
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

by

A. D. Rennier

S. A. Bowhill ^L!r nr ^^

r -k, \Jr, I	 r	 .T4

,Y q

UNIVERSM OF ILLINOIS
URBANA

ATE,-AIZONOPMY RX -FA IDO'DF	 _,,%_T
NO. X15

FORTH SYSTEM FOR COHERENT-SCATTER

RADAR DATA ACQUISITION AND PRO
,Z

R

February 1, 1985

Library of Congress ISSN 0568-0581

(NA:.;A-Ci- 176i E5)	 fUk7fi ,tir7t.r lvb	 tvH S - t7^)

CCREBEN!- -CATTLE EALAF LAI.A A(^UIS1T:.JN AN

PF.UC:ESaING (111incl-' l;r1v•)	 `r r
)u.;l^s

Uc AJS/MF A^ I	 l,.iC I Jeri	 I
G3/4t zv^ie

Aeronomy Laboratory

Depar tm--nt of Electrical and Computer F,ngineering
Supported by	 University of Illinois
National Aeronautics and Space Administration 	 Urbana. Illinois

UILU-ENG-85-2501

A E R 0 N 0 M Y	 R E P O R T

N 0. 115

FORTH SYSTEM FOR COHERENT-SCATTER

RADAR DATA ACQUISITION AND YROCESSING

i
i

by

A. D. Rennier
S. A. Bowhill

February 1, 1985

i
Aeronomy Laboratory

Supported by	 Department of Electrical and	 #
National Aeronautics 	 Computer Engineering
and Space Administration	 University of Illinois
Grant NSG 7506 _	 Urbana, Illinois

iii

ABSTRACT

A real-time collection system was developed for the Urbana coherent-

scatter radar system. The new system, designed for use with a micro-

.omputer, has several advantages over the old system implemented with a

minicomputer. This work describes the software used to collect the data as

well as the processing software used to analyze the data. In addition a

magnetic tape format for coherent-scatter data exchange is given.

r ;'^ Z: _ : 1 PAC::; BLANK NOT IMMED

v
TABLE OF CONTENTS

Page

ABSTRACT. .

TABLEOF CONTENTS . v

LISTOF TABLES . vii

LISTOF FIGURES . viii

	

1. INTRODUCTION .	 1

	

1.1 Coherent Scatter Technique	 1

	

1.2 Urbana System . 	 1

	

1.3 Background to Statement of the Problem.	 3

	1.4 Statement of Problem .	 4

2.COHERENT-SCATTER COLLECTION SYSTEM	 5

2.1	 Functional Description	 5

2.1.1	 Introduction.	 5
2.1.2 Interrupt Processing. 	 .	 .	 . 6
2 .1.3	 Background Processing	 7

2.2 Technical	 Description		 10

2.3 Modifications		 32

3. COHERENT-SCATTER ANALYSIS PROGRAM	 34

3.1	 Previous Program.		 34	 j

3.2	 System Limitations	 38

3.3 Modifications		 40

3.4 The New Analysis Program	 41

4. COHERENT-SCATTER DATA ON MAGNETIC TAPE 44

4.1 Introduction . 44

4.2 Format of Tape Files . 46

4.3 Reformatting Disk Text Files 47

4.4 Transfer of Text Files to Cyber 47

i1wft	 -I"EGEDItiG PAGE BLANK NOT FILMED 	 ^ ^'^

.f
	 vi

TABLE OF CONTENTS (cont.)

Page

4.5 Reading and Writing Magnetic Tapes 48

4.6 Itaking Copies . 50

5. DISCUSSIONS AND SUGGESTIONS FOR FUTURE WORK	 51

APFENDIX A, Listing of the Collection Program. 		 59

APPENDIX B, Screens from Previous Collection Program	 71

APPENDIX C, Listing of	 ANAL4		 74

APPENDIX D, Listing of CONVERT84.1		 76

APPENDIX E, Listing of Analysis Program	 78

APPENDIX F, Header File:	 April	 1978	 86

APPENDIX G, Listing of Ref ormattiag Program. 		 90

REFERENCES.	 91

I

vii
LIST OF TABLES

Page

Table 3.1	 Format for binary data files. 35

Table 3.2	 Format for text data files. 39

It

i

I

i

LIST OF FIGURES
Page

Figure 2.1 Memory map for collection program buffers.	 .	 . .	 11

Figure 2.2 Assembly code for INTERRUPT. 		 19

Figure 2.3 Timing diagram for data acquisition.		 21

Figure 5.1 Line-of-sight velocity at Urban& beginning at
1109 CST on October 18, 1984 52

Figure 5.2 Line-of-sight velocity at Urbana beginning at
1109 CST on October 18, 1984 53

Figure 5.3 Line-of-sight velocity at Urbana beginning at
1109 CST on October 18, 1984 54

Figure 5.4 Correlation time at Urbana beginning at
1109 CST on October 18, 1984 55

Figure 5.5 Correlation time at Urbana beginning at
1109 CST on October 18, 1984 56

Figure 5.6 Correlation time at Urbana beginning at
1109 CST on October 18, 1984 57

viii

1

1. INTRODUCTION

r

i

1.1 Coherent Scatter Technique
i
i

Winds and waves in the upper atmosphere can be observed through the
i

use of radar. As a VHF pulse propagates through the atmosphere it en-

r
counters discontinuities in refractive index thought to be caused by winds

and waves. Part of its energy is then reflected back to the ground, and is

detected by a ground -based antenna and receiver. The altitude of the dis-

continuity can be determined from the time elapsed between transmission and

reception of the signal. By examining the returned signal it is also pos-

sible to determine some properties of the discontinuity that caused the

signal to return. For example, y measuring the power in the returned

signal the strength of the discontinuity can be determined; and by com-

paring the frequency of the returned signal with that of the transmitted

signal a Doppler frequency can be measured. This Doppler frequency is

proportional to the line -of-sight velocity of the discontinuity. By

monitoring the returned signs] over a period of time, it can be determined

how fast the discontinuity is changing, since the rate of change is in-

versely proportional to the correlation time of the signal.

1.2 Urbana System

For a complete description of the Urbana system see Gibbs and Bowhill

(1983). A brief summary of the Urbana system is given here.

At Urbana the coherent scatter technique is used to determine the

power, velocity and correlation time of the signals returned from the atmo-

sphere. The system used consists of a transmitter and receiver both con-

nected to a phased antenna array via a T/R (transmit /receive) switch. The

transmitter sends a 40.92 MHz, 10-microsec pulse into the atmosphere every

l

I

E

^1

2

2.5 millisec. After a pulse the antenna is switched over to the receiver

so that the returned signal can be monitored. The received signal is

coherently detected; that is, it is resolved into its real and imaginary

parts in the receiver. This is done by multiplying the returned signal by

the transmitted signal (real) and by the transmitted signal shifted by 90

degrees (imaginary). These two signals are then fed into an interface with

two sample and hold circuits. The signals are converted to digital form

every 10 microsec giving an altitude resolution of 1.5 km in the atmo-

sphere. The microcomputer is then used to collect and integrate the data

into 1/8 sec samples. The 1/8 sec samples are then used to calculate

information for an autocovariance function. This information is then

averaged for one minute and stored on disk. One hour of data may be stored

on one side of a floppy disk. The disks are then later analyzed to

determine the one-minute averages of the power, velocity and correlation

time of the data.

The power is calculated from the zeroth lag of the autocovariance

function.

400

RR(0) = E IRil

Power - 20 Log10 21tR2 (0) + 2
11

(0)	
1=1

400

	

II(0) = F	 IIiI
i=1

The velocity is determined from the real and imaginary components

of the autocovariance function (Bowhill 1983).

imaginary component
X(WT)

	
ar = Arctan (real component)

X = wavelength

T = time between samples (1/4 or 1/8 sec)

Velocity =

d

3

Note that the arithmetic rather than the geometric mean is used in the

calculation of the real component.

The correlation time is the time required for the magnitude of the

autocovarierce to fall to 1/2 its value at time equal zero. Assuring that

the msgnitude of the autocovariance function is Gaussian the correlation

time is given by

K = constant	 ti = 1/8 sec

-t2/T2

pl _
PO 1	 t2 = 1/4 sec

Correlation time : k /TnTTJ
1/2 	 -t2/T2

P 2
= p 0e 2

T = correlation time

The one minute averages of the power, velocity and correlation time

are stored in the Apple text files cn floppy disks. These text files are

plotted and may be transferred to magnetic tape if other users request the

data.

1.3 Background to Statement cf the Problem

Previously at Urbana a PDP-15 minicomputer was used to collect

coherent scatter data. With the advent of microcomputers it became pos-

sible to configure a smaller system with the same capabilities as the PDP-

15. To this end a collection program was written in FORTH for the Apple

microcomputer. The new system had several advantages over the old. 1) The

Apple was more convenient to use than the PDP-15. 2) The Apple utilized

floppy disks rather than magnetic tapes for its mass storage. 3) The

Apple had directly addressable screen memory, enabling a real-time display

to be updated 8 times a second. Aside from these advantages the Apple had

one drawback. The Apple is equipped with a 6502 microprocessor with a

4

maximum clock rate of 1 MHz. This meant that only one A/D could be read

-	 and its value stored in the allotted 10 microsec interval. In order to

maintain the 1.5 km spatial resolution in the atmosphere the FORTH program

was designed to alternately read the real and imaginary channels. For

instance,when the first pulse was transmitted, the Apple would sample only

the real channel at all heights. Then when the second pulse was transmit-

ted the Apple would sample the imaginary channel at all the heights. It

was determined that with the aid of a booster card in the Apple it was

possible to read both the real and imaginary samples in the allotted 10

microsec.

1.4 Statement of Problem

1) Increase the speed of the FORTH collection program so that the
real and imaginary channels are sampled simultaneously.

2) Modify, merge and document existing analysis programs to process

data taken with the improved collection program.

3) Design and implement a data format for magnetic tapes used to
exchange coherent-scatter data with other potential users.

In order to supply the analysis progam with the information needed to

calculate the quantities discussed in Section 1.2, the collection program

was written. The collection program monitors coherent-scatter radar re-

turns and calculates the information needed for the autocovariance function.

This information is then stored on disk in the form of one-minute averages.

2.1 Functional Description

2.1.1 Introduction: The collection program is shown in Appendix A

and is written in fig-FORTH and Assembly Language for a 6502 microprocessor.

It is designed to run on an Apple II microcomputer with a John Bell

Engineering Parallel Interface Card, a Scitronics Real-Time Clock Card, an

Apple Floppy Disk Drive and a Number Nine Booster Card.

The collection program is used to measure coherent-scatter radar re-

turns from the atmosphere. The data are collected by sending the real and

imaginary components of the received signal to an interface box containing

two 8-bit A/D converters with sample and hold circuits. The output from

the A/D converters ie read by the John Bell Card via ribbon cable connec-

tions. The John Bell Card is also responsible for sending a 100 KHz start-

convert signal to the interface box. The start-convert signal indicates

when a new sample should be taken and converted into digital form. The

100 KHz sampling rate gives a spatial resolution of 1.5 `cm in the atmo-

sphere.

The collection program is interrupt driven. This means that there are

two processes that work together in the collection program, the ir'*errupt

process and the background process. The background process is the main

portion of the program and is used to do all the housekeeping chores.

QA

r ,	 6

Initially the background process executes until the Apple detects an

interrupt. The interrupt causes the Apple to stop executing the back-

ground process and start executing the interrupt process. When the

interrupt process is complete the Apple resumes executing the background

process at precisely the point where it 1Eft off. Execution of the back-

ground process continues until another interrupt is detected. The

interrupts are generated by the same 400 Hz square wave used to trigger

the transmitter. Thus, every time a pulse is transmitted into the atmo-

sphere the interrupt process is executed.

2.1.2 Interrupt Processing: The interrupt process is used to collect

and integrate the real and imaginary signals sampled by the interface box.

This task is accomplished in the following manner.

1) The X and Y registers in the microprocessor are saved on the

stack. This is done so that the background process Rn continue
on after the interrupt process is finished.

2) The interrupt flag is cleared so that the next time an interrupt

occurs the Apple is able to detect it.

3) One of the 65229 on the John Bell Card is set up to send the 100
KHz start-convert signal to the interface box.

4) A delay is executed to allow the interrupt process to wait for the
desired range of radar returns. The length of the delay is based
on the amount of time needed for the transmitted pulse to propa-
gate to tre lowest desired altitude and back.

S) Sixty heights of data spaced by 1.5 km are collected. This is

done by reading both A/Ds (real anc imaginary) every 10 microsec

and storing the data in s buffer called INBUFFER.
INBUFFER ib a one page (256 bytes) section or memory divided

into two equal parts. The f--st half is used to store the real
component of the data, while the second half is used to s t ore the
imaginary component. INBUFFER has the capacity to store 128
heights of data. Since the collection program only collects 60

heights of data the 136 bytes (68 real and 68 imaginary) extra

ba tes are not used.

6) The contents of INBUFFER are added height by height to the current
opening in the RINGBUFFER.
RINGBUFFER is a four page (1024 bytes) section of memory used

to accumulate input data. RINGBUFFER can be viewed as a 16-bit,

three-dimensional Array.

RINGBUFFER (QUANTITY, SECTION, HEIGHT)

Where QUANTITY is either real or imaginary, SECTION is an

	

1	 integer between 1 and 4, and HEIGHT is a number between 1 and 64.
The array is characterized by 16-bite because 16 bits are allotted
each entry in the array. From this description it can be seen

	

j	 that RINGBUFFER has four sections in both the real and imaginary
portions of the array. Each of these sections has the capacity
to hold 64 heights of 16-bit data. Since only 60 heights of
data are collected the remaining four entries in each section are
not used.

Each section of RINGBUFFER represents one sample or 1/8 sec of
accumulated data (50 pulses). The current opening in RINGBUFFER

is that section which is being used to accumulate the present

	

y	
sample. After one section of RINGBUFFER has been filled the
interrupt process is directed to begin filling the next section.
When the RINGBUFFER is full the interrupt process will reuse the
first section, then the second section etc., for the duration of
the program.

7) The number of pulses in the current sample is updated. When the

	

.^	
correct number of pulses has been collected the interrupt process

	

{	 disables the Apple from detecting any more interrupts until the
required background processing is complete.

8) The speaker in the Apple is clicked. The result of this is a
steady tone from the Apple when the interrupt process is being
called properly. The tone serves as a feedback to the operator	 j

that the collection program is working properly.

9) The X and Y registers are restored.

10) The interrupt process completes and returns control of the Apple

to the background processing.

2.1.3 Background Processing: The background process performs all the

housekeeping functioks, calculates the information for the autocovarance

function, and writes the one-minute averages of this information on disk.

These tasks are accomplished in the following manner.

1) The program is initialized. When the program is started it is 	 t

necessary to partition and intialize memory before any data can
be collected. During the initialization the interrupts are ig-
nored.

2) The program waits for a new minute on the internal clock. To
halp synchronize program execution the internal clock is monitored
in a wait loop for the next minute change. When a minute change
is detected, the interrupt is enabled.

X1

k — T

8

3) The program correlates one minute of data. It is in this step

that the information for the one-minute averages of the auto-
covariance function are accumulated. In order to iorralate the
data, data from previous samples are needed. So before the one-

minute averages are calculated the RINGBUFFER must be preloaded
with four samples. Once the preliminary samples are taken the
information needed for the autocovariance function is accumulated
in OUTBUFFER.
OUTBUFFER is a 12 page (3072 bytes) section of memory that can

be viewed as a 24-bit, three-dimensional array.

OUTBUFFER(QUANTITY, LAG, HEIGHT)

QUANTITY is either Real-Real (RR), Imaginary-Imaginary (II), Real-
Imaginary (RI) or Imaginary-Real (IR). LAG is an integer between
-1 and 2, and HEIGHT is an integer between 1 and 64. Note: only

1 through 60 are used as explained earlier. The array is

characterized by 24-bits because 24 bits are allotted each entry
in the array.

Besides accumulating the information for the autocovariance
function OUTBUFFER is also used to accumulate the DC component of
the real and imaginary channels.

OUTBUFFER(RR, -1, HEIGHT) = DC Real
OUTBUFFER(II, -1, HEIGHT) = DC Imaginary

The DC component is calculated by summing all the samples for the
real and imaginary channels for one minute and dividing by the

number of samples taken (400). Two parts of OUTBUFFER are not
used.

OUTBUFFER(RI, -1, HEIGHT) = Not Used
OUTBUFFER(IR, -1, HEIGHT) - Not Used

There are two portions of OUTBUFFER used to accumulate data
necessary to the calculation of the power in returned siganl.

OUTBUFFER(FR, 0, HEIGHT) = Absolute Real
OUTBUFFER(II, 0, HEIGHT) - Absolute Imaginary

Absolute Real and Absolute Imaginary are equal to the sum of the
absolute values of each sample. The rest of OUTBUFFER is used to

accumulate the absolute values of the differences between the

combinations of the real and imaginary samples. For instance, if
QUANTITY equals RR and, LAG equals 2, then that portion of
OUTBUFFER is the sum of the absolute values of the differences be-

tween the real sample just collected and the real sample collected

218 sec before. If QUANTITY equals IR and LAG equals zero then
that portion equals the sum of the absolute values of the differ-

ence between the imaginary sample just collected and the rerl
sample just collected.

It is important to remember that there are other things going
on while OUTBUFFER is being filled. The whole time that the data

1

^i

p

.,

9

are being correlated the background process is being interrupted

and new data is being put into the RINGBUFFER. When a section of
RINGBUFFER is filled it is the job of background processing to

advance the queue and display on the Apple monitor the lowest 20
altitudes of the real and imaginary samples just taken. In ad-

dition, the background process puts the negative of the DC com-
ponent into the next available portion of RINGBUFFER. The reasons
for this are explained ir. step 4.
There are 400 samples taken to represent each minute of data.

The 400 1/8 sec samples account for approximately 50 sec of data,
the remaining 10 sec being used to do other housekeeping and to

access the disk.

4) The DC components of the real and imaginary €a pples are calcu-

lated. In order to eliminate ground clutter and be consistent

with the processing algorithm the background process calculates
the DC value for each channel, normalizes the value to one sample
and inserts the negative of the normalized value into each new

portion of RINGBUFFER before any data is added in. After each
minute the DC values are modified to accommodate the changes in

the received signal.
Notice that steps 2-4 are repeated in steps 5-11. Steps 2-4 are

used to collect data for a dummy minute. The dummy minute is
used only for the calculation of the DC components, the rest of
the information in the dummy minute is not used.

5) OUTBUFFER is filled with zeros. Since OUTBUFFER is an accumula-
tion buffer it is necessary to empty it between successive
minutes.

6) The program correlates another minute of data. This step is

identical to step 3, except that this time a non-zero DC compo-
nent has been subtracted out of the samples.

7) The program updates the DC estimate. The reasons for this are

explained in step 4.

8) The program displays the amplitude and the frequency (A,F) of the
lowest 20 altitudes of the signal for the past minute. This
information is displayed on the Apple monitor until the minute
change.

9) The program saves OUTBUFFER to another location. There are two
situations possible here. If the first, third or any other odd

minute has just completed the wildle and high bytes of OUTBUFFER
are moved to another location in memory. If the second, fourth
or any even minute has completed the medium and high bytes of this
minute along with the medium and high bytes of the previous odd
minute are saved on disk in one binary file.

10) The amplitude and frequency indicators (A,F) on the Apple monitor
are erased.

11) The background process jumps back to step 5 and continues executing.

".N,
	 t'

	 . W

w

M

i

2.2 Technical Description

In order to describe precisely how the collection program performs

its tasks, it is necessary to have a technical description of the program.

In this section there is a complete listing of all the definitions used

in the collection program, as well as an explanation to their use. A

textbook on FORTH (Scanlon 1982) and a copy of the fig-FORTH system (Lyons

1981) are essential to the understanding of the collection program. A

copy of the collection program is found in Appendix A, which should be re-

ferred to in reading the following text.

The Apple clock has a period of 1.052 microsec. For simplicity all

times given in the following text are based on an Apple clock with a one

microsec period.

There are .onstants and variables included in the following defini-

tions. It is important to remember that variables may be changed after the

program is compiled. If a constant needs to be changed the program must

be modified and recompiled.

INPUTSLOT (screen 32) is the constant used to indicate which slot in

the Apple has the John Bell Card. The slots in the Apple are numbered 0-7

left to right.

CLOCKSLOT (screen 32) is the constant used to indicate which slot in

the Apple has the internal clock card.

INBUFFER (screen 32) is the constant used to hold the address of the

first byte of the buffer called INBUFFER. All of the buffers in the col-

lection program are located contiguously in memory. When there is a change

in the constant INBUFFER all of the buffers in the collection program are

moved. A memory map based on INBUFFER equal to 7200H is given in Figure

2.1.

10

7000
7000
7E00
7F00
8000
8100
8200
8300
8400
8500
8600
8700

INOT USED

NOT USED

INOT USED

LRR
LII
LRI
LIR
MRR
MII
MRI
MIR
HRR
►-III
HRI
HIR

i

OUT BUFFER

map for collection program buffers.

11

MEMORY MAP

ADDRESS

72001	 NOT USED I	 NOT USED INBUF INBUFFER
F	 REAL	 IMAGINARY

,i

7300	 LDR
7400	 HDR
7500	 LD x	

RING BUFFERt

76001	 JHDI
RING 1	 RING 2	 RING 3	 RING 4

7700	 1	 1	 1	 Z	 ZERO BUFFER
ZERO'S

7800	 LOR
7900	

NOT USED	 HOR	
OFFSET BUFFER

7AO0	 LOI
7B00

	

	 HOI
OFFSET

DC	 LAG 0	 LAG I	 LAG 2

12

SECTION (screen 32) is a constant used to hold the maximum number of

heights that may be stored in each section of RINGBUFFER and OUTBUFFER.

Since the amount of memory allotted to the buffers is fixed, SECTION also

determines the number of sections in RINGBUFFER and OUTBUFFER. For

instance, if 40H maximum heights are desired then 10OH/40H or 4 different

F	 sections are used in the buffers. 8H maximum heights leave 100H/8H or 20H

sections.

LAGS (screen 32) is a constant used to hold the number of previous

samples that the collection program holds at any one time. LAGS is equal

to the number of sections in RINGBUFFER minus two. This relationship

stems from the fact that at any one time RINGBUFFER has one section being

filled and another being used to hold the present sample. The

the sections in RINGBUFFER are then left to hold previous samp

HEIGHTS (screen 32) is a constant used to hold the number

that the program collects. HEIGHTS can be any number from one

DISPHTS (screen 32) is a constant used to hold the number

rest of

Les.

of heights

to SECTION.	 s

of heights

of data that the collection program displays.

LOWHEIGHT (screen 32) is a constant equal to the value of the lowest

height to be displayed. LOWHF.IGHT is used to determine the altitude labels

that appear on the left side of the Apple screen. The labels displayed on

the screen are always the lowest heights collected.

MINS/DISK. (screen 32) is a constant used to determine how many minutes

of data are otored on one side of a 5 1/4" floppy disk.

SAMPLES (screen 32) is a variable used to hold the number of samples

which are collected for the one-minute averages.
I

PULSES (screen 32) is a variable used to hold the number of transmit-

i

ter pulses which are integrated to form one sample.

1

zz

13

ter pulses which are integrated to form one sample.

MINS (screen 32) is a variable used for test purposes to hold the

	

}	

number of minutes the program runs before ending. If MINS is set equal to

	

R	 or higher than MINS/DISK the verb WRITEFILE resets MIN# after MINS/DISK

minutes have executed. If this happens then MINS is effectively ignored.

DELAYI (screen 32) is a variable used to fine tune the timing of the

verb INTERRUPT. DELAYI is used to precisely adjust the latch and start-

conv3rt signals.

DELAY2 (screen 32) is a variable used to tune the timing of the verb

INTERRUPT. An increase of one in DELAY2 tells INTERRUPT to wait an

additional 5 microsec before reading and unlatching the data.

MIN# (screen 32) is a variable which contains the number of minutes

that data has been collected since a new disk was started.

AMPFACTOR (screen 32) is a variable used to scale the one-minute

average amplitudes displayed on the Apple screen.

FREQFACTOR (screen 32) is a variable used to scale the one-minute

average frequencies displayed on the Apple screen.

INADDR (screen 33) is the constant used as a reference point for

defining all of the constants used in addressing the John Bell Card. Each

slot in the Apple has one page of addresses associated with it. The

address range for a particular slot is CXOOH-CXFFH, where X is the slot

number. The John Bell Card has two 6522 Versatile Interface Adapters

	

i	 (VIAs) on it. CXOOH-CXOFH is used to address the registers of the first
4

	

C	 VIA, while CX80H-CX8FH is used to address the second VIA. The constants

used in addressing the VIAs on the John Bail Card are named below. For

a more detailed description of the regisr.ars and their functions see

Scanlon (1980).

14
y

DDRB1-Data direction register B, first VIA.
DDRA1-Data direction register A, first VIA.
ACR1-Auxiliary control register, first VIA.

' PCR1-Peripheral control register, first VIA.
IER1-Interrupt enable register, first VIA.
DRB2-Data register B, second VIA.
DDRB2-Data direction register B, second VIA.
T1CL2-Timer 1 counter, low byte, second VIA.

T1CH2-Timer 1 counter, high byte, second VIA.
T1LL2-Timer 1 latch, low byte, 	 second VIA.
T1LH2-Timer 1 latch, high byte, second VIA.

ACR2-Auxiliary control register, second VIA.
PCR2-Peripheral control register, second VIA.
IER2-Interrupt enable register, second VIA.

WINDOW (screen 34) is a constant used to initialize the Apple screen.

WINDOW and WINDOW+1 are the zero-page locations used to set the top and

bottom boundaries of the text screen.

CURSOR (screen 34) is a constant used to position the cursor on the

Apple screen. CURSOR and CURSOR+1 are the zero-page addresses used to set

the horizontal and vertical positions of the cursor.

ACC (screen 34) is a constant and is the address used by the Apple

monitor to store the value of the microprocessor accumulator when an

interrupt is serviced.

IRQVECTORADDR (screen 34) is a constant and is the address of the two-

byte Apple interrupt vector, i.e., where execution will jump when an inter-

rupt occurs.

SPEAKER (screen 34) is a constant and holds the address of a latch

connected to the Apple's internal speaker. Whenever this address is read

the latch toggles and the speaker produces a "click".

QUEUEI (screen 34) is a constant, the zero-page address of the pointer

that keeps track of which section of RINGBUFFER is currently being cor-

related with the section most recently acquired.

QUEUE2 (screen 34) is a constant, the zero-page address of the pointer

(that keeps track of which section in RINGBUFFER is being used to calculate

i

1

1

15
F;

HREAL and HIMAG (screen 34) are constants and hold the zero-page

addresses where the low bytes of two two-byte pointers are located. These

pointers are used to pick out the QUANTITY and SECTION of RINGBUFFER that

are currently being used for the real time display.

LSUM and HSUM (screen 34) are constants, equal to the zero-page ad-

dresses where the low bytes of two two-byte pointers are located. The low

bytes of these pointers are used to indicate which section of RINGBUFFER is

currently being filled. The high bytes of these pointers indicate whether

data are being summed into the real or imaginary part of RINGBUFFER. Two

pointers are needed because RINGBUFFER is a two-byte buffer.

LAG (screen 35) is a constant and is equal to the zero-page address

where the number of loops that the verb DIFAC is to execute is stored.

BUFS, BUFL and BUFH (screen 35) are constants and hold the zero-page

location where temporary values are stored when DIFAC and VALAC are exe-

cut ed.

INCREM and INCREM*Z (screen 35) are constants and are equal to the

zero-page addresses where the values of SECTION and SECTION times two are

stored.

PULSECOUNT (screen 35) is a constant, the zero-page address where the

number of pulses left to be collected in the present sample is stored.

SPARES (screen 35) is a constant which holds the zero-page address

where the low byte of a two-byte number is stored. Together the contents

of SPARES and SPARES+1 make up the two-byte value which is equal to the

number of times the loop in SYNCHRONIZE is executed.

SAMPLECOUNT (screen 35) is the constant used to hold the zero-page

i

t	 l ;

i

k,

i

16

address where the low byte of a two byte number is stored. Together the

contents of SAMPLECOUNT and SAMPLECOUNT+1 make up the two byte value which

is equal to the number of samples that have been collected in the present

minute.

ISPI . LSP2 , HSPI and HSP2 (screen 36) are constants, the zero-page

addresses where the low bytes of four two-byte pointers are stored. The

contents of LSP1. LSP+1, LSP2 and LSP2+1 point to the low bytes in RING-

BUFFER that are to be used by DIFAC. Likewise, the contents HSP1, HSP1+1,

HSP2 and HSP2+1 point to the high bytes used by DIFAC.

LDP, MDP and HDP (screen 36) are constants which hold the zero-page

addresses where the low bytes of three two-byte pointers are stored. The

contents of LDP and LDP+1 point to the low byte of the location in OUTBUFFER

where the results of DIFAC are accumulated. Likewise the contents of IMP,

MDP+1, HDP and HDP+1 point to the middle and high bytes of OUTBUFFER where

the result.- of DIFAC are accumulated.

INBUF (screen 36) is a constant and is equal to the zero-page address

where the page pointer to INBUFFER is stored.

LDR, HDR, LDI and HDI (screen 36) are constants and hold the zero-

page addresses where the page pointers to RINGBUFFER are stored. LDR and

HDR are the page pointers for the low and high bytes of the real portion

of RINGBUFFER. LDI and HDI are the page pointers for the low and high

bytes of the imaginary potion of RINGBUFFER.

Z (screen 36) is a constant, the .ero-page address where the pointer

to a one-page buffer of zeros is located.

LOR, HOR, LOI and HOI (screen 37) are constants used to hold the zero-

page address where the pointers to the buffers used to figure the DC-offset

are kept.

s	 N

17

LRR, MRR, HRR, LII, MII, HII, LRI, MRI, HRI, LIR, MIR and HIR (screen

37) are constants and are equal to the zero-page addresses where the page

pointers to OUTBUFFER are stored.

ADDR (screen 37) is a colon verb designed tc take an address off the

stack, fetch the one-byte contents of the address from memory and put the

product of the contents and 100H back on the stack. ADDR is used to con-

vert an address, where a page pointer is stored, to a two-byte address

where the first memory location of that page is located.

INITLOC (screen 38) is the colon verb designed to initialize the zero-

page memory locations. When INITLOC is executed, PULSES is stored in PULSE-

COUNT (Line 7). A one is stored in MIN#, a zero is stored in SAMPLECOUNT

(Line 8) and SECTION and SECTION times two are stored in INCREM and INCREM*2

(Line 10). QUEUE2 is set to zero, QUEUEI is set to INCREN (Line 10) and

the page pointers for all the buffers are initialized (Line 13). The low

bytes of LSU M and HSUM are set equal to INCREM*2 and the high bytes of HREAL

and HIMAG are set equal to HDR and HDI (Lines 14-17).

INITBUF (screen 39) is a colon verb designed to erase all the buffers

used in the collection program.

IN ITIO (screen 39) is the colon verb used to initialize the John Bell

Card. When INITIO is executed, the data direction registers A and B on

the first VIA are set to zero (Line 14). This initializes all bits on the

ports to be inputs. The auxiliary control register on the first VIA is

set to three (Line 15). This enables ports A and B on the first VIA to be

latched. The peripheral control register on the first VIA is set to 40H

(Line 15). This permits the interrupt flag (IFR3) to be set by a positive
e t

t
transition on CB2. The data direction register of port B on the second

VIA is set to 81H (Line 16). This initializes port B on the second VIA

18

to have bits seven (PB7) and zero (PBO) act as outpu t' s while bits six

through one (PB6-PB1) act as inputs. The data register for port B on the

second VIA is set to 80H (Line 16). This sets PB7 high and clears the CBl

i

and CB2 interrupt flags. The auxiliary control register and the peripheral

control register for the second VIA are set to zero and 7FH is stored -in

the interrupt enable register for the second VIA (Lines 17-18), thereby

resetting all interrupt flags. These actions are precautions and do not

affect the operation of the program. For more information on how these

commands operate see Scanlon (1980).

11ACR01 (screen 40) is used in INTERRUPT to generate the code needed

to read both A/Ds once every 10 microsec. When INTERRUPT is compiled

MACROI inserts a section of code into the code for INTERRUPT. The do-loop

in MACROI generates a copy of the code within the loop for each height

collected. These sections of code are generated continuously, each section

being individually tailored to a specific height (Figure 2.2). The NOPs

at the end of the loop are used to make the execution time between consecu-

tive sets of reads equal to 10 microsec.

MACR02 (screen 40) is used in INTERRUPT to generate the code needed

4

to add the values stored in INBUFFER to the appropriate section of RING-

BUFFER. MACR02 uses the pointers LSUM and HSUM to indicate which section

of RINGBUFFER to add the data to. The value stored in the X register

tells MACR02 whether to fetch the numbers from the real or the imaginary

part of INRUFFER. MACRO2 generates one section of code for every height

collected (Figure 2.2).

INTERRUPT (screens 41-42 and Figure 2.2) is the code verb used to

service the interrupts generated during the collection program. The

radar director puts out a 400 Hz square wave which is uued to trigger

r	 '^

Figure 2.2 Assembly code for INTERRUPT.

w[

19

4618- SA T1A
4619- 46 MA
46L6- 98 ' A
4618- 48 "A
461C- AO 00 CS LDA MOO
4611- A9 CO LDA MCO
4611- SD as CS ETA $08E
4674- AD 09 42 LDA '4209
4677- 6D 84 C5 STA $0584
Milk- AD OA 42 LDA $420A
4670- SD 85 C5 ETA $0585
4700- A9 03 LDA x$03
4102- SD 86 C5 STA $0586
4705- AO 00 LDY /$00
4707- 8C 67 C5 ETY $0587
470A- AE 16 42 LDX $4216
470D- U POP
4701- G POP
4701- U POP
4710- U POP
4711- U POP
4112- U POP
4713- CA DEX
4714- DO F7 8PE $470D
4716- A9 80 LDA /$SO
4718- SD 80 CS STA $CSSO
4718- 1D 00 C5 LDA $C500
471E- AD 01 C5 LDA $C501
4721- AD 00 CS LDA $0500
4724- SD 00 72 STA $7200
4721- AD 01 C5 LDA $0501 First Executionion472A- SD 80 72 STA $72 80 of MACRO472D- U POP
472E- U POP
472F- U POP

4AA5- IS CLC
4AA6- A5 81 LDA $61
4AA8- 65 59 $TA C59
4AAA- 69 01 ADC #301
4AAC- 85 55 STA $5E
4AAE- A2 00 LM #$00
4A80- AO 00 LDY I$00
4AE2- 18 CLC
4A33- E1 56 LDA ($58),Y
4A85- 7D 00 72 ADC $7:OO,X
MASS- 91 56 STA ($56),Y
4AEA- 81 5A LDA ($5A),Y First Execution
4k3C- 69 00 ADC 1$00 Of MARCX7 2
"BE- 91 iA STA ($5A).Y
4ACO- 18 CLC
4AC1- C8 IPY
51C8- A9 00 LDA 4$00
51CA- 8D 86 C5 STA $C58P
51CD- C6 66 DEC $66
5101- DO 05 WE M D6
SID1- A9 08 LDA i0
51D3- SD OE C5 STA $0501
51D6- AD 30 CO LDA $0030
5ID9- 68 FLA
51DA- AS TAY
51DE- 66 FLA
51CC- AA TAX
51DD- A5 45 LDA $45
51D7- 40 M

R

.-

_U+

I -

20

the transmitter. The square wave is also fed to the interface and con-

nected directly to pin CB2 of the first VIA on the John Bell Card. Now

the interrupt enable register on the VIA has the CB2 interrupt enable

flag eet, the interrupt is pasted to the Apple by the VIA bringing its IRQ

line low. The 6502 CPU of the Apple then enters an interrupt service

routine in the Apple monitor, ultimately vectoring through the address

stored in IRQVECTORADDR. When the verb INIT executes, the address of

INTERRUPT is copied into IRQVECTORADDR. This means that INTERRUPT becomes

the interrupt service routine. INTERRUPT also initializes the hardware,

samples the real and imaginary A/D input. channels and adds the data into

RINGBUFFER. A more detailed description follows here. Line numbers refer

to screens 41 and 42; addresses refer to Figure 2.2.

1) The X and Y registers are transferred to the accumulator and

pushed onto the processor stack (Line 5, $46E8).

2) The interrupt flag CB2 is cleared by reading DRB1 (Line 7, $46EC).

3) Timer one of the second VIA is set up to toggle PB7 every time
there is a time-out. This is done by storing COH in the auxiliary

control register (Line 8, $46EF).

4) DELAYI is loaded into the timer-one clock (Lines 9-10, $46F4).
This is done to allow the start-convert signal to be fine-tuned
and to allow time to load the timer-one latch. The start-convert

signal is produced by a one-shot with PB7 as an input. Conse-
quently the start-convert signal can be adjusted by adjusting PB7,
and PB7 can be adjusted by modifying the value of DELAYI (Figure

2.3).

5) Timer-one latch is loaded with a three. (Lines 11-12, $4700).
Every time the counter on timer-one counts to zero (timed out)
the value ir the latch is loaded into the counter and the counting
continues. i'y loading a three into the latch a square wave with
a 10-microsec period is generated on PB7. This is due to a five-

microsec toggling +eriod generated by a three-microsec counter
with a two-microse; overhead.

6) A delay is executed to wait for the returned signal (Lires 13-15,
$470A). This delay is based nn an approximately 5-microsec loop
that executes DELAY2 times.

7) PB7 is set high so that when the timer-one clock times out new

J

4!^

%Iro-t-^
	 V115%41

I ^^ Delay1 	 Data
Unlatch

Data	 Data

Figure 2.3 Timing diagram for data

.Q*	 W-W -VFW,.? .	 A ,6,

21

PB7

lµ ^ Delay I

1 Ps 1µa Delay 1

Start - Convert

End -of - Convert.
(Latching)

5u.s	 I	 5as	 5tt5	 '
Recd	 head
(Real)

\—Delay	
(Real)

 2

0	 2	 4	 6	 8 10 12 14 16 18 20 22 24

JAS

T- I

W_

22

data are sampled (Line 16, $4716). PB7 must be high because of
the timing involved between PB7 and the start —convert signals
(Figure 2.3).

8) The data latched in the data registers is read and thrown away
so that the new data can be read (Line 17, $4718).

9) The code generated by MACROI is executed (Line 18, $471E). This
code is designed to leave 10 microsec between each set of reads.
While MACROI is executing, PB7 is oscillating at 100 KHz. The
100 KHz square wave is used to produce a start—convert signal for

the A/Ds (Figure 2.3). When the A/Ds have finished converting
the data to digital form an end —of—convert signal is sent out.
The signal is fed to CB1 and CAI and is used to latch the new data

into DRB1 and DRA1, thus the importance of having the code gene -
rated by MACROI precisely timed. For a detailed description of
the interface see Roth (1983). A list of the connections between
the interface and the John Bell Card is given here.

Dip socket A: Pin 8	 PB7 on DRB2

Dip socket B: Pin 1-8 PBO—PB7 on DRB1

Pin 9	 CB1
Pin 10	 CB2

Dip socket C: Pin 1-8 PBO—PB7 on DRA1
Pin 9	 U,I

Pin 10	 CA2

10) The new data is added to KINGBUFFER (Lines 5-10, $4AA6). This is
accomplished by setting the pointers used by MACR02 to the ap-
propriate values and by executing the code generated by MACR02.
They code generated by MACR02 is executed twice, once for the real
data and once for the imaginary data.

11) The 100 KHz signal on PB7 is shut off (Line 11. $51CA).

12) PULSECOUNT is decremented and compared to zero (Line 12, $51CD).
If PULSECOUNT is equal to zero it means the sample is finished and
no more data is needed until the background processing is com-

plete. If PULSECOUNT is equal to zero the interrupt on CB2 is

masked so that no further additions occur to RINGBUFFER (Line 13.
$51D1).

13) A "click" is produced on the internal speaker (Line 14, $51D6).
When the program is running the "click" after every interrupt
gives a steady 200 Hz tone as feedback to the operator that the
interrupt service routine is working properly.

14) The X and Y register values are pulled from the processor stack
and returned to the registers. The accumulator is also restored
by reading the value at ACC (Line 15-16, $51D9).

15) The routine ends and returns control to the point where it was

r

23

interrupted (Line 17, $51DF).

SYNCHRONIZE (screen 43) is the code verb used to monitor the inter-

rupts when the background processing is finished correlating the previous

sample. SYNCHRONIZE contains a loop designed to increment SPARES every

time the loop executes and to monitor PULSECOUNT to determine if enough

data has been taken to complete the present sample (Lines 7-10). When

PULSECOUNT equals zero SYNCHRONIZE jumps out of the loop, r ,,.sets PULSECOUNT

and returns to the calling verb.

MACR03 (screen 43) is used in ADVANCE to gererate the code needed to
-i

t

put the offset values into RINGBUFFER. When ADVANCE is compiled the code
i_. f

that MACR03 produces takes the DC offset values calculated from the previous

1	 minute and stores those values into the section of RINGBUFFER that will

be used to collect the next sample.

ADVANCE, (screen 44) is the code verb used to update all the pointers

when a new sample is started (Lines 5-9). In addition ADVANCE updates

SAMPLECOUNT and determines if enough samples have been taken to complete

the present minute (Lines 11-21). In order to update the pointers ADVANCE

increments QUEUEI, QUEUE2, HREAL, HIMAG, LSUM and HSUM. This is ac-

complished by adding INCREM to each of the previous values. The pointers

LSUM and HSUM are always greater than QUEUEl by INCREM, likewise HREAL and

HIAMG are always equal to QUEUEI, while QUEUE2 is always less than QUEUEI

by INCREM. These relationships make the updating of the pointers much

easier. After the new pointers are in place, ADVANCE loads the DC offset

into the new section. This is done with MACR03 as explained before. Next,

SAMPLECOUNT is updated (Lines 11-12) and tested against SAMPLES. If the

two quantities are not equal a zero is left on the parameter stack and

the program continues taking data. If SAMPLES and SAMPLECOUNT are equal

VA

Igo
24

a one is left on the parameter stack and the calling verb knows that

enough samples have been collected for the present minute.

TLOC (screen 45) is a constant used as a reference point when address-

ing the clock card.

TIM (screen 45) is a variable set up to establish a starting point in

memory for an ASCII time message. TIM is initialized with D3C3H which

represents "CS" the beginning of the time message. The code on Lines 7-9

inserts part of the message into the field allotted for the time message.

MACRO4 (screen 45) generates code used by MACR05 and TIMEREAD to take

the output from the clock card and put it in ASCII form.

MACR05 (screen 45) generates code used by TIMEREAD to fill the field

for the time message.

TIMEREAD (screen 46) is the code verb used to get the date and time

from the Rri_frnri_ra rr.Ll—.I .^ vl^^ 5.:^ `^^ -- siC iliC G0 LIWL Ll.-- "- card.

This information is inserted into the time message field set aside by TIM

and the supplemental code.

AWAITMIN (screen 47) is the colon verb used to synchronize program

execution to start at the beginning of each minute. AWAITMIN reads the

current minute from the clock card and stores it. The verb then goes into

a loop which reads the Minute again and compares the result to the intial

reading. When the minute changes AWAITMINV ends and returns execution to

the calling verb.

CLEAROUT (screen 47) is the colon verb used to put zeros into OUT-

BUFFER.

VALAC (screen 48) is the code verb used to sum all the signed values

of the samples for each minute. VALAC takes the section of RINGBUFFER that

is indicated by the pointers LSP1 and HSP1 and adds it to the section of

25

^F+

F	 ^

i

OUTBUFFER that is indicated by LDP, MDP and HDP. VALAC is used by COR-

RELATE to calculate the DC component of the real and imaginary channels.

DIFAC (screens 49-50) is the code verb used to accumulate the absolute

value of the differences needed to calculate the autocovariance function.

DIFAC takes the section of RINGBUFFER that is indicated by the pointers

LSPl and HSPl and subtracts the section of RINGBUFFER indicated by LSP2

and HSP2. The absolute value of the difference is then added to the

section in OUTBUFFER indicated by LDP. MDP and HDP. The code in DIFAC is

contained in a loop which automatically adjusts the input and output

sections if the loop is executed more than once. The !number of times the

loop in DIFAC is executed is one less than the value stored in LAG.

RR, II, RI and IR (screens 51-54) are the code verbs used in conjunc-

tion with DIFAC to calculate the information needed for the autocovariance

!unction. These verbs are designed to initialize all the pointerR needed

for DIFAC to get the right data to the right place.

RZ and IZ (screens 55-56) are the code verbs used in conjunction with

DIFAC to accumulate the absolute values of the real and imaginary samples.

RZ and IZ are very similar to RR. II, RI and IR except instead of LSP2 and

HSP2 being pointed at data they are pointed at the ZEROBUFFER.

RV and IV (screens 57 -58) are the code verbs used to set the pointers

for VALAC. They are designed to make sure that VALAC gets the data from

the right place in RINGBUFFER to the right place in OUTBUFFER.

MREGR (screen 59) is a constant, the address where the first middle

byte of OUTBUFFER is stored. MREGR is used in FINDOFFSET as a reference

address to where the DC-real and DC-imaginary quantities are being accumu-

lated.

LOFFR (screen 59) is the constant used to held the address where the

26

first low byte of OFFSETBUFFER is stored. LOFFR is used in FINDOFFSET as

a reference address to where the offset values are stored.

OFF (screen 59) is a variable used by FINDOFFSET. OFF holds the

address of the offset that is currently being calculated.

REG (screen 59) is a variable used by FINDOFFSET to hold the address

where the DC quantity that is currently being used is stored.

SPLIT (screen 59) is the colon verb that takes a two-byte number off

the stack and returns the low byte and then the high byte as two separate

values to the stack.

FINDOFFSET (screen 60) is the colon verb used to update the offset

value that is loaded into RINGBUFFER prior to the accumulation of a sample.

FINDOFFSET uses two nested do-loops (Lines 4-5) to step through the heights

for the real and imaginary calculations. For each calculation FINDOFFSET

detor'mires new r_, aa%] fruv, addresses (Lines 6-7) and fetches the DC values

for the last minute (Lines 8-9). If the DC value is less than or equal to

7FFH, FINDOFFSET normalizes the value for one sample and subtracts the

normalized value from the current offset value (Line 11). If the DC value

U	 is greater than 7FFH, FINDOFFSET adds one to the negative of the value and

subtracts the negative of the normalized value from the previous offset

(Lines 12-13). The new offset is then stored in OFFSETBUFFER (Lines 14-

17).

DISPLACE (screen 61) is the colon verb used to relocate the middle

and high bytes of OUTBUFFER. DISPLACE is used by WRITEFILE to move each

odd minute of data to the end of OUTBUFFER in memory, so that two contigu-

ous minutes of data may be written simultaneously on disk.

HEADER (screen 61) is the colon verb used by WRITEFILE to label the

data disks. When HEADER calls TIMEREAD the current time is put into the
i

27

space allotted for the time message. HEADER then puts the label into the

memory used for block 48H. Block 48H is then written on disk. Block 48H

on the data disk contains the location used by DOS to store the disk

directory. The label of a data disk can then be determined by doing a

disk directory in DOS.

BLOCK# (screen 61) is the colon verb used to change the file number

(used to identify each two minute data file) to the block number where FORTH

will locate the data.

BMOVE (screen 62) is the colon verb used by WRITEFILE to move 4 K of

memory from a designated address to four contiguous disk buffers assigned

to four contiguous blocks. The first block and the beginning address are

designated when BMOVE is called. BMOVE first pulls the first block number

off the stack, assigns the next available disk buffer to it, and leaves

the address of the disk buffer on the stack (Line S). BMOVE then puts

the file address and the file length at the beginning of the disk buffer,

as required for a DOS binary file (Lines 9-11). The rest of the first disk.

buffer is then filled with data (Line 12). Once the first disk buffer is

filled the remaining data are put into the other three buffers (Lines 13-*

16). Note that the last four bytes of data are lost because of the two-

byte file address and the two-byte file length inserted at the beginning 	 i

of the data.

ALARM (screen 63) is the colon verb used to give an audible warning

when the disk is full. ALARM is made up of three nested do-loops that

"click" the speaker for a length of time determined by the number on the

top of the stack when ALARM is executed.

WRITEFILE (screen 64) is the colon verb used to control the output

files generated from OUTBUFFER. WRITEFILE first checks to see if the

t m,.

28

minute just collected is odd or even (Line 7). If the minute is even

WRITFFILE saves the last two minutes to disk and writes the minute number

just completed on the screen (Lines 8-10). If the minute is odd WRITEFILE

checks to see if it is the first minute, and writes the data disk header if

it is. Whether or not it was the first minute WRITEFILE executes DISPLACE

to move the middle and the high bytes of the data out of OUTBUFFER and into

the memory just above OUTBUFFER (Lines 11-13). Next WRITEFILE checks to

see if the next to last minute was just collected. If it was WRITEFILE

resets MIN# executes ALARM and writes a "CHANGE DISK" message on the screen.

If any other minute besides the last one was just completed WRITEFILE

increments MIN# and exits the verb.

PREVREAL and PREVIMAG (screen 65) are variable used to set up two

arrays which hold the screen addresses of the symbols used in the real-

time dismay.

PREVINIT (screen 65) is the colon verb used to initialize the display

buffers. PREVINIT initializes the buffers with OAR.

SCREENADDR (screen 65) is a colon verb used to convert the screen

display line number to the screen address where the start of the line is

located, in accordance with the scrambled mapping used by the Apple II.

SCREENADDR takes the line number off the stack and puts the desired address

back on the stack.

MACR06 (screen 66) is used in RTDISPLAY to generate the code needed

to fetch the real and imaginary samples just taken (Lines 7-8, 14-15),

check to make sure the screen limits are not violated (Lines 9, 16), store

the screen address of the symbols into PREVREAL and PREVIMAG (Lines 10, 17)

and poke the symbols "R" (for real) and "I" (for imaginary) onto the

screen (Lines 11-13, 18-20).

29

MACR07 (screen 67) is used in RTDISPLAY and CLEARDISPLAY to erase the

"R" and "I" symbols from the screen. The code generated by MACR07 deter-

mines the screen addresses of the symbols from the PREVREAL and PREVIMAG

arrays. The code then loads the value in the accumulator to these ad-

dresses. In order to clear the symbols the ASCII code for a space is
k
i

loaded into the accumulator before the code is executed.

RTDISPLAY (screen 67) is the code verb used to display the last sample

on the screen. RTDISPLAY uses MACR07 to generate code to clear the pre-

vious display and MACRO6 to generate code to put up the new display.

CLEARDISPLAY (screen 68) is a code verb used to erase the "R" and "I"

symbols from the screen. CLEARDISPLAY uses MAC107 to generate code to
4

erase the symbols.

ENABLE (screen 69) is a code verb used to unmask the 400 Hz interrupt

signal on CB2.

DISABLE (screen 69) is a code verb used to mask the 400 Hz interrupt

signal on CB2.

AMPL and AMPH (screen 69) are constants used as reference addresses

in OUTBUFFER where the middle (AMPL) and high (AMPH) bytes of the absolute

values of the real samples are accumulated. AMPL and AMPH are used by

DISPLAYAF to Display the minute averages on the screen.

RIL, RIH, IRL and IRH (screen 69) are constants used to reference the

addresses where the middle and high bytes for the first lag of the RI and

IR sections of OUTBUFFER are stored.

DISPLAYAF (screen 70) is the colon verb used to display the averages

of the amplitude and frequency each minute. DISPLAYAF first calls CLEAR-

DISPLAY to clear the "R" and "I" symbols left by RTDISPLAY (Line 8). The

rest of DISPLAYAF is contained in a do-loop which executes once for every

1

1

w

30

height displayed. In the first half of the loop DISPLAYAF fetches the

amplitude information using the reference address defined by MIPH and AMPL

(Lines 9-11). This information is then divided by AMPFACTOR and adjusted

for the screen (Lines 11-12). DISPLAYAF then pokes the specified ASCII

character iato the appropriate screen address (Line 13). The second half

of the loop repeats the process given above for the frequency (Lines 14-20).

Each time DISPLAYAF is executed the two ASCII characters used in the display

must be specified on the stack. This feature allows DISPLAYAF to be used

to erase the symbols used in the display. Erasure is accomplished by

calling DISPLAYAF with the ASCII value for a "space" on the stack.

KMLABEL (screen 71) is the colon verb used to write the altitude

indicators on the left of the screen. KMLABEL uses LOWHEIGHT and DISPHTS

to determine the number used to label every third kilometer on the display.

INIT (screen 72) is the colon verh urp d to iT6t?A1?ze TA_QVECTORADDR

(Line 15), the buffers, the zero page addresses and the I/O devices (Line

16). INIT initializes the display buffers, clears the screen and writes

the kilometer labels on the screen (Line 17). INIT also positions the

cursor at the top of the screen and defines a two line window where the

messages will be displayed (Line 18).

FILLQUEUE (screen 72) is the colon verb used to fill RINGBUFFER with

the initial set of samples. FILLQUEUE first sets SAMPLECOUNT to the value

required to stop the data collection after enough samples have been col-

lected to correlate the first data (Line 6). FILLQUEUE then enables the

interrupt signal and begins collecting data (Line 8). When the RINGBUFFER

has enough samples FILLQUEUE disables the interrupt and returns (Line 9).

CORRELATE (screen 72) is the colon verb used to correlate one minute

of data. CORRELATE first enables the interrupt and begins execution of a

31

loop that terminates when the FINISHFLAG is set by ADVANCE at the end of

the loop (Line 15-16). The loop accumulates all of the values in OUTBUFFER.

The first two verbs in the loop, RV and VALAC, work together to accumulate

the DC component of the real channel. Likewise, IV and VALAC accumulate

i
the DC component of the imaginary channel. RZ, IZ and DIFAC accumulate the

5

L• absolute values of the real and imaginary channels. RR, II, RI, IR and

DIFAC are used to accumulate the absolute value of the differences for all

of the lags. Note that when RR and II are executed with DIFAC the zeroth

..ag is not calculated; this is done when RZ and IZ are executed with DIFAC.

The timing in CORRELATE is very important. It is for this reason

i
that two safeguards were built into CORRELATE. As explained in INTERRUPT,

when a sample is completed the interrupt is disabled. If the correlation

of the last sample is not complete the interrupt remains disabled, and

data for a new sample are not taken, until the correlation processina is

complete. This feature allows the program to cope with an excessive compu-

tational load by increasing the time between samples. On the other hand,

if the correlation is completed before the next sample is finished, COR-

RELATE executes SYNCHRONIZE. SYNCHRONIZE monitors PULSECOUNT and as soon

as the sample is complete SYNCHRONIZE terminates and allows the queue to

advance and the next sample to be correlated.

FIXSTRAT (screen 73) is the colon verb written to amplify the lowest

20 heights in OUTBUFFER. FIXSTRAT is executed after OUTBUFFER is filled

but before it is moved in memory or written on disk. FIXSTRAT multiplies

the desired heights in OUTBUFFER by 16. At present FIXSTRAT is not used

in the program. The reason for this is that the processing program must

be modified to accommodate the amplification.

GO (screen 74) is the colon verb used to run the collection program.

r'1

GO first initialises the collection system and waits for a minute change

on the clock card (Line 6). GO then collects a dummy minute of data for

the initial DC calculation (Line 7). a ter calculating the offset (Line

8), GO begins execi:!on of the loop that contains the collection process.

"	 GO clears the "A" and "F" symbols (Line 10), clears OUTBUFFER (Line 11)

and fills RINGBUFFER (Line 12). Line 13 is used to accumulate the one

minute averages in OUTBUFFER and Line 14 adjusts the offset value according

to the last minute of data. Line 16 displays the "A" and "F" symbols for

the last minute and Line 17 empties the disk buffers. Line 18 moves OUT-

BUFFER in memory or writes the previous two minutes to disk and Line 19

checks if the run is complete. GO is the main verb of the collection pro-

V
	

gram. When running the program type "GO" put in a data disk and the rest

will take care of itself.

32

1

,r

The collection program described in this chapter was put into use

August 1984. Previous to that time a version of the program was used

which did not require the use of the Number Nine Booster Card. The pre-

vious program collected 20 heights and alternately sampled the real and

imaginary channels every other pulse. The alternate sampling was neces-

sary because of the minimum load and store time of 8 microsec. To load

and store both channels require 16 microsec when only 10 microsec was

available. The use of the booster card allowed the load and store to be

done in under 10 microsec.

In order to implement the use of the booster card several screens

needed to be changed, and carry the header "ADR 8/84". Other changes

such as the number of heights collected and data disk labeling have been

included in the latest version of the program. A copy of the unmodified

ii
4

1	 I
1

1

33

screens is given in Appendix B. Those screens not shown in Appendix B may

be found in Appendix A.

Al

mt

l yC

(4 a	 ! ^1	 ^

i	 {FW
^L

34

3. COHERENT-SCATTER ANALYSIS PROGRAM

3.1 Previous Program

The objectives of the coherent-scatter analysis program are to read the

`.	 two-minute binary files stored on disk by the collection prooran, calculate

the power velocity and correlation time for each minute, according to the

equations of Section 1.2, and write t.at informat:cn to three text files on

a separate disk.

Previously the analysis program was brcken into two separate programs.

The first program is called ANAL4 and is shown in Appendix C. After some

initialization (Lines 1-60) ANAL4 requests that the user type in the number

of files to be processed and the name of the binary intermediate file to be

used as an output. ANAL4 stores these values in FI and A$ respectively

?•i a-= 98•-39). `:' f _!c t _,.Lr :a: S*UNAL4 lb to read the first data file into

a fixed memory location (Line 104). The format of the data file is ex-

plained is Chaptei 2 and is briefly reviewed here.

Each file has two minutes of data stored in it. The first minute is

I'	 stored in the second half of the file, while the second minute is stored in

the first half. Each file is 4 K bytes long with 2 K dedicated to each

minute. Each minute of data has four two-dimensional arrays RR, II, RI,

IR as described in Section 2.1. The format for one minute of data is shown

in Table 3.1. The 32 bytes on each line pertain to the 32 possible heights

that can be used with an eight-section system. When the collection program

writes the data file to disk the last four bytes of the file are lost. This

is due to the fact that when a binary file is written to disk a two-byte

load address and a two-byte file length are written along with the file.

These four bytes are stored as the first fcsr bytes of the binary file.

7,̂ ^.
35

Table 3 . 1	 Format for binary data files.

BYTES QUANTITY BYTE SECTION QUANTITY

0-31 RR MEDIUM NOT USED
32-63 RR MEDIUM LAG 0
64-95 RR MEDIUM LAG 1

224- Zz 5 RR MEDIUM LAG 6
256-237 II MEDIUM NOT USED

480-511 II MEDIUM LAG 6

512-543 RI MEDIUM NOT USED

736-767 RI MEDIUM LAG 6
768-799 IR MEDIUM NOT USED

992-1023 IR MEDIUM LAG 6

1024-1055 RR HIGH NOT WED

1248-1279 RR HIGH LAG 6
1280-1311 Ii HIGH NOT USED

1504-1535 1I HIGH LAG 6
1536-1567 RI HIGH NOT USED

1760-1791 RI HIGH LAG 6
1792-1823 IR HIGH NOT USED

2016-2047 FR HIGH LAG 6

36

Thus when the file is written to disk the last four bytes of the binary

file are truncated, namely, the high byte of the highest lag for the highest

four heights. This becomes important if all 32 heights and all six lags

are being used. Since ANAL4 only uses 20 heights and :wo lags, the loss of

the last four bytes does not present a problem.

After reading the first data file ANAL4 stores the first minute of

data into an array called A(I,J,K) (Lines 133-150). In order to calculate

the correlation and phase for the first heights, the magnitude GM and

phase V(I) of the autocovariance function are calculated for the first and

second lags (Lines 187-260). After the power X1 is calculated (Line 265)

a check is made to see if enough power is present to calculate the velocity

and correlation rite. If there is not enough power ANAL4 sets the ve-

locity X3 and the correlation time X2 to a default value (128 for ANA14)

E, and continues with the next height (Line 272). If there is enough power

ANAL4 checks the shape of the autocovariance curve. If the magnitude of

the autocovariance is greater at the second lag than at the first lag, or

if the magnitude of the antccovariance of the second lag is less than one,
1

ANAL4 sets the correlation time X2 to a default value (128) and sets the

velocity X3 equal to that calculated for the first lag (Line 273).

Provided that there is enough power and that the magnitude of the auto-

covariance is within the limits ; ANAL4 calculates the correlation time X2

(Line 274).	 !

ANAL4 was designed tc produce an output of power, velocity and cor-

relation time in one-byte integer form, so it uses a scale _factor. For

instance, the velocity is calculated at one-tenth its final value. This

allows ANAL4 to store a wider range of velocities in an eight-bit number.

After all the criteria have been checked and the three quantities have been

s

put in eight-bit form, ANAL4 stores the three values into memory (Line 285).
s

This process is repeated for each height and then for each minute until all

the data on side A of the collection disk (first hour) is complete. If

less than one hour of data was collected ANAL4 fills the remaining memory

space with the default value 128 (Line 290-295). The last task for ANAL4

is to save all the processed data (in memory) to an intermediate binary

file on disk (Line 310). ANAL4 is then run on side B (second hour) of the

collection disk. In order to put the two hours of data together, both the

binary files are loaded into memory in consecutive address locations. Then

one intermediate binary file of double length is saved back to disk.

The second program CONVERT84.1 takes the intermediate binary file and

outputs three serial ASCII text files. These files are in a format com-

patible with those previously generated by the PDP-15 computer (Roth 1982)

and represent power (POW, velocity (VELL) and correlation time (CORR).

CONVERT84.1 calculates the minimum, maximum and mean of each of the three

quantities. Finally the serial text files are written. The first line of

the text file contains the title and the date when the data was collected.

The second and third lines show the hour and minute of the start time. The

fourth line contains the number of records (minutes) contained in the file.

The fifth, sixth and seventh lines have the minimum, maximum and mean

values of the numbers in the file. The eighth line has the base-height

used in the collection of the data. After writing these quantities to disk

CONVERT84.1 then writes the data that is stored in the intermediate binary
s

files to disk. Before the values are written to disk they are returned to

their original form. All numbers that were originally negative are re-

stored by subtracting 256 and each value is multiplied by the scale factor

used in ANAL4. The scale factors are ten for the velocity and two for the

38

power and correlation time. The numbers are written on disk in the format

shown in Table 3.2. Note N is the number of minutes collected.

The final form of the three quantities, power, velocity and ^orrelation

time, have units of centibels centimeters-per-second and centisecondc re-

spectively. This selection of units allows the values to be stored in the

text files as integers. To recover the data in bels, meters-per s e cond and

seconds, the integer is divided by 100.

CONVERT84.1 ends when all the files have been completed.

3.2 System Limitations

The processing programs ANAL4and CONVERT84.1 have four inherent

limitations which are described below.

(1) ANAL4 and CONVERT84.1 only allow for a maximum of 256 different

values for any of the calculated quantities. This is due to the fact that

only eight bits are used to represent each number. In order to accommodate

this, the maximum range of values to be considered severely limits the reso-

lution of each uumber. For instance if the extreme velocities to be con-

sidered were +12 m/s, the resolution at best could only be .094 m/s.

ANAL4 and CONVERT84.1 use a scale factor of ten and calculate the veloci-

ties in decimeters-per-second. This gives a resolution of 0.1 m/s and a

maximum mange of +12.7 m/s. Since the existing plotting routines do not

plot zeroes, all velocities in the range of +0.05 m/s are not plotted and

look like missing data. Similar arguments can be made for power and cor-

relation time data.

(2) ANAL4 and CONVERT84.1 are complicated to use. The processing of

two binary files (one for each time ANAL4 must be run) as well as the re-

trieval and joining of these files leaves considerable room for user error.
A

Memory locations and file lengths must be kept straight in order to get

c

<3

39

Format for text data files.

SIGHT MINUTE
1 1
1 2
1 3

1 N
2 1
2 2

2 N

20 1
20 2

20 N

4

1

Ilk.

MW

40

the correct information co CONVERT84.1.

(3) Because of the improvements to the collection program (Chapter 2)

it has become necessary that ANAL4 and CONVERT84.1 have the ability to
i

process up to 60 heights of data for each disk. This change increases the

usage of ANAL4 and CONVERT84.1 by a factor of three. This increase in the

e
volume of data multiplies the difficulties in using the processing programs.

(4) Since the range of heights now includes altitudes from the strato-

sphere, the maximum values are no longer as meaningful. This tends to make

the decreased resolution even more unbearable. For instance, typical ve-

locities in the stratosphere are +1.5 m/s. With a 0.1 m/s resolution only

30 different velocities can be displayed.

3.3 Modifications

In order to improve the processing programs and to allow the proces-

sing of data from the improved collection program several modifications

have been made.
i

(1) To allow a greater range of values the number of bits used to
f

store one piece of data has been changed from 8 to 16.	 Using the previous

example, the range can now be ±327 m/s. Since the range now more than

adequately covers the possible values the scale factor of ten is no longer =j

necessary.	 The resolution of the values now is 0.01 m/s. Because the in-

creased range is much larger than needed, a scale factor of one-tenth or

smaller is now possible. This would allow an accuracy of 0.001 m/s or

better. Clearly the accuracy of the output data is no longer limited by

the processing system but is limited by the collection system. This modi-

fication has led to an increased number of valid data points and a much

better plot.

(2) In order to streamline the processing programs several modifica-

'Dr;

41

made. ANAL4 and CONVERT84.1 have been merged into one pro-

gram called PROCESS. PROCESS has a number of advantages over ANAL4 and

CONVERT84.1. PROCESS is much faster to use. The simple mechanics of only

having one program decreases the processing time. PROCESS does not use
4

intermediate binary files. This leads to less disk usage and less con-

fusion. PROCESS can do up to two hours of data analysis in one run. It is

no longer necessary to glue files together.

(3) By adding two variable DISP and SECTION, PROCESS has the ability

to analyze data collected with the new collection program. SECTIONSIZE

controls the input data file format while DISP allows PROCESS to analyze

data from three different height ranges (LOW, MEDIUM, HIGH).

(4) The increased number of bits used to represent each value also im-

proves the quality of the data seen at altitudes in the stratosphere. The

number of passible velocities in the stratosphere has increased from 30 to

300. This change causes the structure of the data to be greatly enhanced.

3.4 The New Analysis Program

The new analysis program is called PROCESS and is shown in Appendix E.

Some points of interest are discussed here. HIMEM, INFILEADDR and OUT-

FILEADDR are used to configure the available memory space. HIMEM sets

the address for the highest memory location available to PROCESS and its

variables. INFILEADDR is the address where the input-file will be loaded

into memory. To accommodate the size of the input-file this constant must

be at least 4096 less than the highest available memory location. OUT-

}	 FILEADDR is a memory location where the data will be stored before being
s{

written to the text file. Since 14,400 bytes are required for a two hour

16-bit file, OUTFILEADDR must be at least 14,400 less than INFILLEADDR.

SECTIONSIZE ehould be set equal to the value of SECTIONSIZE in the collec-

42

tion program. THRESHOLD is used to modify the acceptable power level.

THRESHOLD is a variable and is used to replace the constant 20 used in

ANAL4. REFILE is a variable used to load the data file into memory. RE-

FILE replaces H in ANAL4. K1, K2 and K3 are constants used in calculating

velocity, correlation time and power. Statements containing "PRINT D$..."
e

are used to execute DOS commands from a BASIC program. The colons in front

of several of the statements are used to indicate the nested loop level and

have no effect on the statements they precede.

A brief description of PROCESS is given here. PROCESS first ini-

tializes all integers and arrays (Lines 10-20). Next, PROCESS determines

the height range and initializes some constants (Lines 30-170). PROCESS

then fills the input array and calculates the power, velocity and correla-

tion time for the first minute. There are two functional differences be-

tween ANAL4 and this part of PROCESS.

(1) The data is now compressed to 16 bits rather than 8 bits. So, all

values are clipped to +32,676 and put into a positive two-byte form by

adding 65,536 to all values less than zero.

(2) The criterion for the calculation of the correlation time has been

changed. PROCESS checks to see if the magnitude of the covariance function

at the first lag is five times greater than the magnitude of the covariance

function at the second lag. PROCESS also checks to see if the magnitude

of the covariance function is greater at the second lag than at the first.

If either condition is true PROCESS sets the correlation time to a default

value and assigns VEL equal to the velocity calculated at the first lag

(Line 2510).

After all the data has been analyzed and stored in memory PROCESS im-

mediately begins creating the text files. PROCESS collects the header in-

W

i

r

^,r--
plc

43

formation (Lines 4330-4410), calculates the minimum, maximum and means

(Lines 4420-4670), and writes the three files to disk (Lines 4073-4315).

PROCESS is written in several parts and is easily followed. After

some initializing PROCESS asks for the height range to be analyzed. Next,

PROCESS asks for the number of files to be analyzed and a pause is put in

to remind the user to put in side A of the data disk. PROCESS then reads

and does the analysis on all the side A files in much the same manner as

ANAL4. When side A is done PROCESS asks the user to put in side B of the

data disk. PROCESS then does the analysis on side B and puts the output

dRta right next to the data for side A. PROCESS then asks for the "TEXT

DISK". The TEXT DISK is simply a separate disk which will be used to per-

manently store ti-e output text files. Next, PROCESS asks for some header

information for the text file. It then calculates the minimum, maximum and

mean for all the data and writes these along with the data to the text

files. When this is done the text file is complete and PROCESS restarts

itself.

:t	 W N.^

44

4. COHERENT-SCATTER DATA ON MAGNETIC TAPE

'	 1
i

4.1 Introduction

i
f In order to establish a forum for data exchanges and discussions, the

MAP (Middle Atmosphere Program) of SCOSTEP (Scientific Committee On Solar

Terrestrial Physics) has set up a project called MSTRAC (MST Radar Coordi-

nation), under the chairmanship of P. K. Rastogi of Case Western Reserve

University. In accordance with MSTRAC, a data exchange of MST radar data

r

has been initiated. Several countries (U.S.S.R., Czechoslovakia, Federal

Republic of Germany and China) have indicated an interest in using MST ra-

dar data to aid their studies of the middle atmosphere.

In order to share coherent-scatter data with other users it is neces-

sary to transfer the data to a different medium. Potential users of the

data have requested that the transfer be made to 1600 bpi, 9-track, IBM

readable magnetic tape. The procedure for the transfer of data from floppy

disk to magnetic tape is described in this chapter. At this point some

preliminary discussion is in order.

(1) Magnetic tape 3600 ft long can be purchased from CSO on campus.

If a different length is desired the tape must be purchased elsewhere.

(2) In order to use a magnetic tape the tape must be checked into the

tape room at CSO. When tapes are checked in, a "tape name" and a "rack

designation" are assigned. The "tape name" is one to six characters in

length and is chosen by the user. The "rack designation" is four charac-

ters long and will be assigned. The "rack designation" is either temporary

or permanent. All tapes to be left less than 30 days are temporary and

have a "rack designation" of TEMP. All other tapes have a different desig-

designation assigned by the operator. To retrieve a tape simply go to the

, ..J

....... W	 At
45

f

CSO tape room and tell the operator the "tape name" and the "rack design&-

Lion".

(3) There are two ways to submit jobs to the Cyber. Jobs can be sub-

mitted interactively or in a batch mode. To execute jobs interactively

simply type in the first command and wait for the prompt. Then type in the

second command, so on and so forth. Interactive is the method used to

transfer floppy disk files to Cyber permanent storage. When reading,

writing or copying tapes it is recommended that the batch mode be used. To

use the batch mode, create a text file on the Cyber with the following

format.

/JOB
/NOSEQ
WIZARD.

#########	 (ID NUMBER)

XXXXXX.	 (PASSWORD)
BILL,XXXX,PS####.	 (CHARGE NUMBER)
PRINT/RJE-EE .

(NORMAL CYBER COMMANDS)

To execute the batch job type "SENDJOB,filename." return. The Cyber will 	 ,#
y

then put the job on an execution queue. The job will now execute on its

own. The users can go on to something else, or log-off. To determine if

the job is completed type "QUERY" return. Cyber will respond with "NO JOBS

QUEUED" if the job is done. Note: the print statement in the header of

the Latch file causes all output generated by the batch job to be routed to

EEB computer room. However, a program listing may still go to the CSO

computer room. Due to the fact that the ID number, password and charge

number sre on the program listing, it is important to retrieve all listings

from both locations.

(4) The procedure described in this chapter was used to create a mag-

t_

46

netic tape with data collected during April 1978. The master tape is

called APR,,.M and is located on rack G454. A copy of the master tape called

APRILI is resident in the Aeronomy Laboratory. Due to the amount of data

present approximately 300 ft of tape are used. Therefore all copies made

for distribution have only 300 ft of tape on them. These tapes are named

APRIL2 through APRILB.

4.2 Format of Tape Files

In this section the format used to store coherent-scatter radar data

on magnetic tape is described. This particular format wan chosen because

it is simple to follow and easy to use. The data files stored on magnetic

tape use a format involving a large number of small files. Each file

represents a single quantity (power, velocity) for a two-hour period. The

ability to easily access each two-hour period of data from individual files

makes this format preferable to one with only a very few large files.

The first file written to the ruignetic tape is a "header file". The

header file for April 1978 is shown in Appendix F. The header file de-

scribes in detail the conditions under which the data was collected, the

format of the data files on the tape and a menu of the files on the tape.

The format of the data file was chosen because of its relative simplicity

and its economical use of the magnetic tape. The format of the tape data

files is very similar to that of the floppy disk data files (Section 3.1).

The only change occurs in the record length. In serial text files the

record size is variable so as to fit each individual number. The coherent-

scatter analysis program writes serial text files with one number per

record. Tape files have a fixed record length which must be large enough

to accommodate the largest possible number. It was determined that one

r•	 value could at most use six characters. Six characters allow a five digit

I

i

; \ fl

^^'(+0.°:.y sue,—. ^\ ';3- ^	 _ _	 _	 .sea.. _ate	 .'

E

47

number and a sign indicator. To allow economical use of the magnetic tape

an 80 character record is used. This record length allows 11 different

values to be stored in one record. Each record has six characters per

number plus one blank space between each value. Three characters are left

blank at the end of each record.

s	 4.3 Reformatting Disk Text Files

As explained in Section 4.2 it is necessary to reformat the data files

into 80 character records. There are two possible solutions to the task of

reformatting the text files. The files could be reformatted, stored back

on floppy disk and then transferred, or the files could be reformatted once
r

the transfer has taken place. Because of ease and the accessibility of the

Apple II microcomputer, the former of the two solutions was chosen. A

small BASIC program was written to read the serial text file, reconfigure

the data into 80 character records and write a new text file with the new

format. The BASIC program is shown in Appendix G.

4.4 Transfer of Text Files to Cyber

Before the data files can be stored on magnetic tape they must be

transferred to the Cyber computer. The procedure for executing the trans-

fer is described below.

Once the text files have been reformatted they can be transferred via

a modem link to the Cyber computer. The transfer program used is a public

domain terminal program available from CSO called Apple Term version 3.0.

The procedure is as follows. Boot up the Apple Term disk. When the Apple

asks for a phone number. type in the number of the Cyber (Nos& or Nosb).

Once the link has been established type a blank carriage return. Now sign-

on in the normal procedure. After sign-on type "ICE,filename" return.
1

When the Cyber responds with a "W', type "I" enter. The Cyber is now

W ^-"'

48

ready to accept data from the terminal. Next type escape "T". From here

the Apple Term program will take over and ask for the filename of the file

to be transferred and the prompt used. Make sure that the disk with the

text file present is in the disk dive. Now type in the filename return

for the filename and a "?" return for the prompt. The "?" tells the Apple

Term program to wait for a "?" before transferring a new Him. Ater

typing in the prompt, uo =re user inputs are needed until the file trans-

fer is complete. Upon completion of the transfer, the Apple will beep.

Type in a blank carriage return. This will terminate the file. A "??"

prompt will then appear. Type in "ER" return. This exits the editor and

saes the new file in permanent storage.

4.5 Reading and Writing Magnetic Tapes

There are many different ways to write information to a magnetic tape.

The procedure outlined below describes one way for a Cyber computer to

write a magnetic tape that an IBM computer can read.

To write a file to tape first Bend a labl.e statement to the Cyber.

LABEL(TAPE.VSN-tapename-rack designation,PO-W,F-S,LB-KU,CV-EB)

This label statement tells the computer operator to mount a tape called

tapename. The tape may be found at the location rack designation.. "TAPE"

is a variable used to refer to all operations on the tape. "PO" can either

be set to "R"ead or 'Write. "F" is set equal to "S" to indicate that the

format on the tape is "strange". "LB" is set equal to "KU" and indicates

the tape is unlabeled. "CV" is set equal to "EB"; this will cause data

written to the tape to be stored in the Ebcdic code.

Once the label statement has been executed a request for the TBLOCK

routine should be made.

..

GRAB,TBLOCK.

1

^1

49

This command will fetch TBLOCK into local memory.

Now, the first file to be written to memory should be fetched from

permanent storage.

GET,dfilel.

After dfilel is in local memory the file can be written to tape.

TBLOCK(DISK=dfilel,RECSIZE=80,BF=50)

This command tells Cyber to write dfilel to tape using a record size of

80 characters and a buffer size of 50 records. One buffer represents a

block of data stored on tape. If another file is to be written to tape

simply fetch it to local memory and execute another TBLOCK. This is pos-

sible because the Cyber just finished the first file. However, the tape

night not always be in the correct position. To reposition a tape at the

beginning of file, simply rewind the tape and skip over the appropriate

number of files.

REWIND, TAPE .

SKIPF,TAPE,n,C.

Here n is the number of files to skip over.

When the session is over it is important to return the tape to its

rack.

RETURN , TAPE .	
N. 4

This tells the computer operator to put the tape back, it also will free

up a tape drive for another user.

In order to verify the data it might be necessary to read the data

back off the tape. To read a tape issue a label statement with "PO" set

equal to "R". Then position the tape to the beginning of the desired file.

Next, fetch DEBLOCK and execute the DEBLOCK command.

GRAB,DEBLOCK
DEBLOCK(DISK=file,RECSIZE=80,BF=50)

1

°4

.

W

P

	 50

The parameter "file" indicates the name of the local file where the data

read from tape will be put.

4.6 Making Copies

After the master tape is complete it may be necessary to create

several copies of the tape for distribution. The procedure for making

copies is outlined below.

In order to make a copy of a tape two tapes must be checked in at the

tape room. To allow for a lengthy execution time, the time limit for the

user number must be increased to 20 time units.

SETTL,20.

Next, a resource allowance of two tape drives must be requested.

RESOURC,PE-2 .

Then, two label statements must be issued.

_	 LABEL,TU,VSN-newtape-rack,F=F,FC-6000,LB=KU,PO =R.
LABEL ,FRM,VSN-oldtape-rack,F-F,FC=6000, LB=KU,PO-W.

After the label statements have been issued a copy command must be executed.

COPY,FRM,TU,TC-EOD,V=YES.

This will put what is on tape FRM on to tape TU. Wher this command is exe-

cuted a verify will also be implemented. The Cyber will respond with

"VIMIFY GOOD" if a good copy was made. Once the ropy is complete return

both tapes.

RETURN,TU.
RETURN,FRM.

POO

•	 1 ^ , .. .	 fir/

5
J.l

5. DISCUSSIONS AND SUGGESTIONS FOR FUTURE WORK

The new collection program has many advantages ovet the old one. The

increased speed of the booster card provides improved timing when servicing

interrupts. When an interrupt is detected there is an uncertainty as to

when the interrupt service routine starts execution. This is because the

processor must finish the current instruction before servicing an inter-

rupt. Because the booster card reduces the average execution time by

approximately a factor of 3.5 the uncertainty time is also reduced by a

i

factor of approximately 3.5.

Because of the ability to sample both the real and the imaginary

4
	 channels after each pulse, the collection program now collects twice as

I
much data per height. The increase of data has lead to a better signal-to-

noise ratio. The new collection program collects up to 60 heights, three

times the number of heights collected by the old program. These 60 heights 	 4

need not be contiguous. For instance, it is possible to collect data from

9-39 km and 49-109 km. The increase in data and heights has not lead to

an increase in the storage space needed by the new collection program.

Analysis of the data from sample waveforms fed directly to the inter-	 '' {

face shows that the collection program is working very well. Comparisons

between data collected with the PDP-15 and the Apple support- the test re-

sults. A combination of improvements to the collection program and the

analysis pro&"-am has increased the quality of the velocity and correla-

tion time plots. Sample plots generated with the new programs are shown

in Figures 5.1-5.6.

In the lower altitudes the correlation time of the data is signifi-

cantly greater than in the higher altitudes. Consequently, the values cal-

1380
C
O

HyV

1245	 0

.y

L
co

00
V.

1230 	 •4

Lfl pN.	 rl
00

v 4!
A

Ln
W ^

IiIS

V $4

9W '"
1200 zal L

M .auO

m va— > ao
01

I I ^t5 ~to
Q m .fir

M w W

J W, O
1130a A^

m ao

1115

00

w

}

s,.

52

XA

— m —

Ln V

LA	 LA	 !A	 LA	 LA	 LA	 LA	 LA	 LA	 LA

^m	
ti	

mLa	 rn	 m

(Uri) ap"Ply

t^

53

r-
0

HNV
Q+
O

.^r

u

:1300

t.
as, _

(w4) apniply

r

1 30 tn

SV
Ln
W

12 is F--

V
C7
J
Lal

S

1208 rn

m

LY
La

1145 C

h-
la
M

J
LL

1130 ¢

ills

i

s
3

i

00

.,a
C
C
00

A

C

N
a

u
co
>,
L
•.d

U

O

> oho
rn

aJ .4

00
..1 00

W 1-4

W W

O 61

4 Vao
N

d
N

W

LA	 Ul	 LA	 LA	 {LA	 LA	 Ld	

I

LEA	 LA	 i A

U3	 tTD	 La	 LA LA w S T x

r
0

1300	 H

y
U

O
..y
.r

1345	 u
co

00

C:

R

C

1
230

:17 a

S
v ca

G
in aW N̂

t215 ^- a

v^'
C3	 Cc

J P.,
W aW

in d t
> ao

•	 a.

00
cr —4 co

l^ mm I

f- o m

O r.0
W

•d u
•j a o
IL

130 ¢ M

u'►
a^

aM
a
QO

11s	 w

t

. t

54

la Ix
w

LP

••	 .r:	 cn	 LA	 LA	 LA	 LA	 L1	 LA

Q1 ®ri m m m w r- I- I

(ml) apnI?ITV

in
v

t^<

oll

1	 LA	 LA	 LA	 LA

Q1	 ui	 1*1	 Oi

55

w
r.,

381
M

a
0
a.^

0
00

134S f,

v
Lai
Ln o

1238 W .^

;-
z
O

oo
0
G

1215 J
(U

W^
.n

V

cc

y

LO ^

6

LAJ

1145 o O
C,
VO

o
"û
cc

Li

CL
1138 d ^

v .,

s

HIS w

go
w

i

(mil) "F114 H LY

—m

Ln H

56

111	 LA	 LA

1nLO	 LC	 LA	 La	 LA?	 ?	 ?	 7^

1380 w
v
a
0
.jv
O

1 2245 n
,-.
V
LJ

 wU
'	 Ln

v
O^
p

1230
s

•+

z
Q

co
C

H C
1215 J „^^

w to
w
M

0

a
V ca

C

1288 ^

cc

w	
s

_ O

m eo

tr
W

IILK o 4J

I— C
...

C,C.

La
J
a.

^^

1138 CL
64co

o+

h

1116 ^
N
t+e

w

(=j) apnipiv

1

LA	 LA	 LO	 LA	 LA	 LA	 LA	 LA	 LA	 LA

Qi	 In	 LT:	 m	 m	 r	 r

57

W—M

H	 ^

130
s.
a
Ou
u
O

1245	
C
O

V H
LLn U
v ^

1230 S

H u

Z C
C7 W

C

1215 ^ ^C
W .Ci
CC	 o0
w O
O .O
V

ep
T C

1230 	
-O.^ W

uj

^ O
m ^

N
W

INS o
H
V C
L7 O

Ju
CL .^4

1130 EL	
w

co
v+

U .^

^O

IIIS	 '^
v

^o.4
w

y

(mi) aPn-1plV

I oftl

58

culated by DIFAC are much smaller. To amplify these values the FIXSTRAT

verb was written for the collection program. However, this verb cannot

be used without loss of information in the power plots. Small modifica-

tions in the analysis program can be implemented to allow the use of FIX-

STRAT.

Reducing the overshoot of the transmitted pulse would also improve the

quality of the data at the lowest altitudes. Tn addition if the overshoot

were reduced the collection program could be modified to collect data from

lower altitudes. These changes could be used to help study the correlation

between winds in the upper, middle and lower atmosphere. Upgrades to the

Urbana system allowing a decreased overshoot are currently being implement-

ed.

I_

APPENDIX A
Listing of the Collection Program

59

SCR # 30

0 (RADAR/1	 Aft 8/64)
1
2(
3 COHERENT-SCATTER-RADAR DATA-ACQUISITION
4 PROGRAM WRITTEN OCTOBER 1981 BY SIDNEY
5 SOWHILL, REVISED JUNE 1983. REVISED
6 AUGUST 1984 BY ANTHONY RENNIER. RESEARCH
7 SUPPORTED BY NATIONAL SCIENCE FOUNDATION
A AND BY NATIONAL AERONAUTICS AND SPACE
9 ADMINISTRATION.

10
11 ASSISTANCE OF FRANCIS KEASLER AND DAVID
12 PADGITT IS ACKNOWLEDGED. ORIGINAL
13 FIG-FORTH SYSTEM BY YOUR INTEREST
14 GROUP, SAN CARLOS. CALIFORNIA.
15
16 ASSEMBLER, EDITOR AND MSTACOMPILER BY
17 COME LYONS, JERSEY CITY NJ.
18
19 ALL CODE CONTAINED HEREIN IS PUBLIC
20 DOMAIN AND MAY BE FREELY COPIED FOR
21 NON-COMMERCIAL PURPOSES IF ACKNOWLEDGED
22 APPROPRIATELY.)
23 ->

SCR # 31

0 (RADAR/2	 SAS 6183
1
2
3 THIS PROGRAM I8 IN FIG-FORTR AND ASSEM-
4 BLY LANGUAGE FOR A 6502 MICROPROCESSOR.
5 IT IS DESIGNED TO RUN ON AN APPLE II OR
6 II+ MICROCOMPUTER WITH A JOHN BELL
7 ENGINEERING PARALLEL INTERFACE CARD, A
8 SCITRONICS REAL.-TIME CLOCK CARD, AND A
9 SINGLE APPLE FLOPPY DISK DRIVE. IT RE-
10 QUIRES TWO 8-SIT A/D CONVERTERS WITH
11 SAMPLE-AND-HOLD CIRCUITS, AND CONVERSION
12 TIMES OF 6 MICROSEC OR SETTER, E.G FROM
13 MICRO NETWORKS INC. START-CONVERT
14 SIGNALS ARE PROVIDED BY THE JBE CARD
15 UNDER PROGRAM CONTROL. A TTL INTERRUPT
16 SIGNAL MUST BE PROVIDED WHICH COINCIDES
17 WITH THE START OF THE TRANSMITTER PULSE.
18 THE PROGRAM PROVIDES COHERENT INTEGRA-
19 TION OF 8013 QUADRATURE CHANNELS AND
20 PROVIDES 1 HOUR OF CORRELATED DATA ON
21 ONE SIDE OF A FLOPPY DISK.)
22
23 ->

SCR # 32

0 (RADAR/3	 ADS 8/54)
1
2 FORTH DEFINITIONS HU
3
4 (USER CONSTANTS AMD VARIABLES)

5
6	 5 CONSTANT INPUTSLOT
7	 7 CONSTANT " ACKSLOT
6 7200 CONSTANT INBUFFER
9	 40 CONSTANT SECTION (8,10,20,40)

10	 2 CONSTANT LAGS	 (100/SECTION-2)
11	 3C CONSTANT HEIGHTS (<- SECTION)
12	 14 CONSTANT DISPHTS (<- 14)
13	 9 CONSTANT LOWHEIGHT
14	 3C CONSTANT MINS/DISK (<- 3D)
15	 190 VARIABLE SAMPLES (<- IAO)
16	 32 VARIABLE PULSES
17	 40 VARIABLE MIN3
18	 13 VARIABLE DELAYI (>- 13)
19	 C VARIABLE DELAY2
20	 1 VARIABLE MIN#
21 32 VARIABLE AMPFACTOE
22	 A VARIABLE FREQFACTOR
23	 ->

SCR # 33

0 (RADAR/4	 SAS 6/83)
1
2 (SET DERIVED CONSTANTS FOR VIA)
3

4 INPUTSLOT CO + 100 * CONSTANT INADDR
5
6 INADDR	 CONSTANT DRB1
7 INADDR 1+ CONSTANT DRA1
8 INADDR 2 + CONSTANT DDRBI
9 INADDR 3 + CONSTANT DDRA1

10 INADDR B + CONS-ANT ACR1

11 INADDR C + CONSTANT PCR1
12 INADDR E + CONSTANT IER1
13 INADDR 80 + CONSTANT DRB2
14 INADDR 82 + CONSTANT DDRB2
15 INADDR 54 + CONSTANT T1CL2
16 INADDR 85 + CONSTANT T1CH2
17 INADDR 86 + CONSTANT T1LL2
18 INADDR 67 + CONSTANT T1LH2

19 INADDR 8B + CONSTANT ACR2
20 INSJDR 8C + CONSTANT PCR2
21 INADDR BE + CONSTANT IER2
22
23 -->

IL

^jY?

60

SCR t 34

0 (RADAR/5	 ADR 8/84)
1
2 (APPLE I1 FINED LOCATIONS)
3
4 22 CONSTANT WINDOW
5 24 CONSTANT CURSOR
6 45 CONSTANT ACC
7 3FR CONSTANT IRQVECT08ADDR
8 0030 CONSTANT SPRARER
9
10 (ZERO-PAGR QUEDE-POIIITET LOCATIONS)
11
12 52 CONSTANT QUIUEI
13 53 CONSTANT QVIU92
14 54 CONSTANT RREAL
15 50 CONSTANT RINAG
16 58 CONSTANT LSUN
17 5A CONSTANT RSUM
18
19 -->
20
21
22
23

SCR 1 35

0 (RADAR/6	 SAB 6/83)
1
2 (Z990-PAGE SCRATCRPAD LOCATIONS)
3
4 60 CONSTANT LAG
5 61 CONSTANT BUYS
6 62 CONSTANT BUFL
7 63 CONSTANT BUYS
8
9 (Z910-PAGE CONSTANTS AND VARIABLES)

10
11 64 CONSTANT INCRIN
12 65 CONSTANT INCREM*2
13 66 CONSTANT FULSECOlNT
14 67 CONSTANT SPARES
15 69 CONSTANT SAMPLECOUNT
16
17 ->
18
19
20
21
22
23

SCR i 36
	

SCR f 37

0 (RADAR/7	 BAR 6/83)
1
2 (ZERO-PAGE SAMPLE AND DATA POINTERS)
3
4 70 CONSTANT LSPI
5 72 CONSTANT RSPI
6 74 CONSTANT LSP2
7 76 CONSTANT RSP2
8 78 CONSTANT LDP
9 7A CONSTANT MP
10 7C CONSTANT ROP
11
12 (PAGE POINTERS FOR DUFFERS)
13
14 80 CONSTANT INSUF
15 81 CONSTANT LDR
16 82 CONSTANT ROD
17 83 CONSTANT LCI
18 84 CONSTANT RDI
19 85 CONSTANT Z
20
21 ->
22
23

0 (RADAR/8	 SAS 6/83)
1
2 (PAGE POINTERS CONT INUED)

3
4 86 CONSTANT LOR
5 67 CONSTANT NOR
6 66 CONSTANT LOI
7 89 CONSTANT IOI
8 8A CONSTANT LRR
9 83 CONSTANT LII
10 8C CONSTANT LRI
11 8D CONSTANT LII
12 BE CONSTANT MRK
13 BY CONSTANT MII
14 90 CONSTANT MRI
15 91 CONSTANT MIR
16 92 CONSTANT IRR
17 93 CONSTANT III
18 94 CONSTANT IRI
19 95 CONSTANT MIR
20
21 : ADDR CC 100 * ;
22
23 -->

w ^	 - l-

t

t

61

SCR 0 3

0 (RADAR/9	 ADD 8/84)
1
2 (INITIALIZZ ZERO PACE AND VARIABLES)
3
4 INITLOC	 (---)
3
6 PULSES I PMAECOUNT CI
7 1 MINI 1 0 SAMPLECOUNT I
6 SECTION 201 R INCREM I
9 0 QM92 Cl INCREM GO QUEUEI Cl
10 INSUFFER 100 / 16 0
11 DO DUP I + INSUF I + Cl
12 LOOP DROP	 (PACE POINTERS)
13 INCREM*2 CQ
14 DUP LSUM Cl RSUM (;I
15 HDR CO RREAL 1+ Cl 	 (FOR RT DISPLAY)
16 NDI Cl HIMAC 1+ Cl
17
1S INITLOC
19
20 —>
21
22
23

S CR 140

0 (RADAR/11	 ADR 6/84)
1
2 (CODE TO IMPUT TO BUFFER FROM I/O)
3
4 : MACROI
5
6 ASSEMBLER EEICRTS 0
7 DO INADDR LOA, INBUFFEk I + STA,
8 INADDR 1+ LOA, INBUFFER I 80 + + STA,
9 MOP, POP, MOP. LOOP

10
11 (CGUE FOR CONERENT I11TEGRATION)
12
13	 MACR02
14
15 ASSEMBLER HEIGHTS 0
16 DO LSUM)Y LDA. INDUFFER 1 + ,X ADC,

17	 LSUM)T STA, RSUM)Y LDA, 0 I ADC,
18 RSUM)Y STA. CLC, IVY.
19 LOOP
20
21 —>
22
23

SCR 139

0 (RADAR/10	 SAD 6/83)
1
2 (INITIALIZE BUTTERS)
3
4 INITSUF	 (--)
5
6 INDUFFER DUP 1600 + SWAP
7DO01CI
8 LOOP
9
10 (INITIALIZE 1/0 CARD)
11
12 INITIO	 (—_)
13
14 0 DDRDI Cl 0 DDRAI Cl
15 3 ACRI Cl 40 PCRI Cl
16 81 DDR32 Cl 80 DRB2 Cl
17 0 AC12 Cl 0 PCR2 Cl
18 71 IE12 Cl
19
20 —>
21
22
23

S Ck f 41

0 (RADAR/12	 ADR 8/84)
1
2 (INTERRUPT SERVICE ROUTINE)
3
4 CODE INTERRUPT 	 (--)
5
6 TEA, PEA. TYA, PRA.	 (SAVE REGS)
7 INADDR LDA,	 (RESET INTERRUPT)
8 CO # LDA, ACR2 STA, 	 (FOR P17)
9 DELATI LDA, T1CL2 STA,
10 DELATI 1+ LDA, T1CH2 STA, (SET FUZE)
11 ? I LDA, T1LL2 STA,	 (100 CRZ)
12 0 * LDY, T1LH2 STY,
13 DELAY2 LOX,	 (* 5 MICROSEC 1
14 BEGIN, MOP, NOl, MOP, MOP,
15 NOT. NOT, DEX. 0-	 (HO YET?)
15 END, 80 i LOA, DRS2 STA,	 (P57 HIGH)

17 INADDs LDA, INADDR 1+ LDA,
16 HAC101	 (LOAD BUFFER)
19
20
21 —>
22
27

i

tX1

. w

62

SCR f 42

0 (RADAR/13	 ADD 6/84)
1
2 (CONTINUATION OF INTERRUPT)
3
4 CLC,
5 LDR LOA, LSUM 1+ STA,
6 1 f ADC, NSUM 1+ STA, 0 1 LDR,
7 0 f LDY, CLC. MACRO2	 (SUM DATA)
8 LDI LOA, LSUM 1+ STA,
9 1 f ADC. NSUM 1+ STA, 80 f LDX,

10 0 f LDY, CLC. PACA02
11 0 f LDA. ACR2 STA,	 (STOP P37)
12 FULSEWUNT DEC, 0- (E;IOUGH PULSES?)
13 IF. 8 f LDA, IE11 ETA,	 (DISABLE)
14 TH U , SPEAKER LDA, 	 (AUDIBLE)
0 PLA, TAY. PIA,
16 TAX, ACC LDA,	 (RESTORE REGISTERS)
17 BSI,
18
19 ->
20
21
22
23

SCRf43

0 (RADAR/14	 SAS 6/83)
1
2 (SYNCNRONIZE TO INTRRRUPT)
3
4 CODE SYNCRRONIZR	 (--- 1
5
6 SPARES STY, SPARES 1+ STY, 	 (RESET)
7 BEGIN, SPARES INC, 0-	 (CARRY?)
S IF, 31-ARES 1+ IBC,	 (COM SPARES)
9 THEN, PULSECOUNT LDA, 0-

10 END, PULSI?3 LOA,
11 PULSECOOIIT STA, 	 (RESET)
12 NEXT JMP.
13
14 : IOACK03	 (--)
15
16 ASSEMBLEE INSOFFEI 100 + 4 0
17 DO HEIGHTS 0
18 DO DI'P I + 500 + LDA, DUP I + ,X STA,
19 LOOP 100 +
20 LOOP DROP
21
22 -->
23

SCR f 44

0 (RADAR/15	 SAS 6/83)
1
2 CODE ADVANCL	 (-- FINISHFLAG)

4 -SAVE STX,	 (SAVE REGISTER)
5 QUEUEI LDA, QUE1:E2 STA,
6 CLC, INCREM ADC, QMEl STA,
7 nuL STA, HIMAG STA, CLC,
8 INCREM ADC. LSOM STA,
9 NSUM STA,	 (ADVANCE QUEUE)

10 TAX, MACRO3 XSAVE LOX,	 (GET OFFSET)
11 SAW:fLZCOUNT INC, 0- 	 (CARRY?)
12 IF, SAMPLECOUNT 1+ INC, (COUNT TREM)
13 THEM, SAMPLECOUNT 1+ LDA, (TEST THEM)
14 SAMPLES 1+ CMP, CS	 (MATCN?)
15 IF. SAMPLECOUNT LDA,
16 SAMPLES CMP, CS	 (LID MINUTE?)
17 IF, SAMPLECOUNT
18	 DUP STY, 1+ STY,	 (ZERO COUNT)
19	 1 ♦ LDA, PUSHOA JMP,	 (SET FLAG)
20	 THEN.
21 MEN, TYA, PUSNOA 4MP, 	 (RESET FLAG)
22
23 --;p

SCRf45

0 (RADAR/16	 ADR 8/84)
i
2 (MALZ A TIM MESSAGE)
3
4 CLOCESLOT 10 • C084 + CONSTANT TLOC
5 D30 VARIABLE TIM
6
7 HERE 15 ALLOT 15 AO FILL AF TIM 5 + Cl
8 AF TIM 8 + Cl 36AO TIM 10 + I C830 TIM
9 12 + I D3D4 TIM 14 + I

10
11 : MACRO4	 (---)
12
13 ASSEMBLER TLOC LDA, .A LSR, .A LSA,
14 .A LSR, .A LSR, SO f OPA,
15
16 : MACRO5	 (V ---)
17
18 ASSEMBLER MAC104 TIM + STA. DES,
19 TLOC STY.
20
21 ->
22
23

63

i

SCR # 46

0 (RADAR/17	 BAB 6/83)
1
2 CODE TIMEREAD
3
4 TO # LDA, TLOC 1+ STA,
5 F # LDA, TLOC STA,
6 PC # LDA, TLOC 3 + SSA.
7 F4 # LDA, TLOC 1+ STA,
8 C # LDY, TLOC STY,
9 9 MACROS A MACROS 3 MACROS 4 MACROS
10 6 MACROS 7 MACROS
11 TLOC LOA, DEY. TLOC STY, MACRON,
12 F1 # AND, TIM C + STA, DEY, TLOC STY,
13 D MACROS E MACROS MACRO4 TIM F + STA.
14 FS # LM, TLOC 1+ STA.
15 F # ?DA, TLOC STA,
16 F8 # LDA, TLOC 3 + STA.
17 FC # LDA, TLOC 1+ STA,
18 F # LDA, TLOC STA, NEXT IMP,
19
20 ->
21
22
23

SCR # 47

0 (RADAR/18	 BAB 6/83
1
2 (WAIT FOR AN EVEN MINUTE)
3
4 AWAITMIN
5
6 TIMEREAD TIM F + CCU	(GET MW)
7 BEGIN DUP TIMEREAD
8 TIM F + C@ -	 (HAS MIN CHANGED?)
9 END DROP

10
11 (CLEAR OUTPUT ACCUMULATORS)
12
13 CLEAROUT
14
15 LRR ADDR COO 0 FILL
16
17 ->
18
19
20
21

22

23

SCR # 48

3 (RADAR/19	 SAB 6/83)
1

2 (ACCUMULATE VALUES)

3

4 CODE VALAC

5

6 HEIGHTS 1 - # LDY, (SET NO. OF HGRTS)
7 BEGIN, CLC, LSP1)Y LDA, BUFL STA,
8 HSP1)Y LDA, BUFH STA, 0<
9	 IF, FF # LDA, BUFS STA,
10 ELSE, 0 # LDA, BUFS STA,
11	 THE,:, CLC, LD?)Y LDA, BUFL ADC,
12 LDP)Y STA, MOP)Y LDA, RUTH ADC,
13 MDP)Y STA, HDP)Y LDA, BUFS ADC,
14 HD_)Y STA, DEY, O<
15 END, NEXT JMP,
16
17 ->
18
19
20
21

22
23

SCR # 49

0 (RADAR/20	 SAS 6/83)
1
2 (ACCUMULATE DIFFERENCES)
3
4 CODE DIFAC
5
6 XSAVE STX, LAG LDX,
7 BEGIN, HEIGHTS 1 - # LDY,
8 BEGIN, SEC, LSPI)Y LDA, LSP2)Y SEC,
9	 BUFL STA, HSP1)Y LDA, HSP2)Y SBC,

10	 BUFN STA, 0< NOT
11	 IF, MC, LDP)Y LDA, BUFL ADC,
12	 LDP)Y STA, tlDP)Y LDA, BUFH ADC,
13	 MDP)Y STA, CS
14	 IF, HDP)Y LOA, 0 # ADC,
15	 RD?)Y STA,
16	 THEN,
17
18 -->
19
20
21
22
23

M^

V ,	 64

SCR # 50
	

SCR # 51

0 (RADAR/21	 SAB 6/83)
1
2	 ELSE, SEC, LDP)Y LDA, BUFL SBC,
3	 LDP)Y STA, MOP)Y LDA, RUPH sac,
4	 MOP)Y STA, CS
5	 I!, RDP)Y LDA, TY # SEC,
6	 RDP)Y STA,
7	 THEN,
8	 THEN, DEY, O<
9 END, CLC, LDP LDA, INCREM ADC,
10 LDP STA, MP STA, HDP STA, SEC,
11 LSP2 LDA, INCREM SBC, LSP2 STA,
12 RSP2 STA, DEX, O<
13 END, XSAVE LDX, NEXT JMP,
14
15 —>
16
17
18
19
20
21
22
23

0 (RADAR/22	 SAB 6/83)
1
2 (SET POINTERS)
3
4 CODE RR
5
6 QUEUEI LDA, LSP1 STA, RSP1 STA,
7 QUEUE2 LDA, LSP2 STA, RSP2 STA,
8 INCREM*2 LDA, LDP STA, MD? STA,
9 RDP STA,
10 LDR LDA, LSP1 1+ STA, LSP2 1+ STA,
11 HDR LDA, RSP1 1+ STA, RSP2 1+ STA,
12 LRR LDA, LDP 1+ STA,
13 HER LDA, MDP 1+ STA,
14 ERR LOA, RDP 1+ STA,
15 LAGS 1 - # LDA, LAG STA,
16 NEXT JMP,
17
18 —>
19
20
21
22
23

SCR # 52
	

SCR # 53

0 (RADAR/23	 SAB 6/83)
1
2 CODE II
3
4 QUEUEI LDA, LSP1 STA, HSP1 SSA,
5 QUEUE2 LDA, LSP2 STA, RSP2 STA,
6 INCREM*2 LDA, LDP STA, MOP STA,
7 RD? STA,
8 LDI LDA, LSP1 1+ STA, LSP2 1+ STA,
9 HDI LDA, HSPI 1+ STA, RSP2 1+ STA,
10 LII LD► , LDP 1+ STA,
11 NII LT)A, MDP 1+ STA,
12 RII LDA, HDP 1+ STA,
13 LAGS 1 - # LDA, LAG STA,
14 NEXT JMP,
15
16 —>
17
18
19
20
21
22
23

0 (RADAR/24	 SAB 6/83)
1
2 CODE RI
3
4 QUEUEI LDA, LSP1 STA, HSP1 STA,
5 LSP2 STA, HSP2 STA,
6 L"9CREM LDA, LDP STA, MDP STA, HDP STA,
7 LDR LDA, LSP1 1+ STA,
8 HDR LDA, HSPI 1+ STA,
9 LDI LDA, LSP2 1+ STA,
10 HDI LDA, HSP2 1+ STA,
11 LRI LDA, LDP 1+ SSA,
12 MRI LDA, MDP 1+ STA,
13 URI Lr-1. HDP 1+ STA,
14 LAGS # Lk,, LAG STA,
15 NEXT JMP,
16
I7 —>
18
19
20
21
22
23

1

I

65

SCR # 56 SCR # 57

SAB 6/83)

4 QULULI LW1. LJY1 SIA, H.1- Y1 SIA.
5	 LSP2 STA, HSP2 STA,
6 :'TCREN LDA, LDP STA, NDF STA, HDP STA,
7 LDI LDA. LSP1 1+ STA,
8 HDI LDA, HSP1 1+ STA,
9 LDR LDA, LSP2 1+ STA,
10 MDR LDA, HSP2 1+ STA,
11 LIR LDA, LDP 1+ STA,
12 MIR LDA, MDP 1+ STA,
13 HIR LDA, RDP 1+ STA,
14 LAGS 4 LDA, LAG STA,
15 NEXT JMP,
16
17 ->
18
19
20
21
22
23

SCR i 55

0 (RADAR/26	 SAB 6/83)
1
2 CODE RZ
3
4 QUEUEI LDA, LSP1 STA, HSPI STA,
5 INCREM LDA, LDP STA, MDP STA. HDP STA,
6 LDR LDA. LSP1 1+ STA,
7 MDR LDA, HSP1 1+ STA,
8 Z LDA, LSP2 1+ STA, HSP2 1+ SSA,
9 LRR LDA, LDP 1+ STA,
10 HRA LDA, MP 1+ STA,
11 RRR LDA, HDP 1+ STA,
12 0 # LDA. LAG STA,
13 NEXT JMP,
14
15 ->
16
17
18
19
20
21
22
23

0 (RADAR/21	 SAB 6/83)
1
2 CODE IZ
3
4 QUEUEI LDA, LSP1 SSA, HSP1 STA,
5 INCREM LDA, LDP STA, MDP STA, HDP STA,
6 LDI LDA, LSP1 1+ STA,
7 HDI LDA, HSP1 1+ STA,
6 Z LDA, LSP2 1+ STA, HSP2 1+ STA,
9 LII LDA, LDP 1+ STA,
10 FIII LDA, MDP 1+ STA,
11 HII LDA, HDP 1+ STA,
12 0 # LDA, LAG STA.
13 NEXT JMP.
14
15 -->
16
17
18
19
20
21
22
23

0 (RADAR/28	 SAB 6/83)
1
2 CODE RV
3
4 QUEUE1 LDA, LSP1 STA, HSP1 STA,
5 0 # LDA, LDP STA, MDP STA, HDP STA,
6 LDR LDA, LSP1 1+ STA,
7 MDR LDA, HSP1 1+ STA,
8 LRR LDA, LDP 1+ STA,
9 MRR LDA, MDP 1+ STA,
10 HRR LDA, HDP 1+ STA,
11 NEXT JMP,
12
13 ->
14
15
16
I7
18
19
20
21
22
23

3

a . ^..

66

SCR # 58
	

SCR # 59

0 (RADAR/29	 SAD 6/83)

1
2 CODE IV
3
4 QUEUEI LDA, LSPI STA, HSP1 STA,
5 0 # LDA, LDP STA. MDP STA, HDP STA,
6 LDI LOA, LSPI 1+ STA,
7 HDI LDA, HSP1 1+ STA,
8 LII LOA, LDP 1+ STA,
9 MII LDA, MDP 1+ STA,
10 HII LDA, HDP 1+ STA,
11 NEXT JHP,
11

13 —>
14
15
16
17
18
19
20
21
22
23

0 (RADAR/30	 SAD 6/83)
1
2 (UPDATE OFFSET FOR ZERO MEAN)
3
4 MRR ADD& CONSTANT MREGR
5 LOR ADDR CONSTANT LOFFR
6 0 VARIABLE OFF
7 0 VARIABLE REG
8
9 (GE9ERATE HIGH AND LOW BYTES VH AND
10 VL FROM A VALUE V)
11
12 SPLIT	 (V --- VL VH)
13
14 SP@ 1+ CO >R FF AND R>
15
16 —>
17
18
19
20
21
22
23

SCR # 60

0 (RADAR/31	 SAD 6/83)
1
2 FINDOFFSET
3
4 2 0
5 DO HEIGHTS 0
6 DO J 100 * I + MREGR + REG 1
7	 J 200 * I + LOFFR + OFF 1
8	 REG @ 400 + C@ 100 * (HIGH BYTE)
9	 REG @ C@ +	 (ADD MID BYTE)

10	 DUP 7FF <-
11	 IF 100 SAMPLES @ */ 	 (POSITIVE)
12	 ELSE MINUS 1+ 100 SAMPLES @ */
13	 MINUS
14	 THEN OFF @ C@ OFF @
15	 100 + C@ 100 * +	 (PREV OFFSET)
16	 SWAP — SPLIT
17	 OFF @ 100 + Cl OFF @ Cl
18 LOOP
19 LOOP
20
21 — >
22
23

SCR # 61

0 (RADAR/32	 ADR 8/84)
1
2 (MOVE MID AND HI BYTES FOR ODD MIN)
3
4 DISPLACE
5
6 MRR ADDR HIR ADDR 100 + 800 CMVE
7
8 (CREATE HEADERFILE)
9
10 : HEADER
11
12 TIMEREAD TIM 48 BLOCK 30E + 17 CMDVE
13 UPDATE FLUSH
14
15 (GET BLOCK NO. B# FROM FILE NO. F#)
16
17 BLOCK#	 (F# -- B#)
18
19 DUP F >
20 IF 3 +

21 THEN 	 *1+;
22
23 —>

c

s^

67

Y

SCR # 62

0 (RADAR/33	 SAS 6/83)
l
2 (MOVE 4K BYTES FROM ADDRESS A TO 4
3 CONTIGUOUS DISK BUFFERS ASSIGNED TO
4 BLOCKS STARTING WITH BLOCK NO. B#)
5
6 SMOVE	 (A B# --)
7
8 OUP BUFFER	 (ASSIGN FIRST BUFFER)
9 5000 OVER I	 (INSERT DOS FILE ADDR)
10 FFA OVER 2+ 1	 (AND DOS FILE LENGTH)
11 >R OVER R> 4 +
12 3FC CMDVE UPDATE (FILL FIRST BUFFER)
13 4 1	 (3 MILE BUFFERS)
14 DO OVER I 400 * + 4 -	 (SOURCE)
15 OVER I + BUFFER	 (DESTINATION)
16 400 CMOVE UPDATE (FILL OUE BUFFER)
17 LOOP DROP DROP
18
19 ->
20
21
22
23

SCR # 63

0 (RADAR/34	 SAB 6/83)
1
2 (GIVE AUDIBLE WARNING OF DISK CHANGE.
3 LASTS FOR N SEC)
4
5 ALARM	 (N ---)

6
72C*0
8DO100
9 DO O

10	 DO
11	 LOOP SPEAKER C@ DROP
12 LOOP
13 LOOP
14
15 -->
16
17
18
19
20
21
22
23

SCR # 64

0 (RADAR/35	 SAB 6/83)
1
2 (WRITE FILE P.ACH EVEN MINUTE)
3
4 WRITEFILE
5
6 BASE @ A BASE I	 (SAVE BASE)
7 KIN# @ 2 /MOD SWAP 0- 	 (EVEN HIM?)
8 IF MuR ADDR SWAP BLOCK# (FILL BLOCK)
9 BNDVE ." MINUTE " HIM#
10 @	 " COMPLETE" CR
11 ELSE DROP MIN# @ 1 -	 (FIRST MIN?)
12 IF HEADER	 (WRITE DATE/TIME)
13 THEN DISPLACE	 (MOVE UP ODD MIN)
14 THEN MINS/DISK 1
15 MLN# @	 (NEXT-LAST MIN?)
16 IF 5 ALARM	 (WARNING)
17 TREK MINS/DISK MIN# @ 	 (LAST MIN?)
18 IF 1 MIN# I CR BELL
19	 ." CHANGE DISK NOW1" CR
20 ELSE 1 MIN# +1	 (NEXT MIN)
21 THEN BASE I ;	 (RESTORE BASE)
22
23 ->

SCR # 65

0 (RADAR/36	 SAS 6/83)
1
2 (REAL-TIME DISPLAY BUFFERS)
3
4 0 VARIABLE PREVREAL DISPHTS 2 - ALLOT
5 0 VARIABLE PREVINAG DISPHTS 2 - ALLOT
6
7 (INITIALIZE DISPLAY BUFFERS)
8
9 PREVINIT	 ()

10
11 PREVREAL DISPHTS A FILL
12 PREVIMAG DISPHTS A FILL
13
14 (CONVERT SCREEN DISPLAY LINE NO. L#
15 TO SCREEN ADDRESS SA OF START OF
16 LINE)
17
18 SCREENADDR	 (L# --- SA)
19
20 404 SWAP 8 /MOD 28 * ROT + SWAP
21 80 * +
22
23 -->

E+

Nor

68

iCR # 66

0 (RALARW	 SAS 6/93)
1
2 (CODE TO PRINT NEW D1SA AY)
3
4 MACRO6	 (---)
5
6 ASSEMBLER DISPMTS 0
7 DO I # LDY, KREAL)Y LDA, (GET REAL)
8 SEC, EO # ORA, 10 # ADC,
9 If # AND, CLC, 3 # ACC, 	 i LIMNS)
10 PREVREAL I + STA,	 (SAVE REAL)
11 TAX, D2 4 LDA,	 ('R' SYMBOL)
12 DISPKTS ' - 2+
13 SUEFNADDR ,X STA,	 (POKE SCREEN)
14 KIIAG)Y LDA,	 (GET IMAG)
15 SEC, FA # OU, 10 # ADC,
16 IF # AND, MC, 3 # ADC, 	 (LIMITS)
17 PREVINAG 1 + STA,	 (SAVE IMAG
18	 TAX, C9 # LOA,	 ('I' SY11BOL)
19 DISPKTS I - 2+
20 SCREENADDR ,X STA,	 (POKE SCREEN)
21 LOOP
2:
23 —>

SCR # 67

0 f RADAR/38 BAB 6133)
i
2 (CODE TO BLASE PREVICUS DISPLAY)
3
4	 MACR07 (--^)
5
6 AoSEMW-U DISP1118 0
7 DO PM REAL I + LUX, (POSH OF 'R')
8	 DISPRTS I - 2+
9	 SCREfNADDR DUP ,X STA,	 (ERASE 'R')
10	 PREVIMAG I + LDX, (POEN OF 'I')
11	 ,X SSA, (ERASE 'I')
12 LOOP
13
14 (DISPLAY 9ATA) (---)
15
16 CODE RTDISPLAY
17
18 XSAVE STX, AO # LOA, MACR07 1MACRO6
19 XSAVE LDX, NEXT JHF,
20
21 —>
22
23

SCR # 68

0 (RADAR/39	 ADR 10/84)
1
2 (CLEAR RT DISPLAY)
3
4 CODE CLEARDISPLAY
5
6 HAVE STX, AO # LDA,
7 XACR07 XSAVE LDX,
8 NEXT JMP,
9
10
11
12
13

14
15
16
17
18
19
20
21
22 —>
23

SCR # 69

0 (kADA2/ u0	 SAB 6/83)
1
2 (INTERRUPT ENABLE AND DISABLE)
3
4 CODE 'NABLE

5
6 88 # LDA, IER1 STA, CLI, NEXT JMP,
7
8 CODE DISABLE
9
10 8 # LDA, IER1 STA, NEXT JMP,
11
12 (CONSTANTS FOR MWITE DISPLAY)
13
14 MRS. ADDR SECTION + CONSTANT AMPL
15 RRR ADDR SECTION + CONSTANT AMPR
16 MR1 ADDR SECTION 2 * + CONSTANT RIL
I7 URI ADDR SECTION 2 * + CONSTANT RIO
18 MIR ADDR SECTION 2 * + CONSTANT IRL
19 NIR ADDR SECTION 2 * + CONSTANT IRK
20
21 —>
22
23

j

^ti

69

... Y" -

SCR # 70

0 (RADAR/41	 SAS 6/83)
1
2 (DISPLAY AMPLITUDE AND FREQUENCY EACH
3 MINUTE USING CHARACTERS Cl AdD C2
4 RESPECTIVELY)
5
S DISPLAYAF	 (C1 C2 —)
7
8 CLLARDISPLAY SWAP DISPHTS 0
9 DO DUP AMPH I + C@ 100 *

10 AMPL I + C@ +	 (GET AMP)
11 AMPFACTOR @ / 3 + 27 MIN	 (ADJUST)
12	 DISPHTS I - 2+
13	 SCREENADDR + Cl OVER (POKE SCREEN)
14 RIH I + C@ 100 *
15	 RIL I + C@ + IRH I + C@
16	 100 * IRL I + C@ + -	 (GET FREQ)
17 FREQFACTOR @ / 14 +
18 27 MIN 3 MAX	 (ADJUST)
19 DISPHTS I - 2+
20	 SCREENADDR + Cl	 (POKE SCREEN)
21 LOOP DROP DROP
22
23 -->

SCR # 71

0 (RADAR/42	 SAB 6/83)
1
2 (WRITE KH LABELS)
3
4 KMLABEL	 (---)
5
6 CLEAR SASE @ A BASE I CR CR CR
7 LOWNEIGHT DUP DISPHTS 3 * 2 / + 2 -
8 DO I . CR CR -3
9 +LOOP BASE i

10
11 (INITIALIZE AT START OF RUN)
12
13 INIT	 (--)
14
15 INTERRUPT IRQVECTORADDR 1
16 INITBUF INITLOC INITIO
17 PREVINIT CLEAR YJILABEL
18 0 CURSOR i CR 300 WINDOW I
19
20 —>
21
22
23

SCR # 72

0 (RADAR/43	 SAB 6/83)
1
2 (FILL QUEUE WITH DATA)
3
4	 FILLQUEUE	 (---)
5
6 SAMPLtS @ LAGS - 2 - SAMPLECOUNT 1
7 ENABLE
8 BEGIN SYNCHRONIZE ADVANCE ENABLE
9 END DISABLE

10
11 (CORRELATE 1 MIN OF DATA)
12
13	 CORRELATE	 (---)
14
15 ENABLE
16 BEGIN RV VALAC IV VALAC RZ DIFAC
17	 IZ DIFAC RR DIFAC II DIFAC
18 RI DIFAC IR DIFAC RTDISPLAY
19 SYNCHRONIZE ADVANCE ENABLE
20 END DISABLE
21
22 —>
23

SCR # 73

0 (RADAR/44	 ADR 10/84)
1
2 (MULTIPLY EVERY OUTBUFFER BY ION)
3
4 FIXSTRAI	 (-)
5
640
7 DO	 (FOR RR II RI IR)
8 LAGS 2 + 1
9 DO	 (FOR EACH LAG i

10	 HRR J + ADDR
11	 SECTION I * +
12	 DUP 14 + SWAP
13	 DO	 (FOR LOWER HTS.)
14	 I C@ 100 *	 (MULTIPLY EACH)
15	 I 400 - C@ + 10 *	 (3 BYTE NO.)
16	 I800-C@10/+	 (BY ION)
17	 100 /HOD
18	 I Cl I 400 - Cl
19	 LOOP
20 LOOP
21 LOOP
22
23 —>

i

t

1

r.

SCR # 74 SCR # 75

0 (RADAR/4! ADR 8/84) 0
.1	 1 1

"	 2 (RUN PROGRAM) 2
'.	 3 3

4	 GO (---) 4
5 5
6 DISABLE INIT AWAITHIN (SET UP) 6

7 FILLQUEUE CORRELATE (DUMMY MIN) 7
8 FINDOFFSET (INITIAL OFFSET) 8
9 BEGIN AWAITHIN (AWAIT EVEN MITI) 9

10	 AO AD DISPLAYAF (ERASE A.F) 10

11	 CLLAROUT (CLEAR OUTPUTS) 11
12	 FILLQUEUE (LOAD QUEUE) 12
13	 CORRELATE (CORRELATE 1 MIN) 13
14	 FINDOFFSET (REFIGURE OFFSET) 14
15	 Cl C6 DISPLAYAF (PRINT A j) 15
16	 EMPTY—BUFFERS (CLEAR DISK BUFFS) 16
17	 WRITEFILE FLUSH (DISK WRITE) 17
18	 MIN# @ MINS @ (RUN ENDED?) 18
19 END ; 19
20 20

21 DECIMAL ;S 21

22 22

23 23

70

M.

^o L

't

SCR # 38SCR # 34

i

71

APPENDIX B
Screens from Previous Collection Program

SCR # 30

0 (RADAR/1	 BAB 6/83)
1
2(
3 COHERENT-SCATTER-RADAR DATA-ACQUISITION
4 PROGRAM WRITTEN OCTOBER 1981 BY SIDNEY
5 BWHILL, REVISED JUNE 1983. RESEARCH
6 SUPPORTED BY NATIONAL SCIENCE FOUNDATIO11
7 AND BY NATIONAL AERONAUTICS AND SPACE
8 ADMINISTRATION.
9
10 ASSISTANCL OF FRANCIS KEASLER AND DAVID
11 PADGITT IS ACKNOWLEDGED. ORIGINAL
12 FIG-FORTH SYSTEM BY FORTH INTEREST
13 GROUP, SAN CARLOS, CALIFORNIA.
14
15 ASSEMBLER, EDITOR AND METACONPILER BY
16 GEORGE LYONS, JERSEY CITY NJ.
17
18 ALL CODE CONTAINED HEREIN IS PUBLIC
19 DOMAIN AND MAY BE FREELY COPIED FOR
20 NON-COMMERCIAL PURPOSES IF ACKNOWLEDGED
21 APPROPRIATELY.)
22
23 ->

SCR # 32

0 (RADAR/3	 BAB 6/83)
1
2 FORTH DEFINITIONS HEX
3
4 (USER CONSTANTS AFO VARIABLES)
5
6	 2 CONSTANT INPUTSLOT
7	 3 CONSTANT CLOCKSLOT
8 6200 CONSTANT INBUFFER
9	 20 CONSTANT SECTION	 (8,10,20,40)

10	 6 CONSTANT LAGS	 (100/SECTION-2)

11	 14 CONSTANT HEIGHTS 	 (<- SECTION)
12	 14 CONSTANT DISPHTS	 (<n 14)
13 3C CONSTANT LOWHEIGHT
14 3C CONSTANT MINS/DISK	 (0 3D)
15 190 VARIABLE SAMPLES 	 (0 IAO)
16 32 VARIABLE PULSES
17 40 VARIABLE MINS

18	 13 VARIABLE DELAYI	 (>- 13)
19 42 VARIABLE DELAY2 	 (>^ 1)
20	 1 VARIABLE MIN#

21 32 VARIABLE AMPFACTOR
22 64 VARIABLE FREQFACIOR
23	 ->

0 (RADAR/5	 SAS 6/83)
1
2 (A1'PLE II FIXED LOCATIONS)
3
4 22 CONSTANT WINDOW
5 24 CONSTANT CURSOR
6 38 CONSTANT KSWL
7 39 CONSTANT KSWH
8 45 CONSTANT ACC
9 3FE CONSTANT IRQVECTORADDR

10 CO30 CONSTANT SPEAKER
11
12 (ZERO-PAGE QUEUE-POINTER LOCATIONS)
13
14 50 CONSTANT PORT
15 52 CONSTANT QUEUEI
16 53 CONSTANT QUEUE2
17 54 CONSTANT HREAL
18 56 CONSTANT HIMAG
19 58 CONSTANT LSUM
20 5A CONSTANT HSUM
21
22 -->
23

0 (RADAR / 9	 SAB 6/83)
1
2 (INITIALIZE ZERO PAGE AND VARIABLES)
3
4	 INITLOC	 (---)
5
6 DRB1 PORT !
7 PULSES @ PULSECOUNT C1
8 1 MIN# 1 0 SAMPLECOUNT 1
9 SECTION 201 * INCREM 1

10 0 QL'EUE2 C! INCREM CO QUEUEI C1
11 INBUFFER 100 / 16 0
12 DO DUP I + INBL'F I + C1
13 LOOP DROP	 (PAGE POINTERS)
14 INCREM*2 C@
15 DUP LSUM C1 HSUM C1
16 HDR CO HREAL 1+ C1 	 (FOR RT DISPLAY)
17 HDI C@ HIMIAG 1+ C1
18
19 INITLOC
20
21 -->
22
23

u^

Utl
t
i^

I

72

'I

SCR # 40

0 (RADAR/11	 BAD 6/83)
1
2 (CODE TO INPUT TO SUFFER FROM I/O)
3
4 MACROl
5
6 ASSEMBLER HXIGmTS 0
7 DO PORT)Y LDA. LNBUFFER I + .I STA,
8 LOOP
9

10 (CODE FOR COHERENT INTEGRATION)
11
12 MACR02
13
14 ASSEMBLER HEIGHTS 0
13 DO LSUM)Y LDA, INBUFFER I + .X ADC.
16 LSUM)Y STA, HSDM)T LDA. 0 # ADC,
17 HSUM)Y STA. INY,
18 LOOP
19
20 —>
21
22
23

SCR # 41

0 (RADAB/12	 BAS 6/83)
1
2 (INTERRUPT SERVICE ROUTINE)
3
4 CODE INTERRUPT	 (—^)
5
6 TIA. PHA, TYA. PRA, 	 (SAVE BEGS)
7 INADDR LDA,	 (RESET INTERRUPT)
8 CO # LDA, ACR2 STA,	 (FOR PB7)
9 DELAYI LDA. T1CL2 STA.
10 DELAYI 1+ LDA, T1CH2 STA, (SET FUZE)
11 3 # LDA, T1LL2 STA,	 (100 XHZ)
12 0 # LDY. T1LH2 STY,
13 DELAY2 LDX.	 (* 5 MICROBIC)
14 BEGIN, DEX, 0-	 (NO YET?)
15 END, 80 # LDA, DRB2 STA.	 (P37 HIGH)
16 CLC, PORT LDA,
17 .A NOR, .A ROB, TAX,	 (I FROM PORT)
18 PORT)Y LDA,	 (RESET ADC LATCH)
19 INBUFFER ,I STA, 	 (TIME FOR ADC EOC)
20 MACROI	 (LOAD BUFFER)
21 PORT LDA, DRB2 STA.	 (FOR SCOPE)
22
23 —>

SCR # 42

0 (RADAR/13	 SAN 6/83)
1
2 (CONTINUATION OF INTERRUPT)
3
4 LDR LDA, PONT ADC,
5 PONT ADC, LSUM 1+ STA, (SET LBUM HI)
6 1 # ADC. HSUM 1+ STA, 	 (SET RSUM HI)
7 0 # LDY, CLC, MACRO2 	 (SUM DATA)
8 PORT LDA. 1 # EOR,
9 PORT STA,	 (SUITCH INPUTS)

10 0 # LOA, AC12 STA,	 (STOP PS7)
11 PULSECOUNT DEC, 0- (ENOUGH PULSES?)
12 IF, 8 # LDA, IER1 STA,	 (DIRABLE)
1J THEN, SPtAXER LDA.	 (AUDIBLE)
14 PLA, TAY, PLA.
15 TAX, ACC LDA,	 (RESTORE REGISTERS)
16 RTI.
17
18 —>
19
20
21
22
23

SCR # 45

0 (RADAR/ 16	 SAS 6/83)
1
2 (MARE A TIME MESSAGE)
3
4 CLOCKSLOT 10 * C084 + CONSTANT TLOC
5 D3C3 VARIABLE TIM
6 HERE F ALLOT F AO FILL AF TIM 5 + Cl
7AF TIM 8+CI
8
9 : MACRO4

10
11 ASSEMBLER TLOC LDA, .A LSR, .A LSR,
12 .A LSR, .A LSR, SO # ORA,
13
14 : MACR05	 (V -
15
16 ASSEMBLER NAC104 TIM + STA, DEY.
17 TLoC STY,
18
19 -->
20
21
22
23

0-,

^. a
—)

i

73

SCR 172

1
i

r	 {

SCR 161
i

t

0 (RADAR/32	 $AB 6/83)
1
2 (MOVE MID AND HI BYTES FOR ODD MIN)
3
4 DISPLACE
S
6 MRR ADD& NIX ADDR 100 + 800 CMOVE
7
8 (CREATE HEADERFILE)
9
10 HEADER
11
12 TIMEREAD TIM 48 BLOCK 30E + 11 CHDVE
13 UPDATE FLUSH
14
15 (GET SLOLK NO. Bi FROM FILE NO. F4)
16
17 BLOW	 (!I -- Bi)
15
19 DUP F >
201F3+
21 THEN 4*1+;
22
23 ->

0 (RADAR/43 SAS 6/83)
1
2 (RUN PROGRAM)
3
4 GO (---)
S
6 DISABLE INIT AWAITHIN 	 (SET UP)
7 FILLQUEUE CORRELATE (DUM MIN)
8 FINDOFFSET (INITIAL OFFSET)
9 BEGIN AWAITMIN (AWAIT EVEN MIN)

10 AO AO DISPLAYAF (ERASE A,F)
11 CLEAROUT (CLEAR OUTPUTS)

12 FILLQUEUE (LOAD QUEUE)

13 CORRELATE (CORRELATE 1 MIN)
14 FINDOFFSET (REFIGURE OFFSET)
15 Cl C6 DISPLAYAF (PRINT A,F)
16 EMPTY-BUFFERS (CLEAR DISK BUFFS)
17 WRITEFILE FLUSH (DISK WRITE)
18 MINI @ MINS @ (RUN ENDED? J
19 END;
20
21 DECIMAL ;S
22
23

s'

I

'L

F	 - _

^ y

^r

74
APPENDIX C

Listing of ANAL4

1 REM IINTEGERBA , H,FI,Xl,X2,X3 ,AX,BX ,AD,HI,I,J , K,V(4),A (4,4,20) , R(20,2)

2 REM :ANAL4 2/14/83
10 PI - 3.14159: HIMEM: 14000
20 K1 - - 600 / (PI * 40.92): REM UP IS DOWNI
50 DIM A (4,4,20) , R(20,2),V(4)
100 BA - 15000
102 INPUT "NO. OF FILES: ";FI
104 FOR H - 1 TO FI: PRINT "BLOADFILE "H",A23488"
106 FOR H1 - 25536 TO 23488 STEP - 2048
110 FOR I - 0 TO 3: FOR J - 1 TO 3
120AX - Hl +256 * I+32*J
130 BX - Hl + 1024 + 256 * I + 32 * J
133 FOR K - 0 TO 19
140 A (I,J,K) - PEEK (AX) + 256 * PEEK (BX)
145 AX - AX+I:BX-BX+1
150 NEXT NEXT NEXT
155 M - (H - 1) * 2 + (25536 - H1) / 2048
160 FOR J - 0 TO 19
170 Cl - ((A(O,1,J)) ° 2) * 2
180 C2 - ((A(1,1,J)) ° 2) * 2
187 FOR I - 2 TO 3
190 D1 - (A(O,I,J)) • 2
200 D2 - (A(1,I,J)) ° 2
210 D3 - (A(2,I,J)) • 2
220 D4 - (A(3,I,J)) ° 2
230 E - (Cl - D1 + C2 - D2) / 2
240 F - (D3 - D4) / 2
250 G- (E *E+F*F) • .5
251 G(I) - G - 264
252 IF G - 0 THEN G - .001
254 S - F / G : C - E / G: GOSUB 1000
256 V (I) - INT (V * 10 / (I - 1) + .5)
260 NEXT
265 X1 - INT (21.72 * LOG ((Cl + C2) / 10000) + .5)
267 IF X1 < 0 THEN X1 - X1 + 256
270 AD- BA+ 60 *M+3 *J
272 IF G (2) < (Cl + C2) / 20 THE; X2 - 128:X3 - 128: GOTO 280
273 R (J,1) - R(J,l) + 1: IF (G (3) , 1 OR G(2) - < G(3)) THEN X2 - 128:X3

- V(2): GOTO 278
274 R (J,2) - R(J,2) + 1:X2 - INT (6.25 * (3 * LOG (2) / LOG (G(2) / G(

3))) • .5 + .5): IF X2 - 128 THEN X2 - 129
275 IF X2 > 200 THEN X2 - 200
276 X3 - V(2): IF X3 > 127 THEN X3 - 128
277 IF X2 > 12 THEN X3 - V(3)
278 IF X3 < 0 THEN X3 - X3 + 256
280 PRINT X1,X2,X3
285 POKE AD,XI: POKE AD + 1,X2: POKE AD + 2,X3
287 NEXT : PRINT "MINUTE "M" COMPLETED"
288 NEXT : NEXT
290 FOR J - BA + FI * 120 TO BA + 3600
295 POKE 3,128: NEXT
300 INPUT "FILE NAME?";A$

75

310 PRINT "BSAVE"A$",Al5000,L3600"
320 FOR I - 0 TO 19: PRINT I;" ";FI * 2;" ";R(I,1);" ";R(I,2): NEXT
330 END
1000 IF C - 0 THEN C - .0001
1010T-S/C:V- ATN(T)
1050 IF C < 0 THEN V - V — PI
1060 IF < — PITHENV -V+PI+PI
1210 V - V *K1
1220 RETURN

a.

`	 ^^ •	 .fit` . ^ d^ . ^-

tat Itir:a

76

APPENDIX D
Listing of CONVERT84.1

1	 REM	 IINTEGERPI , P2,CI , C2,V1,V2, P,C , V,I,J,BA,HM,AD, :I,F,X,F
,P4,C4,V4

10	 REM CONVERT BINARY TO ASCII
20	 REM	 S BOWHILL 2114183
100	 REM MAIN PROGRAM
110 BA - 20000
120	 HIMEM: 19000
130	 INPUT "INPUT FILE NAME: ";F$
135 HM . 60
140	 PRINT "BLOAD"F$",A20000"
150	 GOSUB 1000
160	 GOSUB 2000
170 T$ a	 STR$ (INT (H * 100 + M + .5))
175 D$ -	 CHR$ (4)
180	 PRINT D$"OPENPOWW/"T$
190	 PRINT DY"WRITEPOWW/"T$
193 N$ - " POWER (LOG PLOT)"
195	 GOSUB 4000
197	 PRINT .02 * P2: PRINT .02 * P1: PRINT .0 2 * F3: PRINT HM
200 AD - BA:XL + 200:F - 2
210	 GOSUB 3000
220	 PRINT D$"CLOSEPOWW/"T$
230	 PRINT D$'-OPENCORR/"T$
240	 PRINT D$"WRITECORR/"T$
243 N$ - " CORRELATION TIME (SEC)"
245	 GOSUB 4000
247	 PRINT . 1 * C2: PRINT . 1 * Cl.: PRINT .1 * C3: PRINT HM
250 AD - BA + 1:XL u 25 14.F - 2
260	 GOSUB 3000
270	 PRINT D $" CLOSECORI:/"T$
280	 PRINT D$"OPENVELL/"T$
290	 PRINT D $"WRITEVELL/"T$
293 N $ - " VELOCITIES (M/S)"
295	 GOSUB 4000
297	 PRINT . 1 * V2: PRINT . 1 t V1: PRINT . 1 * V3: PRINT HM
300 AD s BA + 2:;'.L - 128:F - 10
310	 GOSUB 3000
320	 PRINT D$"CLOSEVELL/"T$
330	 END
1000	 REM GET HEADER
1001	 REM
1010	 INPUT "MONTH: ";M$
1020	 INPUT "DAY: ";D$
1025	 INPUT "YEAR: ";Y$
1030H$-M$+"" + D$+ ".	 "+Y$
1040	 INPUT "HOUR: ";H
1050	 INPUT "HINUTE: ";M
1060	 INPUT "NUMBER OF RECORDS: ";N3
1070	 RETURN
2000	 REM MAX, MIN AND MEAN
2001	 REM
2010 P1 -	 •- 55:P2 - 200 : P3 - O:P4 - 0
2020 Cl - O:C2 - 127:C3 - O:C4 - 0

a

cl,Im...	 ,.

.i

t:

77

2031 V1 - - 127:V2 - 127:V3 - O:V4 - 0
2040 FOR I - BA TO BA + 3597 STEP 3
2050 P - PEEK (I):C - PERK (I + 1):V	 PEEK (I + 2)
2060 IF P - 128 THEN 2180
2065 IF P > 200 THEN P - P - 256
2070 IFP>PITHENPI - P
2080 IF P < P2 THEN P2 - P
2C90 P3 - P3 + P:P4 - P4 + 1
2100 IF C - 128 THEN 2180
2110 IF C > Cl THEN Cl - C
2120 IF C < C2 THEN C2 = C
2130 C3 - C3 + C:C4 - C4 + 1
2140 IF V > 128 THEN V - V - 256

2150 IF V > V1 THEN V1 - V
2160 ZF V < V2 THEN V2 - V
2170 V3 - V3 + V:V4 V4 + 1

2180 NEXT I
2190 P3 - P3 / P4:C3 = C3 / C4:V4 = V3 / V4
2200 RETURN
3000 REM WRITE DATA
3001 REi4
3010 FOR I - 0 TO 19
3020 FOR J - 0 TO 119
3030 X - PEEK (AD + 3 * I + 60 * j)
3040 IFX = 128 THEN X=0
3050 IF X > XL THEN X - X - 256
3060 PRINT F * X
3070 NEXT : NEXT
3080 RETURN
4000 REM WRITE HEADER
4001 REM
4005 I $ - "APPLE " + H^ + N$
4010 PRINT I$: PRINT H: PRINT M: PRINT N3
4020 RETURN

4

\1

pSs

e

Prt^

78

APPENDIX E
Listing of Analysis Program

10 REM IINTEGERINFILEADDR,OUTFILEADDR,SECTIONSIZE,NUMFILES,POW,THRESHOLD
,CRRTIME,VEL,INARRAY (4,4,20) , ENOUGHPOWER (20),GOODSHAPE (20),VEL (4),MA
GN(4),REFILE,FILE,HOUR,MINUTE,NMREC

15 RMI	 IINTEGER P1MAX,P2MN,P3NEAN,P4COUNT,C1MAX,C2MN,C3MEAN,C4COUNT,V
1MAX,V2MN,V3MEAN,V4COUNT,I,J,ADDR,VA,TEMPADDR,BASEHEIGHT

20 REM
21 REM ************* **irlr***

22 REM *	 PROCESS
23 REM *
24 REM * COF:ERENT SCATTER
25 REM * DATA ANALYSIS
26 REM *	 PROGRAM
27 REM *
28 REM * TO1V. RENNIER
29 REM *
30 REM * AUGUST 22, 1984
31 RE11 ****yr r,r********^ ****

32 RE11
34 REM **inir****,kt****vor,rnt**,tii****

35 REM * THIS PROGRAM READS
36 REM * BOTH SIDES OF THE
37 REM *	 DISK AT ONCE
38 REM **********^r******

39 REM
40 REM *,r****,t***x , ***ytyr******

41 REM * SELECT HEIGHT RANGE
42 REM ********,mot***x******

49 HIMEM 19799
50 HOME
55 PRINT "SELECT (1) 9-37.5 KM"
56 PRINT "	 (2) 39-67.5 K11"
57 INPUT "	 (3) 69-97.5 KM";TEMP
60 DISP - 20 * (TEMP - 1)
65 IF TEMP 1 THEN BASFIREIGRT - 7.5:SCLE 1: GOTO 85
70 IF TEMP = 2 THEN BASIMEIGHT - 37.5:5 CLE = 1: GOTU 85
75 IF TEMP 3 THEN BASEHEIGHT - 67.5:SCLE - 1: GOTO 85
80 GOTO 50
85 BASEHEIGHT$ _ "/" + STR$ (BASEHEIGHT)
100 REM
101 REM ********,k*********

102 REM * DEFINE CONSTANTS
103 REM *	 AND ARRAYS
104 REM *********x****r*****

105 REM
110 PI = 3.14159
120 MHZ	 40.92
130 K1 - - 60000 / (PI * MHZ) / SCLE
131 K3 - 4j.44 / SCLE
132 RE11
:40 REM MINUS IS BECAUSE WE
141 REM SHOW + VELOCITIES TO
142 REM BE DOWNWARD FOR
143 REM HISTORICAL REASONS

79
i

144 REM
150 K2 - 12.5 / SCLE * (3 * 	 LOG (2)) ' .5
160 D$ -	 CHR$ (4): REM CNTRL-D
170 THRESHHOLD - 20
200 DIM INARRAY(4,4,20)
210 DIM ENOUGHPOWER(20)
220 DIM GOODSHAPE(20)
230 DIM VEL(4)
.240 DIM MAGN(4)
1000 REM

1001 REM **************
1002 REM * FILL INPUT
1003 REM *	 ARRAY
1004 REM **************

1005 REM
1010 REM INPUT Fy',E CONSISTS OF

1011 REM 2 MINUTES OF DATA,
1012 REM EACH 2048 BYTES LONG,
1013 REM WITH THE EARLIER DATA
1014 REM SECOND IN THE FILE.
1015 REM EACH MINUTE FILE IS 8
1016 REM PAGES OF DATA, IN THE

1017 REM FOLLOWING ORDER:
1018 REM MRR, MII, MRI,	 lIR,

1019 REM HRR, HII, HRI, HIR.

1020 REM THE VALUE OF RR IS
1021 REM (MRR+256*HRR), ETC.
1022 REM
1100 INFILEADDR	 34300

1110 OUTFILEADDR	 19800
1120 ADDR = OUTFILEADDR
1130 SECTSIZE - 64
1134 INPUT "NO. OF FILES: ";tNMFILES
1135 INPUT "SIDE A ?";DUMMY$
1200 REM

1201 REM FOR EACH OF (USUALLY)

1202 REM 60 FILES
1203 REM 11

1210 FOR REFILE - 1 TO NUMFILES

1212 IF REFILE - 31 THEN	 PRINT "": INPUT "SIDE B ?";DUMMY $

1214 FILE - REFILE
1216 IF REFILE > 30 THEN FILE - FILE - 30

1220 PRINT D$"BLOADFILE "FILE",A"INFILEADDR

1300 REM
1301 REM FIRST MIN THEN SECOND
1302 REM
1310 FOR MIN - 0 TO 1
1400 REM
1401 REM RR, II, RI AND IR
1402 REM
1410 :: FOR QUAN - 0 TO 3
1500 Rai
1501 REM USE 3 LAGS, AND

Y

i

i	 a

1

r

80

1502 REM CALCULATE ADDRESSES
1503 REFS OF HIGH AND LOW BYTES
1504 REM
1510 ::: FOR LAG - 1 TO 3
1520 ::::LOWBYTEADDR - 256 * QUAN + SECTSIZE * LAG + INFILEADDR + 2048

(1 - MIN) + DISP
1530 ::::HIGHBYTEADDR - LOWBYTEADDR + 1024
1600 REM
1601 REM FOR 20 HEIGHTS
1602 REM
1610 :::: FOR HEIGHT - 0 TO 19
1620 :::::INARRAY(QUAN,LAG,HEIGHT)	 PEEK (LOWBYTEADDR) + 256 * PEEK (H

IGHBYTEADDR)
1630 :::::LOWBYTEADDR - LCT4BYT rADDR + 1

1640 :.:::HIGHBYTEADDR - HIGY.BYTEADDR + 1
1650 :.:: NEXT HEIGHT
1660 ::: NEXT LAG
1670 :: NEXT QUAN
2000 REM
2001 REM *********************
2002 RE!•I * FIND CORRELATIONS
2003 REM * AND PHASES FOR
2004 REM * 1 MINUTE OF DATA
2005 REM *******************

2006 REM
2007 HOME

2010 :: FOR HEIGHT - 0 TO 19
2020 :::RMSQUARED - ((INARRAY(0,1,HEIGHT)) • 2) * 2
2030 :::IMSQUARED = ((INARRAY(1,1,HEIGHT)) • 2) * 2
2040 ::: IF RMSQUARED - 0 THEN R.*SSQUARED - .001
2100 REM
2101 REM FIND SIN AND COS
2102 REM COMPONENTS OF
2103 REM COVARIANCE
2104 REM
2110 ::: FOR LAG - 2 TO 3
2120 ::::RRSQUARED - (INARRAY(O,LAG,HEIGHT)) • 2
2130 ::::IISQUARED - (INARRAY(1,LAG,HEIGHT)) • 2
2140 ::::RISQUARED - (INARRAY(2,LAG,HEIGHT)) • 2
2150 ::::IRSQUAFED - (INARRAY(3,LAG,HEIGHT)) • 2
2160 ::::COCOMPT - (RMSQUARED - RRSQUARED + IMSQUARED - IISQUARED) / 2
2170 ::::SICOMPT - (RISQUARED - IRSQUARED) / 2
2180 ::::MAGN - (COCOMPT • 2 + SICOMPT ° 2) • .5
2185 IF MAGN - 0 THEN MAGN - .001
2190 ::::MAGN(LAG) - MAGN
2200 REM
2201 REM FIND PHASE ANGLE
2202 REM AND VELOCIr,
2203 REM
2210 :::: IF CUCOMPT - 0 THEN CO:OMPT - .001
2220 ::::ANGLE - ATN (SICOMPT / COCOMPT)
2230 ::.: IF COCOMPT < 0 THEN ANGLE - ANGLE - PI
2240 :..: IF ANGLE < - PI THLN ANG: E A14GLE + 2 * PI
2250 ::::VEL(LAG) - INT (K1 * ANGLE (LAG - 1) + .5)
2260 ::: NEXT LAG
2300 REM

ti
Aak

ti

81

REM FIND POWER AND
REM MAKE IT A TWO-BYTE
REM SIGNED INTEGER
REM

:::POW - INT (K3 * LOG ((RMSQUARED + IMSQUARED) / 1000) + .5)
..: IF POW > 32767 THEN POW - 32767
.:: IF POW < - 32767 THEN POW - - 32767
.:: IF POW < 0 THEN POW - POW + 65536
RDI
REPI TEST TO SEE IF
REM ENOUGH POWER TO
REM CALCULATE
RF21 CORRELATION TIME
REM AND VELOCITY
REM

::: IF ((RMSQUARED + IMSQUARED) / MAGN(2)) > THRESHHOLD THEN CRRTIME
- O:VEL - 0: GOTO 3000

:::ENOUGHPOWER(HEIGHT) - ENOUGHPOWER(HEIGHT)
REM
REM CHECK SHAPE OF
REM COVARIANCE: USE
REM FIRST LAG IF
REM SECOND LAG < .2*FIRST LAG
REM OR > FIRST LAG
REM

::: IF (MGN(3) < MAGN(2) / 5 OR MAGN(3) >
O:VEL - VEL(2): GOTO 2740
:::GOODSHAPE(HEIGHT) - GOODSHAPE(HEIGHT) + 1

REM
REM CALCULATE CORRELATION
REM TIME AS UNSIGNED
REM INTEGER, AVOIDING
REM THE VALUE 32768
REM AND ASSUMING FIRST
REM TWO LAGS LIE ON A
REM GAUSSIAN CURVE
REM

:::CRRTIME - INT (K2 / (LOG (MAGN(2) / MAGN(3))) ° .5 + .5)
::: IF CRTIME > 32767 THEN CRTIME	 32767

REM
REM USE FIRST LAG FOR
REM VELOCITY UNLESS
RE21 CORRELATICN TIME IS
REM > 1.2 SEC; THEN
REFS SECOND LAG IS USED.
REM VELOCI TY IS THEN
REM MADE A DOUBLE-BYTE
REM SIGNED INTEGER IN
REH THE RANGE -32767 TO 32767
REM

..:V°.1. _• VEL(2)

. , : IF CRRTIME > 24 THEN VEL - VEL (3)
2740 ::: IF VEL > 32767 THEN VEL - 32767
2750	 IF Vil < - 32761 THEN VEL - - 32767
2150 ; ; : IF VEL < 0 THEN Vim. - VEL + 65536
2770 ::: GOTO 3000

2301
2302
2303
2304
2310
2320
2330
2340
2400
2401
2402
2403
2404
2405
2406
2410

2420
2500
2501
2502
2503
2504
2505
2506
2510

2520
2600
2601
2602
2603
2604
2605
2606
2607
2608
2610
2625
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2 7 20
2730

+ 1

- MAGN(2)) THEN CRRTIME -

82

3000 REM

3001 REM ********************
3002 REM * POKE POW, CRRTIME*
3003 REM *	 AND VEL INTO

i	 3004 REM *	 OUTPUT FILE
3005 REM *********,rr*********

3006 REM
3010 ::: PRINT POW , CRRTIME,VEL

e	 3012 :: : T1 -	 INT (POW / 256)
3014 :::T2 -	 INT (CRRTIME / 256)
3016 :::T3 -	 1NT (VEL / 256)

3020 :.: POKE ADDR, (POW - T1 * 256):ADDR - ADDR + 1
3030 ::: POKE ADDR,TI :ADDR - ADDR + 1
3040 ::: PCKE ADDR, (CRRTIME - T2 * 256) :ADDR - ADDR + 1
3050 ::: POKE ADDR , T2:ADDR - ADDR + 1
3060 ::: POKE ADDR, (VEL - T3 * 256):ADDR - ADDR + 1
3070 ::: POKE ADDR,T3 :ADDR - ADDR + 1
3080 :: NEXT HEIGHT
3090 : NEXT MIN
3100 : PRINT "FILE NO. "REFILE" COMPLETED"
3130 NEXT REFILE

"j	 3200 REM
3201 REM FILL MISSING DATA
3202 REM	 AREAS WITH 0	 S
3203 REM
3210 IF NUMFILES - 60 THEN 4000
3220 FOR ADDR - OUTFILEADDR + NUMFILES * 120 * 2 TO OUTFILEADDR + 14400
3230 POKE ADDR,O
3 2 ►O NEXT ADDR
4C)O REM
4001 REM ******ir,kt*********

4002 REM * SAVE OUTPUT FILE
4003 REM *	 TO DISK
4004 REM ********************
4005 REM
4040 INPUT "TEXT DISK ?";DUMtfY$
4043 REM
4044 REM ***^*k************k**
4045 REM * GET HEADER AND FIND*
4046 REM * MIN, MAX, AND MEAN
4047 REM *********,^************
4048 REM
4050 GOSTIB 4330
4055 INPUT "MAKE CHANGES?";DUMMY$
4056 IF	 LFN (DUMMY $) - 0 THEN 4060
4057 IF	 LEFT$ (DUMMY $,1) - "Y" THEN 4050
4060 GOSUB 4430
4062 REM
4070, TME $ -	 STR$ (INT (HOUR * 100 + MINUTE + .5))
4073 REM
4074 REM **** ************* *
4075 REM * WRITE POWER FILE
4076 REM *^ *******^:**********
4077 REM

4080 PRINT D$"OPENPOWW/°"T*fE$BASEHEIGHT$
4090 PRINT D$"WRITEPOWW/ 10TME$BASEHEIGHT$

'mss'	 ,.yy.\.,..,•^- -
ul

83

4110 PRINT "APPLE " + DTE$ + " POWER (LOG PLOT)"
4111 PRINT HOUR
4112 PRINT MINUTE
4113 PRINT NMREC
4114 PRINT .01 * P2MN * SCLE
4115 PRINT .01 * P114AX * SCLE
4116 PRINT .01 * P3MEAN * SCLE
4117 PRINT BASEHEIGHT
4130 ADDR . OUTFILEADDR
4140 GOSUB 4680
4150 PRINT D$"CLOSEPOWW/"TME$BASEHEIGHT$
4152 REM
4153 REM *******************
4154 REM * WRITE CORR FILE
4155 REM *******************
4156 REM
4160 PRINT D$"OPENCORR/"TME$BASEHEIGHT$
4170 PRINT D$"WRITECORR/"TME$3ASEHEIGHT$
4180 PRINT "APPLE " + DTE $ + " CORRELATION TIME (SEC)"
4182 PRINT HOUR
4184 PRINT MINUTE
4186 PRINT NHREC
4188 PRINT .05 * C2MN * SCLE
4190 PRINT . 05 * C1MAX * SCLE
4192 PRINT . 05 * C3MEAN * SCLE
4193 PRINT BASEHEIGHT
4194 ADDR - OUTFILEADDR + 2
4198 GOSUB 4680
4200 PRINT D$"CLOSECORR/"TME$BASEHEIGHT$
4210 REEL
4212 Rai **************,r****
4214 REM * WRITE VELL FILE
4216 REM *******************
4218 REM
4240 PRINT D$"OPENVELL/"TME$B.ASEEiEIGHT$
4250 PRINT D$"WRITEVELL /"TME$BASEHEIGHT$
4260 PRINT "APPLE " + DTE$ + " VELJCITIES
4262 PRINT HOUR
4264 PRINT MINUTE
4266 PRINT NMREC
4268 PRINT .01 * V2MN * SCLE
4270 PRINT . 01 * V1MAX * SCLE
4272 PRINT . 01 * V3MEAN * SCLE
4273 PRINT BASEHEIGHT
4274 ADDR R OUTFILEADDR + 4
4278 GOSUB 4680
4280 PRINT D$"CLOSEVELL/"I'E1E $BASEHEIGHT$
4310 REM

4311 REM *****************
4312 REM *PRINT SURVEY OF*
4313 REM * IiALID DATA
4314 RI:M ***********,r*****
4315 REM
4316 FOR HEIGHT . 0 TO 19
4318 : PRINT BLIGHT;" ";NUMrILES * 2;" ";EHOUGHPOWER(HEIGHT);" " ;GOODSHAP

E(HEIGHT)

r ^

i

84

4319 NEXT HEIGHT
4320 END
4325 REM
4327 REM ************
4330 REM *GET HEADER*
4335 REM ************
4340 REM
4350 INPUT "MONTH: ";MNTH$
4360 INPUT "DAY: ";DAY $
4370 INPUT "YEAR: ";YEAR$
4380 DTE$ - IINTH$ +	 + DAY$ + "." + YEAR$
4390 INPUT "HOUR: ";HOUR
4400 INPUT "MINUTE: ";MINUTE
4410 INPUT "NUMBER OF RECORDS: ";NMREC
4415 RETURN
4420 REM
4425 REM **********
4430 REM *MAX, MIN*
443.5 REM *AND MEAN*
4437 REM **********
4440 REM
4442 REM INITIALIZE VARIABLES
4444 REM
4450 P1MAX	 - 32767
4451 P2M - 32767
4452 P3MEAN - 0
4453 P4COJNT - 0
4454 CIVIAX 0
4455 C2M 32767
4456 C3MEAN - 0
4457 C4COUNT - 0
4458 V1MAX - - 32767
4459 V2M1N - 32767
4460 V31EAN - 0
4461 V4COUNT - 0
4463 REM
4465 REM FOR ALL DATA

4467 REM
4480 FOR I - OUTFILEADDR TO OUTFILEADDR + NU * 120 - 6 STEP 6
4490 :POW - PEEK (I) + PEEK (I + 1) * 256
4500 :CRRTIMiE - PEEK (I + 2) + PEEK (I + 3) * 256
4510 :VEL - PEEK (I + 4) + PEEK (I + 5) * 256
4520 : IF POW - 32768 THEN 4650
4530 : IF POW > 32768 THEN POW - POW - 65536
4540 : IF POW > P1MAX THEN P1MAX - POW
4550 : IF POW < P2MN THEN P2MN - POW
4.560 :P3MEAN - P3MEAN + POW
4570 :P4COU"NT - MOUNT + 1
4575 IF CRRTIME - 32768 THEN 4650
4580 IF CRRTIME > C1MAX THEN C1MAX - CRRTIME
4590 : IF CRRTIME < C2MN THEN C2M - CRRTIME
4600 :C3MIEAN - C3M>EAN + CRRTIME
4605 :C4COUNT - C4 COUNT + 1
4607 : IF Va - 32768 THEN 4650
4610 : IF VEL > 32768 THEN VEL - VEL - 65536
4620 : IF VEL > V1MAX THEN V114AX = VEL

i

^	 7

g85

4630 IF VEL < V2MN THEN V2MN VEL
'

	

	 4640 MMEAN MEAN + VEL
4645 :V4COUNT - MOUNT + 1

r- 4650 NEXT I

4652 REM

4654 REM CALCULATE MEAN
`	 4656 REMf -.

_ 4660 P3MEAN - P3MEAN / WOUNT
4662 C3MEAN - C3MEAN / C400UNT
4664 V3MEAN - MEAN / WOUNT
4670 RETURN	 r

4675 REM
4676 REM ************
4677 REM *WRITE DATA*
4678 RFM *****,t******

4681
47016	 -RI - OTO19

4710 FOR J - 0 TO 119
4720 : : TEMPADDR - ADDR + 6 * I + 120 * J
4730 : :VA - PEEK (TEMPADDR) + PEEK (TEMPADDR + 1) * 256
4750 :: IF VA > 32768 THEN VA - VA - 65536'

k

4760 :: PRINT VA * SCLE	 E'
4770: NEXT J
4775 NEXT I
4780 RETURN

1AA

86

APPENDIX F

Header File: April 1978

THE DATA ON THIS TAPE ARE PROVIDED IN ACCORDANCE WITH THE MSTRAC PROJECT
(MST RADAR COORDINATION) OF THE MIDDLE ATMOSPHERE PROGRAM OF SCOSTEP
(SCIENTIFIC COMMITTEE ON SOLAR-TERRESTRIAL PHYSICS). THE REMAINING FILES ON
THIS TAPE CONTAIN DATA TAKEN AT THE AERONOMY LABORATORY FIELD STATION,
APPROXIMATELY 10 101 NORTH-EAST OF THE UNIVERSITY OF ILLINOIS AT URBANA (40
DEGREES 10'N, 88 DEGREES 10'W). TRANSMITTING FREQUENCY IS 40.92 MHZ AND
PEAK TRANSMITTED POWER IS APPROXIMATELY 1250 KW. THE TRANSMITTED PULSE
WIDTH IS 20 MICROSECONDS. THE ANTENNA CONSISTS OF 1008 HALF-WAVELENGTH
DIPOLE ELEMENTS DIVIDED INTO THREE PARALLEL SECTIONS. THE GROUND WHERE THE
ANTENNA IS LOCATED :LOPES 1.5 DEGREES TO THE SOUTH OF EAST, SO THAT THE
ON-AXIS ANTENNA POSITION IS OFF BY THE SAME AMOUNT. THE TRANSMITTER AND
RECEIVER ARE BOTH CONNECTED TO THE ANTENNA VIA A GAS-FILLED-TUBE
TRANSMIT/RECEIVE SWITCH. THE RECEIVER SYSTEM CONSISTS OF A LOW-NOISE
BROAD-BAND PREAMPLIFIER, A FILTER AND A SINGLE CONVERSION RECEIVER WITH A
BANDWIDTH OF 230 KHZ CENTERED AROUND 40.92 MHZ. THE SIGNAL IS
QUADRATURE-PHASE-DETECTED, AND THE TWO COMPONENTS FED THROUGH A MULTIPLEXER
AND A 10-BIT ANALOG-TO-DIGITAL CONVERTER WITH A CONVERSION TIME OF 10
MICROSECONDS. DATA PROCESSING IS DONE ON A DIGITAL EQUIPMENT CORPORATION
PDP-15 MINI-COMPUTER WITH A 32 K OF CORE MEMORY. PULSE REPETITION
FREQUENCY IS 400 HZ AND 20 ALTITUDES ARE SAMPLED. TWENTY-FIVE CONSECUTIVE
SAMPLES FROM EACH ALTITUDE RANGE ARE COHERENTLY INTEGRATED SO AS TO GIVE AN
INTEGRATED SAMPLE EACH 1/8 SEC. AUTOCORRELATION FUNCTIONS ARE CALCULATED
ON-LINE WITH 12 LAGS 1/8 SEC. EACH. THE CORRELATION FUNCTIONS ARE 'THEN
INCOHERENTLY INTEGRATED FOR ONE MINUTE. THESE ONE-MINUTE AVERAGED
AUTOCORRELATION FUNCTIONS ARE STORED FOR °OST-PROCESSING. SCATTERED POWER
AND LINE-OF SIGHT VELOCITY ARE CALCULATED FROM THE AUTOCORRELATION FUNCTION
AND STORED ON FLOPPY DISK. THE FILES ON THE FLOPPY DISK WERE USED TO MAKE
THIS TAPE.

EACH FILE HAS THE FOLLOWING FORMAT.

TITLE STRING	 APRIL 3. POWER(LOGPLOT)
START TIME HOURS	 13
START TIME MINUTES	 46
NUMBER OF MINUTES IN FILE	 120
MINIMUM VALUE	 6.28
MAXIMUM VALUE	 7.58
AVERAGE VALUE	 6.53346485
BASE HEIGHT (KM) 	 57
DATA DATA DATA DATA ... 	 635	 647 645	 695

DATA ARE STORED HEIGHT-BY-HEIGHT, FIRST MINUTE TO LAST. THE FIRST 120 DATA
POINTS CORRESPOND TO MINUTES 1 TO 120 FOR THE ALTITUDE (BASE HEIGHT + 1.5)
KM. THE NEXT 120 POINTS CORRESPOND TO MINUTES 1 TO 120 FOR (BASE HEIGHT +

'	 3.0) KM. THIS CONTINUES ON FOR EACH HEIGHT UNTIL (BASE HEIGHT + 30) KM IS
 COMPLETED. THE HEIGHT RESOLUTION IS 1.5 KM. NOTE: DATA STORED ON THIS TAPE

ARE 100 TIMES GREATER THAN THE ACTUAL DATA. THIS WAS DONE TO ALLOW AN
.'	 INTEGER FORMAT WITHOUT LOSS OF PRECISION. SIMPLY DIVIDE EACH DATA VALUE BY

74 -F, 7- ,
.

W_

87

100 TO OBTAIN THE PROPER VALUES (POWER-BELS, VELOCITY-M/S).
ADDITIONAL INFORMATION WHICH MAY PROVE USEFUL.

LABEL-(,NL)
DCB-(RECFM-FB,LRECL-80,BLKSIZE-4000)
EBCDIC
9 TRACK
1600 BPI
129 DATA FILES

QUESTIONS CONCERNING THIS DATA, AND REQUESTS FOR ADDITIONAL DATA SHOULD BE
MADE TO PROF. SIDNEY A. BOWHILL, DIRECTOR, AERONOMY LABORATORY, DEPARTMENT
OF ELECTRICAL ENGINEERING, UNIVERSITY OF ILLINOIS, 1406 W. GREEN STREET,
URBANA, ILLINOIS 61801 USA. THE REMAINDER OF THIS FILE CONTAINS A MENU OF
THE TAPE.

FILE	 DATA	 STARTTIME	 DATE

1	 POWER	 1346	 4-3-78
2	 VELOCITY	 1346	 4-3-78
3	 POWER	 950	 4-4-78
4	 POWER	 1158	 4-4-78
5	 POWER	 1406	 4-4-78
6	 VELOCITY	 950	 4-4-78
7	 VELOCITY	 1158	 4-4-78
8	 VELOCITY	 1406	 4-4-78
9	 POWER	 1206	 4-7-78
10	 VELOCITY	 1206	 4-7-78
11	 POWER	 517	 4-10-78
12	 POWER	 717	 4-10-78
13	 POWER	 917	 4-10-78
14	 POWER	 1141	 4-10-78
15	 POWER	 1632	 4-10-78
16	 VELOCITY	 517	 4-10-78
17	 VELOCITY	 717	 4-10-78
18	 VELOCITY	 917	 4-10-78	 .;
19	 VELOCITY	 1141	 4-10-78
20	 VELOCITY	 1632	 4-1C-78
21	 POWER	 509	 4-11-78
22	 POWER	 800	 4-11-78
23	 POWER	 1000	 4-11-78
24	 VELOCITY	 509	 4-11-78
25	 VELOCITY	 800	 4-11-78
26	 VELOCITY	 1000	 4-11-78
27	 POWER	 504	 4-12-78

_	 28	 POWER	 704	 4-12-78
29	 POWER	 904	 4-12-78
30	 POWER	 1124	 4-12-78
31	 POWER	 1324	 4-12-78
32	 POWER	 1524	 4-12-78
33	 POWER	 1.742	 4-12-78
34	 VELOCITY	 504	 4-12-78
35	 VELCCITY	 704	 4-12-78
36	 VELUCI Y	 1124	 4-12-78

,J

wl
,` t

88

37 VELOCITY 1324 4-12-78
38 VELOCITY 1524 4-12-78
39 VELOCITY 1742 4-12-78
40 POWER 514 4-13-78
41 POWER 714 4-13-78
42 POWER 1016 4-13-78
43 POWER 1216 4-13-78
44 POWER 1416 4-13-78
45 POWER 1655 4-13-78
46 VELOCITY 514 4-13-78
47 VELOCITY 714 4-13-78
48 VELOCITY 1216 4-13-78
49 VELOCITY 1416 4-13-78
50 VELOCITY 1655 4-13-78
51 POWER 537 4-14-78
52 POWER 737 4-14-78
53 POWER 937 4-14-78
54 POWER 1151 4-14-78
55 POWER 1351 4-14-78
56 POWER 1551 4-14-78
57 VELOCITY 537 4-14-78
58 VELOCITY 737 4-14-78
59 VELOCITY 937 4-14-78
60 VELOCITY 1151 4-14-78
61 TYVT

.....OL1^ 1351 4-14- 78

62 VELOCITY 1551 4-14-78
63 POWER 1221 4-18-78
64 POWER 1421 4-18-78
65 POWER 1621 4-18-78

66 VELOCITY 1221 4-18-78
67 VELOCITY 1421 4-18-78
68 VELOCITY 1621 4-18-78
69 POWER 504 4-19-78
70 POWER 704 4-19-78
71 POWER 904 4-19-78
72 POWER 1113 4-19-78

73 POWER 1313 4-19-78

74 POWER 1513 4-19-78
75 POWER 1726 4-19-78
76 VELOCITY 504 4-19-78
77 VELOCITY 704 4-19-78
78 VELOCITY 904 4-19-78
79 VELOCITY 1113 4-19-78
80 VELOCITY 1313 4-19-78
81 VELOCITY 1513 4-19- :8
82 VELOCITY 1726 4-15-78
83 POWER 518 4-20-78
84 POWER 718 4-20-78
85 POWER 918 4-20-78
86 POWER 1156 4-20-78
87 POWER 1356 4-20-78
88 POWER 1556 4-20-78
89 VELOCITY 518 4-20-78
90 VELOCITY 718 4-20-78

89

91 VELOCITY 918 4-20-78

92 VELOCITY 1156 4-20-78

93 VELOCITY 1356 4-20-78

94 VELOCITY 1556 4-20-78

95 POWER 454 4-21-78

96 POWER 654 4-21-78

97 POWER 854 4-21-78

98 POWER 1131 4-21-78

99 POWER 1331 4-21-78

100 POWER 1531 4-21-78

101 POWER 1741 4-21-78

102 VELOCITY 454 4-21-78

103 VELOCITY 654 4-21-78

104 VELOCITY 854 4-21-78

105 VELOCITY 1131 4-21-78

106 VELOCITY 1331 4-21-78

107 VELOCITY 1531 4-21-78

108 VELOCITY 1741 4-21-78

109 POWER 441 4-24-78

110 POWER 641 4-24-78

111 POWER 841 4-24-78
112 POWER 1109 4-24-78

113 POWER 1509 4-24-78

114 POWER 1719 4-24-78

115 VELOCITY 441 4-24-78

116 VELOCITY 641 4-24-78

1:7 VELOCITY 841 4-24-78

118 VELOCITY 1109 4-24-78

i19 VELOCITY 1309 4-24-78

120 VELOCITY 1509 4-24-78

121 VELOCITY 1719 4-24-78
122 POWER 444 4-25-78

123 POWER 644 4-25-78

124 POWER 844 4-25-78

125 POWER 1054 4-25-78

126 VELOCITY 444 4-25-78
127 VELOCITY 644 4-25-78

128 VELOCITY 844 4-25-78

129 VELOCITY 1054 4-25-78

woo,

90

t

APPENDIX G
Listing of Reformatting Program

1	 DIM A(2600),B(7)
10 REM	 PROGRJ M TO REFORMAT TEXT FILES
20 REM	 WITH RECORD LENGTHS OF 6 OR
30 REM	 LESS, TO TEXT FILES WITH
40 REM	 RECORDS LENGTH 80.
42 ONERR	 GOTO 220
45 PRINT "ENTER NAME OF FILE TO BE REFORMATED"
50 INPUT I$
600$-"A"+I$
70 PRINT "REFORMATTED FILENAHE IS ";0$
80 D$ -	 CHR$ (4)
95 PRINT D$"MON C,I,O"
130 INPUT "INSERT SOURCE DISK...";F$
140 PRINT D$;"OPEN";I$
150 PRINT D$;"READ";I$
155 X -	 FRE (0)
160 INPUT L$
162 FOR I - 1 TO 7
163 INPUT B(I)
164 NEXT I
170I -1
180 INPUT A$
190 IF	 LEQI (A$) > 6 THEN 222
200 AM -	 VAL (A$)
210 1 - I + 1: GOTO 180
220 IF	 PEEK (222) >	 < 5 THEN 450
222 LIMIT - I - 1
230 PRINT D$;"CLOSE";I$

f	 235 INPUT "INSERT DESTINATION DISK...";F$
240 PRINT D$;"OPEN";0$
250 PRINT D$;"WRITE";0$
260 PRINT L$
270 FOR I - 1 TO 7
280 PRINT B(I)
290 NEXT I
300I -0
310 J - 1
320 PRINT	 RIGHT$ ("	 " +	 STR$ (A(I + J)),7);

E	

130 IF J - 11 THEN	 PRINT
E,	 340 IF (I + J) - LIMIT THEN 370

350J -J+1: IF 	 <12 THEN 320
360 I - I + 11: GOTO 310
370 T-J+1
380 IF J - 12 THEN 420
340 PRINT "	 to

400 IF T - 11 THEN	 PRINT
410 T - T+ 1: IF 	 <12THEN 380

-3	 420 PRINT D$;"CL3SE";0$
{	 430 PRINT "REFORMATTED FILENAZZ IS"

440 PRINT C$
r	 442 X -	 FRE (0)

445 GOTO 45
450 MID

r

4

REFERENCES

i

Bowhill, S. A. (19831, Review of correlation techniques. Handbook for MAP

Volume 9, 521-526, Edited by S. A. Bowhill and Belva Edwards,

SCOSTEP Secretariat, Univ. IL., 1406 W. Green St., Urbana; IL. 61801.
w

Gibbs, K. P. and S. A. Bowhill [19831, An investigation of turbulent

scatter from the mesosphere as observed by coherent-scatter radar,

Aeron. Rev. No. 110, Aeron. Lab., Dept. Elec. Eng., Univ. IL.,

Urbana, IL. 61801.

Lyons, G. B. [1981], Fist-FORTH Release 1.0 May, 1979, FORTH Interest

Group, Box 1105, San Carlos, CA. 94070.

Roth, P. R. [19821 (Ed.), Research in Aeronomy, October 1, 1981 - March 31,

1982, ProA. Rev. 82-1, Aeron. Lab. Dept. Elec. Eng., Univ. IL.,

Urbana, IL. 61801.

Roth, P. R. 119831 (Ed.), Research in Aeronomy, October 1, 1982 - March 31,

1983, Prox. Rev. 83-1, 33-35, Aeron. Lab. Dept. Elec. Eng., Univ.

IL., Urbana, IL. 61801.

Scanlon, L. J. [19801, 6502 Software Design, Howard W. Sams and Co., Inc.,

Indianapolis, IN. 46206.

Scanlon, L. J. [19821, FORTH Programming, Howard W. Sams and Co., Inc.,

Indianapolis, IN. 46266.

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0002A01.pdf
	0002A02.pdf

