General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

» Rl L i~ g o Jhdidddiedo st b bdinedan Ly o A

(.“ R L R 0 S

Al SG - 7506

UNIVERSITY OF ILLINOIS
UREBANA

AERONOMY REPORT
NO. 115

FORTH SYSTEM FOR COHERENT-SCATTER
RADAR DATA ACQUISITION AND PRO

by
A. D. Rennier
S. A. Bowhill

February 1, 1985

Library of Congress ISSN 0568-0381

E CE5 i SYSTEM FUE
NASA-CE-176(%5) FORTH 5YE LI
écnsaxn1-scs115» EALMF L[ATA ACLUISITION ANL

N85-3172)

PEOCESSING (Lllimcis bLriv.) =€ ¥ CsCT OuA Juclas
HC AUS/MF Aul G3/4€ <JuYlo
Aeronomy Laboratory
Department of Electrical and Coinputer Engineering
Supported by University of Illinois
National Aeronautics and Space Administration Urbana, [linois

»e

O,

UILU-ENG~-85-2501

AERONOMY REPORT

N 0. 115

FORTH SYSTEM FOR COHERENT-SCATTER

RADAR DATA ACQUISITIGN AND PROCESSING

by

A. D. Rennier
S. A. Bowhill

February 1, 1985

Aeronomy Laboratory

Supported by Department of Electrical and
National Acronautics Computer Engineering
and Space Administration University of Illinois
Grant NSG 7506 S Urbana, Illinois

e i i '
o~

W

2 s i SO TEES ML T T IR T R R

iii

ABSTRACT
A real-time collection system was developed for the Urbana coherent-
gcatter radar system. The new system, designed for use with a micro-
computer, has several advantages over the cld system implemented with a
minicomputer. This work describes the software used to collect the data as
well as the processing software used to analyze the data. In addition a

magnetic tape format for coherent-scatter data exchange is given.

PRICELING PACE BLANK NOT FILMED

s el i g (
-

o

WP

j
i
i
2

TRICH e RN TR 0 e DT s SN
wlh b e b . g e

TABLE OF CONTENTS

ABSTRACT . . . & ¢ 4 & ¢« o o o o o o
TABLE OF CONTENTS. . v + « &« o « o o «
LIST OF TABLES ., . . ¢ « v ¢ o ¢ o s «
LIST OF FIGURES. . . . « & & « &« & + &
1. INTRODUCTION. . . 4 & v o o & « o &

1.1 Coherent Scatter Technique. . .

1.2 Urbana System « + « v « o« « o &

1.3 Background to Statement of the Problem.

1.4 Statement of Problem.

2 .COHERENT-SCATTER COLLECTION SYSTEM .
2.1 Functicnal Description.
. Introduction. « « « « « « &

2.1.1
2.1.2 Interrupt Processing. . . .
2.1.3 Background Processing . . .

2.2 Technical Description

2.3 Modifications . . + . .«

3. COHERENT-SCATTER ANALYSIS PROGRAM .
3.1 Previous Program. . « « « « « &
3.2 System Limitations.
3.3 Modifications . . « & « « & o &

3.4 The New Analysis Program. . . .

4. COHERENT-SCATTER DATA ON MAGNETIC TAPE.

4.1 Introduction.
4.2 Format of Tape Files.
4.3 Reformatting Disk Text Files. .

4.4 Transfer of Text Files to Cyber

mf.lL/_nm.‘_

CRECEDING

PAGE BLANK NOT

-

R =l S A L

Page

. . . iii

P |
N |
A |
P

-
A
e oo 5
I
|
... 10
. o . 32
B 1
N 11
e s+ o 38
e o . 40
) |
« o . G4
. .. b4
e o« o 46
Y
Y

e B Th S SO N

vi

TABLE OF CONTENTS (cont.

4.5 Reading and Writingz Magnetic Tapec. . . .

l}¢6 ltaking Copies e e ® ¢ e s ® & & & ¢ s & 0

5. DISCUSSIONS AND SUGGESTIONS FOR FUTURE WORK .,

APFENDIX A,
APPENDIX B,
APPENDIX C,
APPENDIX D,
APPENDIX E,
APPENDIX F,
APPENDIX G,

REFERENCES

Listing of the Collection Program. .

)

Screens from Previous Collection Program

Listing of ANALG ., . . . « o ¢ ¢ o « » =

Listing of CONVERT84.1
Liscing of Analysis Program.
Header File: April 1978,
Listing of Reformatting Program. . .

e ® e & & 6 6 ¢ e * s e o & & s o o

Page

. 48

vii
LIST OF TABLES
Page

Table 3.1 Format for binary data files. . . . « « « « « « + 35

Table 3.2 Format for text data files. 39

i BRN Y T RN

viii

N YT TR

N L
Te A

LIST OF FIGURES

Figure 2.1 Memory map for collection program buffers. .

Figure 2.2 Assembly code for INTERRUPT. « « . .

Figure 2.3 Timing diagram for data acquisition.

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Line-of-sight velocity at Urbana beginning at
1109 CST on October 18, 1984

Line-of-sight velocity at Urbana beginning at
1109 CST on October 18, 1984

Line-of-sight velocity at Urbana beginning at
1109 CST on October 18, 1984 .,

Correlation time at Urbana beginning at
1109 CST on October 18, 1984 . ,

Correlation time at Urbana beginning at
1109 CST on October 18, 1984

Correlation time at Urbana beginning at
1109 CST on October 18, 1984

Page

11

. 52

At b N

|

SRR 2 U e W A . e mm e S

— .

L

1. INTRODUCTION

1.1 Coherent Scatter Technique

Winds and waves in the upper atmosphere can be observed through the
use of radar. As a VHF pulse propagates through the atmosphere it en-
counters discontinuities in refractive index thought to be caused by winds
and waves, Part of its energy is then reflected back to the ground, and is
detected by a ground-based anteana and receiver. The altitude of the dis-
continuity can be dctermined from the time elapsed between transmission and
reception of the signal. By examining the returned signal it is also pos-
sible to determine sume propexties of the discontinuity that caused the
signal to return. For example, I’ measuring the power in the returned
signal the strength of the discontinuity can be determined; and by com-
paring tke frequency of the returned signal with that of the transmitted
signal a Doppler frequency can be measured. This Doppler frequency is
proportional to the line—~of~sight velocity of the discontinuity. By
monitoring the returned signal over a period of time, it can be determined
how fast the discontinuity is changing, since the rate of change is in- -
versely proportional to the correlation time of the signal.

1.2 Urbana System

For a complete description of the Urbana system see Gibbs and Bowhill
(1983). A brief summary of the Urbana system is given here.

At Urbana the coherent scatter technique is used to determine the
power, velocity and correlation time of the signals returned from the atmo-
sphere. The system used consists of a transmitter and receiver both con-
nected to a phased anterna array via a T/R (transmit/receive) switch. The

transmitter sends a 40.92 MHz, 10-microsec pulse into the atmosphere every

S RRE S Rk RTE

R BE

2.5 millisec. After a pulse the antenna is switched over to the receiver
so that the recurned signal can be monitored. The received signal is
coherently detected; that is, it is resolved intc its real and imaginary
parts in the receiver. This is done by multiplying the returned signal by
the transmitted signal (real) and by the transmitted signal shifted by 90
degrees (imaginary). These two signals are then fed into an interface with
two sample and hold circuits. The signals are converted to digital form
every 10 microsec giving an altitude resolution of 1.5 km in the atmo-
sphere. The microcomputer is then used to collect and integrate the data
into 1/8 sec samples., The 1/8 sec samples are then used to calculate
information for an autocovariance function., This information is then
averaged for one minute and stored on disk. One hour of data may be stored
on one side of a floppy disk. The disks are then later analyzed to
determine the one-minute averages of the power, velocity and correlation
time of the data.

The power is calculated from the zeroth lag of the autocovariance

function.
400
RR(0) = I IRil
/ 2 2 i=1
Power = 20 Log10 2RR(0) + 2117(0)
400
I1(0) = ¢ |11|
i=1

The velocity is determined from the real and imaginary components

of the autocovariance function (Bowhill 1983).

imaginary component
. A =
Velocity '-7£ﬁ}l wr = Arctan (real component)
A = wavelength
T = time between samples (1/4 or 1/8 sec)

Note that the arithmetic rather than the geometric mean is used in the
calculstion of the real compenent.

The correlation time is the time required for the magnitude of the
autocovariance to fall to 1/2 its velue at time equal zero. Assuming that
the magnitude of the autocovariance function is Gaussian the correlation

time is given by

K = constant tl = 1/8 sec
272
— —t ‘r o
- Py = Pge 1 t, = 1/4 sec
Correlation time = k e,) 2 2
VAR Vi) s emty/T
P2 = Pp

T = correlation time

The one minute averages «f the power, velocity and correlation time
are stored in the Apple text files cn floppy disks. These text fiies are
plotted and may be transferred to magnetic tape if other users request the
data,

1.3 Background to Statement cf the Problem

Previously at Urbana a PDP-15 minicomputer was used to collect
coherent scatter data. With the advent of microcomputers it became pos-
sible to configure a8 smaller system with the same capabilities as the PDP-
15. To this end a collection program was written in FORTH for the Apple
microcomputer. The new system had several advantages over the old. 1) The
Apple was more convenient tc use than the PDP-15. 2) The Apple utilized
floppy disks rather than magnetic tapes for its mass storage. 3) The
Apple had directly addressable screen memory, enabling a real-time display
to be updated 8 times a second., Aside from these advantages the Apple had

one drawback. The Apple is equipped with a 6502 microprocessor with a

maximum clock rate of 1 MHz, This meant that only one A/D could be read
and its value stored in the allotted 10 microsec interval. In order to
maintain the 1.5 km spatial resolution in the atmosphere the FORTH program
was designed to alternately read the real and imaginary channels. For
instance,when the first pulse was transmitted, the Apple would sample only
the real channel at all heights. Then when the second pulse was transmit-
ted the Apple would sample the imaginary channel at all the heights. It
was determined that with the aid of a booster card in the Apple it was
possible to read both the real and imaginary samples in the allotted 10
microsec.

1.4 Statement of Problem

1) Increase the speed of the FORTH collection program so that the
real and imaginary channels are sampled simultaneously.

2) Modify, merge and document existing analysis programs to process
data taken with the improved collection program.

3) Design and implement a data format for magnetic tapes used to
exchange coherent-scatter data with other potential users.

2. COHERENT-SCATTER COLLECTION SYSTEM

In order to supply the analysis progam with *he information needed to
calculate the quantities discussed in Section 1.2, the collection program
was written. The collection program monitors coherent-scatter radar re-
turns and calculates the iniormation needed for the autocovariance function.
This infermation is then stored on disk in the form of one-minute averages.
2.1 Functional Description

2.1.1 Introduction: The collection program is shown in Appendix A
and is written in fig-FORTH and Assembly Language for a 6502 microprocessor.
It is designed to run on sn Apple II microcomputer with a John Bell
Engineering Parallel Interface Card, a Scitronics Real-Time Clock Card, an
Apple Floppy Disk Drive and a Number Nine Rooster Card,

The collection program is used to measure coherent-scatter radar re-
turns from the atmosphere. The data are collected by sending the real and
imaginary components of the received signal to an interface box containing
twc 8-bit A/D converters with sample and hold circuits. The output from
the A/D converters ie read by the John Bell Card via ribbon cable connec-
tions. The John Bell Card is also responsible for sending a 100 KHz start-
convert signal to the interface box. The start—-convert signal indicates
when & new sample should be taken and converted inte digital form. The
100 KHz sampling rate gives a spatial resolution of 1.5 ‘m in the atmo-
sphere.

The collection program is interrupt driven. This means that there are
two processes that work together in the collection program, the ir+errupt
process and the background process. The background prucess is the main

porticn of the program and is used to do all the housekeeping chores.

¥ N o
’&ﬂ?\- ——— Wt e =l e — - T P S g a e R e

\

¥@b§7‘ T S ;\\ o ‘lﬂ\

S 4

r\ Y
i‘_\\ R¥’ s

Initially the background process executes until the Apple detects an
interrupt. The interrupt causes the Apple to stop executing the back-
ground process and start executing the interrupt process. When the
interrupt process is complete the Apple resumes executing the background
process at precisely the point where it left off. Execution of the back-
ground process continues until another interrupt is detected. The
interrupts are generated by the same 400 Hz square wave used to trigger
the transmitter. Thus, every time a pulse is transmitted into tne atmo-
sphere the interrupt process is executed.

2.1.2 Interrupt Processing: The interrupt process is used to collect
and integrate the real and imaginary signals sampled by the interface box.
This task is accomplished in the following marner.

1) The X and Y registers in the microprocessor are saved on the
stack. This is done so that the background process -~an continue
on after the interrupt process is finished.

2) The interrupt flag is cleared so that the next time an interrupt
occurs the Apple is able to detect it.

3) One of the 65228 on the John Bell Card is set up tc send the 100
KHz start-convert signal to the interface box.

4) A delay is executed to allow the interrupt process to wait for the
desired range of radar returns. The length of the delay is based
on the amount of time needecd for the transmitted pulse to propa-
gate to the lowest desired altitude and back.

5) Sixty heights of data spaced by 1.5 km are collected. This is
done by reading both A/Ds (real anc imaginary) every 10 microsec
and storing the data in s buffer called INBUFFER.

INBUFFER is a one page (256 bytes) ecction or memory divided
into two equal parts. The £’ 3t hulf is used to store the real
component of the data, while the second half is used to srore the
imaginary component. INBUFFER has the capacity to store 128
heights of data. Siuce the collection program only collects 60
heights of data the 136 bytes (68 real and 68 imaginary) extra
brtes are not used.

6) The contents of INBUFFER are added height by height to the current
opening in the RINGBUFFER.
RINGBUFFER is a four page (1024 bytes) section of memory used
to accumulate input data. RINGBIUFFER can be viewed as a 16-bit,

waties, abatbtot-are P

7

8)

9)
10)

three-dimensional array.
RINGBUFFER (QUANTITY, SECTION, HEIGHT)

Where QUANTITY is either real or imaginary, SECTION is an

integer between ! and &4, and HEIGHT is a number between 1 and 64.
The array is characterized by 16-bits because 16 bits are allctted
each entry in the array. From this description it can be seen
that RINGBUFFER has four sections in both the real and imaginary
portions of the array. Each of these sections has the capacity

to hold 64 heights of 16-bit data. Since only 60 heights of

data are collected the remaining four entries in each section are
not used,

Fach section of RINGBUFFER represents one sample or 1/8 sec of
accumulated data (50 pulses). The current opening in RINGBUFFER
is that section which is being used to accunulate the present
sample., After one section of RINGBUFFER has been filled the
interrupt process is directed to begin filling the next section.
When the RINGBUFFER is full the interrupt process will reuse the
first section, then the second section etc,, for the duration of
the program.

The number of pulses in the current sample is updated. When the
correct number of pulses has been collected the interrupt process
disables the Apple from detecting any mcre interrupts until the
required background processing is complete.

The speaker in the Apple is clicked. The result of this is a
steady tone from the Apple when the iunterrupt process is being
called properly. The tone serves as a feedback to the operator
that the collection program is working properly.

The X and Y registers are restored.

The interrupt process completes and returns control of the Apple
to the background processing.

2.1.3 Background Processing: The background process performs all the

housekeeping functious, calculates the information for the autocovariance

function, and writes the one-minute averages of this information on disk,

These tasks are accomplished in the following manner.

1)

2)

The program is initialized. When the program is started it is
necessary to partition and intialize memory before any data cam
be collected. During the initialization the interrupts are ig-
nored,

The program waits for a new minute on the internal clock. To

halp synchronize program execution the internal clock is monitored
in a wait loop for the next minute change. When a minute change
is detected, the interrupt is enabled.

Bt Nwwwmm“?

&

3)

The program correlates one minute of data. It is in this step
that the information for the one-minute averages of the auto-~
covariance function are accumulated. In order to .orrelate the
data, data from previcus samples are needed. So before the one-~
minute averages are calculated the RINGBUFFER must be preloaded
with four samples. Once the preliminary samples are taken the
information needed for the autocovariance function is accumulated
in OUTBUFFER.

OUTBUFFER is a 12 page (3072 bytes) section of memory that can
be viewed as a 24~bit, three-dimensional array.

OUTBUFFER(QUANTITY, LAG, HEIGHT)

QUANTITY is either Real~Real (RR), Imaginary-Imaginary (I1I), Real-
Imaginary (RI) or Imaginary-Real (IR). LAG is an integer between
-1 and 2, and HEIGHT is an integer between 1 and 64, Note: only
1 through 60 zre used as explained earlier. The array is
characterized by 24-bits because 24 bits are allotted each entry
in the array.

Besides accumulating the information for the autocovariance
function OUTBUFFER is also used to accumulate the DC component of
the real and imaginary channels,

OUTBUFFER(RR, -1, HEIGHT) = DC Real
OUTBUFFER(II, -1, HEIGHT) = DC Imaginary

The DC component is calculated by summing all the samples for the
real and imaginary channels for one minute and dividing by the
number of samples taken (400). Two parts of OUTBUFFER are not

used,
OUTBUFFER(RI, -1, HEIGHT) = Not Used
OUTBUFFER(IR, -1, HEIGHT) = Not Used
There are two portions of OUTBUFFER used to accumulate data ,j

necessary to the calculation of the power in returned siganl.

OUTBIFFER(RR, 0, HEIGHT) = Absolute Real
OUTBUFFER(II, 0, HEIGHT) = Absolute Imaginary

Absolute Real and Absolute Imaginary are equal to the sum of the
absolute values of each sample. The rest of OUTBUFFER is used to
accumulate the absolute values of the differences between the
combinations of the real and imaginary samples. For instance, if
QUANTITY equals RR and, LAG equals 2, then that portion of
OUTBUFFER is the sum of the absolute values of the differences be~
tween the real sample just collected and the real sample collected
2/8 sec before., If QUANTITY equals IR and LAG equals zero then
that portion equals the sum of the absolute values of the differ-
ence between the imaginary sample just collected and the re=sl
sample just collected.

It is important to remember that there are other things going
on while OUTBUFFER is being filled. The whole time that the data

P T Ty R UFSIRE

are being correlated the background process is being interrupted
and new data is being put into the RINGBUFFER. When a section of
RINGBUFFER is filled it is the job of background processing to
advance the queue and display on the Apple monitor the lowest 20
altitudes of the real and imaginary samples just taken. In ad-
dition, the background process puts the negative of the DC com-
ponent into the next available portion of RINGBUFFER. The reascns
for this are explained in step &.

There are 400 samples taken to represent each minute of data.
The 400 1/8 sec samples account for approximately 50 sec of data,
the remaining 10 sec being used to do other housekeeping and to
access the disk.

4) The DC components of the real and imaginary csamples are calcu-
lated, In order to eliminate ground clutter and be consistent
with the processing algorithm the background process calculates
the DC value for each channel, normalizes the value to one sample
and inserts the negative of the normalized value into each new
portion of RINGBUFFER before any dats is added in. After each
minute the DC values are modified to accommodate the changes in
the received signal.

Notice that steps 2-4 are repeated in steps 5-11., Steps 2-4 are
used to collect data for a dummy minute. The dummy minute is
used only for the calculation of the DC comporents, the rest of
the information in the dummy minute is not used.

5) OUTBUFFER is filled with zeros. Since OUTBUFFER is an accumula-
tion buffer it is necessary to empty it between successive
minutes.

6) The program correlates another minute of data. This step is
identical to step 3, except that this time a non-zero DC compo-
rent has been subtracted out of the samples.

7) The program updates the DC estimate. The reasons for this are
explained in step 4.

8) The program displays the amplitude and the frequency (A,F) of the
lowest 20 altitudes of the signal for the past minute. This
information is displayed on the Apple monitor until the minute
change.,

9) The program saves OUTBUFFER to another location. There are two
situations possible here. If the first, third or any other odd
minute has just completed the widdle and high bytes of OUTBUFFER
are moved to another location in memory. If the second, fourth
or any even minute has completed the medium and high bytes of this
minute along with the medium and high bytes of the previous odd
minute are saved on disk in one binary file.

10) The amplitude and frequency indicators (A,F) on the Apple monitor
are erased.

11) The background process jumps back to step 5 and continues executing,

2h]
H

;]
3

10

2.2 Technical Description

In order to describe precisely how the collection program performs
its tasks, it is necessary to have a technical description of the program.
In this section there is a complete listing of all the definitions used
in the collection program, as well as an explanation to their use. A
textbook on FORTH (Scanlon 1982) and a copy of the fig-FORTH system (Lyons
1981) are essential to the understanding of the collection program. A
copy of the collection program is found in Appendix A, which should be re-
ferred to in reading the following text,

The Apple clock has a period of 1.052 microsec. For simplicity all
times given in the following text are based on an Apple clock with a one
microsec period.

There are constants and variables included in the following defini-
tions. It is impertant to remember that variables may be chanyed after the
program is compiled. If a constant needs to be changed the program must
be modified and recompiled.

INPUTSLOT (screen 32) is the constant used to indicate wnich slot in
the Apple has the John Bell Card. The slots in the Apple are numbered 0-7
left to right.

CLOCKSLOT (screen 32) is the constant used to indicate which slot in
the Apple has the internal clock card.

INBUFFER (screen 32) is the constant used to hold the addr=ss of the
first byte of the buffer called INBUFFER. All of the buffers in the col~
lection program are located contiguously in memory. When there is a change
in the constant INBUFFER all of the buffers in the collection program are

moved. A memory map based on INBUFFER equal to 7200H is given in Figure

2.1.

MEMORY MAP
ADDRESS
7200| I not usep | | NOT USED |INBUF
REAL IMAGINARY
7300 LOR
7400 HOR
7500 LDI
7600 HDI
RING | RING 2 RING 3 RING 4
7700| | j | 1z
ZERO'S
7800 LOR
7900 HOR
7800 | NOT USED Lol
7800 HOL
OFFSET
7C00 LRR
7000 LIt
7€00 LRI
NOT USED
7FO00 SE LIR
80090 MRR
8100 MI1
8200 MRI
g300| NOT USED MIR
8400 HRR
8500 HII
8600 HRI
8700 NOT USED HIR
DC LAG 0 LAG | LAG 2

A g e T e . Vo Rt e b

11

INBUFFER

RING BUFFER

ZERQ BUFFER

OFFSET BUFFER

OUT BUFFER

Figure 2.1 Memory map for collection program buffers.

S

1

12

SECTION (screen 32) is a constant used to hold the maximum number of
heights that may be stored in each section of RINGBUFFER and OUTBUFFER.
Since the amount of memory allotted to the buffers is fixed, SECTION also
determines the number of sections in RINGBUFFER and OUTBUFFER. For
instance, if 40H maximum heights are desired then 100H/40H or 4 different
sections are used in the buffers. 8H maximum heights leave 100H/8H or 20H
sections.

LAGS (screen 32) is a constant used to hold the number of previous
samples that the collection program holds at any one time. LAGS is equal
to the number of sections in RINGBUFFER minus two. This relationship
stems from the fact that at any one time RINGBUFFER has one section being
filled and another being used to hold the present sample. The rest of
the sections in RINGBUFFER are then left to hold previous samples.

HEIGHTS {screen 32} is a constant used to hold the number of heights
that the program collects. HEIGHTS can be any number from one to SECTION.

DISPHTS (screen 32) is a constant used to hold the number of heights
of data that the collection program displays.

LOWHEIGHT (screen 32) is a constant equal to the value of the lowest
height to be displayed. LOWHEIGHT is used to determine the altitude labels
that appear on the left side of the Apple screen. The labels displayed on
the screen are always the lowest heights collected.

MINS/DISK (screen 32) is a constant used to determine how many minutes
of data are o.tored on one side of a 5 1/4" floppy disk.

SAMPLES (screen 32) is a variable used to hold the number of samples
which are collected for the one-minute averages.

PULSES (screen 32) is a variable used to hold the number of transmit-

ter pulses which are integrated to form one sample.

’®) 2

gA
-
i

e-

AW P T M TR F SRR S ST S ERREN SApNIESAE AR s T M s g s B R

13

ter pulses which are integrated to form one sample.

MINS (screen 32) is a variable used for test purposes to hold the
number of minutes the program runs before ending. If MINS is set equal to
or higher tnan MINS/DISK the verb WRITEFILE resets MIN# after MINS/DISK
minutes have executed., If this happens then MINS is effectively ignored.

DELAY] (screen 32) is a variable used to fine tune the timing of the
verb INTERRUPT. DELAYl is used to precisely adjust the latch and start-
convart signals,

DELAY2 (screen 32) is a variable used to tune the timing of the verb
INTERRUPT. An increase of one in DELAY2 tells INTERRUPT to wait an
additional 5 microsec before reading and unlatching the data.

MIN# (screen 32) is a variable which contains the number of minutes
that data has been collected since a new disk was started.

AMPFACTOR (screen 32) is a variable used to scale the one-minute
average amplitudes displayed on the Apple screen.

FREQFACTOR (screen 32) is a variable used to scale the one-minute
average frequencies displayed on the Apple screen.

INADDR (screen 33) is the constant used as a reference point for
defining all of the constants used in addressing the John Bell Card. Each
slot in the Apple has one page of addresses associated with it. The
address range for a particular slot is CXOOH-CXFFH, where X is the slot
number. The John Bell Card has two 6522 Versatile Interface Adapters
(VIAs) on it. CXOOH-CXOFH is used to address the registers of the first
VIA, while CX80H-CX8FH is used to address the second VIA., The constants
used in addressing the VIAs on the John B2il Card are named below. For
a more detailed description of the registars and their functions see

Scanlon (1980).

14

DDRBl-Data direction register B, first VIA,
DDRAl-Data direction register A, first VIA.
ACRl-Auxiliary control register, first VIA,
PCRl1-Peripheral control register, first VIA.
IERl1-Interrupt enable register, first VIA,
DRB2-Data register B, second VIA,

DDRB2-Data direction register B, second VIA.
T1CL2-Timer 1 counter, low byte, second VIA.
T1CH2-Timer 1 counter, high byte, second VIA,
T1LL2-Timer 1 latch, low byte, second VIA,
T1LH2-Timer 1 latch, high byte, second VIA.

ACR2-Auxiliary control register, second VIA,

PCR2-Peripheral control register, second VIA,

IER2-Interrupt enable register, second VIA.

WINDOW (screen 34) is a constant used to initialize the Apple screen.
WINDOW and WINDOW+1l are the zero-page locations used to set the top and
bottom boundaries of the text screen.

CURSOR (screen 34) is a constant used to position the cursor on the
Apple screen., CURSOR and CURSOR+l1 are the zero-page addresses used to set
the horizontal and vertical positions of the cursor.

ACC (screen 34) is a constant and is the address used by the Apple
monitor to store the value of the microprocessor accumulator when an
interrupt is serviced.

IRQVECTORADDR (screen 34) is a constant and is the address of the two-
byte Apple interrupt vector, i.e., where execution will jump when an inter-
rupt occurs,

SPEAKER (screen 34) is a constant and holds the address of a latch
connected to the Apple”s internal speaker. Whenever this address is read
the latch toggles and the speaker produces a "click".

QUEUEl (screen 34) is a constant, the zero-page addrees of the pointer
that keeps track of which section of RINGBUFFER is currently being cor-
related with the section most recently acquired.

QUEUE2 (screem 34) is a constant, the zero-page address of the pointer

that keeps track of which section in RINGBUFFER is being used to calculate

i S . R

15

LAG 1.

HREAL and HIMAG (screen 34) are constants and hold the zero-page
addresses where the low bytes of two two-byte pointers are located. These
pointers are used to pick out the QUANTITY and SECTION of RINGBUFFER that
are currently being used for the real time display.

LSUM and HSUM (screen 34) are constants, equal to the zero-page ad-
dresses where the low bytes of two two-byte pointers are located. The low
bytes of these pointers are used to indicate which sectiom of RINGBUFFER is
currently being filled. The high bytes of these pointers indicate whether
data are being summed into the real or imaginary part of RINGBUFFER. Two
pointers are needed because RINGBUFFER is a two-byte buffer.

LAG (screen 35) is a constant and is equal to the zero-page address
where the number of loops that the verb DIFAC is to execute is stored.

BUFS, BUFL and BUFH (screen 35) are constants and hold the zero-page
location where temporary values are stored when DIFAC and VALAC are exe-
cuted,

INCREM and INCREM*2 (screen 35) are constants and are equal to the
zero—page addresses where the values of SECTION and SECTION times two are
stored.

PULSECOUNT {screen 35) is a constant, the zero-page address where the
number of pulses left to be collected in the present sample is stored.

SPARES (screer. 35) is a constant which holds the zero-page address
where the low byte of a two-byte number is stored. Together the contents
of SPARES and SPARES+l make up the two-byte value which is equal to the
number of times the ioop in SYNCHRONIZE is executed.

SAMPLECOUNT (screen 35) is the constant used to hold the zero-page

POTARIII ' -t
X .

16

address where the low byte of a two byte number is stored. Together the
contents of SAMPLECOUNT and SAMPLECOUNT+l1 make up the two byte value which
is equal to the number of samples that have been collected in the present
minute,

LSP1, LSP2, HSPl and HSP2 (screen 36) are constants, the zero-page
addresses where the low bytes of four two-byte pointers are stored. The
contents of LSPl, LSP+1, LSP2 and LSP2+l point to the low bytes in RING-

BUFFFR that are to be used by DIFAC, Likewise, the contents HSPl, HSPl+l,
HSP2 and HSP2+1 point to the high bytes used by DIFAC.
LDP, MDP and HDP (screen 36) are constants which hold the zero-page
addresses where the low bytes of three two-byte pointers are stored. The
contents of LDP and LDP+1 point to the low byte of the location in OUTBUFFER
where the results of DIFAC are accumulated., lLikewise the contents of MDP,
MDP+1, HDP and HDP+l point to the middle and high bytes of OUTBUFFER where
the result. of DIFAC are accunmulated. .

INBUF (screen 36) is a constant and is equal to the zero-page address
where the page pointer to INBUFFER is stored.

LDR, HDR, LDI and HDI (screen 36) are constants and hold the zero-
page addresses where the page pointers to RINGBUFFER are stored. LDR and
HDR are the page pointers for the low and high bytes of the real portion
of RINGBUFFER. LDI and HDI are the page pointers for the low and high
bytes of the imaginary potion of RINGBUFFER.

Z (screen 36) is a constant, the zero-page address where the pointer
to a one-page buffer of zeros is located.

LOR, HOR, LOI and HOI (screen 37) are constants used to hold the zero-
page address where the pointers to the buffers used to figure the DC-offset

are kept.

i o it it o i L S Ll

17

LRR, MRR, HRR, LII, MII, HII, LRI, MRI, HRI, LIR, MIR and HIR (screen .
37) are constants and are equal to the zero-page addresses where the page
pointers to OUTBUFFER are stored.

ADDR (screen 37) is a colon verb designed tc take an address off the
stack, fetch the one-byte contents of the address from memory and put the
product of the contents and 100H back on the stack. ADDR is used to con-
vert an address, where a page pointer is stored, to a two-byte address
where the first memory location of that page is located.

INITLOC (screen 38) is the colon verb designed to initialize the zero-
page memory locations., When INITLOC is executed, PULSES is stored in PULSE-
COUNT (Line 7). A ome is stored in MIN#, a zero is stored in SAMPLECOUNT
(Line 8) and SECTION and SECTION times two are stored in INCREM and INCREM*2
(Line 10). QUEUE2 is set to zero, QUEUEl is set to INCREM (Line 10) and
the page pointers for all the buffers are initialized (Line 13). The low
bytes of LSUM and HSUM are set equal to INCREM*2 and the high bytes of HREAL
and HIMAG are set equal to HDR and HDI (Lines 14-17).

INITBUF (screen 39) is a colon verb designed to erase all the buffers
ased in the collection program.

INITIO (screen 39) is the colon verb used to initialize the John Bell E
Card. When INITIO is executed, the data direction registers A and B on
the first VIA are set to zero (Line 14). This initializes all bits on the
ports to be inputs. The auxiliary control register on the first VIA is
set to three (Line 15). This enables ports A and B on the first VIA to be
latched. The peripheral control register on the first VIA is set to 40H
(Line 15). This permits the interrupt flag (IFR3) to be set by a positive
transition on CB2., The data direction register of port B on the second

VIA is set to 81H (Line 16). This initializes port B on the second VIA

e W T

18

to have bits seven (PB7) and zero (PBO) act as outputs vhile bits six
through one (PB6-PBl) act as inputs. The data register for port B on the
second VIA is set to 80H (Line 16). This sets PB7 high and clears the CBl
and CB2 interrupt flags. The auxiliary control register and the peripheral
control register for the second VIA are set to zero and 7FH is stored in
the interrupt enable register for the second VIA (Lines 17-18), thereby
resetting all interrupt flags. These actions are precautions and do not
affect the operation of the program. For more information on how these
commands operate see Scanlon (1980).

MACROl (screen 40) is used in INTERRUPT to generate the code needed
to read both A/Ds once every 10 microsec. When INTERRUPT is compiled
MACROl inserts a section of code into the code for INTERRUPT. The do-loop
in MACROl generates a copy of the code within the loop for each height
collected, These scctions of code are generated continuously, each section
being individually tailored to a specific height (Figure 2.2). The NOPs
at the end of the loop are used to make the execution time between consecu-
tive sets of reads equal to 10 microsec.

MACRO2 (screen 40) is used in INTERRUPT to generate the code needed
to add the values stored in INBUFFER to the appropriate section of RING-
BUFFER. MACRO2 uses the pointers LSUM and HSUM to indicate which section
of RINGBUFFER to add the data to. The value stored in the X register
tells MACRO2 whether to fetch the numbers from the real or the imaginary
part of INRUFFER. MACRO2 generates one section of code for every height
collected (Figure 2.2).

INTERRUPT (screens 41-42 und Figure 2.2) is the code verb used to
service the interrupts generated during the collection program. The

radar director puts out a 400 Hz square wave which is used to trigger

ASES- 8A
ASDY- 48
AGLi- 98
&OLD- A8
&IC- AD 00
&LF- A9 CO
&b71- 8D B2
AOY4- AD 09
A0F7- GBD 84
A6FA- AD OA
467D~ 8D 85
4700- A9 03
4702- 8D 86
4705~ AO 00
4707- 8C 87
A70A- AL 16
470D~ EA
470E- EA
4708~ EA
4710- EA
4711- LA
4712~ EA
4713- CA
4714~ DO F?
4716- A9 80
4718~ 8D 80
471B- AD 00
a71£- AD 01
4721~ AD 00
4724- 8D 00
4727- AD 01
A72A- 8D 80
4720- EA
4728~ LA
472F- EA
[YVLR IS]
GAAG- A5 81
AAAB- 85 59
LAM- 69 01
4AAC- 85 5B
GAAZ- A2 00
4AB0- AQ 00
4AR2- 18
4A33- Bl 58
4ABS- 7D 00
4A38- 91 58
LABA- Bl 5A
LABC- 63 00
SABE- 91 3A
AACO- 18
LAC1- 8B
51C8- A9 00
S1CA- 8D 83
51Cp~ C6b 66
31Cr- Do 05
51D1- A9 08
51p3- 8D OF
$1D6- AD 30
5109~ 68
S1DA- A8
51Dp- 68
SIBC- AA
SIDD- A5 45
sipr- 40
Figure 2.2

cs

(%]
62
[+
b2
c3

(]

42

(o]
cs
cs
()
12
cs
12

(]

(%)
co

Asscmbly code for INTERRUPT.

STA
INY

STA
DEC
BUE
LDA
STA
LDA

TAY
PLA
TAX
LDA
T

$C300
#8C0

588
24209
$C384
$420A
$C585
4903

$C586
#4500

$C387
$216

$470D

$C580
$C500
$C501
$C500
$7200
$c301
$7280

$81
$39
#3501
$53
#500
4500

First
ot MACRO

($58),Y
$7200,X
($58),Y
($54),Y

4500

(834),

#3500
$C58¢
$66
$5106
#3508
$CS0E
$C030

$45

Y

First Exscution
of MARCO 2

19

e AR, i

;‘!E*ﬂﬁ}*, I L TR T

E S L

ﬂ Lh. L

20

the transmitter. The square wave is also fed to tha interface and con-
nected directly to pin CB2 of the first VIA on the John Bell Card. Now

.. the interrupt enable register on the VIA has the CB2 interrupt enable
flag set, the interrupt is pasced to the Apple by the VIA bringing its IRQ
line low. The 6502 CPU of the Apple then enters an interrupt service
routine in the Apple monitor, ultimately vectoring through the address
stored in IRQVECTORADDR. When the verb INIT executes, the address of
INTERRUPT is copied into IRQVECTORADDR. This means that INTERRUPT becomes
the interrupt service routine., INTERRUPT also initializes the hardware,
sanples the real and imaginary A/D input channels and adds the data into
RINGBUFFER. A more detailed description follows here. Line numbers refer
to screens 41 and 42; adaresses refer to Figure 2.2,

1) The X and Y registers are transferred to the accumulator and
pushed onto the prccessor stack (Line 5, $46E8).

2) The interrupt flag CB2 is cleared by reading DRB1 (Line 7, $46EC).

3) Timer one of the second VIA is set up to toggle PB7 every time
there is a time-out. This is done by storing COH in the auxiliary
control register (Lire 8, S$S46EF),

4) DELAYl is loaded into the timer-one clock (Lines 9-10, $46F4).
This is donme to allow the start-convert signal to be fine-tuned
and to allow time to load the timer-one latch. The start-convert
signal is produced by a one-shot with PB7 as an input. Conse-
quently the start-convert signal can be adjusted by adjusting PB7,
and PB7 can be adjusted by modifying the value of DELAYl (Figure
2.3).

5) Timer-one latch is loaded with a three. (Lines 11-12, $4700).
Every time the counter on timer-one counts to zero (timed out)
the value ir the latch is loaded into the counter and the counting
continues. 'y loading a three into the latch a square wave with
a 10-microsec pericd is generated on PB7. This is duec to a five-
microsec toggling 'eriod generated by a three-microsec counter
with a two-microse. overhead.

6) A delay is executed to wait for the returned signal (Lires 13-15,
$470A). This delay is based ~n an approximately 5-microsec loop
that executes DELAY? times.

7) PB7 is set high so that when the timer-one clock times out new

T B . R R T IR R T T G vy s

yal
ius lus
Delay |
ket [
PB7
ius tus
e 2803
Start - Convert
Latch Unlatch Latch Unlatch
ks ps Deloy | Y)oto Data ‘Bata /" Dato
fjoje— { ¥
End-of-Convert |
(Latching)
I Sus > Sus J Sus ,
Recd ' Read
(Reat) _ _/ (Real)
Delay 2
[N N N U (R AN N U N SN SN S N U NN VU NN NS NN N SN N S |
0 2 4 € 8 I0 12 14 6 18 20 22 24

M8

Figure 2.3 Timing diagram for data aquisition,

VAR N MWy T T : et

L

8)

9)

10)

11)

12)

13)

14)

15)

22

data are sampled (Line 16, $4716). PB7 must be high because of
the timing involved between FB7 and the start-convert signals
(Figure 2.3).

The data latched in the data registers is read and thrown away
so that the new data can be read (Line 17, $4718).

The code generated by MACROl is executed (Line 18, $471E). This
code is designed to leave 10 microsec between each set of reads.
While MACROl is executing, PB7 is oscillating at 100 KHz. The
100 KHz square wave is used to produce a start-convert signal for
the A/Ds (Figure 2.3). When the A/Ds have finished converting
the data to digital form an end-of-convert signal is sent out.
The signal is fed to CBl and CAl and is used to latch the new data
into DRBl and DRAl, thus the importance of having the code gene-
rated by MACROl precisely timed. For a detailed description of
the interface see Roth (1983), A list of the connections between
the interface and the John Bell Card is given here.

Dip socket A: Pin 8 PE7 on DRB2

Dip socket B: Pin 1-8 PBO-PB7 on DRBI

Pin 9 CB1
Pin 10 CB2
Dip socket C: Pin 1-8 PBO-IB7 on DRAIL
Pin 9 CAl :
Pin 10 CA2 '

The new data is added to RINGBUFFER (Lines 5-1C, $4AA6). This is

accomplished by setting the pointers used by MACRO2 to the ap-

propriate values and by executing the code generated by MACROZ2.

The code generated by MACRO2 is executed twice, once for the real :
data and once for the imaginary data.

The 100 KHz signal on PB7 is shut off (Line 11, $51CA). |

PULSECOUNT is decremented and compared to zero (Line 12, $51CD).
If PULSECOUNT is equal to zero it means the sample is finished and
no more data is needed until the background processing is com~
plete. If PULSECOUNT is equal to zero the interrupt on CB2 is
masked so that no further additions occur to RINGBUFFER (Line 13,
$51D1).

A "click" is produced on the internal speaker (Line 14, $51D6).
When the program is running the "click" after every interrupt
gives a steady 200 Hz tone as feedback to the operator that the
interrupt service routine is working properly.

The X and Y register values are pulled from the processor stack
and returned to the registers. The accumulator is also restored
by reading the value at ACC (Line 15-16, $51D9).

The routine ends and returns control to the point wherc it was

B4 S

wF._.=-

OGRS S S T s S SEETRT S TR @RS ERNE TN AR o~ SR e T e

23

interrupted (Line 17, $51DF).

SYNCHRONIZE (screen 43) is the code verb used to monitor the inter-
rupts when the background processing is finished correlating the previous
sample. SYNCHRONIZE contains a loop designed to increment SPARES every
time the loop executes sand to monitor PULSECOUNT to determine if enough
data has been taken to compiete the present sample (Lines 7-10). When
PULSECOUNT equals zero SYNCHRONIZE jumps out of the loop, r-sets PULSECOUNT
and returns to the calling verb.

MACRO3 (screen 43) is used in ADVANCE to gernerate the code needed to
put the offset values into RINGBUFFER. When ADVANCE is compiled the code
that MACRO3 produces takes the DC offset values calculated from the previous
minute and stores those values into the section of RINGBUFFER that will
be used to collect the next sample.

ADVANCE (screen 44) is the code verb used to update all the pointers
when a new sample is started (Lines 5-9). 1In addition ADVANCE updates
SAMPLECOUNT and determines if enough samples have been taken to complete
the present minute (Lines 11-21). 1In order to update the pointers ADVANCE
increments QUEUEl, QUEUE2, HREAL, HIMAG, LSUM and HSUM., This is ac-
complished by adding INCREM to each of the previous values. The poi.ters
LSUM and HSUM are always greater than QUEUEl by INCREM, likewise HREAL and
HIAMG are always equal to QUEUEl, while QUEUE2 is always less than QUEUEL
by INCREM. These relationships make the updating of the pointers much
easier. After the new pointers are in place, ADVANCE loads the DC offset
into the new section., This is done with MACRO3 as explained before. Next,
SAMPLECOUNT is updated (Lines 11-12) and tested against SAMPLES. If the
two quantities are not equal a zero is left on the parameter stack and

the program continues taking data. If SAMPLES and SAMPLECOUNT are equal

o o ‘-MF}%«»‘H»W‘:\{

24

a one 18 left on the parameter stack and the calling verb knows that
enough samples have been collected for the present minute.

TLOC (screen 45) is a constant used as a reference point when address-
ing the clock card.

TIM (screen 45) is a variable set up to establish a starting point in
memory for an ASCII time message. TIM is initialized with D3C3H which
represents "CS" the beginning of the time message. The code on Lines 7-9
inserts part of the message into the field allotted for the time message.

MACRO4 (screen 45) generates code used by MACRO5 and TIMEREAD to take
the output from the clock card and put it in ASCII form.

MACRO5 (screen 45) generates code used by TIMEREAD to fill the field
for the time message.

TIMEREAD (screen 46) is the code verb used to get the date and time
from the Scitronice veal-time clock; 2nd is speciflic to that clock card,
This information is inserted into the time message field set aside by TIM
and the supplemental code.

AWAITMIN (screen 47) is the colon verb used to synchronize program
execution to start at the beginning of each minute., AWAITMIN reads the
current minute from the clock card and stores it. The verb then goes into
a loop which reads the minute again and compares the result to the intial
reading. When the minute changes AWAITMIN ends and returns execution to
the calling verb,

CLEAROUT (screen 47) is the colon verb used to put zeros into OUT-
BUFFER.

VALAC (screen 48) is the code verb used to sum all the signed values
of the samples for each minute. VALAC takes the section of RINGBUFFER that

is indicated by the pointers LSPl and HSPl and adds it to the section of

25

OUTBUFFER that is indicatad by LDP, MDP and HDP. VALAC is used by COR-
RELATE to calculate the DC component of the real and imaginary channels.

DIFAC (screens 49-50) is the code verb used to accumulate the absolute
value of the differences needed to calculate the autocovariance function.
DIFAC takes the section of RINGBUFFER that is indicated by the pointers
LSP1 and HSPl and subtracts the section of RINGBUFFER indicated by LSP2
and HSP2. The absolute value of the difference is then added to the
section in OUTBUFFER indicated by LDP, MDP and KDP., The code in DIFAC 1is
contained in a loop which automatically adjusts the input and output
sections if the loop is executed more than once. The mumber of times the
loop in DIFAC is executed is one less than the value stored in LAG.

RR, II, RI and IR (screens 51-54) are the code verbs used in conjunc-
tion with DIFAC to calculate the information needed for the autocovariance
ifunction. These verbs are designed to initialize all the pointers needed
for DIFAC to get the right data to the right place.

RZ and IZ (screens 55-56) are the code verbs used in conjunction with
DIFAC to accumulate the absolute values of the real and imaginary samples.
RZ and IZ are very similar to RR, II, RI and IR except instead of LSP2 and
HSP2 being pointed at data they are pointed at the ZEROBUFFER.

RV and IV (screens 57-58) are the code verbs used to set the pointers
for VALAC. They are designed to make sure that VALAC gets the data from
the right place in RINGBUFFER to the right place in OUTBUFFER.

MREGR (screen 59) is a constant, the address where the first middle
byte of OUTBUFFER is stored. MREGR is used in FINDOFFSET as a reference
address to where the DC-real and DC-imaginary quantities are being accumu-
lated.

LOFFR (screen 59) is the constant used to hcld the address where the

H
1

!
i
i
i
.

26

first low byte of OFFSETBUFFER is stored. LOFFR is used in FINDOFFSET as
a reference address to where the offset values are stored.

OFF (screen 59) is a variable used by FINDOFFSET. OFF holds the
address of the offset that is currently being calculated.

REG (screen 59) is a variable used by FINDOFFSET to hold the address
where the DC quantity that is currently being used is stored.

SPLIT (screen 59) is the colon verb that takes a two-byte number off
the stack and returns the low byte and then the high byte as two separate
values to the stack.

FINDOFFSET (screen 60) is the colon verb used to update the offset
value that is loaded into RINGBUFFER prior to the accumulation of a sample.
FINDOFFSET uses two nested do-loops (Lines 4-5) to step through the heights
for the real and imaginary calculations, For each calculation FINDOFFSET
determines new to and f{rom addresses (Lines 6-7) and fetches the DC values
for the last minute (Lines 8-9). If the DC value is less than or equal to
JFFH, FINDOFFSET normalizes the value for one sample and subtracts the
normalized value from the current offset value (Line 11). 1If the DC value
is greater than 7FFH, FINDOFFSET adds one to the negative of the value and
subtracts the negative of the normalized value from the previous offset
(Lines 12-13). The new offset is then stored in OFFSETBUFFER (Lines l4-
17).

DISPLACE (screen €1) is the colon verb used to relocate the middle
end high bytes of OUTBUFFER., DISPIACE is used by WRITEFILE to move each
odd minute of data to the end of OUTBUFFER in memory, so that two contigu-
ous minutes of data may be written simultaneously on disk,

HEADER (screen 61) is the colon verb used by WRITEFILE to label the

data disks, When HEADER calls TIMEREAD the current time is put into the

space allotted for the time message. HEADER cthen puts the label into the
memory used for block 48H. Block 48H is then written on disk., Block 48H
on the data disk contains the location used by DOS to store the disk
directory. The label of a data disk can then be determined by doing a
disk directory in DOS.
BLOCK# (screen 61) is the colon verb used to change the file number
(used to identify each twe minute data file) to the block number where FORTH
will locate the data.
BMOVE (screen 62) is the colon verb used by WRITEFILE to move &4 K of
memory from a designated address to four contiguous disk buffers assigned
to four contiguous blocks. The first block and the beginning address are
designated when BMOVE is called. BMOVE first pulls the first block number
off the stack, assigns the next available disk buffer to it, and leaves
the address of the disk buffer on the stack (Line 8). BMOVE then puts
the file address and the file length at the beginning of the disk buffer, ;
as required for a DOS binary file (Lines 9-11). The rest of the first disk +
buffer is then filled with data (Line 12). Once the first disk buffer is |
filled the remaining data are put into the other three buffers (Lines 13- |
16). Note that the last four bytes of data are lost because of the two-
byte file address and the two-byte file length inserted at the beginning
of the data.
ALARM (screen 63) is the colon verb used to give an audible warning
when the disk is full. ALARM is made up of three nested do-loops that
"click" the speaker for a length of time determined by the number on the
top of the stack when ALARM is executed.
WRITEFILE (screen 64) is the colon verb used to control the output

files generated from OUTBUFFER. WRITEFILE first checks to see if the

28

minute just collected is odd or even (Line 7). If the minute is even
WRITEFILE saves the last two minutes to disk and writes the minute number
just completed on the screen (Lines 8-10). If the minute is odd WRITEFILE
checks to see if it is the first minute, and writes the data disk header if
it is, Whether or not it was the first minute WRITEFILE executes DISPLACE
to move the middle and the high bytes of the data out of OUTBUFFER and into
the memory just above OUTBUFFER (Lines 11-13). Next WRITEFILE checks to
see if the next to last minute was just collected. If it was WRITEFILE
resets MIN# executes ALARM and writes a '"CHANGE DISK" message on the screen.
If any other minute besides the last one was just completed WRITEFILE
increments MIN# and exits the verb.

PREVREAL and PREVIMAG (screen 65) are variable used to set up two
arrays which hold the screen addresses of the symbols used in the real-
time display.

PREVINIT (screen 65) is the colon verb used to initialize the display
buffers. PREVINIT initializes the buffers with OAH.

SCREENADDR (screen 65) is a colon verb used to convert the screen
display line number to the screen address where the start of the line is
located, in accordance with the scrambled mapping used by the Apple II.
SCREENADDR takes the line number off the stack and puts the desired address
back on the stack.

MACRO6 (screen 66) is used in RTDISPLAY to generate the code needed
to fetch the real and imaginary samples just taken (Lines 7-8, 14-15),
check to make sure the screen limits are not violated (Lines 9, 16), store
the screen address of the symbols into PREVREAL and PREVIMAC (Lines 10, 17)

and poke the symbols "R" (for real) and "I" (for imaginary) onto the

screen (Lines 11-13, 18-20),

i

4
3
.

.2

.
~

A :"j’ﬂ'""""w“}‘:” "‘"' w‘ Lot
. .

MACRO7 (screen 67) is used in RTDISPLAY and CLEARDISPLAY to erase the

i o St i, B

"R" and "I" symbols from the screen. The code generated by MACRO7 deter-
mines the screen addresses of the symbols from the PREVREAL and PREVIMAG
arrays. The code then loads the value in the accumulator to these ad-
dresses. In order to clear the symbols the ASCII code for a space is
loaded into the accumulator before the code is executed.

RTDISPLAY (screen 67) is the code verb used to display the last sample
on the screen. RTDISPLAY uses MACRO7 to generate code to clear the pre-
vious display and MACRO6 to generate code to put up the new display.

CLEARDISPLAY (screen 68) is a code verb used to erase the "R" and "I"
symbols from the screen. CLEARDISPLAY uses MACRO7 to gzenerate code to i
erase the symbols,

ENABLE (screen 69) is a code verb used to unmask the 400 Hz interrupt
signal on CB2,

DISABLE (screen 69) is a code verb used to mask the 400 Hz interrupt
signal on CB2.

AMPL and AMPH (screen 69) are constants used as reference addresses

in OUTBUFFER where the middle (AMPL) and high (AMPH) bytes of the absolute

values of the real samples are accumulated. AMPL and AMPH are used by
DISPLAYAF to c¢isplay the minute averages on the screen.

RIL, RIH, IRL and IRH (screen 69) are constants used to reference the
addresses where the middle and high bytes for the first lag of the RI and
IR sections of OUTBUFFER are stored,

DISPLAYAF (screen 70) is the colcn verb used to display the averages
of the amplitude and frequency each minute. DISPLAYAF first calls CLEAR-
DISPLAY to clear the "R" and "I" symbols left by RTDISPLAY (Line 8). The

rest of DISPLAYAF is contained in a do-loop which executes once for every

30

height displayed. In the first half of the loop DISPLAYAF fetches the
amplitude information using the reference address defined by AMPH and AMPL
(Lines 9-11). This information is then divided by AMPFACTOR and adjusted
for the screen (Lines 11-12). DISPLAYAF then pokes the specified ASCII
character iato the appropriate screen address (Line 13). The second half

of the loop repeats the process given above for the frequency (Lines 14-20).
Each time DISPLAYAF is executed the two ASCII characters used in the display
must be specified on the stack. This feature allows DISPLAYAF to be used

to erase the symbols used in the display. Erasure is accomplished by
calling DISPLAYAF with the ASCIT value for a "space” on the stack,

KMLABEL (screen 71) is the colon verb used to write the altitude
indicators on the left of the screen. KMLABEL uses LOWHEIGHT and DISPHTS
to determine the number used to label every third kilometer on the display.

INIT (screen 72) is the colon verb uged to initialize IRQVECTORADDR
(Line 15), the buffers, the zero page addresses and the I/0 devices (Line
16). INIT initializes the display buffers, clears the screen and writes
the kilometer labels on the screen (Line 17). INIT also positions the
cursor at the top of the screen and defines a two line window where the
messages will be displayed (Line 18).

FILLQUEUE (scrcen 72) is the colon verb used to fill RINGBUFFER with
the initial set of samples. FILLQUEUE first sets SAMPLECOUNT to the value
required to stop the data collection after enough samples have been col-
lected to correlate the first data (Line 6), FILLQUEUE then enables the
interrupt signal and begins collecting data (Line 8). When the RINGBUFFER
has enough samples FILLQUEUE disables the interrupt and returns (Line 9).

CORRELATE (screen 72) is the colon verb used to correlate one minute

of data. CORRELATE first enables the interrupt and b-gins execution of a

31

loop that terminates when the FINISHFLAG is set by ADVANCE at the end of
the loop (Line 15-16). The loop accumulates all of the values in OUTBUFFER.
The first two verbs in the loop, RV and VALAC, work together to accumulate
the DC component of the real channel. Likewise, IV and VALAC accumulate
the DC component of the imaginary channel. RZ, IZ and DIFAC accumulate the
absolute values of the real and imaginary channels. RR, II, RI, IR and
DIFAC are used to accumulate the absolute value of the differences for all
of the lags. Note that when RR and II are executed with DIFAC the zeroth
.ag is not calculated; this is done when RZ and IZ are executed with DIFAC.

The timing in CORRELATE is very important. It is for this reason
that two safeguards were built into CORRELATE., As explained in INTERRUPT,
when a sample is completed the interrupt is disabled. If the correlation
of the last sample is not complete the interrupt remains disabled, and
data for a new sample are not taken, until the correlaticn processing is
complete. This feature allows the program to cope with an excessive compu-
tational load by increasing the time between samples. On the other hand,
if the correlation is completed before the next sample is finished, COR-
RELATE executes SYNCHRONIZE, SYNCHRONIZE monitors PULSECOUNT and as eoon
as the sample is complete SYNCHRONIZE terminates and allows the queue to
advance and the next sample to be correlated.

FIXSTRAT (screen 73) is the colon verb written to amplify the lowest
20 heights in OUTBUFFER. FIXSTRAT is executed after OUTBUFFER is filled
but before it is moved in memory or written on disk. FIXSTRAT multiplies
the desired heights in OUTBUFFER by 16. At present FIXSTRAT is not used
in the program. The reason for this is that the processing program must
be modified to accommodate the amplification.

GO (screen 74) is the colon verb used to run the collectiorn program.

st B i) 3

GO first initializes the collection system and waits for a minute change
on the clock card (Line 6). GO then collects a dummy minute of data for
the initial DC calculation (Line 7). « ter calculating the offset (Line
8), GO begins exnci. ion of the loop that contains the collection process.
GO clears the "A" and "F" symbols (Line 10), clears OUTBUFFER (Line 11)
and fills RINGBUFFER (Line 12). Line 13 is used to accumulate the one
minute averages in OUTBUFFER and Line 14 adjusts the offset value accovding
to the last minute of data. Line 16 displays the "A" and "F" symbols for
the last minute and Line 17 empties the disk buffers., Line 18 moves OUT-
BUFFER in memory or writes the previous two minutes to disk and Line 19
checks if the run is complete. GO is the main verb of the collection pro-
gram. When running the program type "GO" put in a data disk and the rest

will take care of itself.

The collection program described in this chapter was put intu use o
August 1984, Previous to that time a version of the program was used
which did not require the use of the Number Nine Booster Card. The pre-
vious program collected 20 heights and alternately sampled the real and
imaginary channels every other pulse. The alternate sampling was neces-
sary because of the minimum load and store time of 8 microsec. To load
and store both channels require 16 microsec when only 10 microsec was
available. The use of the booster card allowed the load and store to be
done in urder 10 microsec.

In order to implement the use of the booster card several screens
needed to be changed, and carry the header "ADR 8/84". Other changes
such as the number of heights collected and data disk labeling have been

included in the latest version of the program. A copy of the unmodified

(e

33

screens is given in Appendix B. Those screens not shown in Appendix B may

be found in Appendix A,

WAL - .

M AN st 0 s

4,

s
N
[

34

3. COHERENT-SCATTER ANALYSIS PROGRAM

3.1 Previous Program

The objectives of the coherent-scatter analysis program are to read the
two-minute binary files stored on disk by the collection program, caiculate
the power velocity and correlation time for each minute, according to the
eguations of Section 1.2, and write t. at informatiun to three text files on
a separate disk.

Previously the analysis program was brcken into two separate programs.
The first program is called ANAL4 and is shown in Appendix C. After some
initialization (Lines 1-60) ANAL4 requests that the user type in the number
cf files to be processed and th2 name of the binary intermediate file to be
used as an output. ANAL4 stores these values in FI and AS respectively

{Lines Q8-98)_, The nex

rh

Ot AllAL% is to read the tirst data file into

. .
s
LK

-

a fixed memory location (Line 104). The format of the data file is ex-
plaired in Chapter 2 and is briefly reviewed here.

Eachi file has two minutes of data stored in it. The first minute is
stored in the second half of the file, while the second minute is stored in
the first half., Each file is 4 K bytes long with 2 K dedicated to each
minute. Fach minute nf data has four two-dimensionaul arrays RR, 1I, RI,

IR as described in Section 2.1. The format for one minute of data is shown
in Table 3.1. The 32 bytes on each line pertain to the 32 possible heights
that can be used with an eight-section system. When the collection program
writes the data file to disk the lact four bytes of the file are lost. This
is due to the fact that when a binary file is written to disk a two-byte
load address and a two-byte file length are written elong with the file.

These four bytes are stored as the first fcur bvtes of the binary file,

s by TR R GR A R . R e s @t e

Table 3.1 Format for binary dats files,

BYTES

0-31
32-63
64-95

224- 235
256-237

480-511
512-543

736-767
768-799

992-1023
1024-1055

1248-3279
1280-1311

1504-1535
1536-1567

1760-1791
1792-1823

2016-2047

QUAXTITY

RR
RR
RR

RR
II
II
RI

L ML AN R TER R CHER e

BYTE
MEDIUM

MEDIUM
MEDIUM

HEDIUM
MEDIUM

MEDIUM
MEDIUM

MEDIUM
MEDIUM

MEDIUM
HIGH

HIGH
HIGH

HIGH
HIGH

HIGH
HIGH

HIGH

SECTION QUANTITY

NOT
LAG
LAG

LAG
NOT

LAG
NOT

LAG
NOT

LAG
NOT

LAG
ROT

LAG
NOT

LAG
NOT

LAG

USED
0
1

USED

USED

USED

USED

USED

USED

USED

R TR

36

Thus when the file is written to disk the last four bytes of the binary
file are truncated, namely, the high byte of the highest lag for the highest
four heights. This becomes important if all 32 heights and all six lags
are being used. Since ANALA4 only uses 20 heights and two lags, the loss of
the last four bytes does not presemt a problem.

After reading the first data file ANAL4 stores the first minute of
data into an array called A(I,J,K) (Lines 133-150). In order %o calculate
the correlation and phase for the first heights, the magnitude G(I) and
phase V(I) of the autocovariance function are calculated for the first and
second lags (Lines 187-260). After the power X1 is calculated (Line 265)

& check is made to see if enough power is present to calculate the velocity
and correlation tiwe. If there is not enough power ANAL4 sets the ve-
locity X3 and the correlation time X2 to a default value (128 for ANALA)
and continues with the next height (Line 272). If there is enough power
ANAL% checks the shape of the autocovariance curve, If the magnitude of
the autocovariance is grzater at the secound lag than at the first lag, or
if the magritude of the autccovariance of the second lag is less than one,
ANAL4 sets the correlation time X2 to a default value (128) and sets the
velocity X3 equal to that calculated for tre first lag (Line 273).
Provided that there is enough power and that the magnitude of the auto-
covariance is within the limits, ANAL4 calculates the correlation time X2
(Line 274).

ANAL4 was designed tc produce an output of power, velocity and cor-
reiation time in one~byte integer form, so it uses a scale factor. For
instance, the velocity is calculated at one-tenth its final value. This
allows ANAL4 to store a wider range of velcocities in an eight-bit number.

After all the criteria have been checked and the three quantities have been

T U N et PELETAr - 2a¥ae b P

37

put in eight-bit form, ANAL4 stores the three values into memory (Line 285).
This process is repeated for each height and then for each minute until all
the data on side A of the collection disk (first hour) is complete. 1If
less than one hour of data was collected ANAL4 fills the remaining wemory
space with the default value 128 (Line 290-295). The last task for ANAL4
is to save all the processed data (in memory) to an intermediate binary
file on disk (Line 310). ANAL4 is then run on side B (second hour) of the
collection disk. In order to put the two hours of data together, both the
binary files are loaded into memory in consecutive address locatioms. Then
one intermediate binary file of double length is saved back to disk.

The second program CONVERT84.1 takes the intermediate binary file and
outputs three serial ASCII text files. These files are in a format com—
patible with those previously generated by the PDP-15 computer (Roth 1982)
and represent power (POWW), velocity (VELL) and correlation time (CORR).
CONVERT84.1 calculates the minimum, maximum and mean of each of the three
quantities. Finally the serial text files are written. The first line of
the text file contains the title and the date when the data was collected.
The second and third lines show the hour and minute of the start time. The
fourth line contains the number of records (minutes) contained in the file.
The fifth, sixth and seventh lines have the minimum, maximum and mean
values of the numbere in the file. The eighth line has the base-height
used in the collection of the data, After writing these quantities to disk
CONVERT84.1 then writes the data that is stored in the intermediate binary
files to disk., Before the values are written to disk they are returned to
their original form. All numbers that were originally negative are re-
stored by subtracting 256 and each value is multiplied by the scale factor

used in ANAL4, The scale factors are ten for the velocity and two for the

s v+

38

pover and correlation time. The numberc are written on disk in ths sormat
shown in Table 3.2. Note N is the number of minutes collected.

The final form of the three quantities, power, velocity and ~orrelation
time, have units of centibels centimeters-per-second and centiseconds re-
spectively. This selection of units allows the values to be storec in the
text files as integers. To recover the data in bels, meters-per s<cond and
seconds, the integer is divided by 190.

CONVERT84.1 ends when all the files have been completod.

3.2 System Limitations

The processing programs ANAL4 and CONVERT84.1 have four inherent
limitations which are described below.

(1) ANAL4 and CONVERT84.1 only allow for a maximum of 256 different
values for any of the calculated quantities. This is due to the fact that

only eight bits are used to represent each number. In order to accommodate

this, the maximum range of values to be considered severely limits the reso-
lution of each number. For instance if the extreme velscities to be con-

sidered were +12 m/s, the resolution at best could only be .094 m/s.

¢ L5 5

ANAL4 and CONVERT84.1 use a scale factor of tem and calculate the veloci- .
ties in decimeters-per-second. This gives a resclution of 0.1 m/s and a
waximum range of +12.7 m/s. Since the existing plotting routines do not
plot zeroes, all velocities in the range of +0.05 m/s are not plotted and
look like missing data. Similar atgumeﬁts can be made for power and cor-
relation time data.

(2) ANAL4 and CONVERT84.1 are complicated to use. The processing of ;

two binary files (one for each time ANAL4 must be run) as well as the re-

trieval and joining of these files leaves considerable room for user error.

Memory locations and file lengths must be kept straight in order to get

]
|
(

N .%}'-\ .

R e

aemegs

L R G S e RN o o

Table 3.2 Format for text data files.

HEIGHT

20
20

20

HINUTE

N b= as s se

39

e b L

Pﬁﬁ LA YL AL S N

A AL

A |

SRR

.)

40

the correct information co CONVERT84.1.

(3) Because of the improvements to the collection program (Chapter 2)
it has become necessary that ANAL4 and CONVERT84.l1 have the ability to
process up to 60 heights of data for each disk. This change increases the
usage of ANAL4 and CONVERT84.1 by a factor of three. This increase in the
volume of data multiplies the difficulties in using the processing programs.

(4) Since the range of heights now includes altitudes from the strato-
sphere, the maximum values are no longer as meaningful. This tends to make
the decreased resolution even more unbearable. For instance, typical ve-
locities in the stratosphere are +1.5 m/s. With a 0.1 m/s resolution only
30 different velocities can be displayed.

3.3 Modifications

In order to improve the processing programs and to allow the proces-
sing of data from the improved collection program several modificatiomns
have been made.

(1) To allow a greater range of values the number of bits used to
store one piece of data has been changed from 8 to 16. Using the previous
example, the range can now be +327 m/s. Since the range now more than
adequately covers the possible values the scale factor of ten is no longer
necessary. The resolution of the values now is 0.0l m/s. Because the in-
creased range is much larger than needed, a scale factor of one-tenth or
smaller is now possible. This would allow an accuracy of 0.001 m/s or
better. Clearly the accuracy of the output data is no longer limited by
the processing system but is limited by the collection system. This modi-
fication has led to an increased number of valid data points and a much
becter plot.

(2) In order to streamline the processing programs several modifica-

o 55 e

AT e et

PG CERIPEEL L - N -
- * .
‘*\M’“w%‘imv S N e L TR e TSR TIPS x CREITImeE LY e e T w . o R . -

41

tions have been made. ANAL4 and CONVERT84.1 have been merged into one pro-
gram called PROCESS. PROCESS has a number of advantages over ANAL4 and
CONVERT84.1, PROCE3S is much faster to use. The simple mechanics of only
having one program decreases the processing time. PROCESS does not use
intermediate binary files. This leads to less disk usage and less con-
fusion. PROCESS can do up to two hours of data analysis in one run. It is
no longer necessary to glue files together.

(3) By adding two variable DISP and SECTION, PROCESS has the ability
to analyze data collected with the new collection program. SECTIONSIZE
controls the input data file format while DISP allows PROCESS to analyze
data from three different height ranges (LOW, MEDIUM, HIGH).

(4) The increased number of bits used to represent each value also im-
proves the quality of the data seen at altitudes in the stratosphere. The
number of possible velocities in the stratosphere has increased from 30 to
300. This change causes the structure of the data to be greatly enhanced.
3.4 The New Analysis Program

The new analysis program is called PROCESS and is shown in Appendix E.
Some points of interest are discussed here. HIMEM, INFILEADDR and OUT-
FILEADDR are used to configure the available memory space. HIMEM sets
the address for the highest memory location available to PROCESS and its
variables, INFILEADDR is the address where the input-file will be loaded
into memory. To accommodate the size of the input-file this constant must
be at least 4096 less than the highest available memory location. OUT-
FILEADDR is a memory location where the data will be stored before being
written to the text file. Since 14,400 bytes are required for a two hour
16-bit file, OUTFILEADDR must be at least 14,400 less than INFILLEADDR.

SECTIONSIZE thould be set equal to the value of SECTIONSIZE in the collec-

3]

2y
et
=

42

tion program. THRESHOLD is used to modify the acceptable power level.
THRESHOLD is a variable and is used to replace the constant 20 used in
ANAL4. REFILE is a variable used to load the data file into memory. RE-
FILE replaces H in ANAL4. K1, K2 and K3 are counstants used in calculating
velocity, correlation time and power. Statements containing "PRINT D$..."
are used to execute DOS commands from a BASIC program. The colons in front
of several of the statements are used to indicatz the nested loop level and
have no effect on the statements they precede.

A brief description of PROCESS is given here. PROCESS first ini-
tializes all integers and arrays (Lines 10-20). Next, PROCESS determines
the height range and initializes scme constants (Lines 30-170). PROCESS
then fills the input array and calculates the power, velocity and correla-
tion time for the first minute. There are two functional differences be-
tween ANAL4 and this part of PROCESS.

(1) The data is now compressed to 16 bits rather than 8 bits. So, all *
values are clipped to +32,676 and put into a positive two-byte form by
adding 65,536 to all values less than zero,

(2) The criterion for the calculation of the correlation time has been
changed. PROCESS checks to see if the magnitude of the covariance function
at the first lag is five times greater than the magnitude of the covariance
function at the second lag. PROCESS also checks to see if the magnitude
of the covariance function is greater at the second lag than at the first.
If either condition ig true PROCESS sets the correlation time to a default
value and assigns VEL equal to the velocity calculated at the first lag
(Line 2510).

After all the data has been analyzed and stored in memory PROCESS im-

mediately begins creating the text files, PROCESS collects the header in-

Ve

A EET SR e R o O R

N R
Aol .
e T

43

I, i oo o
o S el

formation (Lines 4330-4410), calculates the minimum, maximum and means

(Lines 4420-4670), and writes the three files to disk (Lines 4073-4315).

PROCESS is written in several parts and is easily followed. After

some initializing PROCESS asks for the height range to be analyzed. Next,

PROCESS asks for the number of files to be analyzed and a pause is put in

to remind the user to put in side A of the data disk. PROCESS then reads

and does the analysis on all the side A files in much the same manner as

ANAL4, VWhen side A is done PROCESS asks the user to put in side B of the

data disk. PROCESS then does the analysis on side B and puts the output

data right next to the data for side A. PROCESS then asks for the "TEXT

DISK", The TEXT DISK is simply a separate disk which will be used to per-

manently store trre output text files. Next, PROCESS asks for some header

information for the text file. It then calculates the minimum, maximum and

mean for all the data and writes these along with the data to the text

files, When this is done the text file is complete and PROCESS restarts P

itself,

vt s i

PRV AWM AR il P

e B R Bt

44

4. COHERENT-SCATTER DATA ON MAGNETIC TAPE

4.1 Introduction

In order to establish a forum for data exchanges and discussions, the
MAP (Middle Atmosphere Program) of SCOSTEP (Scientific Committee On Solar
Terrestrial Physics) has set up & project called MSTRAC (MST Radar Coordi-
nation), under the chairmanship of P, K. Rastogi of Case Western Reserve
University. In accordance with MSTRAC, a data excharge of MST radar data
has been initiated. Several countries (U.S.S.R., Czechoslovakia, Federal
Republic of Germany and China) have indicated an interest in using MST ra-
dar data to aid their studies of the middle atmosphere.

In order to share coherent-scatter data with other users it is neces-
sary to transfer the data to a different medium. Potential users of the
data have requested that the transfer be made to 1600 bpi, 9-track, IBM
readable magnetic tape. The procedure for the transfer of data from floppy
disk to magnetic tape is described in this chapter. At this point some
preliminary discussion is in order.

(1) Magnetic tape 3600 ft long can be purchased from CSO on campue.

If a different length is desired the tape must be purchased elsewhere.

(2) In order to use a magnetic tape the tape must be checked into the
tape room at CSO. When tapes are checked in, a 'tape name" and a "rack
designation”" are assigned. The "tape name" is one to six characters in
length and is chosen by the user. The "rack designation" is four charac-
ters long and will be assigned. The "rack designation" is either temporary
or permanent. All tapes to be left less than 30 days are temporary and
have a "rack designation”" of TEMP. All other tapes have a different desig-

designation assigned by the operator. To retrieve a tape simply go to the

45

CSO tape room and tell the operator the "tape name' and the "rack designa-
tion".

(3) There are two ways to submit jobs to the Cyber. Jobs can be sub-
mitted interactively or in a batch mode. To execute jobs interactively
simply type in the first command and wait for the prompt. Then type in the
second command, 80 on and so forth., Interactive is the method used to
transfer floppy disk files to Cyber permanent storage. When reading,
writing or copying tapes it is recommended that the batch mode be used. To
use the batch mode, create a text file on the Cyber with the following

format.

/JOB

/NOSEQ

WIZARD.

##44444 ¢ (ID NUMBER)
XAXXXX. (PASSWORD)
BILL,XXXX,PS####. (CHARGE NUMBER)
PRINT/RJE=EE.

(NORMAL CYBER COMMANDS)

. .
. .

To execute the batch job type '"'SENDJOB,filename." return. The Cyber will
then put the job on an execution queue. The job will now execute on its
own. The users can go on to something else, or log-off. To determine if
the job is completed type "QUERY" return. Cyber will respond with "NO JOBS
QUEUED" if the job is done. Note: the print statement in the header of
the bLatch file causes &all output generated by the batch job to be routzd to
EEB computer room. However, a program listing may still go to the CSO
computer room. Due to the fact that the ID number, password and charge
number are on the program listing, it is important to retrieve all listings
from both locations.

(4) The procedure described in this chapter was used to create a mag-

¢ T CEEERNE o AR FEESe T T 5 T S 2 S A - S o - T

.
e

P\ 2l VL o AN
JERSEE S SN A :

46

netic tape with data collected during April 1978, The master tape is
called APRi.M and is located on rack G454, A copy of the master tape called
APRIL] is resident in the Aeronomy Laboratory. Due to the amount of data
present approximately 300 ft of tape are used. Therefore all copies made
for distribution have only 300 ft of tape on them. These tapes are named
APRIL2 through APRILB,
4.2 Format of Tape Files

In this section the format used to store coherent-scatter radar data
on magnetic tape is described. This particular format was chosen because
it is simple to follow and easy to use. The data files stored on magnetic
tape use a format involving a large number of small files. Each file
represents a single quantity (power, velocity) for a two-hour period. The
ability to easily access each two-hour period of data from individual files
makes this format preferable to one with only a very few large files.

The first file written to the magnetic tape is a '"header file". The l
header file for April 1978 is shown in Appendix F. The header file de-
scribes in detail the conditions under which the data was collected, the
format of the data files on the tape and a menu of the files on the tape. i
The format of the data file was chosen because of its relative simplicity |
and its economical use of the magnetic tape. The format of the tape data
files is very similar to that of the floppy disk data files (Section 3.1).
The only change occurs in the record length. 1In serial text files the
record size is variable so as to fit each irdividual number. The coherent-
scatter analysis program writes serial text files with one number per
record. Tape files have a fixed record length which must be large enough
to accommodate the largest possible number. It was determined that one %

value could at most use six characters. Six characters allow a five digit

e e Tk N L s s e

47

number and a sign indicator. To allow economical use of the magnetic tape
an 80 character record is used. This record length allows 11 different
values to be stored in one record. Each record has six characters per
number plus one blank space between each value. Three characters are left
blank at the end of each record.
4.3 Reformatting Disk Text Files

As explained in Section 4.2 it is necessary to reformat the data files
into 80 character reccrds. There are two possible solutions to the task of
reformatting the text files. The files could be reformatted, stored back
on floppy disk and then transferred, or the files could be reformatted once
the transfer has taken place. Because of ease and the accessibility of the
Apple II microcomputer, the former of the two solutions was chosen. A
small BASIC program was written to read the serial text file, reconfigure
the data into 80 character records and write a new text file with the new
format. The BASIC program is shown in Appendix G.
4.4 Trensfer of Text Files to Cyber

Refore the data files can he stored on magnetic tape they must be
transferred to the Cyber computer. The procedure for executing the trans-
fer is described below.

Once the text files have been reformatted they can be transferred via
a modem link to the Cyber computer. The transfer program used is a public
domain terminal program available from CSO called Apple Term version 3.0.
The procedure is as follows. Boot up the Apple Term disk. When the Apple
asks for a phone number, type in the number of the Cyber (Nosa or Nosb).
Once the link has been established type a blank carriage return. Now sign-
on in the normal procedure. After sign-on type "ICE,filename return.

When the Cyber responds with a "??", type "1" enter. The Cyber is now

s s
(-

F&.ﬁém}yg R S
48

ready to accept data from the terminal. Next type cscape "T". From here
the Apple Term program will take over and ask for the filename of the file
to be transferred and the prompt used. Make sure that the disk with the
text file present is in the disk drive. Now type in the filename return
for the filename and a "?" return for the prompt. The "?" tells the Apple
Term program to wait for a "?" before transferring a nev liue. Ailter
typing in the prompt, no wmore user inputs are needed until the file trans-
fer is complete. Upon completion of the transfer, the Apple will beep.
Type in a blenk carriage return. This will terminate the file. A "77"
prompt will then appear. Type in "ER" return. This exits the editor and
saves the new file in permanent storage.
4.5 Resding &and Writing Magnetic Tapes

There are many different ways to write information to a magnetic tape.
The procedure outlined below describes one way for a Cyber computer to
write a magnetic tape that an IBM computer can read.

To write a file to tape first send a lable statement to the Cyber.

LABEL(TAPE ,VSN=tapename-rack designation,PO=W,F=S,LB=XU,CV=EB)

This label statement tells the computer operator to mount a tape called
tapename. The tape may be found at the location rack designation. "TAPE"
is a variable used to refer to all operations on the tape. '"PO" can either
be set to "R"ead or "W'rite. '"F" is set equal to "S" to indicate that the
format on the tape is "strange". "LB" is set equal to "KU" and indicates
the tape is unlabeled. "CV" is set equal to "EB"; this will cause data
written to the tape to be stored in the Ebcdic code.

Once the label statement has been executed a request for the TBLOCK
routine should be made.

2 GRAB, TBLOCK,

- —

49

This command will fetch TBLOCK into local memory.

Now, the first file to be written to memory should be fetched from
permanent storage.

GET,dfilel.
After dfilel i3 in local memory the file can be written to tape.
TBLOCK(DISK=dfilel ,RECSIZE=80 ,BF=50)

This command tells Cyber to write dfilel to tape using a record size of
80 characters and a buffer size of 50 records. One buffer represents a
bleck of data stored on tape. If another file is to be written to tape
gimply fetch it to local memory and execute another TBLOCK. This is pos-
sible because the Cyber just finished the first file. However, the tape
might not always be in the correct position. To reposition a tape at the
beginning of file, simply rewind the tape and skip over the appropriate
number of files.,

REWIND, TAPE,
SKIPF,TAPE,n,C.

Here n is the number of files to skip over.

When the session is over it is important to return the tape to its
rack.

RETURN, TAPE,

This tells the computer operator toc put the tape back, it zlso will free
up a tape drive for another user.

In crder to verify the data it might be necessary to read the data
back off the tape. To recad a tape issue a label statement with "PO" set
equal to "R". Then position the tape to the beginning of the desired file.

Next, fetch DEBLOCK and execute the DEBLOCK command.

GRAB, DEBLOCK
DEBLOCK(DISK=file,RECSIZE=80 ,BF=50)

AMLAN AL N

50

The parsmeter "file" indicates the name of the local file where the data
read from tape will be put.
4.6 Making Copies
After the master tape is complete it may be necessary to create
several copies of the tape for distribution. The procedure for making
copies is outlined below.
In order to make a copy of 8 tape two tapes must be checked in at the
tape room. To allow for a lengthy execution time, the time limit for the
user number must be increased tc 20 time units,
SETTL,20.

Next, a resource allowance of two tape drives must be requested.
RESOURC,PE=2,

Then, two label statements must be issued.

LABEL,TU,VSN=newtape-rack, F=F,FC=60C0,LB=KU,PO=R.
LABEL ,FRM,VSN=01dtape-rack, F=F,FC=6000 , LB=KU ,PO=W,

After the label statements have been issued a copy command must be exccuted.
COPY, FRM, TU, TC=FOD, V=YES .

This will put what is on tape FRM on to tape TU. Wher this command is exe-

cuted a verify will also be implemented. The Cyber will respond with

"WERIFY GOOD" if a gwod copy was made. Once the ropy is complete return

both tapes.

RETURN, TU.
RETURN , FRM.

4 e bt N S ol W - ot e

W ——

TREIRAE TR TR TN vk et el T URTIUUERTROSSLCATs Rget e SR)) o “
o

5. DISCUSSIONS AND SUGGESTIONS FOR FUTURE WORK

The new collection program has many advantages over the old one. The
increased speed of the booster card provides improved timing when servicing
interrupte. When an interrupt is detected there is an uncertainty as to
when the interrupt service routine starts execution. This is because the
processor must finish the current instruction before servicing an inter-
rupt. Because the booster card reduces the average execution time by
approximately a factor of 3.5 the uncertainty time is also reduced by a
factor of approximately 3.5,
Because of the ability to sample both the real and the imaginmary
channels after each pulse, the collection program now collects twice as
much data per height. The increase of data has lead to a better signal-to-
noise ratio. The new collection program collects up to 60 heights, three
times the number of heights collected by the old program. These 60 heights §
need not be contiguous. For instance, it is possible to collect data from
9-39 km and 49-109 km., The increase in data and heights has not lead to
an increase in the storage space needed by the new collection program.
Analysis of the data from sample waveforms fed directly to the inter- T
face shows that the collection program is working very well. Comparisons
between data collected with the PDP-15 and the Apple support the test re-
sults. A combination of improvements to the collection program and the
analysis program has increased the quality of the velccity and correla-
tion time plots. Sample plots generated with the new programs are shown
in Figures 5.1-5.6.

In the lower altitudes the correlation time of the data is signifi-

cantly greater than in the higher altitudes. Consequently, the values cal-

Ie
|

‘9861 ‘81 13q0390Q
uo 153 6017 3e Buruurlaq eueqin 3e £310013A IY318-3jo-aur T1°G 3indrg

52

(5/W) S31112073A hBEI /81 ¥380100 IddY

4 v =4 tn = 1
R & R = § g B 2
15 b ——t—t—t—t—t—t— ettt —t—t—t—t
Y{lily{ljjl
~ YR E\ N .b PR AN D.tV|)1lrLﬂ\ﬂbﬂﬂ]\lﬂﬂb(|1kl&1h\rL||m.m_
L?’%P%ii%i&vﬂv%- . :
rihrbluAnuxuP|bqbrL11r4pv1141v)uaud4pn&a3ﬂ»xpnn|u|Aud1nx(hbe\rxrnx$rﬁs&Vb¢-m.m_ i,
Tl;qhVlDd1DdIA\(PQD{DlVV)UIQlDhHnAﬁQbﬁPA\BKyl1rd)ﬂl'11leklltlkVL!(br-M.m_ Mw
T%‘ﬂ%%;m.m_
T‘%i%iikﬂ%l\%- > 4
I- 2 Wy 4 VAR, e — <D ~wanmsy - M - 522 ...“.
ﬂ A = o ili.\x. . - - A b —a) " & "»4
V V \/ b
i + A vV, 4. 7~ = '1 Y, vy ~ ‘. — = UM.H “-
o y Vel L T L>a|< s = ’< f— - < ') <>C\ — ~> v =
¢ N : \ \ o
= . — L %'IE
¢ Z
[- £ : S hE
2 " y;
wr . . o
- ' 5°LE

#

N B

_l
- 4

53

AL

DS

uo 18D 6011

*#861 ‘81 129030

e Sutuuilaq wvueqip 3B £310013A I4315-30-3UTT T°6G aan314

(5/W) §311100713A HBE] /81 ¥380150 3ddH

8 i H = g f B u
VLT = - =
8 S | _ .
. \ - : AN A
g . VA ' \ N
!] .. . \ * J .‘.. . s AY
o\ 2 WA : —
L A \ e . :
e T q
— / i / : ._ . .)
.ﬂ. — T
L . . « W . . R
. . - N ;
- - - S : {
MMW =1 . : . .]) .
— / = . : > .
' - v . - _ //r
e A .~ A P .. U S U / RN VI WP \\.
</ 4{ AT /\.l\. 7 N M N\ _r

S Bh

SEh

5'9h

S'Bh

A

5'58

5'8s

S'h8

5°.8

(w1) PPNITITY

P L o R
BRI S SV

e

b\
AN

54

*#861 ‘81 13q03d0
uo 1S3 6011 3 3utuurdaq pueqin Ie £3IT2073A YBIs-jo-3ur] ¢°¢ and1y

(5/H) S311100713A KBE! /Bl ¥390130 31ddH
=] ¥ m _ m 7] = 1
m N . =

+ 1218

A {ﬁiﬁfﬁz

\
VAR SN AR >

. (>> 1

: a
. . g

. .
— hd A 2 } 4 : hd 73 = o
M ¥ v 7 R 4 - *

v . . .

= A : / . " . :
¥ o . ﬂ 7 T N ~
s
e v -

* . . .

. .
$ g 0
PE—
¢
— 4 +
¥ —v + ~*

T+ 3 BL

5°8L

S'EL

328

='58

5°H8

S IB

S'hE

S'LB

(W) ApnaTITY

55

18>

~tm
-

13q0300 uo IS) 6017 3¢ 3utuurdaq eueqip 3 2WI) UOTIBIIII0) &°C 3xndt1y

“9861

(>35) 3HIL NOI1HI3M¥HOD hHBE1/B) ¥380130 3IddH
B

nN
+

4+ | IM3
+ 1134

+ 118

4 -t e
v L3 L

-
-

"
-+

+ 133

Y
v

3 3
ad 4 v

4 134g
+ 1238

+ 121X

" 4 e Y
T L4 v

A=A A7 N A MW

..,\\/\/\I\l\. /\/.

e\, NS WAV T s T A TN

.l(ﬁ\;()\) N

-

P et

D P

B P

\%’\g\(({;\g%}{{}\l\(

I AANAA A~ TN

\.I.\I‘)\llll)!\)\l\./\/\l/\\(:\"l’/?

. -~ A~ _— . . \(\\(l NS e . ;V
. - . . N

. . S A T, = v AT
= .\(ol o AN T TS~y M
SRSV X S S S A
= - - 7) N = - Z - N o
1 : — ——— " i S~

! : ——r e v/

[— - — v ey < —

y il v - M v A 7 7
+ v g - = — ——
' e <~ ——— ~———————=
— v — v > —— <>
et e e A——pmmpme et —————+

Lt

‘g1

‘Bl

‘BZ

"LE

(W) °pnIMITY

56

3OS

L i pek

9861
‘81 1390320 uo 153 6017 I® 3utuuilaq eueqip je suny UOTIBIAII0) ¢'¢ 2and1g
(J35) 3H!1 NOI1HI3NNOD KBE! /81 ¥380150 31ddH
N it = ("]
B A R S R g 8 z .
— Y - — A~ o) = -nl
— ~—— s —=——+ 5 Bh
wl(l / = v 7 - - hd hd
— — . < < S Eh
= —— o= v s — T
' S— . A - %'8h
- — = e : 3
— <o L > b -~ m-mr
’ - — P >
— . S— — - 5'2S =
|- tn
L, v 3 vy v v [ag
&

s —— w 5°%8% o
= T v v v - . m.
— - - v . v 5°8% ~
= — r = - 513
— T < v - v v
— \} v~ — S'h8
— 0 g - v =
== A I\<¢ll\/ B P - .\.,\/ . g g —d m.hm

v \ .
T W g .) i
, o . T) R . F———————————" v b

) "9861
‘g1 1990190 uo 1S 01T 3I® Sutuurlaq euEqin I® BWII UOTIBTAII0) g°¢ 3indiy
(235) 3WI1 NOILHI3NNOD hBRI‘BI 4380130 37444
%) = [~} n
B % R = R g B 2
19 + + + + + 4 +—t +—t—% +—t + + —t + s e + +
eSS Ve S & N~ <~ ~- -7
--u'i:lull\l.\l\l\’\l;l.il\.l\l!N 1/\'.\(1/\/\)\\"\ — —— MNN.
La—~————— — e e o= _——
- \/\/\./\.\l\l\l.\/\ll‘ - e II\:/\.\I‘\/\/\.I\’.I)\ m MF
. - "/\)\J\I\.!\‘\l‘ll\.l\.l‘)\:\l.\llu\'/\'\.)\ l./.l.\\.lll./\/.. ——
T4 Vl —— "N A e S, © T SAA— \l‘lmm\u
A - ——
t N R e e N T e o PN e e
: ﬁ S= e e e ———r—————, DT
k —_— " = ==
. »
= =V, = == -+ 5'ZH m
q H L= = e . ?‘Iﬁlﬂ . m
IS — s TS Vi Wi A R e v .\.uldlllll.l..|.\qﬂu.lmmm [
m o / s R LV << Lad - Ty v T m
, L Candiie g = - A W e v v M mm ~
r
. ~ <
. M ——— —— s ——t 8 b
I * -)
! s . . S hE
.} -
4 S'iB
&
.\J,m ——t e+ et ettt
;
e
h
e g il . T YLy —y

i B T AN RROT S TR

!

et e e el b e

L A

58

culated by DIFAC are much smaller. To amplify these values the FIXSTRAT
verb was written for the cullection program. However, this verb cannot
be used without loss of information in the power plots. Small modifica-
tions in the analysis program can be implemented to allow the use of FIX-
STRAT.

Reducing the overshoot of the transmitted pulse would also improve the
quality of the data at the lowest altitudes. Tn addition if the overshoot
were reduced the collection program could be modified to collect data from
lower altitudes. These changes could be used to help study the correlation
between winds in the upper, middle and lower atmosphere. Upgrades to the

Urbana system allowing a decreased overshoot are currently being implement-

ed.

é
E
:

-
8

VOGN \NESWN=D

10
11
12
13
14

16
17
18
19
20
21
22
23

3

-
[-X"- N NN WV P XN -]

—
—

LIRS e N ETE LSS RS I ERIAGE Cme B ~

APPENDIX A
Listing of the Collection Program

¢ 30
(2ADAR/1

(

COHERENT-SCATTER~RADAR DATA-ACQUISITION
PROCRAM WRITTEN OCTOBER 1981 BY SIDNEY
BOWHILL, REVISED JUNE 1983, REVISED
AUGUST 1984 BY ANTHONY RESXIER, RESEARCH
SUPPORTED BY MATIONAL SCIENCE FOUNDATION
ANMD BY NATIONAL AXRONAUTICS AND SPACE
ADMINISTRATION.

ADR 8/84)

ASSISTANCE OF FRANCIS KEASLER AND DAVID
PADGITT 18 ACKNOWLEDGED., ORIGINAL
PIG-FORTR SYSTEM BY FOKTH INTEREST
GROUP, SAN CARLOS, CALIFORNIA.

ASSEMBLER, EDITOR AND METACOMPILER BY
GEORGE LYONS, JERSEY CITY KJ,

ALL CODE CONTAINED HEREIN IS PUBLIC
DOMAIN AND MAY BE FREELY COPIED FOR
NON-COMMERCIAL PURPOSES 1F ACKNOWLEDGED
APPROPRIATELY.)
-—D

32

(RADAR/3 ADR 8/84)

FORTH DEFLNITIONS HEX
(USER CONSTANTS AND VARIABLES)

5 CONSTANT
7 CONSTANT
CONSTANT INBUFFER
40 CONSTANT SECTION
2 CONSTANT LAGS
3C CONSTANT HEIGHTS
14 CONSTANT DISPHTS
9 CONSTANT LOWHEIGHT
3C CUNSTANT MINS/DISK
VARIABLE SAMPLES

32 VARIABLE PULSES
40 VARIABLE MINS

13 VARIABLE DELAY!

C VARIABLE DELAYZ

1 VARIABLE MIN#

32 VARIABLE AMPFACTOR
A VARIABLE FREQFACTOR

INPUTSLOT
~ACKSLOT

(8,10,20,40

(100/SECTION-2
(<= SECTION

(<= 14

Nt ot N

(<= 3D)
(<= 1A0)

(>=13)

-

8

B Pt s Pt Bt peo o P Pn Bt e
COOVBNORNETWLWN=OVORNOWVNE WN D

NN
D b

43

(RADAR/2 SAB 6/83)

(

THIS PROGRAM IS8 IN FIG-FORTH AND ASSEM-
BLY LANGUAGE FOR A 6502 MICROPROCESSOR.
IT I8 DESIGNED TO XUN OM AN APPLE II OR
II+ MICROCOMPUTER WITH A JOHN BELL
ENGINEERING PARALLEL INTERFACE CARD, A
SCITROMICS REAL-TIME CLOCK CARD, AKD A
SINGLE APPLE FLOPPY DISK DRIVE. IT RE-
QUIRES TWO 8-BIT A/D CONVERTERS WITH
SAMPLE-AND-HOLD CIRCUITS, AND CONVERSION
TIMES OF 6 MICROSEC OR BETTER, E.G FROM
MICRO NETWORKS INC. START-CONVERT
SIGNALS ARE PROVIDED BY THE JBE CARD
UNDER PROGRAM CONTROL. A TTL INTERRUPT
SIGNAL MUST BE PROVIDED WHICU COINCIDES
WITH THE START OF THE TRANSMITTER PULSE.
THE PROGRAM PROVIDES COMERENT INTEGRA-
TION OF BOTH QUADRATURE CHANNELS AND
PROVIDES 1 HOUR OF CORRELATED DATA ON
ONE SIDE OF A FLOPPY DISK.)

atd

433

(BADAR/ 4 SAB 6/33)

(SET DERIVED CONSTANTS FOR VIA)

INPUTSLOT CO + 100 * CONSTANT INADOR

INADDR CONSTANT DRBI
INADDR 1+ CONSTANT DRAL
IFADDR 2+ CONSTANT DDRBI
IRADDR 3 + CONSTANT DDRAl
INADDR B + CONSTANT ACR!
INADDR C + CONSTANT PCR1
INADDR E ¢ CONSTANT IERI
INAODR 80 + CONSTANT DRB2
INADDR 82 + CONSTANT DDRB2
INADDR 84 + CONSTANT TICL2
INADDR 85 ¢ CONSTANT T1CH2
INADDR 86 + CONSTANT TILL2
INADDR 87 + CONSTANT TILH2
IRADDR 8B + CONSTANT ACR2
INADDR 8C + CONSTANT PCR2
IRADDR BE + CONSTANT IER2

-

59

G skt om0

YT AR R L

b R TN
RSN RN L s

R i

AN

WO NONEWN-O

10

12
13
14
13
16
17
18
19
20
21
22

DAL -O

T

3%

(RADAR/S ADR 8/84)

(APPLE II FIXED LOCATIONS)

22 CONSTART WINDOW

24 CONSTANT CURSOR

A4S COMSTANT ACC

37X CONSTANT IRQVECTORADDR
CO30 COMSTANT SPEAKER

(ZERO-PAGE QUEVE-POINTER LOCATIONS)

52 CONSTANT QUEUEL
33 CORSTANT QURUE2
54 CONSTANT HREAL
30 CONSTANT HIMAG
58 CONMSTANT LSUM
SA CuNSTANT BSUM

-

¢ 36

(RADAR/7 SAB 6/83)

(ZERO-PAGE SAMPLE AND DATA POINTERS) .,

70 COMSTANT LSP)
72 COMSTANT HSP!
74 COMSTANT LSP2
76 CONSTANT HSP2
78 CONSTANT LD?
7A CUMSTANT MDP
7C CONSTANT RODP

(PAGE POINTERS FOR BUFFERS)

80 CONSTANT INBUP
81 CONSTANT LDR
82 COMSTANT RDR
83 COMSTANT LIN
84 CONSTANT HDI
85 CONSTANT Z

-2

-

g

60

SCR ¢ 3

0 { RADAR/G
1

2 (ZERO-PAGE SCRATCEPAD LOCATIONS)
k]

SAB 6/83)

4 60 JOMSTANT LAG
3 61 CONSTART BUFS
6 62 COMSTANT BUTL
7 63 COMSTANT BUFR

8

9 (ZERO-PACE CONSTANTS AND VARIABLES)
10

11 64 CONSTANT INOREM

12 65 CONSTANT INCREM®2

13 66 CONSTANT PULSTCOUNT
14 67 CONSTANT SPARES

15 69 CONSTANT SAMPLECOUNT
16

17 —>

18

19

20

21

22

23

¢t

(RADAR/B SAB 6/83)

(PAGE POINTERS CONTINUED)

86 CONSTANT LOR
87 CONSTANT HOR
88 CONSTANT LOI
89 CONSTANT HOL
8A CONSTAMT LRR
8B CONSTANT LI
10 8C CONSTANT LRI
11 8D CONSTANT LIR
12 8Z CONSTANT MRR
13 8F CONSTANT MIL
14 50 CONSTARNT MRI
15 91 CONSTANT MIR
16 92 CONSTANT HRR
17 93 CONSTANT HII
18 94 COMSTANT HRI
19 95 CONSTANT HIR

LB V- AV YR o]

20

21 : ADDR C@ 100 *
22

2} =-->

2

DAL EWNN~O

—
o

11

PO RS B e bt s P e B B B
M O M~ WE W

*0

g

—
OWNOOWVEWN—-O

11
12
13
16
15

17
13
19
20
21
22
]

MLICTS. Th. iR S e B
L P VA S

¢ 3

{ RADAR/9 ADR 8/84)

(INITIALIZE ZERO PAGE AND VARIABLES)

+ INITLOC (=~)
PULSES @ PULSECOUNT C!

1 MIN# | O SAMPLECOUNT !

SECTION 201 * INCREM |

0 QUEUE2 C! INCREM C@ QUEVE] C!
INBUFFER 100 / 16 0

DODUP I « INBUF 1 + C!

LOOP DROP (PAGE POINTERS)
INCREM®2 C@

DUP LSUM C1 HSUM C!
HDR CQ HREAL le+ Ci
HDI C@ HIMAG lo C! ;

(POR RT DISPLAY)

IRITLOC

-_>

&0

(RADAR/11 ADR B/84)

(CODE TO INPUT TO SUFFER FROM 1/0)

: MACROL

ASSEMBLER EEIGHTS O

DO IKADDR LDA, INRUFFER 1 + STA,

INADDR i+ LDA, INBUFFER I 30 + « STA,

NOP, NOP, ROP, LOOP ;

(CODE FOR COMERENT INTEGRATIOR)

: MACRO2

ASSENELER RYIGRTS O

DO LSUM)Y LDA, INBUFFER 1 + X ADC,
LSUH)Y STA, BSUM)Y LDA, O # ADC,
HSUM)Y STA, CLC, INY,

Loor ;

-3

]

WO NS WBN~-O

S§Ck

NG NN LR O

10
11
12
13
14
15
1%
17
18
19
20
21
22
2

aemees mmaR 1o wm e =y

439

(RADAR/10 SAB 6/83)

(INITIALIZE BUFFERS)

: IRITNF ()
INBUFPFER DUP 1600 + SWAP

D00 I CH

LOOP ;

(INITIALIZE I/0 CARD)

: INITIO (—-=)
0 DDRRI C! 0 DDRA: C!

31 ACRlL C! 40 PCR\ C!

81 DDRBZ C! 80 DRB2 !

0 ACR2 C! 0 PCR2 C!

7% 1ER2 C! ;

-

4

(RADAR/12 ADR 8/84)

(INTERRUPT SERVICE ROUTINE)

CODE INTERMJPT (—=)
TXA, PEA, TYA, PHA,
INADDR LD&,

CO # LDA, ACR2 STA,
DELAY1 LDA, TICL2 STA,
DELAYL i+ LDA, TICH2 STA,
2 ¢ LDA, TILL2 STA,

0 # LDY, TILK2 STY,
DELAYZ LDX, (* S MICROSEC)
BEGIN, NOP, NO?, NOP, NOP,
XOP, NOP, DEX, O=

EXD, 80 # LDA, DRB2 STA,
INADD, LDA, INADDR i+ LDA,
HACROL (LOAD BUFFER)

{ SAVE RIGS
(RESET INTERRUPT
(FOR PB7

—

(seT Fuzt
(100 x8z)

~—

(BO YET?)
(PB7 MIGH)

-

61

H
H

FX% LT 2N S

1>}

MDD B Pt P o bt g B2 Bt o e B
BN—QOD\COU’MN"O‘.\J.U@UNBO

]

(-3 . VI PN S S]

* .
Maw

¢ 42
(RADAR/13 ADR 8/84)

(CONTINUATION OF INTERRUPT)

cLe,

LDOR LOA, LSUM i+ STA,

1 # ADC, RSUM L+ STA, 0 ¢ LDX,

0 # LDY, CLC, MACROZ (SUM DATA)
LDI LDA, LSUNM 1+ STA,

1 # ADC, HSUM 1+ STA, 80 ¢ LIX,

0 ¢ LDY, CLC, MACROZ

0 # LDA, ACR2 $TA, { STOP P37)
PULSECHUNT DEC, 0= { ENOUGH PULSES?)
17, 8 # LDA, IERL BTA, (DISABLE)
THEN, SPEARKER LDA, (AUDIBLE)

PLA, TAY, PLA,

TAX, ACC LDA, (RESTORE REGISTERS)
RIT,

—->

[Y

(RADAR/15 SAB 6/83)

CODF. ADVANCE (~—= FINISHFLAG)
TSAVE STX, (SAVE RECISTER)

QUEUE! LDA, QUEUE2 STA,
CLC, INCRBM ADC, QUEUEL STA,
HREAL STA, RIMAC STA, CLC,
INCREM ADC, L3OM §TA,
ASUM $TA,
TAX, MACRO3 XSAVE LDX,
SAHPLECOUNT INC, O~ (CARRY?)
17, SAMPLECOUNT l+ INC, (COUNT THEM)
THIN, SAMPLECOUNT 1+ LDA, (TEST THEM)
SAKFLES 1 OMP, CS (MATCR?)
1?7, SAMPLECOUNT LDA,
SAMPLES CMP, CS
IF, SAMPLECOUNT
DUP STY, 1+ STY,
1 ¢ LDA, PUSHOA JMP,
THEN,
TMEN, TYA, PUSHOA NP,

(ADVANCE QUEUE)
(GET OFFSET)

(XD MINUTE?)

(ZERO COUNT)
(SET FLAG)

(RESET FLAG)

-

2

GCBNOWEWN O

e
62
43
(RADAR/14 SAB 6/83)
(SYNCHRONIZE TO INTERRUPT)
CODE SYNCHRONIZE (~-1
SPARES STY, SPARES 1+ STY, (RESET)
BECIN, SPARES INC, O= (camrRY?)
IF, SFARES 14 INC, (COUNT SPARES)
TREN, PULSECOUNT LD4, O=
END, PULSES LDA,
PULSECOUNT STA, (RESET)
NEXT JNP,
¢ MACKO3 (o)
ASSEMBLER INBUFFER 100 + 4 0
DO MEIGHTS O
DO DUP I + 500 + LO&, DUP I + ,X 8TA,
LOOP 100 »
LOCP DROP ;
-—d
¢4 '
(RADAR/16 ADR 8/84) : !
(MAKE A TIME MESSAGE)
CLOCXSELOT 10 * COB4 + CONSTANT TLOC
D3C3 VARIABLE TIM
HERE 15 ALLOT 15 A0 FILL AF TIM S + C! .
AF TIM 8 « C! B6AO TIM 10 + ! CBBO TIM i
12 « 1 DID4 TIM 14 + ! : !

: MACRO4 (===

ASSEMBLER TLOC LDA, .A LSR, .A LSR,
.A LSR, .A LSR, B0 # ORA, ;

1 MACROS (V=)
ASSZMBLER MACRO4 TIM + STA, DEY,

TLoC STY,

-

o T T e e -

73
2]

1O bt Pt Bt ot o Bt et s et
QWO NAWVMEWRNHOWR~NTOW EWN-O

"
™

"~
w N

46

(RADAR/)7 SAB 6/83)

CODE TIMEREAD

FO # LDA, TLOC l¢ STA,

F # LDA, TLOC STA,

FC # LDA, TLOC 3 + STA,

F4 ¢ LDA, TLOC 1+ STA,

¢ ¢ LDY, TLOC STY,

9 MACROS A MACROS 3 MACROS & MACROS
6 MACROS 7 MACROS

TLOC LDA, DEY, TLOC STY, MACROA

F1 # AND, TIM C + STA, DEY, TLOC STY,
D MACROS E MACROS MACRO4 TIM F + STA,
F8 # LDA, TLOC 1+ STA,

F # TDA, TLOC STA,

F8 ¥ LDA, TLOC 3 « STA,

FC # LDA, TLOC l+ STA,

F # LDA, TLOC STA, NEXT JMP,

-_—>

48

(RADAR/19 SAB 6/83)

(ACCUMILATE VALUES)
CODE VALAC

HEIGHTS 1 - # LDY, (SET NO. OF HGHTS)
BEGIN, CLC, LSP1)Y LDA, BUFL STA,
HSP1)Y LDA, BUFH STA, 0<
IF, FF # LDA, BUFS STA,
ELSE, O # LDA, BUFS STaA,
THEN, CLC, LD?)Y LDA, BUFL ADC,
LDP)Y STA, MDP)Y LDA, BUFH ADC,
MDP)Y STA, HDP)Y LDA, BUFS ADC,
HD.)Y STA, DEY, 0<
END, NEXT JMP,

-—>

g

e pn g
WNFOWVOSOWNEWR~O

-

t:NNNn—-wr--—n—
N =OVs W

63

¢t 47

(RADAR/18 SAB 6/83)

(WAIT FOR AN EVEN MINUTE)
+ AWAITMIN

TIMEREAD TIM F + €@ (GET MIi)
BEGIN DUP TIMEREAD
TIMF + CQ ~

END DROP ;

(HAS MIK CHANGED?)

(CLEAR OUTPUT ACCUMULATORS)
: CLEAROOT
LRR ADDR C0O O FILL ;

—-_>

49

(RADAR/20 SAB 6/83)

(ACCUMULATE DIFFERENCES)
CODE DIFAC

XSAVE STX, LAG LDX,
BEGIN, REIGHTS 1 - # LDY,

BEGIN, SEC, LSPL)Y LDA, LSP2)Y SEKC,
BUFL STA, HSP1l)Y LDA, HSP2)Y SBC,
BUFH STA, 0< NOT
IF, CLC, LDP)Y LDA, BUFL ADC,

LDP)Y STA, MDF)Y LDA, BUFH ADC,
MDP)Y STA, CS
IF, HDP)Y LDA, 0 ¢ ADC,
HDF)Y STA,
THEN,

-

e B O % w

SQR

SCR

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

¢ 50

(RADAR/21 SAB 6/83)

ELSE, SEC, LDP)Y LDA, BUFL SBC,
LDP)Y STA, MDP)Y LDA, BUFH SBC,

MDP)Y STA, CS
17, HDP)Y LDA, ¥F # SAC,
HDP)Y STA,
THEN,
THEN, DEY, 0<
END, CLC, LDP LDA, INCREM ADC,
LDP SITA, MDP STA, HDP STA, SEC,
LSP2 LDA, INCREM SBC, LSP2 STA,
HSP2 STA, DEX, 0<
END, XSAVE LDX, NEXT JMP,

el d

52

(RADAR/23 SAB 6/83)
CODE II

QUEUEl LDA, LSPI STA, HSP1 STA,

QUEUE2 LDA, LSPZ STA, RSP2 STA,
INCREM*2 LDA, LDP STA, MDP STA,
HD? STA,

LDI LDA, LSP1 1+ STA, LSP2 1+ STA,
HDI LDA, HSPY 1+ STA, HSPZ l+ STA,
LII LDA, LDP 1+ STA,

MII LDA, MDP 1+ STA,

HII LDA, HLDP 1+ STA,

LAGS 1 - # LDA, LAG STA,

NEXT 1P,

ntd

64

SCR # 51
(RADAR/22 SAB 6/83)

(SET POINTERS)

QUEUE1 LDA, LSP1 STA, HSPl 8TA,
QUEUE2 LDA, LSP2 STA, HSP2 STA,
INCREM*2 LDA, LDP STA, MDP STA,

9 HDP STA,

10 LDR LDA, LSPl 1+ STA, LSP2 1+ STA,

11 HDR LDA, HSP1 l+ STA, HSP2 1+ STA,

12 LRR LDA, LDP 1+ STA,

13 MRR LDA, MDP 1+ STA,

14 HRR LDA, HDP 1+ STA,

15 LAGS 1 ~ # LDA, LAG STA,

0
1
2
3
4 CODE RR
3
6
7
8

16 NEXT JMP,
17
18 —>
19
20
21
22
23
scr # 53
Pos
0 (RADAR/24 SAB 6/83) !
1
2 CODE RI
3
4 QUEUEl LDA, LSP1 STA, HSPl STA,
5 LSP2 STA, HSP2 STa,
6 INCREM LDA, LDP STA, MDP STA, HDP STA, :
7 LDR LDA, ISPl 1+ STA,)
8 HDR LDA, HSPl 1+ STA, ;
9 LDI LDA, LSP2 1+ STA, Ty
10 HDI LDA, HSP2 1+ STA, '
11 LRI LDA, LDP 1+ STA,
2 MRI LDA, MDP 1+ STA,
13 HRI LA, HDP 1+ STA,
16 LAGS # LLA, LAG STA,
15 NEXT JMP,
16
17 ==>
18
19
20
21
22
23
N

HUAA RAR R T i
x
65
-+
SCx # 54 SCR ¥ 55
0 (RADAR/2S SAB 6/83) 0 (RADAR/26 SAB 6/83)
1 1
2 CODE IR 2 CODE RZ
3 3
4 QUEUEL LDA, LSP! STA, HSPl STA, 4 QUEUEL LDA, LSP1 STA, HSPL STA,
S LSP2 STA, HSP2 STA, S INCREM LDA, LDP STA, MDP STA, HDP STA,
6 I'CREM LDA, LDP STA, MDF STA, EDP STA, 6 LDR LDA, LSP1 1+ STA,
7 LDI LDA, LSP1 1+ STA, 7 HDR LDA, HSP1 1+ STA,
8 HDI LDA, HSP1 1+ STA, 8 Z LDA, LSP2 1+ STA, HSP2 1+ STA,
9 LDR LDA, LSP2 l+ STA, 9 LRR LDA, LDP l+ STA,
10 HDR LDA, HSP2 1+ STA, 10 MRR LDA, MDP 1+ STA,
11 LIR LDA, LDP 1+ STA, 11 HRR LDA, HDP 1+ STA,
12 MIR LDA, MDP 1+ STA, 12 0 ¢ LDA, LAG STA,
13 HIR LDA, HDP 1+ STA, 13 NEXT JMP,
14 LAGS # LDA, LAG STA, 14
15 NEXT JMP, 15 —>
16 16
17 —> 17
18 18
19 19
20 20
21 21
22 22
23 23
S # 56 SCR # 57 {
1 >
0 (RADAR/27 SAB 6/83) 0 (RADAR/28 SAB 6/83) ;
1 1 :
2 CODE 1z 2 CODE RV
3 3 H
4 QUEUEl LDA, LSPl STA, HSPl STA, 4 QUEUEl LDA, LSP1 STA, HSPL STA, i
S INCREM LDA, LDP STA, MDP STA, HDP STA, S O # LDA, LDP STA, MDP STA, HDP STA, i
6 LDI LDa, LSP! 1+ STA, 6 LDR LDA, LSP1 1+ STA, i
7 HDI LDA, HSPL i+ STA, 7 HDR LDA, HSPl l+ STa, H
% Z LDA, LSP2 1+ STA, HSP2 1+ STA, 8 LRR LDA, LDP 1+ STA, FE
9 LII LDA, LDP I+ STA, 9 MRR LDA, MDP 1+ STA, : X
10 MII LDA, MDP 14+ STA, 10 HRR LDA, HDP i+ STA,
11 HII LDA, HDP l+ STA, 11 HEXT J¥P,
12 0 # LDA, LAG STA, 12
13 NEXT JMP, 13 —>
14 14
15 =-=> 15
16 16 :

R R A e e e
WO Wwo
BRN R

N=OWom~
v -

A1 X, Fe e £

3¢ 3

¢ 58

0 (RADAR/29 SAB 6/83)

1

2 CODE 1V

3

4 QUEUVEl LDA, LSP1 STA, HSP1 STA,
50 ¢ LDA, LDP STA, MOP STA, HDP STA,
LDI LDA, LSP1 1+ STA,

HDI LDA, HSP1 1+ STA,

LII LDA, LDP 1+ STA,

MII LDA, MDP 1+ STA,

HII LDA, HDP 1+ STA,

w
VOV WN-=O g

el el el el et
NOOUWMPULWN~O

18
19
20
21
22
23

KEXT JMP,

-

60

(RADAR/31 SAB 6/83)

: FINDOFFSET

20

DO HEIGHTS 0

DO J 100 * I + MREGR + REGC !
J 200 * I + LOFFR + OFF !
REG @ 400 + C@ 100 * (HIGH BYTE)
REG @ C@ + (ADD MID BYTE)
DUP 7FF <=
IF 100 SAMPLES @ */ (POSITIVE)
ELSE MINUS 1+ 100 SAMPLES @ */
MINUS
THEN OFF @ C@ OFF @
100 + CR 100 * + (PREV OFFSET)
SWAP - SPLIT
OFF @ 100 + C! OFF @ C!
LOOP
LOOP ;
-_—>

e 3

WRNOWNISWN~O

10

12
13
14
15
16
17
i8
19
20
21
22
23

2

VRNV PN =O

66

359

(RADAK/30 SAB 6/83)
(UPDATE OFFSET FOR ZERO MEAN)
MRR ADDR CONSTANT MREGR

LOR ADDR CONSTANT LOFFR

0 VARIABLE OFF

0 VARIABLE REG

(GENERATE HIGH AND LOW BYTES VH AND
VL FROM A VALUE Vv)

: SPLIT (Ve W)
SP@ 1+ C& >R FF AND R> ;

->

61

{ RADAR/32 ADR 8/84)

(MOVE MID AND HI BYTES FOR ODD MIN)
: DISPLACE

MRR ADDR HIR ADDR 100 + 800 CMOVE ;

(CREATE HEADERFILE)

: HEADER

TIMEREAD TIM 48 BLOCK 30E + 17 CMOVE
UPDATE FLUSH ;

(GET BLOCK NO. B# FROM FILE NO. F#)

: BLOCK# (F# -~~~ Bf)

DUPF >

IF 3 +
THEN 4 * l+ ;

-—>

w
s 8
COWONAWVEWN-O

BNNN#—‘»—-&-;—-'—'»-.—»-.—
N OO 00NN W N -

9

—
QOWE~NIEWVWEWN-O

B RO N NI 2 per bt e Bt 2t Bt e b
WRNHOWVE®NOWVBULN-

AT AR MR N e e T e

62

(RADAR/33 SAB 6/83)

(MOVE 4K BYTES FROM ADDRESS A TO &
CONTIGUOUS DISK BUFFERS ASSIGNED TO
BLOCKS STARTING WITH BLOCK NO. B#)

: BMOVE (AB¢ —

DUP BUFFER (ASSIGN FIRST BUFFER
5000 OVER ! (INSERT DOS FILE ADDR
FFA OVER 2+ | (ARD DOS FILE LENGT
SR OVER R> & +
3FC CMOVE UPDATE (FILL FIRST BUFFER
41 (3 MORE BUFFERS
DO OVER I 400 * ¢ 4 - (SOURCE
OVER 1 + BUFFER (DESTINATION
400 CMOVE UPDATE (FILL ONE BUFFER
LOOP DROP DROP ;

-—>

¢ 64
{ RADAR/35 SAB 6/83)

{ WRITE FILE FACH EVEN MINUTE)

: WRITEFILE

BASE @ A BASE ! (SAVE BASE
MIN# @ 2 /MOD SWAP 0= (EVEN MIN?
IF MMR AUDR SWAP BLOCK# (FILL BLOCX

BMOVE ." MINUTE " MIN4
@ . ." COMPLETE" CR

ELSE DROP MIN# @ 1 = (FIRST MIN?

IF HEADER (WRITE DATE/TIME
THEX DISPLACE (MOVE UP ODD MIN
THEN MINS/DISK 1 -
MIN# @ = (NEXT-LAST MIN?
IF 5 ALARM (WARNING

THEN MIKS/DISK MIN# @ = (LAST MIK?
IF 1 MIN# | CR BELL

." CHANGE DISK NOWI" CR
ELSE 1 MIN# +1
THEN BASE ! ;

(REXT MIN
(RESTORE BASE

—>

N

s N N o Nt

(R

R

~

SCR

X el el el el d et ot ot

g

~ ol el ol el ~d ot ol et~

noOvER R WA m ey - egtoa®e W TR

¢ 63
(RADAR/34 SAB 6/83)

(GIVE AUDIBLE WARNING OF DISK CHANGE.
LASTS FOR N SEC)

+ ALARM (N)

2*0
DO 10 0
pOTIO
Do
LOOP SPEAKER C@ DROP
Loop
LooP ;

-—D

65
(RADAR/36 SAB 6/83)
(REAL-TIME DISPLAY BUFFERS)

0 VARIABLE PREVREAL DISPHTS 2 - ALLOT
0 VARIABLE PREVIMAG DISPHTS 2 - ALLOT

(INITIALIZE DISPLAY BUFFERS)

: PREVINIT ()

PREVREAL DISPHTS A FILL
PREVIMAG DISPHTS A FILL ;

(CONVERT SCREEN DISPLAY LINE NO. L#
TO SCREEN ADDRESS SA OF START OF
LINE)

: SCREENADDR

404 SWAP 8 /MOD 28 * ROT + SWAP
80 * + ;

-—>

(L# — 84)

L GRFIASL e i)

-
8

—
OWBDNIVNE LN~ D

Ll ol arlodle
(- V. N

N A 4o s bt
-oOwom~

~
W e

2

OOV PN~ O

B AN
¢ 66 scR
(RALAR/>7 SAB 6/983) 0
i
(COLE TO PRINT NEW DLSPLAY) 2
3
: MACRO6 (=) 4
5
ASSEMBLER DISPHTS O 6
DO I # LDY, HREAL)Y LDA, (GET REAL) 7
SEC, X0 ¢ ORA, 10 # ADC, 8
17 4 aND, CLC, 3 ¢ AIC, { LTS) 9
PREVREAL I + STA, (SAVE REAL) 10
TAX, D2 # LDA, ('»' snBA) 11
DISPHTS 7 - 2+ 12
SCREENADDR ,X STA, (POXE SCREEN) 13
EIMAG)Y LDA, (GET IMAG) 14
SEC, X0 # ORA, 10 # ADC, 15
1F # AND, ZLC, 3 # ADC, (LIMITS) 16
PREVIMAG I + STA, { SAVE IMAG) 17
TAX, C5 # LDA, (' snma) 18
DISPHTS I - 2+ 19
SCREENADDR ,X STA, (POKE SCREEN) 20
LOOF ; 2
22
- 23
68 SCR
(RADAR/32 ADR 10/84)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

¢ CLEAR RT DISPLAY)
CODE CLEARDISPLAY
XSAVE STX, AO # LDA,

MACRO7 XSAVE LDX,
NEXT JMP,

-_—D

68

467

{ RADAR/}S8 SAB 6/33)

(CODE TO EFASE PREVICUS DISPLAY)

i MACRO? (=)

ASSEMBILER DISPHIS 0

DO PREVREAL I + LIX, (POSK OF 'R')
DISPHTS I ~ 2+
SCREENADDR DUP ,X STA, (ERASE 'R')
PREVIMAG I + LDX, (POSN OF 'I')
»X STA, (ERASE *I')

LOOP ;

(DISPLAY DATA) (==

CODE RTDISPLAY

XSAVE STX, A0 # LDA, MACRO7 MACRO6
KSAVE LDX, NEXT JMP,

-—>

69

(MADAR/40 SAB 6/83)
(INTERRUPT ENABLE AND DISABLE)
CODE ~“NABLE

88 # LDA, IERL STA, CLI, NEXT JMP,
CODE DISABLE

8 # LDA, IER] STA, NEXT JMP,

{ CONSTANTS FOR MISUTE DISPLAY)
MRE ADDR SECTION +
HRR ADDR SECTION +
MRI ADDR SECTION 2
HRI ADDR SECTION 2

MIR ADDR SECTION 2
HIR ADDR SECTION 2

CONSTANT AMPL
CONSTANT AMPH
* + CONSTANT RIL
* + CONSTANT RIH
* + CONSTANT IRL
* + CONSTANT IRH

-D>

v
~n R o s bt s Gt s Dt e P P
uzgooowowbt.dnu-ooms-wu&uuno Q

g

[
OWONIEWVEWRN-O

RS RO RO 5D b et bs =t bt o e B et
WRN=OWRNOWVEWN -

AN :
R s T iy < - i smtmes b e S

70 SCR
(RADAR/41 SAB 6/83) 0
1
{ DISPLAY AMPLITUDE AND FREQUENCY EACH 2
MINUTE USING CHARACTERS Cl AAD C2 3
RESPECTIVELY) 4
5
: DISPLAYAF (c1c2-—) 6
7
CLEARDISPLAY SWAP DISPHTS 0 8
DO DUP AMPH I + C@ 100 * 9
AMPL I + C@ + (GET AMP) 10
AMPFACTOR @ / 3 + 27 MIN (ADJUST) 11
DISPHTS I - 2+ 12
SCREENADDR + C! OVER (POKE SCREEN) 13
RIHN I + C@ 100 * 14
RIL I+ CQ+ IRH I + C@ 15
100 * IRL I + C@ + - (GET FREQ) 16
FREQFACTOR @ / 14 + 17
27 MIN 3 MAX (ADJUST) 18
DISPHTIS 1 - 2+ 19
SCREENADDR + C! (POKE SCREEN) 20
LOOP DROP DROP ; 2]
22
_—> 23
¢ 72 SCR
{ RADAR/4&3 SAB 6/83)
(FILL QUEUE WITH DATA)
: FILLQUEVE (==
SAMPLLS @ LAGS - 2 -~ SAMPLECOUNT !
ENABLE
BEGIN SYNCHRONIZE ADVANCE ENABLE
END DISABLE ;

(CORRELATE 1 MIN OF DATA)
: CORRELATE (-)

0

1

2

3

&4

5

6

7

8

9

10

11

12

13

14

ENABLE 15
BEGIN RV VALAC IV VALAC RZ DIFAC 16
IZ DIFAC RR DIFAC II DIFAC 17
RI DIFAC IR DIFAC RIDISPLAY 18
SYNCHRONIZE ADVANCE ENABLE 19
END DISABLE ; ’ 20
21
22

et d

23

[Y
(RADAR/42 SAB 6/83)

(WRITE KM LABELS)

: KMLABEL (=)

CLEAR BASE @ A BASE ! CR CR CR
LOWHEIGHT DUP DISPHTS 3 * 2 / + 2 -
DOI . CRCR-3

+LOOP BASE 1| ;

(INITIALIZE AT START OF RUN)

: INIT (=)

' INTERRUPT IRQVECTORADDR !
INITBUF INITLOC INITIO
PREVINIT CLEAR KMLABEL

0 CURSOR ! CR 300 WINDOW ! ;

-—>

$73
(RADAR/44 ADR 10/84)

(MULTIPLY EVERY OQUTBUFFER BY 10H)

: FIXSTRA1 (-
40
Do (FOR KR II BRI IR
LAGS 2 +]
Do (FOR EACH LAG
HRR J + ADDR

SECTION I * +
DUP 14 + 5WAP

Do (FOR LOWER HTS.
1ce 100 ~ (MULTIPLY EACB
1400 - c@+ 10 * (3 BYTE NO.
1800 -C@ 10/ + (BY 108
100 /MOD
I C! I 400 -~ Ct

Loop

LOOP
LOOP ;

-

N

69

AL i~ B s O

Fﬂ? %0, SLARh N SN i

w
8

Bt s Pt Pt Gt Db P pet Bt
CWBNVNAWMNBEWRHFOVRLIRWNEWN-=O

- 21

22

23
|
3
o
=
3

? 7

(RADAR/43 ADR 8/84)

(RUK PROGRAM)

: GO (=
DISABLE INIT AWAITMIN (ser up
FILLQUEUE CORRELATE (DUMMY MIN
FINDOFFSET (INITIAL OFFSET
BEGIN AWAITMIN (AVAIT EVEN MIN
A0 AD DISPLAYAF (ERASE A,FP
CLEAROUT (CLEAR OUTPUTS
FILLQUEUE (LOAD QUEUE
CORRELATE (CORRELATE 1 MIN
FINDOFFSET { REFIGURE OFFSET
Cl C6 DISPLAYAF (PRINT A,F
EMPTY~-BUFFERS (CLEAR DISK BUFFS
WRITEFILE FLUSH (DISK WRITE
MIN? @ MINS @ = (RUN ENDED?
D ;
DECIMAL ;S

-~

N N Nt Nt ot N Nt o ot S Nl N

SCx ¢ 75

RN N b s ot e fon Dt Gt P Pt e
uN’-‘O@ONOU&UNMOOONOM’UND—O

70

o Py

SR

U-N- SN AV N N~

10
1
12
13
14
15
16
17
18
19
20
21
22

2

BRI R BRI s e e e b e b o B
WN=~OWENOVNEWLN OO NAWVPEWLWN-O

71

APPENDIX B
Screens from Previous Collection Program

30
(RADAR/1

(

COHERENT-SCATTER-RADAR DATA-ACQUISITION
PROGRAM WRITTEN OCTOBER 1981 BY SIDNEY
BOWHILL, REVISED JUNE 1983. RESEARCH
SUPPORTED BY NATIONAL SCIENCE FOUNDATION
AND BY NATIONAL AERONAUTICS AND SPACE
ADMIRISTRATION.

SAB 6/83)

ASSISTANC: OF FRANCIS XEASLER AND DAVID
PADGITT IS ACKNOWLEDGED. ORIGINAL
FIG~-FORTR SYSTEM BY FORTH INTEREST
GROUP, SAN CARLOS, CALIFORNIA.

ASSEMBLER, EDITOR AND METACOMPILER BY
GEORGE LYONS, JERSEY CITY NJ.

ALL CODE CONTAINED HEREIN IS PUBLIC
DOMAIN AND MAY BE FREELY COPIED FOR
NON-COMMERCIAL PURPOSES IF ACKNOWLEDGZD
APPROPRIATELY.)

-

34

(RADAR/S SAB 6/83)

(APPLE 11 FIXED LOCATIONS)

22 CONSTANT WINDOW

24 CONSTANT CURSOR

38 CONSTANT KSWL

39 CONSTANT KSWH

45 CONSTANT ACC

JFE CONSTANT IRQVECTORADDR
C030 CONSTANT SPEAKER

(ZERO-PAGE QUEUE-POINTER LOCATIONS)

50 CONSTANT PORT
52 CONSTANT QUEUEL
53 CONSTANT QUEUE2
54 CONSTANT HREAL
56 CONSTANT HIMAG
58 CONSTANT LSUM
SA CONSTANT HSUM

-—>

32

(RADAR/ SAB 6/83)

PORTH DEFINITIONS HEX

(USER CONSTANTS AND VARIABLES)

2 CONSTANT INPUTSLOT

3 CONSTANT CLOCKSLOT
6200 CONSTANT INBUFFER

20 CONSTANT SECTION

6 CONSTANT LAGS

14 CONSTANT HEIGHTS

14 CONSTANT DISPHTS

3C CONSTANT LOWHEIGHT

3C CONSTANT MINS/DISK
190 VARIABLE SAMPLES

32 VARIABLE PULSES

40 VARIABLE MINS

13 VARIABLE DELAY1

42 VARIABLE DELAY2

1 VARIABLE MIN#

32 VARIABLE AMPFACTOR

64 VARIABLE FREQFACTOR

(8,10,20,40

(100/SECTION~2
(<= SECTION

(<= 14

(<= 3D
(<= 1A0

e

(> 13)
(> 1)

—>

+ 38

(RADAR/9 SAB 6/83)

(INITIALIZE ZERO PAGE AND VARIABLES)

: INITLOC (==
DRBl PORT !

PULSES @ PULSECOUNT C!

1 HIN# ! 0 SAMPLECOUNT !

SECTION 201 * INCREM 1

0 QUEVE2 C! INCREM C@ QUEVEL C!
INBUFFER 100 / 16 O

DO DUP I + INBUF I + C!

LOOP DROP (PAGE POINTERS)
INCREM*2 C@

DUP LSUM C! HSUM C!
HDR CQ HRFAL 1+ C!
HDI CQ@ BIMAG le CI ;

(FOR RT DISPLAY)

INITLOC

-—)

-
§
5
£
£
2
E]
z
%

H

VBN LALIWN~O

10
u
12
13
14
13
16
17
18
19
20
21
22
23

WVaNAAELWLN-D

10
11
12
13
14
15
16
17
18
19
20
21
22

t &

(RADAR/1L 8AB 6/83)

(CODE TO INPUT TO BUFFER FROM 1/0)
: MACROL

ASSEMBLER HrIGHTS O

DO PURT)Y LDA, INBUFFER I + K STA,
Loor ;

(CODE FOR CORERENT INTEGRATION)

: MACRO2

ASSEMBLER HEIGHTS 0
DO LSUM)Y LDA, INBUFFER I + ,X ADC,

LSUM)Y STA, HSUM)Y LDA, O # ADC,
HSUM)Y STA, INY,
LOOP ;
—_>
¢ 42
(RADAR/13 SAB 6/83)
(CONTINUATION OF INTEREUPT)
LDR LDA, PORT AuC,
PORT AUC, LSUM 1+ STA, (SET LSUM BI
1 # ADC, HSUM 1+ STA, (SET HSUM HI
0 # LDY, CLC, MACRO2 (SUM DATA
PORT LDA, 1 # EOR,
PORT STA, (SIITCE INPUTS
0 # LDA, ACR2 STA, (STOP PB7
PULSECOUNT DEC, O« (ENOUGR PULSES?
Ir, 8 # LDA, IERL STA, (DISABLE
THEN, SPEAKER LDA, (AUDIBLE
PLA, TAY, PLA,
TAX, ACC LDA, (RESTORE REGISTERS
I,
-

N Nt

8Cx

N BMESWN =D

10
11
12
13
14
15
16
17
18
19
20
21
22

g

D30I R o v e he e e s e
N OWBINOWVDUNEFOODENOWVMEWN=~O

72

4l

(RADAR/12 8AB 6/83)

(INTERRUPT SERVICE ROUTINE)

CODE INTERRUPT (=)
TXA, PHA, TYA, PHA, (SAVE REGCS)
INADDR LDA, (RESET INTERRUPT)
CO # LDA, ACR2 STA, (TOR PB7)
DELAY1 LDA, TICL2 STA,

DELAYL 1+ LDA, TICH2 STA, (SET FUZE)
3 # LDA, TILL2 STA, (100 KuZ)

0 ¢ LDY, TILH2 STY,
DELAY2 LDX,

BEGIN, DEX, 0=
END, 80 # LDA, DRB2 ST/,

(* 5 MICROSEC)
(HO YET?)
(PB7 HIGH)

CLC, PORT LDA,

.A ROR, .A ROR, TAX, (X FROM PORT)
PORT)Y LDA, (RESET ADC LATCH)
INBUFFER ,X STA, (TIME FOR ADC EOC)
MACROL (LOAD BUFFER)
PORT LDA, DRB2 STA, (FOR SCOPE)
—D

£ 45

(RADAR/LG SAB 6/83)

(MAKE A TIME MESSAGE)

CLOCKSLOT 10 * C084 + CONSTANT TLOC
D3C3 VARIABLE TIM

RERE F ALLOT F AQ FILL AF TIM S + Ci
AF TIM 8 + C!
: MACRO4 (==
ASSEMBLER TLOC LDA, .A LSR, .A LSR,

«A LSR, .A LSR, BO # ORA, ;

: MACROS (V ~=—)
ASSEMBLER MACRO4 TIM + STA, DEY,

TLOC 8T1Y, ;

-—>

p“w RS :
M**watsi\ v

o,

-

]
|
¢

g

RO o b Pt bt Pt b Gs P s Pt
OV EXRNAOAVIPWNFFOWOWONIVEWNN-O

NN
W py =

AN

¢ 6l

(RADAR/32 SAB 6/83)

(MOVE MID AND HI BYTES FOR ODD MIN)
: DISPLACE

MRR AUDR HIX ADDR 100 + 800 CMOVE ;

(CREATE HEADERFILE)

: HEADER

TIMEREAD TIM 48 BLOCK 30E + 11 CHOVE
UPDATE FLUSH ;

(GET BLOCK NO. B# FROM FILE NO, F#)
¢ BLOKKY

DUP F >

IF 3 +

THEN 4 * 1+ ;

-3

(ré — B4)

2

WO NOWEWN ™O

¢ 72

(RADAR/43 SAB 6/83)

(RUN PROGRAM)

) (=

DISABLE INIT AWAITMIN (SET UP

FILLQUEUE CORRELATE (UMy MIN

FINDOFFSET (INITIAL OFFSET

BEGIN AWAITMIN (AWAIT EVEN MIN
AD A0 DISPLAYAF (EBASE A,F
CLEAROUT (CLEAR OUTPUTS
FILLQUEUVE (LOAD QUEUE
CORRELATE (CORRELATE 1 MIN
FINDOFFSET (REPIGURE OFFSET
Cl C6 DISPLAYAF (PRINT A,F
EMPTY-BUFFERS (CLEAR DISK BUFFS
WRITEFILE FLUSH { DISK WRITE
MIN# @ NINS @ = (RUN ENDED?

END ;

DECIMAL ;$

Nl N N N N Nl N N N N Nt b

73

R

74
APPENDIX C
Listing of ANALA

1 REM !INTEGERBA,H,FI,X1,X2,X3,AX,BX,AD,H1,I,J,K,V(4),A(4,4,20),R(20,2)

2 REM :ANAL4 2/14/83
10 PI = 3,14159: HIMEM: 14000
20 K1 = - 600 / (PI * 40,92): REM UP IS DOWN!

50

100
102
104
106
110
120
130
133
140
145
150
155
160
170
180
187
190
200
210
220
230
240
250
251
252
254
256
260
265
267
270
272
273

274

275
276
271
278
280
285
287
288
290
295
300

DIM A(4,4,20),R(20,2),V(4)
BA = 15000
INPUT "NO. OF FILES: ";FI
FOR H = 1 TO FI: PRINT "BLOADFILE "H",A23488"
FOR Hl = 25536 TO 23488 STEP - 2048
FORI =0 T0O3: FORJ=1T03
AX = Hl + 256 * I + 32 *]
BX = HL + 1024 + 256 * I + 32 *]
FORK =0 TO 19
A(I,J,K) = PEEK (AX) + 256 * PEEK (BX)
AX = AX + 1:BX = BX + 1
NEXT : NEXT : NEXT
M= (H -1) * 2 + (25536 - H1) / 2048
FOR J =0 TO 19
Cl = ((A(0,1,J7)) © 2) * 2
C2 = ((A(1,1,J7)) ©2) * 2
FORI =2 T0 3
Dl = (A(0,1,J))
D2 = (A(1,1,7]))
D3 = (A(2,1,7))
D4 = (A(3,1,)))
E= (Cl -Dl +C2~-D2)/ 2
F - (D3 - le) / 2 [
G=(E*E+F*F)®.,5
G(I) = G - 264
IF G = 0 THEN G = .00l
S=F/ G:C=E/ G: GOSUB 1000
V(I) = INT(V*10/ (I -1) + .5)
NEXT
X1 = INT (21.72 * LOG ((Cl + C2) / 10000) + .5)
IF X1 < 0 THEN X1 = X1 + 256
AD = BA + 60 * M + 3 *]
IF G(2) < (Cl + C2) / 20 THEN X2 = 128:X3 = 128: GOTO 280
R(J,1) = R(J,1) + 1: IF (G(3) <1 OR G(2) = < G(3)) THEN X2 = 128:X3
= V(2): GOTO 278
R(J,2) = R(J,2) + 1:X2 = INT (6.25 * (3 * LOG (2) / LoG (G(2) / G(
3)))® .5+ ,5): IF X2 = 128 THEN X2 = 129
IF X2 > 200 THEN X2 = 200
X3 = V(2): IF X3 > 127 THEN X3 = 128
IF X2 > 12 THEN X3 = V(3)
IF X3 < 0 THEN X3 = X3 + 256
PRINT X1,X2,X3
POKE AD,X1: POKE AD + 1,X2: POKE AD + 2,X3
NEXT : PRINT "MINUTE "M" COMPLETED"
NEXT : NEXT
FOR J = BA + FI * 120 TO BA + 3600
POKE J,128: NEXT
INPUT "FILE NAME?";AS

o 6 0 @
[U S S I X

O X R Ty g T) -
PR A ML A W e - :) No
75

310 PRINT "BSAVE"A$",A15000,L3600"
320 FORI = 0 TO 19: PRINT I;" ";FI * 2;" ";R(I,1);" ";R(I,2): NEXT

330 END
;f 1000 IF C = 0 THEN C = .000l
1010 T= 8 / C:V = ATN (T)
; 1050 IF C <O THEN V= V - PI
i 1060 IFV < ~PILTHEN V=V + PI + PI
% 1210 V = V * Kl
‘ 1220 RETURN

b
_ K
~ . 4Rl - -

" e

15 S

! REM [({INTEGERP1,P2,Cl,C2,V1,V2,

APPENDIX D
Listing of CONVERTS84.1

P,C,V,1,J,BA,HM,AD, 1, F X,F
,P4,C4,V4

10 REM CONVERT BINARY TO ASCII
20 REM S BOWHILL 2/14/83

100
110
120
130

REM MAIN PROGRAM

BA = 20000

HIMEM: 19000

INPUT "INPUT FILE NAME: “;F$

135 HM = 60

140
150
160
170
175
180
190
193
195
197

PRINT "BLOAD'"FS$",A20000"

GOSUB 1000

GOSUB 2000

T$ = STRS (INT (H » 100 + M + .5))

D$ = CHRS (4)

PRINT DS$"OPENPOWW/"TS

PRINT DS"WRITEPOWW/"T$

N$ = ™ POWER (LOG PLOT)"

GOSUB 4000

PRINT .02 * P2: PRINT .02 * P1l: PRINT .02 * 3: PRINT HM

200 AD = BA:XL = 200:F = 2

210
220
230
240
243
245
247

GOSUB 3000

PRINT D$"CLOSEPOWW/"T$

PRINT D3$“OPENCORR/"T$

PRINT DS"WRITECORR/''TS

N$ = " CORRELATION TIME (SEC)"

GOSUB 4000

PRINT .1 * C2: PRIRT .1 * Cl: PRINT .1 * C3: PRINT HM

250 AD = BA + 1:XL = 255.F = 2

260
270
280
290

GOSUB 3000

PRINT D$"CLOSECORL/"TS
PRINT DS$'OPENVELL/"T$
PRINT DS“WRITEVELL/"TS

293 N$ = " VELOCITIES (M/S)"

295
297

GOSUB 4000
PRINT .1 * V2: FRINT .1 * V1: PRINT .1 * V3: PRINT HM

300 AD = BA + 2:XL = 128:F = !0

310

320

330

1000
1001
101¢
1020
1025
1030
1040
1050
1060
1070
2000
2001
2010
2020

GOSUB 3000

PRINT D$“CLOSEVELL/"“T$

ENE

REM GET HEADER

REM

INPUT "MONTH: ";M$

INPUT "DAY: ";D$

INPUT "WEAR: ";Y$
u$-M$+" u,.,Ds‘_u. M*Ys
INPUT “HOUR: “;H

INPUT "MINUTE: ";M

INPUT "NUMBER OF RECORDS: ";N3
RETURN

REM MAX, MIN AND MEAN

REM

Pl = - 55:P2 = 200:P3 = 0:P4 = 0

Cl = 0:C2 = 127:C3 = 0:C4 = 0

76

{

SR,

2030
2040
2050
2060
2065
2070
2080
2090
2100
2110
2120
2139
2140
2150
2160
2170
2180
2190
2200
3000
3001
3010
3020
3030
3040
3050
3060
3070
3080
4000
4001
4005
4010
4020

S A
R . o
s 2igtieh Y, RO S e e T

SR R WS B R S BRI S 8

VI = = 127:V2 = 127:V3 = 0:V4 = 0
FOR I = BA TO BA + 3597 STEP 3
P= PEEK (I):C= PEFK (I + 1):V = PEEK (I + 2)
IF P = 128 THEN 2180
IF P > 200 THEN P = P - 256
IF P > Pl THEN Pl = P
IF P < P2 THEN P2 = P
P3 = P3 + P:P4 = P4 + 1
IF C = 128 THEN 2180
IFC>Cl THEN Cl = C
IF C <C2 THEN C2 = C
C3 = C3 + C:Ch = C4 +1
IF V > 128 THEN V = V - 256
IFV>VI THENVI = V
TFV <V2 THEN V2 = V
V3 =« V3 + V:V4 = V4 + 1
NEXT I
P3 = P3 / P4:C3 = C3 / C4:V4 = V3 | V4
RETURN
REM WRITE DATA
REM
FORI = 0 TO 19
FOR J =0 To 119
X = PEEK (AD + 3 * I + 60 * J)
IF X = 128 THEN X = 0
IF X > XL THEN X = X - 256
PRINT F * X
NEXT : NEXT
RETURKN
REM WRITE HEADER
REM
I$ = "APPLE " + H$ + N§$
PRINT I$: PRINT H: PRINT M: PRINT N3
KETURN

e .

PP

A A

{ 00

10

15

20
21
22
23
24
25
26
27
28
29
30
31
32
34
35
36
37
38
39
40
41
42

APPENDIX E
Listing of Analysis Program

REM !INTEGERINFILEADDR,OUTFILEADDR,SECTIONSIZE,NUMFILES,POW, THRESHOLD
,CRRTIME,VEL,INARRAY (4,4 ,20),ENOUGHPOWER(20),GOODSHAPE (20),VEL(4) ,MA
GN(4),REFILE,FILE,HOUR,MINUTE, NMREC

REM !INTEGER PIMAX,P2MN,P3MEAN,P4COUNT, CIMAX, C2MN,C3MEAN , C4COUNT,V
1MAX,V2MN,VIMEAN,V4COUNT ,I,J,ADDR, VA, TEMPADDR, BASEHEIGHT

REM
REM #hvdedksedsobsickdk b okkkk

REM * PROCESS *
REM * *
REM * COEERENT SCATTER *
REM * DATA ANALYSIS *
REM * PROGRAM *
REM * *
REM * TONY RENNIER *
REM * *

*

REM * AUGUST 22, 1984
REM *kksdhkkkskdkkdekhhtkhirk

REM

REM Hkkdrkhdhhkdhkhddrdkdohkdihdkhds
REM * THIS PROGRAM READS *
REM * BOTH SIDES OF THE *

REM * DISK AT ONCE *
REM Fkkdkddkdhikddtdkdhdhirhiis
REM

REM *khdkkdkkdhkhdd . . kdkkkkkkkidk

REM * SELECT HEIGHT RANGE *
REM Fdakddksichdkikihdhhihkhihhihs

49 HIMEM = 19799

50
55
56
57

HOME

PRINT "SELECT (1) 9-37.5 KM"

PRINT " (2) 39-67.5 RM"
INPUT " (3) 69-97.5 KM",TEMP

60 DISP = 20 * (TEMP - 1)

65
70
75
80

IF TEMP = 1 THEN BASFHEIGKT = 7.5:SCLE = 1: GOTO 85
IF TEMP = 2 THEN BASEHEIGHT = 37.5:SCLE = 1: GOTU 85
IF TEMP = 3 THEN BASEHEIGHT = 67.5:SCLE = 1: GOTO 85
GOTO 50

85 BASEHEIGHTS = "/" + STR$ (BASEHEIGHT)

100
101
102
103
104
105
110
120
130
131
132
140
141
142
143

REM

REM *Edkkxkkdkkvckkhkikkidkk
REM * LEFINE CONSTANTS *
REM * AND ARRAYS *
REH % TRtk kR ke ke ok kk ik
REM

P1 = 3.14159
MHZ = 40.92
Kl = - 60000 / (PI * MHZ) / SCLE
K3 = 43,44 [SCLE

REM

REM MINUS IS BECAUSE WE
REM SHOW + VELOCITIES TO
REM BE DOWNWARD FOR

REM HISTORICAL REASONS

. 2R -

78

K EONE U TR e IR O e Ty g ThomEensda gkt M Tegees miac O

79

144 REM

150 K2 = 12,5 / SCLE * (3 * L0G (2)) ® .5
160 D$ = CHR$ (4): REM CNTRL-D

170 THRESHHOLD = 20

200 DIM INARRAY(4,4,20)

210 DIM ENOUGHPOWER(20)

220 DIM GOODSHAPE(20)

230 DIM VEL(4)

240 DIM MAGN(4)

1000 REM

1001 REM *¥kdkkdk khkhdkkkd

1002 REM * FILL INPUT *

1003 REM * ARRAY *

1004 REM kdedkdedkdrdoidededodkdek

1005 REM

1010 REM INPUT F™.E CONSISTS OF

1011 REM 2 MINUTES OF DATA,

| 1012 REM EACH 2048 BYTES LONG,

! 1013 REM WITH THE EARLIER DATA

1014 REM SECOND IN THE FILE.

1015 REM EACH MINUTE FILE IS 8

1016 REM PAGES OF DATA, IN THE

1017 REM FOLLOWING ORDER:

1018 REM MRR, MII, MRI, uIR,

1019 REM HRR, HII, HRI, HIR.

; 1020 REM THE VALUE OF RR IS

, 1021 REM (MRR+256*HRR), ETC.

| 1022 REM

1100 INFILEADDR = 34300

1110 OUTFILEADDR = 19800

1120 ADDR = OUTFILEADDR

1130 SECTSIZE = 64

1134 INPUT "NO. OF FILES: ";NUMFILES
1135 INPUT "SIDE A ?";DUMMYS

1200 REM

1201 REM FOR EACH OF (USUALLY)

1202 REM 69 FILES A
1203 REM Lo
1210 FOR REFILE = 1 TO NUMFILES '
1212 IF REFILE = 21 THEN PRINT "": INPUT "SIDE B ?";DUMMY$
1214 FILE = REFILE

1216 1IF REFILE > 30 THEN FILE = FILE - 30

1220 : PRINT DS$"BLOADFILE "FILE",A"INFILEADDR

1300 REM

1301 REM FIRST MIN THEN SECOND

1302 REM

1310 ; FOR MIN = 0 TO 1

1400 REM

1401 REM RR, II, RI AND IR

1402 REM

1410 :: FOR QUAN = 0 TO 3

1500 REM

1501 REM USE 3 LAGS, AND

LS. =«

G A O SRR i R s s e

'

m’.ﬁﬁm&‘??& A

1502
1503
1504
1510
1520

1530
1600
1601
1602

1610 ::::

1620

1630
1640

1650 :::
1660 :::

1670
2000
2001
2002
2003
2004
2005
2006
2007

2010 ::

2020
2030

2040 ::

2100
2101
2102
2103
2104

2110 :::
2120 :::
2130 :::

2140

2150 :::
2160 :::
2170 :

2180
2185
2190
2200
2201
2202
2203

2210 ::::

2220

<230 :::
2240 i3

2250

2260 :::

2300

80

REM CALCULATE ADDRESSES
REM OF HIGH AND LOW BYTES
REM

:t: FOR LAG = 1 TO 3
::::LOVBYTEADDR = 256 * QUAN + SECTSIZE * LAG + INFILEADDR + 2048 *

(1 - MIN) + DISP

::::HIGHBYTEADDR = LOWBYTEADDR + 1024

REM

REM FOR 20 HEIGHTS

REM

FOR HEIGHT = 0 TO 19

:::::INARRAY (QUAN,LAG,HEIGHT) = PEEK (LOWBYTEADDR) + 256 * PEEK (H

IGHBYTEADDR)

:::::LOWBYTEADDR = LCWBYTTADDR + 1

:::::HIGHBYTEADDR = HIGF.8YTEADDR + 1

: NEXT HEIGHT

NEXT LAG

:: NEXT QUAN

REM

REM % kedededs Yok dede e do kv de ke dek ek

REM * FIND CORRELATIONS *

REM * AND PHASES FOR *

REM * 1 MINUTE OF DATA *

REM *RhEhh kR KR EN Rk TN Rk Rk K

REM

HOME

FOR HEIGHT = 0 TO 19

:::RMSQUARED = ((INARRAY(0,l,HEIGHT)) © 2) * 2

:::IMSQUARED = ((INARRAY(1,l,HEIGHT)) © 2) * 2

: IF RMSQUARED = O THEN RMSQUARED = .00l :
REM :
REM FIND SIN AND COS I
REM COMPONENTS OF

REM COVARIANCE

REM
:: FOR LAG = 2 TO 3

:RRSQUARED = (INARRAY(0,LAG,HEIGHT))

:IISQUARED = (INARRAY(1l,LAG,HEIGHT))
+1::RISQUARED = (INARRAY(2,LAG,HEIGHT))
:IRSQUARED = (INARRAY(3,LAG,HEIGHT))
::COCOMPT = (RMSQUARED - RRSQUARED + IMSQUARED - IISQUARED) / 2
:::SICOMPT = (RISQUARED - IRSQUARED) / 2

:2::MAGN = (COCOMPT © 2 + SICOMPT © 2) ® .5

IF MAGN = 0 THEN MAGN = ,001

123 :MAGN(LAG) = MAGN

REM

REM FIND PHASE ANGLE

REM AND VELOCITY

REM

[]
NN N

IF CUCOMPT = 0 THEN COJOMPT = ,001
::::ANGLE = ATN (SICOMPT / COCOMPT)
IF COCOMPT < 0 THEN ANGLE = ANGLE - PI

.:: IF ANGLE < =- PI THEN ANGIE = ANGLE + 2 * PI
:1::VEL(LAG) = INT (Kl * ANGLE / (LAG - 1) + .5)
NEXT LAG
REM

Al et N h
M\"\\ ‘h ‘\‘R&W\tﬂmv& O T N - . \‘

|

s st

W T RO VNI SN g st

s BTl v e T RIS Sipeabi A W i ST, ¥ LT e o i DTN i i | 5, T AL A S b W T . - M nt VA B asmaas o mae ae e wea

81

2301 REM FIND POWER AND
2302 REM MAKE IT A TWO-BYTE
2303 REM SIGNED INTEGER

2304 REM

2310 :::POW = INT (K3 * LOG ((RMSQUARED + IMSQUARED) / 1000) + .5)
2320 ::: IF POW > 32767 THEN POW = 32767

2330 ::: IF POW < =~ 32767 THEN POW = - 32767

2340 ::: IF POW < O THEN POW = POW + 65536

2400 REM

2401 REM TEST TO SEE IF

2402 REM ENOUGH POWER TO

2403 REM CALCULATE

2404 REM CORRELATION TIME

2405 REM AND VELOCITY

2406 REM

2410 ::: IF ((RMSQUARED + IMSQUARED) / MAGN(2)) > THRESHHOLD THEN CRRTIME
= 0:VEL = 0: GOTO 3000

2420 :::ENOUGHPOWER(HEIGHT) = ENOUGHPOWER(HEIGHT) + 1

2500 REM

2501 REM CHECK SHAPE OF

2502 REM COVARIANCE: USE

2503 REM FIRST LAG IF

2504 REM SECOND LAG < .2*FIRST LAG

2505 REM OR > FIRST LAG

2506 REM

2510 ::; IF (MAGN(3) < MAGN(2) / 5 OR MAGN(3) > = MAGN(2)) THEN CRRTIME =
0:VEL = VEL(2): GOTO 2740

2520 :::GOODSHAPE(HEIGHT) = GOODSHAPE (HEIGHT) + 1

260C REM

2601 REM CALCULATE CORRELATION

2602 REM TIME AS UNSIGNED

2603 REM INTEGER, AVOIDING

2604 REM THE VALUE 32768

2605 REM AND ASSUMING FIRST

2606 REM TWO LAGS LIE ON A

2607 REM GAUSSIAN CURVE

2608 REM

2610 :::CRRTIME = INT (K2 / (LOG (MAGN(2) / MAGN(3))) © .5 + .5)

2625 ::: IF CRTIME > 32767 THEN CRTIME = 32767 i

2700 REM

2701 REM USE FIRST LAG FOR

2702 REM VELOCITY UNLESS

2703 REM CORRELATICN TIME 1S

2704 REM > 1.2 SEC; THEN

2705 REM SECOND LAG IS USED,

2706 REM VELOCITY IS THEN

2707 REM MADE A DOUBLE-BYTE

2708 REM SIGNED INTEGER IN

2709 REM THE RANGE -32767 TO 32767

2710 REM

2720 :::VEL = VEL(2)

2720 ::: IF CRRTIME > Z4 THEN VEL ~ VEL(3)
2740 ::: IF VEL > 32767 THEN VEL = 22767

2750 -:: IF VEL < - 32767 THEN VEL = - 32767
2760 ::: IF VEL < 0 THEN VEL = VEL + 65536

2770 ::: GOTO 3000

3000
3001
3002
3003
3004
3005
3006

3010 :::
3012 ::
3014 ::
3016 ::
3020 :::
3030 :::
3040 :::
3050 :::
3060 :::
3070 :::
3080 ::

3090
3100
3130
3200
3201
3202
3203
3210
3220
3230
3240
4C)0
4001
4002
4003
4004
4005
4040
4043
4064
4045
4046
4047
4048
4050
4055
4056
4057
4060
4062
4070
4073
4074
4075
4076
4077
4080
4090

82

REM

REM *ddiekrdfkkddekkkhkkikhdk

REM * POKE POW, CRRTIME*

REM * AND VEL INTO *

REM * OQUTPUT FILE *

REM #ddsrdkRkocdkdekdkkdehdkdk ks

REM

PRINT POW,CRRTIME,VEL

:Tl = INT (POW / 256)

:T2 = INT (CRRTIME / 256)

:T3 = 1INT (VEL / 256)

POKE ADDR,(POW - Tl * 256):ADDR = ADDR + 1
POKE ADDR,Tl1:ADDR = ADDR + 1

PCKE ADDR,(CRRTIME - T2 * 256):ADDR = ADDR + 1
POKE ADDR,T2:ADDR = ADDR + 1

POKE ADDR,(VEL - T3 * 256):ADDR = ADDR + 1
POKE ADDR,T3:ADDR = ADDR + 1

NEXT HEIGHT

: NEXT MIN

: PRINT "FILE NO. "REFILE" COMPLETED"
NEXT REFILE

REM

REM FILL MISSING DATA

REM AREAS WITH 0 S

REM

IF NUMFILES = 6C THEN 4000

FOR ADDR = OUTFILEADDR + NUMFILES * 120 * 2 TO OUTFILEADDR + 14400
: POKE ADDR,0

NEXT ADDR

REM

RFM KR Kde v ke k ok drk ko ke ok ke ok ok

REM * SAVE OUTPUT FILE *

REM * TO DISK *

REM dededkdededededododod deokdededeok de %ok

REM

INPUT "TEXT DISK 7' ;DUMMY$

REM

le wxkwkkokdkhkkhkdkkkdxkk

REM * GET HEADER AND FIND*

REM * MIN, MAX, AND MEAN *

REM % dededek dede ke devodo Kok ke Kk kde Rk dk

REM

GOSUB 4330

INPUT "MAKE CHANGES?' ;DUMMY$

IF LEN (DUMMY$) = 0 THEN 4060

IF LEFTS$ (DUMMYS$,1) = "Y' THEN 4050
GOSUB 4430

REM

TMES = STRS (INT (HOUR * 100 + MINUTE + .5))
REM

REM %esckknkksichhichkikhkkrnk

REM * WRITE POWER FILE *

REM %fwdkikkkkdidi sk dkckik

REM

PRINT DS$"OPENPOWW/ 'TME $BASEHEIGHTS
PRINT DS$"WRITEPOWW/"TME $BASEHEIGHTS

SRR T Yy e)
5 : W“ﬂc:" RS W - s e e st e . ~ .

83

4110 PRINT "APPLE " + DTES$ + " POWER (LOG PLOT)"
4111 PRINT HOUR

4112 PRINT MINUTE

4113 PRINT NMREC

4114 PRINT .01 * P2MN * SCLE

4115 PRINT .01 *# PIMAX * SCLE

4116 PRINT .01 * P3MEAN * SCLE

4117 PRINT BASEHEIGHT

: 4130 ADDR = OUTFILEADDR

' 4140 GOSUB 4680

4150 PRINT DS$"CLOSEPOWW/"TME $BASEHREIGHTS
4152 REM

4153 REM KRk kR vRN kk X hkk ki

: 4154 REM * WRITE CORR FILE *

g 4155 REM ¢ e % Yok dede e e e Yok ek ke ek ke k

' 4156 REM

4160 PRINT D$"OPENCORR/"TME $BASEHEIGHTS

4170 PRINT D$"WRITECORR/"TME $BASEHEIGHTS

4180 PRINT "APPLE " + DTES$ + " CORRELATION TIME (SEC)"

4182 PRINT HOUR

4184 PRINT MINUTE

4186 PRINT NMREC

4188 PRINT .05 * C2MN * SCLE

4190 PRINT .05 * CIMAX * SCLE

4192 PRINT .05 * C3MEAN * SCLE

4193 PRINT BASEHEIGHT

4194 ADDR = QUTFILEADDR + 2

4198 GOSUB 4680

4200 PRINT DS$"CLOSECORR/"TME $BASEHEIGHTS i

4210 REM :

4212 REM dkkdhkhkkhkkickhkhkkkik L

4214 REM * WRITE VELL FILE * '

4216 REM Fdkdokicdkkdkiokkdhkkid

4218 REM

4240 PRINT DS"OPENVELL/™IME $BASEREIGHTS

4250 PRINT DS"WRITEVELL/"TME $BASEHEIGHTS$

4260 PRINT "APPLE " + DTE$ + " VELOCITIES (M/S)"

4262 PRINT HOUR v

4264 PRINT MINUTE

4266 PRINT NMREC

4268 PRINT .01 * V2MN * SCLE

4270 PRINT .01 * VIMAX * SCLE

4272 PRINT ,01 * V3MEAN * SCLE

4273 PRINT BASEHEIGHT

4274 ADDR = OUTFILEADDR + 4

4278 GOSUB 4680

4280 PRINT DS"CLOSEVELL/"TME $BASEHEIGHTS

4310 REM

i 4311 REM % Yok vede % Kk gkt dodok kekok

! 4312 REM *PRINT SURVEY OF*

‘ 4313 REM * VALID DATA *

4314 REM F ek hkkk Wik ik ki ik

f 4315 REM

: 4316 FOR HEIGHT = 0 70 19

4318 : PRINT HLIGHT;" ";NUMFILES * 2;" " ;ENOUGHPOWER{HEZIGHT);" *;GOODSHAP
E(HEIGHT)

R e P

- AR SR

~

; 4319 NEXT HEIGHT
4320 END
4325 REM
4327 REM hkRhhkhkhikk
4330 REM *GET HEADER¥
4335 REM * vk kk kiR
4340 REM
4350 INPUT "MONTH: ";MNTHS
4360 INPUT "DAY: ";DAYS
1 4370 INPUT "YEAR: ";YEARS
? 4380 DTES = MNTHS + " " + DAYS$ + "." + YEARS
4390 INPUT "HOUR: " ;HOUR
4400 INPUT "MINUTE: ";MINUTE
4410 INPUT "NUMBER OF RECORDS: " ;NMREC
4415 RETURN
4420 REM
4425 REM K kR hkkkkkk
4430 REM *MAX, MIN*
4435 REM *AND MEAN*
4437 REM *%kkkfkdhkkh
4440 REM
: 4442 REM INITIALIZE VARIABLES
- 4444 RFM
: 4450 P1MAX = - 32767
4451 P2MN = 32767
4452 P3MEAN = 0
4453 P4COUNT = 0
4454 ClMAX = O
4455 C2MN = 32767
4456 C3MEAN = 0
4457 C4LCOUNT = 0
4458 VIMAX = - 32767
4459 V2MN = 32767
4460 V3MEAN = 0
4461 V4COUNT = 0
4463 REM
4465 REM FOR ALL DATA
4467 REM
4480 FOR I = OUTFILEADDR TO OUTFILEADDR + NU * 120 ~ 6 STEF 6
4490 :POW = PEEK (I) + PEEK (I + 1) * 256
4500 :CRRTIME = PEEK (I + 2) + PEEK (I + 3) * 256
4510 :VEL = PEEK (I + 4) + PEEK (I + 5) * 256
4520 : IF POW = 32768 THEN 4650
4530 : IF POW > 52768 THEN POW = POW - 65536
4540 : IF POW > P1MAX THEN PIMAX = POW
4550 : IF POW < P2MN THEN P2MN = POW
4560 :P3MEAN = P3MEAN + POW
4570 :P4COUNT = P4COUNT + |
4575 ; 1IF CRRTIME = 32768 THEN 4650
4580 : IF CRRTIME > CIMAX THEN CIMAX = CRRTIME
4590 : IF CRRTIME < C2MN THEN C2MN = CRRTIME
4600 :C3MEAN = C3MEAN + CRRTIME
4605 :C4COUNT = C4COUNT + 1
4607 : IF VEL = 32768 THEN 4650
46i0 : IF VEL > 32768 THEN VEL = VEL - 65536
4620 : IF VEL > VIMAX THEN VI1MAX = VEL

- BT T,

4630 :

4640
4645
4650
4652
4654
4656
4660
4662
4664
4670
4675
4676
4677
4678

4700
4710
4720
4730

4750 ::
4760 ::

4770
4775
4780

IF VEL < V2MN THEN VIMN = VEL
:V3MEAN = V3MEAN + VEL
:V4COUNT = V4COUNT + 1
NEXT I

REM

REM CALCULATE MEAN

REM

P3MEAN = P3MEAN / P4COUNT
C3MEAN = C3MEAN / C4COUNT
VIMEAN = V3MEAN / V4COUNT
RETURN

REM

REM % % Redededode Ko dedek Kk

REM YWRITE DATA*
RFM #ddhdhkddidd

RI=0T019
: FORJ =0 TO 119
+:TEMPADDR = ADDR + 6 * I + 120 * J
::VA = PEEK (TEMPADDR) + PEEK (TEMPADDR + 1) * 256
IF VA > 32768 THEN VA = VA - 65536
PRINT VA * SCLE
: NEXT J
NEXT 1
RETURN

85

i gl P

v T

LT

N RN R

]

\f N

86

APPENDIX F
Header File: April 1978

THE DATA ON THIS TAPE ARE PROVIDED IN ACCORDANCE WITH THE MSTRAC PROJECT
(MST RADAR COORDINATION) OF THE MIDDLE ATMOSPHERE PROGRAM OF SCOSTEP
(SCIENTIFIC COMMITTEE ON SOLAR-TERRESTRIAL PHYSICS). THE REMAINING FILES ON
THIS TAPE CONTAIN DATA TAKEN AT THE AERONOMY LABORATORY FIELD STATION,
APPROXIMATELY 10 KM NORTH-EAST OF THE UNIVERSITY OF ILLINOIS AT URBANA (40
DEGREES 10°N, 88 DEGREES 10°W). TRANSMITTING FREQUENCY IS 40,92 MHZ AND
PEAK TRANSMITTED POWER IS APPROXIMATELY 1250 KW, THE TRANSMITTED PULSE
WIDTH IS 20 MICROSECONDS. THE ANTENNA CONSISTS OF 1008 HALF-WAVELENGTH
DIPOLE ELEMENTS DIVIDED INTO THREE PARALLEL SECTIONS. THE GROUND WHERE THE
ANTENNA IS LOCATED SLOPES 1.5 DEGREES TO THE SOUTH OF EAST, 50 THAT THE
ON-AXIS ANTENNA POSITION IS OFF BY THE SAME AMOUNT. THE TRANSMITTER AND
RECEIVER ARE BOTH CONNECTED TO THE ANTENNA VIA A GAS-FILLED-TUBE

TRANSMIT /RECEIVE SWITCH. THE RECEIVER SYSTEM CONSISTS OF A LOW-NOISE
BROAD-BAND PREAMPLIFIER, A FILTER AND A SINGLE CONVERSION RECEIVER WITH A
BANDWIDTH OF 230 KHZ CENTERED AROUND 40.92 MHZ, THE SIGNAL IS
QUADRATURE-PHASE-DETECTED, AND THE TWO COMPONENTS FED THROUGH A MULTIPLEXER
AND A 10-BIT ANALOG-TO-DIGITAL CONVERTER WITH A CONVERSION TIME OF 10
MICROSECONDS. DATA PROCESSING IS DONE ON A DIGITAL EQUIPMENT CORPORATION
PDP-15 MINI-COMPUTER WITH A 32 K OF CORE MEMORY. PULSE REPETITION
FREQUENCY IS 400 HZ AND 20 ALTITUDES ARE SAMPLED. TWENTY-FIVE CONSECUTIVE
SAMPLES FROM EACH ALTITUDE RANGE ARE COHERENTLY INTEGRATED SO AS TO GIVE AN
INTEGRATED SAMPLE EACH 1/8 SEC. AUTOCORRELATION FUNCTIONS ARE CALCULATED
ON-LINE WITH 12 LAGS 1/8 SEC. EACH. THE CORRELATION FUNCTIONS ARE THEN
INCOHERENTLY INTEGRATED FOR ONE MINUTE. THESE ONE-MINUTE AVERAGED
AUTOCORRELATION FUNCTIONS ARE STORED FOR POST-PROCESSING. SCATTERED POWER
AND LINE-OF SIGHT VELOCITY ARE CALCULATED FROM THE AUTOCORRELATION FUNCTION
AND STORED ON FLOPPY DISK. THE FILES ON THE FLOPPY DISK WERE USED TO MAKE
THIS TAPE.

EACH FILE HAS THE FOLLOWING FORMAT.

TITLE STRING APRIL 3. POWER(LOGPLOT)

START TIME HOURS 13

START TIME MINUTES 46

NUMBER OF MINUTES IN FILE 120

MINIMUM VALUE 6.28

MAXIMUM VALUE 7.58

AVERAGE VALUE 6.53346485

BASE HEIGHT (K¥M) 57

DATA DATA DATA DATA ... 635 647 645 695

DATA ARE STORED HEIGHT-BY-HEIGHT, FIRST MINUTE TO LAST. THE FIRST 120 DATA
POINTS CORRESPOND TO MINUTES 1 TO 120 FOR THE ALTITUDE (BASE HEIGHT + 1.,5)
KM, THE NEXT 120 POINTS CORRESPOND TO MINUTES 1 TO 120 FOR (BASE HEIGHT +
3.0) KM. THIS CONTINUES ON FOR EACH HEIGHT UNTIL (BASE HEIGHT + 30) KM IS
COMPLETED. THE HEIGHT RESOLUTION IS 1.5 KM. NOTE: DATA STORED ON THIS TAPE
ARE 100 TIMES GREATER THAN THE ACTUAL DATA. THIS WAS DONE TO ALLOW AN
INTEGER FORMAT WITHOUT LCSS OF PRECISION. SIMPLY DIVIDE FACH DATA VALUE BY

raa™N\

5. RN S : . .-
2 AN Pl A B ¢ e . s e iz A S : CorTEe . -

87

100 TO OBTAIN THE PROPER VALUES (POWER-BELS, VELOCITY-M/S).
ADDITIONAL INFORMATION WHICH MAY PROVE USEFUL.

]
£
H
i

LABEL=(,NL)
DCB=(RECFM=FB, LRECL=80 ,BLKSIZE=4000)
EBCDIC

‘ 9 TRACK

: 1600 BPI

129 DATA FILES

- —— ———

QUESTIONS CONCERNING THIS DATA, AND REQUESTS FOR ADDITIONAL DATA SHOULD BE
MADE TO PROF. SIDNEY A, BOWHILL, DIRECTOR, AERONOMY LABORATORY, DEPARTMENT
OF ELECTRICAL ENGINEERING, UNIVERSITY OF ILLINOIS, 1406 W. GREEN STREET,

URBANA, ILLINOIS 61801 USA. THE REMAINDER OF THIS FILE CONTAINS A MENU OF

THE TAPE.
FILE DATA STARTTIME DATE
; 1 POWER 1346 4-3-78
i 2 VELOCITY 1346 4-3-78
! 3 POWER 950 4-4-78
| 4 POWER 1158 4-4-78
§ 5 POWER 1406 4-4-78
! 6 VELOCITY 950 4-4-78
? 7 VELOCITY 1158 4-4-78
: 8 VELOCITY 1406 4-4-78
; 9 POWER 1206 4-7-78
10 VELOCITY 1206 4-7-78
11 POWER 517 4-10-78
12 POWER 17 4-10-78 é
13 POWER 917 4-10-78
14 POWER 1141 4-10-78
15 POWER 1632 4-10-78
16 VELOCITY 517 4-10-78
17 VELOCITY 7 4-10-78
18 VELOCITY 917 4-10-78
19 VELOCITY 1141 4-10-78
20 VELOCITY 1632 4-1C-78
21 POWER 509 4-11-78
22 POWER 800 4-11-78
23 POWER 1000 4-11-78
24 VELOCITY 509 4-11-78
25 VELOCITY 800 4-11-78
26 VELOCITY 1000 4-11-78
27 POWER 504 4-12-78
28 POWER 704 4-12-78
29 POWER 904 4-12-78
30 POWER 1124 4-12-78
31 POWER 1324 4-12-78
32 POWER 1524 4-12-78
33 POWER 1742 4-12-78
34 VELOCITY 504 4-12-78 ;
35 VELCCITY 704 4-12-78 f

36 VELGOITY 1124 4-12-78 i

A S YWago o™
!§€5§3§§1b3~ S e

LA SRS

37
38
39

41
42
43
44
45

47
48
49
50
51

)
L

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
1
72
73
74
75

77
78
79
80
81
82
83
84
85
86
87
88

VELOCITY
VELOCITY
VELOCITY
POWER
POWER
POWER
POWER
POWER
POWER
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
POWER
POWER
POWER
POWER
POWER
POWER
VELOCITY
VELOCITY
VELOCITY
VELOCITY

VELOCITY

VELOCITY
POWER
POWER
POWER
VELOCITY
VELOCITY
VELOCITY
POWER
POWEPR.
POWER
POWER
POWER
POWER
POWER
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
POWER
POWER
POWER
POWER
POWER
POWER
VELOCITY
VELOCITY

1324
1524
1742
514
714
1016
1216
1416
1655
514
714
1216
1416
1655
537
7317
937
1151
1351
1551
537
7317
937
1151
1351
1551
1221
1421
1621
1221
1421
1621
504

%04
1113
1313
1513
1726
504
704
%04
1113
1313
1513
1726
518
718
918
1156
1356
1556
518
718

4-12-78
4-12-78
4-12-78
4-13-78
4-13-78
4-13-78
4-13-78
4-13-78
4-13-78
4-13-78
4-13-78
4-13-78
4-13-78
4-13-78
4-14~78
4-14-78
4-14-78
4-14-78
4-14-178
4~14-78
4-14-78
4-14-178
4-14~78
4-14-78
4-14-78
4-14-78
4-18-78
4-18-78
4-18-78
4-18-78
4-18-78
4-18-78
4-19-78
4-19-78
4-19-78
4-19-78
4-19-78
4-19-78
4-19-78
4-19-78
4-19-78
4~19-78
4-19-78
4-19-78
4-19-78
4-15-78
4-20-78
4-20-78
4-20-78
4-20-78
4-20-78
4-20-78
4-20-78
4-20-78

88

tany ¢

1

et N, i eas AR oy 2 meime s ee

91
92
93
94
95
96

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
i19
120
121
122
123
124
125
126
127
128
129

VELOCITY
VELOCITY
VELOCITY
VELOCITY
POWER
POWER
POWER
POWER
POWER
POWER
POWER
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
POWER
POWER
POWER
POWER
POWER
POWER
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
VELOCITY
POWER
POWER
POWER
POWER
VELOCITY
VELOCITY
VELOCITY
VELOCITY

918
1156
1356
1556
454
654
854
1131
1331
1531
1741
454
654
854
1131
1331
1531
1741

641
841
1109
1509
1719
441
641
841
1109
1309
1509
1719
4b4
644
844
1054
4bb
644
844
1054

4-20-78
4-20-78
4-20-78
4-20-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-21-78
4-24-78
4-24-78
4-24-78
4-24-78
4-24-78
4-24-78
4-24~78
4-24-78
4-24~78
4-24-78
4~24-78
4-24-78
4-264-78
4-25-78
4-25-78
4-25-78
4-25-78
4-25-78
4-25-78
4-25-78
4-25-78

89

e
(a)

APPENDIX G
Listing of Reformatting Program

1 DIM A(2600),B(7)

10

20

30

40

42

45

50

60

70

80

95

130
140
150
155
160
162
163
164
170
180
190
200
210
220
222
230
235
240
250
260
270
280
290
300
310
320
a30
340
350
360
370
380
390
400
410
420
430
440
442
445
450

REM PROGRAM TO REFORMAT TEXT FILES
REM WITH RECORD LENGTHS OF 6 OR
REM LESS, TO TEXT FILES WITH
REM RECORDS LENGTH 80.

ONERR GOTO 220
PRINT "ENTER NAME OF FILE TO BE REFORMATED"
INPUT 1§

o$ - "A" + I$
PRINT "REFORMATTED FILENAME 15 ";0$

D$ = CHRS (4)

PRINT DS$"MON C,I,0"
INPUT "INSERT SOURCE DISK...";F$
PRINT D$;"OPEN";I$
PRINT D$;"READ";I$
X = FRE (0)
INPUT L$
FORI =1 TO 7
INPUT B(I)
NEXT I
1=
INPUT AS
IF LEN (AS$) > 6 THEN 222
A(I) = VAL (AS)
I=14+1: GOTO 180
IF PEEK (222) > < 5 THEN 450
LIMIT = I -1

PRINT D$;"CLOSE™;I$

INPUT “INSERT DESTINATION DISK...";F$

PRINT D$;"OPEN";0$

PRINT DS;"WRITE";0S

PRINT L§

FORI =1 TO 7

PRINT B(I)

NEXT I
I=20
J=1

PRINT RIGHTS (" "+ STRS (A(I + J)),7);

IF J = 11 THEN PRINT " "

IF (I + J) = LIMIT THEN 370
J=J+ 1: IF J < 12 THEN 320
I=1+11: GOTO 310
T=J4+1

IF J = 12 THEN 420

PRINT " ",

IF T =11 THEN PRINT " "

T= T+ 1; IFT < 12 THEN 380

PRINT DS$;"CLOSE";0$

PRINT "REFORMATTED FILENAME IS"

PRINT C$
X = FRE (0)

GOTO 45

BID

90

L S

91

REFERENCES

Bowhill, S. A. [1983], Review of correlation techniques, Handbook for MAP
Volume 9, 521-526, Edited by S. A. Bowhill and Belva Edwards,

SCOSTEP Secretariat, Univ. IL., 1406 W. Green St., Urbana, IL. 61801,

Gibbs, X. P. and S. A. Bowhill [1983], An investigation of turbulent
scatter from the mesosphere as observed by coherent-scatter radar,

Aeron, Rep. No. 110, Aeron. Lab., Dept. Elec. Eng., Univ. IL.,

Urbana, IL. 61801,

- Lyons, G. B. [1981], Fig-FORTH Release 1.0 May, 1979, FORTH Interest
Group, Box 1105, San Carlos, CA. 94070.

Roth, P. R. [1982] (Ed.), Research in Aeronomy, October 1, 1981 - March 31,
1982, Prog. Rep. 82-1, Aeron, Lab. Dept. Elec. Eng., Univ. IL.,
Urbana, IL. 61801.

Roth, P, R, [1983) (Ed.), Research in Aeronomy, October 1, 1982 - March 31,
1983, Prog. Rep. 83-1, 33-35, Aeron. Lab. Dept. Elec. Eng., Univ.

IL., Urbana, IL. 6180l.

Scanlon, L. J. [1980], 6502 Software Design, Howard W. Sams and Co., Inc.,
Indianapolis, IN, 46206,

Scanlon, L. J. [1982), FORTH Programming, Howard W. Sams and Co., Inc.,

Indianapolis, IN. 46266,

i A AT

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0002A01.pdf
	0002A02.pdf

