discussed earlier. This equation, or equations, not given explicitly here, is 
numbered (5.2.7). 

To these seven equations are added auxiliary relations to enable or aid 
solution. 

di v(j + cO/ct} = 0 (5.2.8) 

E = -grad(V} (5.2.9) 

E = O/e: (5.2.10) 

n/n. = exp(v' 
1 

v' ) N (5.2.l1) 

p/n. = exp(vp - v' } (5.2.12) 
1 

diffusivity/mobility = kT/e (5.2.13) 

Here the primes denote normalization by the thermal voltage kT/e to yield a 
dimensionless variable. Eq. (5.2.8) assures the position independence of the 
total current, which becomes the position independence of convection current j 
for the steady state and j * f(x) in a one-dimensional model. This relation 
simplifies analysis. Maxwell's other three equations are added, but not shown, 
for reasons given directly above. 

We omit detailed discussion of the lifetime ~ for heavily doped silicon, 
assuming that other authors in this Research Forum will provide this. 

5.2.1 Counting 

To' assess the possibility of solution, we now count unknowns and 
equations. The first two equations, (5.2.1) and (5.2.2), the continuity 
equations for holes and electrons, introduce four unknowns: the electron and 
hole densities and current densities. The optical excitation determines the 
generation rate through a relation of the form, 

g(external} a !exp[-a(A)x]dA (5.2.14) 

where the constant of proportionality depends on the fraction of the sunlight 
transmitted past the surface into the volume of the solar cell. For a given 
solar-cell design, g(external} is assumed known. 
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If we deal with the current densities as expressed in terms of drift and 
diffusion components, we introduce one more. unknown: the electric field E(x) :: 
-grad[v(x)]. Assuming E is known in (5.2.10), (5.2.5a) then becomes Poisson1s 
equation for v(x), the fifth equation in five unknowns. 

If we deal with the electron and hole currents expressed in terms of the 
gradient of their quasi-Fermi potentials, we have as unknowns, in the two 
current density and two continuity equations, the following: the hole and 
electron densities, and the hole and electron quasi-Fermi potentials,. and the 
hole and electron current densities. This gives six unknowns in four 
equations. But (5.2.11) and (5.2.12) introduce only a single additional 
unknown, v(x), the electric potential. Thus adding Poisson1s equation, from 
combining (5.2.5a), (5.2.9) and (5.2.10), yields in principle a solvable set of 
equations. 

The equations are nonlinear. To illustrate this, note that the product of 
nand grad(-v(x)) appears in the equation for the electron current density. 
But n and v are related through (5.2.5) when put in the form of Poisson1s 
equation. Assuming analytic functions, one can express this relation by a 
Taylor series. Thus the equation for electron density involves a sum in which 

234 5 n, n , n , n ,n ••• appear. 

Because of nonlinearity, solution of the basic equations requires either 
approximations for special cases that yield analytic solutions or numerical 
solutions of the finite-difference or finite-element counterparts of the basic 
equations. 

5.2.2 Remark on Quasi-Fenmi Potentials or Levels 

Solar cells must contain ohmic contacts to enable power delivery. An 
ohmic contact is a union between metal and semiconductor that allows electrons 
and holes to flow freely between the metal and the semiconductor. Hence, at 
the contact, electrons and holes can neither accumulate or become .depleted, 
their densities stay at equilibrium values (assumed known), ·and the hole and 
electron quasi-Fermi levels converge to the Fermi level F.' This impl ies that 
at an ohmic contact the merged quasi-Fermi levels in the semiconductor join the 
Fermi level in the metal without discontinuity. But the Fermi level at any 
pOint in a metal is the electric potential at that point. Thus the potential 
difference between two ohmic contacts in a solar cell or any semiconductor 
devi ce equals the difference between the merged quas i-Fermi 1 eve 1 sin the 
semiconductor at the two contacts. 

As a result, a potential difference in an external circuit causes an equal 
potl~ntt.A~ difference in the quasi-Fermi levels at the two contacts. Hence use 
of tne" quasi-Fermi level description of hole and electron currents allows a 
simple introduction of the boundary conditions on electric potential. The 
alternate description in tenns of drift and diffusion ccmponents requires 
sati:sfaction of the boundary conditions on potential by setting a line integral 
of the electric field through the semiconductor equal to the potential 
difference appearing at the terminals. 
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Advantages thus apparently resul t for numeri cal simul at i on. Moreover a 
preference for description in terms of quasi-Fermi levels enables a 
straightforward introduction of trapped particles at bound states in the 
forbidden gap. This is done by use of quasi-Fermi levels (or occupancy 
probabilities) for each of the bound states. If then one restricts attention 
first to variations in the potentials at the terminals and hence to variations 
in the quasi-Fermi potentials within the volume of the semiconductor device 
that are much smaller than the thermal voltage kT/e, the set of basic equations 
become linear. To these linear equations corresponds a electric circuit 
representation. That circuit representation often can be simplified by using 
the theory of electric circuits; for example, Y to /::,. transformations can yield 
simplifications. Thus numerical solution of the finite difference equations 
becomes easier. To obtain solutions to the nonlinear equations, one simply 
adds the consequences of successive small-signal responses to potentials small 
relative to kT/e. 

Sah has advanced and utilized computer algorithms related to those just 
described; for example, see Sah (1971) and Sah, et al. (1981). 

5.3 Modified Basic Equations 

We now consider the modifications needed to include the phenomena occuring 
in highly doped silicon treated in the foregoing sections. The reader may 
refer to Sec. 5.2 on the conventional basic equations, which we now modify. 

The continuity equations remain intact; they serve the bookkeeping purpose 
of summing all contributors to changes in particle density with time. 

Because carriers at the mobility edge have only potential energy, we see 
that the electric field E governing the drift component of the majority-carrier 
current becomes grad[mobility edge/-e]. This is the same relation prevailing 
in the convent i oan 1 equations except that the mobil i ty edge has replaced the 
band edge. If we take n+ material for concreteness of discussion 

E + -grad[Ec/ -e] (5.3.1) 

where 

grad[EC/-e] = grad(v) + grad( xl - e) (5.3.2) 

as in Sah and Lindholm (1977) and Marshak and van Vliet (1984). 

Typically majority carrier concentrations will be perturbed only slightly 
in nonequilibrium; that is, the low-injection condition will prevail. Thus we 
anti ci pate a near pos ition independence of the majority-carrier quasi -Fermi 
level, and we anticipate that the energy separating this quasi-Fermi level from 
the mobility edge for the majority-carrier band will remain as in equilibrium, 
to a good approximation. Thus the left side of (5.3.2) will be determined; the 
right side will become unimportant to the majority-carrier drift component. 
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For a Fermi gas (parabolic band), the diffusion component of the majority 
carriers remains intact; the D/IJ. ratio reflects the Fermi statistics, as 
discussed in Sec. 3.2. For a moderately doped region, we have emphasized the 
warping of the quantum density of states, in accord with the metal-insulator 
transition. The diffusion current then depends on the random force (Prigogi.ne, 
1980) or ki netic pressure appropri ate to thi s quantum density of states. To 
dccount for this the diffusion component of the majority carrier current, a 
term involving a gradient in addition to the gradient of n appears (Marshak and 
van Vliet, 1984). 

We note that these complications concerning the majority-carrier diffusion 
current vanish if one deals with (S.2.3a) in which this current is simply the 
electron conductivity times the gradient of the electron quasi-Fermi potential 
(electrochemical potential). The electrochemical potential is a basic 
thermodynamic variable whose gr'adient is linear in the particle current except 
for large deviations from equilibrium. The vanishing of the complications 
referred to is only apparent, however, because they will reappear in the 
relation between the quasi-Fermi levels and the particle densities, as we shall 
soon see. 

Equation (S.3.1), for the majority carriers, relates to the drift 
component of hole current (minority current) through 

grad[EV/-e] = grad[EG/-e] - grad[Ec/-e] (5.3.3) 

The product of this gradient (left side) times the hole conductivity determines 
the hole drift current (minority-carrier drift current) in terms of the 
gradient of the majority-carrier mobility edge (known through Eq. (S.3.1)) and 
the energy gap dependence, assumed known through the model of Sec. 3.S or 
through experimental determination. 

If we assume that the band tails of the minority-carrier band are mainly 
bound. states, the hole (minority-carrier) current is the conventional sum of 
drift and diffusion components, with D/IJ. = kT/e, for a Boltzmann gas. 

Thus the conventional description for the minority-carrier current 
survives except that the gradient of the quasi-field, influenced by the 
gradient of the energy gap, replaces the conventional electric field. This 
replacement has key importance, as we have emphasized earlier. But the 
survival of a simple description of the minority-carrier current permits, for 
the quasi-neutral emitter, many approximations that give simple relations for 
the quasineutral emitter recombination current. Examples· include the 
transparent-emi tter model of Shi bi b, Li ndholm, and Therez (1979) extended by 
del Alamo and Swanson (1984), the field-free model introduced by Fossum, 
lindholm, and Shibib (1979), etc. 
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5.3.1 Modifications for Computer Solution 

Having just discussed anlaytic solutions for the qusineutral regions, we 
now turn attent i on agai n to contact-to-contact computer sol uti on by fi nite
difference or equivalent formulations of the basic equations. 

Consider Poisson's equation, resulting from combining (5.2.5a) with 
(5.2.9) and (5.2.10). The key issue becomes the relation of potential v(x) to 
n(x)and p(x) in view of (5.3.2). Consideration tllat p and n are proportional 
to integrals of the form, f[QoS(E)](probabilfty~E,QFL)]dE, will show an 
asymmetry in the expressions for nand p not present in the standard relations 
(5.2.11) and (5.2.12). This occurs because the probability function in the 
integral will be Fermi-Dirac form for electrons (majority carriers) and 
Boltzmann form for holes, and because the QoS may contain the effects of 
impurity banding for the electrons but not for the holes. In principle, 
knowledge of the QoS for both bands will permit replacing the standard relation 
by 

(5.3.1.1) 

p = B f*[v p - (Ev(-e)] (5.3.1.2) 

These are the most general re"lations. If we assume that the bandtail states of 
the minority band are localized, f* becomes an expontial function and B becomes 
the standard density of states for the val ence band. If, for highly doped 
semiconductors, we assume impurity-banding effects are negligible, f becomes 
the Fermi integral of order one-half and A becomes the standard density of 
states for the conduction band (we allow for a deviation of the effective mass 
from its standard value). Otherwise f, f*, A, and B become determined by the 
integral indicated above, and are known only if QoS is known. 

To these two equations, \fie add sev.en more to yield ten equations in ten 
unknowns, suitable for finite-difference, contact-to-contact computer solution: 

on/ct = -div(jN/-e) - R(n,p) + g(external) 

cp/ct = -div(jp/e) - R(n,p) + g(external) 

jN = -elJ.nn grad(v N) 

jp = -elJ.p P grad(v p) 

riv = -(e/e:)[p - n + NO~ - NAA t ~ trapped particles] 

Ec - Ev = EG ' grad(Ec) - grad(Ev) = grad(EG) 

grad(Ec/-e) = grady + grad( x/-e) 

j = jN+ jp + cO/ct , 0 = e:E , E = -grad(v) 
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(5.3.1.4) 

(5.3.1.5) 

(5.3.1.6) 

(5.3.1.7) 

(5.3.1.8) 

(5.3.1.9) 

(5.3.1.10) 



These equations are basic for exact computer simulation. Apparently they 
have not appeared as the identified basic set before, though Marshak and van 
Vliet (1984) discuss many relevant issues. 

The equations requi re know1 edge of many parameters such as energy~gap 

narrowing, minority-carrier mobility, and charged bound states. The last of 
these will be most important near the metallurgical junction for low forward 
voltage. They require also knowledge of the position dependence of the 
electron affinity x(x), which apparently has received little attention, and of 
the quantum density of states of the majority-carrier band for moderately high 
concentrati ons (roughly rv lOIS /cm3) whi ch has received most attenti on for the 
metal-insulator transition at approximately 4K. 

Approximations simplify the basic equations for the quasi-neutral 
emitter. Just below (5.3.2) we noted that the gradient of the majority-carrier 
mobility edge is known, partly because of the position independence of the 
majority-carrier quasi -Fermi 1 evel • In the quasi -neutral emitter, low 
injection implies that the dependence of electric potential v(x) will remain to 
a good approximation as it was in equalibrium. Thus Poisson's equation and the 
resulting entry of x(x) can be ignored for the quasi neutral emitter. This 
simplified computer solution. This adds emphasis, however, to a need for 
precise determination of the edge of the quasi neutral emitter. 

6. AREAl INHlJ40GENEITY AND KJlTIDIMENSIONAl Fl()l 

Apparently all detailed analyses of the highly doped emitter of silicon 
solar cells are based on a one-dimensional model. But the emitter surface in 
the best solar cells will be a mixture of ohmic-contact metal (S rv 107 cm/s) 
and of a surface passivated over perhaps 95% of the area by thermal oxides or 
other methods that reduce the surface recombination velocity S there to orders 
of magnitude below 107 cm/s. 

At least two cases of relevance exist. If the emitter is doped in the 
moderately high doped range (rv101S/cm3) '~o avoid the so-called degrading heavy
doping effects, then the relatively long diffusion lengths in this region will 
lead to three-dimensional minority-carrier flow. The ohmic contact metal will 
so reduce the ,minority carrier density that large minority-carrier 
concentration gradients will exist. Even if the design includes an n//meta1 
contact system, partly with the motive of providing an n/n+ low/high junction 
to ward minority carriers away from the ohmic contact while permitting the 
majority carriers to pass by the usual dielectric relaxation mechanism, this 
will likely not work. Because of energy gap narrowing on the n+ side, no 
significant barrier in the energy band can exist at the n/n+ junction when the 
dopi ng concentrati on of the n side is of the order of lOIS /cm3• Thus three 
dimensi ona1 flow enters, and the open-ci rcuit voltage decreases as a 
consequence. 
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In the other case, the design includes n+ silicon over the great majority 
of the emitter volume. Then the diffusion length of minority carriers in the 
emitter wi 11 be short enough to admit estimates by neg1 ect i ng three- or two
dimensi ona1 flow. In the resulti ng model, one-dimensional flow prevail s. But 
over the 5% of the area covered by the ohmic contact the diode there will have 
a high reverse saturation current, r'esulting from vanishing of minority 
carriers at the surface. Over the remaining 95% of the area, the reverse 
saturation current will be much smaller because of the low S over that area. 
Thus, in good designs in which the recombination current of the quasi neutral 
base is small enough that the emitter enters significantly into determining the 
open-circuit voltage and the effiCiency, the importance of a relatively bad 
diode over 5% of the area becomes potentially important. 

Lindholm, Mazer, Davis and Arreola (1980) have considered this issue 
quantitati ve1y. The I'esult, for thei r type 1 areal inhomogeneity perti nent to 
this discussion, is that 5% of ohmic contact metal gives performances that 
nearly approaches that of a solar cell for which no thermal oxide is present to 
passivate the front surface. This is not seen experimentally. Perhaps the 
reaons for this lies in the quasi-fields and in the low D and !.l treated in 
earlier sections. Thus the work of Lindholm, etal. (1980) needs updating to 
help toward informed design. This updating will help decide whether decreasing 
ohmic contact area can· lead to high efficiencies in already highly efficient 
silicon solar cells. 

Note that the issue here is not metal shading of the incident light. 
Rather it is the fraction of the surface area that is covered by ohmic contact. 

7. CONCLUSIONS AND RECOMMENDATIONS 

The main findings discussed here are: 
(a) The quantum density of states for moderately doped silicon (approximately 
in the range 5x1017 to 1Q19/cm3, deviates sharply from the standard quadratic 
dependence on kinetic energy. This can lead to pinning of the majority-carrier 
quasi -Fermi 1 eve1 and produce thereby, for a positi on-dependent impurity 
concentration, a quasi field on the minority carriers that drifts them toward 
the surface. The modeling of many pertinent variables in this moderate 
concentration range is incomplete, although other workers, particularly 
Slotboom and deGraaf (1975), have emphasized this doping range. The 
incompleteness results from the model they and others have used, which combined 
Boltzmann statistics with an implicit quadratic relation between the quantum 
density of band states and the free-carrier kinetic energy. The meta1-
insulator transition dramatically illustrates the inadequacy of this quantum 
density of states for moderate doping concentrations. As a potential benefit, 
note that the long and continuing interest in the metal-insulator transition, 
both experimental and theoretical, provides clues for the modeling of this 
range of moderate doping concentrations. 
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(b) For higher doping concentration, experimental evidence suggests the 
adequacy of describing the majority carriers by a Fermi gas, that is, by a 
Fermi integral of order one-half. This admits use of a majority-carrier 
screening model, which, though much less ambitious than the many-particle 
computations that have and are emerging, gives simple theoretical dependencies 
of 'energy-gap narrowing on impurity concentration and temperature. These 
dependencies agree favorably with the experimental results on energy-gap 
narrowi ng of several different groups of workers. Compared with the many
parti cle model, the carri er-screeni ng model has the vi rtues of simp1 i city and 
of yielding an analytic expression. This carrier-screening model in its 
earl iest form ((Sah, Chan, Wang, Sah, Yamakawa, and Lutwak) 1981) and in its 
more detailed form (Landsberg, Neugrosche1, Lindholm, and Sah, 1984) ,differs 
substantively from earlier carrier-screening models (Hauser, 1969), (Lanyon and 
Tuft, 1979). 

(c) The randomness of the atomi c potential cont ri buted by the assu,med 
random positioning of the impurity atoms leads to the formation of tails on 
both the conduction and valence bands. The characteristic time associated with 
trapping at localized states in the tail adjoining the minority-carrier band 
may involve a mechanism that contributes to low minority-carrier diffusivity 
and mobil i ty of the Boltzmann gas desc ri bi ng the mi nority carri ers. 
Experimental evidence 'exists to support this conclusion (Neugroschel and 
Lindholm, 1983), although contrary suggestions appear in the literature. 
Computer simul ati on of sol ar-ce1l performance regui res detail ed knowledge of 
Illi nority-carri er di ffusi vity and mobil ity just as much as it regui res such 
knowledge of the energy-gap narrowing. Moreover, experimental interpretation 
involving electrical response also requires such knowledge. 

(d) The optical absorption coefficient 0:(A.) in moderately and highly 
doped silicon is highly uncertain; apparently it is also uncertain for silicon 
having dilute doping concentrations. Because the absorption coeffient provides 
suggestions about the energy-momentum relation of heavily doped silicon, it has 
fundamental importance to the unravelling of the detailed transport and optical 
properties of the material. This use we view as more significant than is the 
moderate need for knowing 0:(A.) for detailed computer simulation of solar-cell 
performance parameters. 

(e) The results of simple models for a heavily doped region containing 
ohmic contacts mixed with thermal oxide suggests that the one-dimensional model 
convent i onally used may not" accurately predi ct the performance parameters of 
the emitter. reg.ion, parti cu1arly the open-ci rcuit voltage. Other sources of 
areal inhomogeneity also exist, such as impurity clustering ( •••• 1984). 

(f) The basic equations for computer simulation of solar cells containing 
heavily doped silicon require inclusion of all of the effects described 
above. Present computer programs are based on eguati ons that fall short of the 
status aimed for by this recommendation. Continual updating is needed as 
experiment and theory reveal more about the dependence of transport and quantum· 
parameters on doping concentration, chemical species, temperature, etc. The 
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most severe need exists at the moderately high doping concentrations defined 
above. There the conventional treatment as a Fermi or Boltzmann gas fails. 

(g) In their greatest generality, the basic equations for the simulation 
of solar-performance must include time variations. This need arises 
particularly because time variations of response exist in many measurements 
used to determine parameters. For greatest generality, one may add the 
Maxwell's equatiQns to 'the customary continuity and current equations. 
Maxwe ll' s equations admit the vi ew of 1 i ght as a wave' phenomenon; when combi ned 
with the phenomenological material paramaters normally introduced, reflection 
and transmissi.on results. (Absorption and the optical generation rate in the 
continuity equations involve, at least fundamentally, the particle model of 
light as incident photons ,that produce. quantum transitions between the bands or 
to bound states in the forbidden bands.) 

(h) The basic equations include a kinetic equation of the time-rate 
change of occupancy at a bound state re~ulting from transitions from band 
states. This kinetic equation, emphasized by Sah (1971), is absent in most 
formulations of the basic equations for computer simulation. It enters 
markedly into such issues as the detai 1 ed model i ng of mi nority-carri'E!r mobil ity 
and diffusivity, discussed above. For the steady state inclusion of trap 
occupancy in the Poisson equation is highly important near the metallurgical 
pin junction, where the donor and acceptor dopant ~oncentrations nearly cancel 
(u'ndholm and Sah, 1977). It is im,portant al so for' work aimi ng toward high 
conversion efficiency using relatively thi'n and inexpensive silicon, such as 
th~t deriving from the WEB proc~ss. Most computer programs neglect the 
trapping mechnaism" even in the steady state. the notable exception appears to 
be the computer simul ations of Sah and co-workers (1981). 

(i) The rec~nt work' of Neugroschel and Li ndholm (1983) on low mobil ity 
and diffusivity of minority carriers 'in Si:As of doping concentration about 
~o~o Icm3 suggests a novel method of pr'otect i on from surface recombi nat i on at 
both the front and back surfaces. These arise from the possibility of 
significant gradients in minority-carrier 0 and ~ provoked by very highly doped 
silicon (""1021 /cm3 or above) in thin layers (.....sOO A or less) near the 
surfaces. The. work now evolving in non-equilibrium growth following,eximer 
laser radiation (and melting) may provide a method of sealing the surfaces 
against minority-carrier loss. This sealing mi~ht occur despite the large 
impact Auger recombination rates in such' n++ or "p'+ siUcon. Experiment will 
decide this. The issue is the inhibiting 'of flow by the gradients of 0 and ~ 
versus the oppos i ng effects, of energy-gap narrowi ng and Auger recombi nat ion. 

" As one aspect of ttre issue, we may expect that the Auger recombination,' if 
Dand-band, wlll have a rate that is prQP~ortiona1 to n2 (for n-type material) 
whereas the gradients in minority-carrier 0 and ~ may have sufficient strength 
to offset this 'n2 dependence by warding minority carriers away from the volume 
of the n++' region. We note tha't nothing is known of the physical electronics 
of n++ or p++ silicon, as defined above. Essenti,ally no, detailed experimental 
data are available about tile physical ,e1ectronics,and the model for enf'rgy-gap 
narrowing of Sec. 3.5 does not apply for cpncentrations greater than about 5 x 
1Q201cm3, according to Landsberg, et al.(1984J. 
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(j) From the discussion in Sec. 5.3.1, it follows that apparently the 
formulation of the basic equations for finite-differenct computer solutions 
from contact to contact remains far from complete. By this we mean to suggest· 
that apparently computer programs now developed cannot accomodate important 
aspects of heavily doped silicon that physical theory and experimental studies 
have identified and in the future may yield values of relevant parameters. 
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9. FIGlME CAPTIONS 

Fig. 1 Overlapping impurity states give rise to 

Fig. 2 impurity band in the energy gap. 

Fig. 3 The resistivity p in Q cm at 4'2K of Si:P plotted as. a function of 
donor concentration (Alexander and Holcomb, 1968). 

Fig. 4 Density of states for an electron in an n-type semiconductor showing 
the splitting of the impurity band into the E3 band (a), and the E2 
band (b). (c) is the conduction band. 

Fig. 5 Illustrating that grad(Ev '" grad(Ec) in the n+ emitter. The 
conduction- and valence-band edges, EC(x) and EV(x), are mobility 
edges, the boundaries between localized and delocalized states; EG(x) 
is the mobility gap where disorder exists. 

Fig. 6 

Fi g. 7 

Fi g. 8 

Fi g. 9 

Fi g. 10 

Fi g. 11 

Fi g. 12 

The Einstein diffusivity-to-mobility ratio for majority carriers, 
under the assumption of a square root dependence of the quantum 
density of states on the majority carrier kinetic energy. 

The equilibrium product of the hole concentration P and the electron 
concentration N normalized by the standard square of the intrinsic 
concent rat i on as a funct i on of the reduced Fermi 1 eve 1, under the 
constraints of no energy gap narrowing and a square root dependence of 
the quantum density of states on the majority carrier kinetic energy. 
The increasing values on the abscissa correspond to increasing dopant 
con cent rat ion. 

Not present in manuscript (because of oversight). 

Schemat i c di agram showi n9 the decompos i t i on of the band-gap energy 
into Wand the work done against attraction. More carriers are 
assumed present for curve 1 than for curve 2. 

Gap shri nkage t.EG as inferred from transport measurements for n-type 
1 ayers from vari ous sources at a mean temperature of ~ 340 K. The 
upper curve is for m*/m = 1.45, the lower curve is for m*/m = 1.10, 
and E = 11.7 (Si) has also been used. The horizontal axis is the 
majority carrier concentration. 

Comparision with recent optical data at 5 K. 

Qualitative illustration of the band edges of heavily doped 
n+-si1icon. The broken lines show the unperturbed parabolic bands. 
The positions of both the electron and hole quasi-Fermi levels is also 
indicated. The arrows near EV indicate hole capture and emission by 
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the tail states and by the acceptor level from the p-type substrates. 
The penegration of the tail states into the forbidden gap is assumc~d 

to be very small in comparison with the bandgap EG = EC - EV. 

Fig. 13 The band edges for the n+ silicon in which the donor dopant 
concentration decreases sharply with x (x = 0 is the surface): , 
band edges corresponding to the rigid band model (these illustrate a 
deep penetration of the Fermi level and a modest force field (nearly 
zero) acting on the holes); , band edges co.rresponding to a 
majority carrier quantum density of states warped relative to that of 
the rigid band model (these illustrate Fermi level saturation and a 
consequent strong force field drifting holes toward the surface). 
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DISCUSSION 

QUESTION: Fred, I just have a couple of simple questions. You talk about the 
definition of the ohmic contact. Have we seen any such ohmic contacts? 

LINDHOLM: Yes, I think in Martin Green's cell contact, the tunneling junction 
has a hetrojunction such that there is a blocking barrier for the holes 
in the end-type material, yet the electrons tunnel freely into the con
duction band of the metal. That would be one example. Another place 
I might just mention a very good book on contacts, which is called 
Photoconductivity and Allied Problems, by Albert Rose, is very good, 
because it is so thin. I think we should think a lot about contacts. 

QUESTION: Some 30 years ago, when the effort was solving t~~ junction equa
tions, I worked with a mathematical physicist named Pau: Wise. His 
opinion, unshakably, 'was that the quasi-Fermi level was a mathematical 
artifact. In other words, if your carrier concentrations were constant 
then you could say, yes, quasi-Fermi level was constant; if they weren't, 
they werentt. Rather than give a physical significance and work from 
there, he insisted that you just can't use it. I haven't followed the 
literature since then. I'm wondering if he is wrong? 

LINDHOLM: Yes, he is completely wrong. The electrochemical potentials are 
basic thermodynamic variables. This question was asked of Peter Landsberg 
in a heavy-doping workshop some time ago, and I remember his answer. The 
electric potential we all know about; if you look in any book on the 
theory of beat or thermodynamics you'll find the chemical potential. And 
it's the algebraic sum of the two. So there's no problem, except with 
your friend. Oldwig (von Roos) said only in local thermal equilibrium, 
and it is true that the linearity between the current and the gradient 
and the quasi-Fermi level will not work if you have extraordinary varia
tions in the quasi-Fermi level, but that's not surprising, because 
linearity -- as we know -- only applies for small perturbations, anyway. 
On the other hand, small perturbations can be very large currents of the 
sort we get with 1,000 suns with no problem at all. 

SCHMIDT: You still believe in the rigid band approximation? 

LINDHOLM: No, I don't. Only for doping concentrations above, say, 5 x 1019 
to 1020 it is pretty good. Except the band edges on the minority 
carrier bands would be important there, even for the high doping 
concentration~. 

SCHMIDT: You mentioned a variable electron affinity and if it affects the 
forces acting on carriers. Now the electron affinity is very little 
known, so that's a problem. However, I found some time ago that if you 
have lOW-level injection conditions and you have a variable chemical 
composition or .doping or other facts, then the force on minority carrier 
is strictly the gradient of the band gap. Plus, of course, the potential 
force. 
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LINDHOLM: That is absolutely correct. 

SCHMIDT: So there is no influence of the electron affinity? 

LINDHOLM: This is absolutely true in low injection, and other workers have 
found that also and have published it. However, the low injection impli~s 
that you have a minority carrier, and that implies that you are in a 
quasi-neutral region. So when you get out of a quasi-neutral region and 
get into what people call a depletion region -- which I don't lii~ to 
call it, I like to call it junction-transition region or space-charge 
region -- then if the gradient in the electron affinity is present, then 
it will introduce an effect. I can discuss that with you with this very 
simple picture. You probably know that anyway. 

SCHMIDT: With this background, I like the way you deduced your points and you 
came to some conclusions. And just to make a test of it, my question is: 
do you question the present ideas about the Auger recombination corre
lated with the concentrations of certain dopants? Because, for a practi
cal person, this is an extremely important thing. We had not been sure 
up to now: the correlations that you often had seen, up to the present 
time, of carrier concentrations or doping concentrations and the boundary 
of Auger recombination seem to be, let's call it, rigid. Do you think, 
from your point of view no~. that that can be questioned? 

LINDHOLM: Yes. I'm heavily opinionated on this issue also. My opinion is 
that the Auger coefficients are open to question. Since there has been a 
single experiment done at rather high doping concentration, and some of 
these other things I have talked about could influence these things. I 
would say on a theoretical level that the primary person who has worked 
on the theory of those Auger combinations is Peter Landsberg. And his 
physics is impeccable, but it involves many, manyapproximati<cms. So he 
can only give us an estimate. So we will have to find the results from 
experiment, and I think it's an open question. Mainly when people talk 
about Auger recombination, they think about band-to-band Auger recombina
tion but, as you know -- you have pointed out in your talks -- there are 
many recombination states in a diffused junction and, therefore, the 
Auger process may be extremely important, and that should not be over
looked. And that is only estimated, as far as I know, from a theoretical 
viewpoint, and by Peter Landsberg and Robbins first. You bring attention 
to a very important point. 

SCHMIDT: 
body 
tant 
good 

I think you may have sensed why I asked you that question. 'For some
who is responsible to prepare semiconductors, it is extremely impor
to know what kind of doping level could be tolerated and still make 
solar cells. 

LINDHOLM: That' s fill excellent point. The band-to-band Auger process gives you 
an ultimate upper bound. For higher doping concentrations, certainly the 
band-to-band Auger recombination gives you an upper bound. That needs to 
be looked at carefully, and experimentally, again. 

SCHMIDT: Do you think that the situation may be changing again in case you 
have a highly counter-doped material? 

LINDHOLM: Could be. 
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