General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
AERONOMY REPORT
NO. 116

ROCKET MEASUREMENTS OF
MESOSPHERIC IONIZATION IRREGULARITIES

by
R. B. Stoltzfus
S. A. Bowhill

June 1, 1985

Library of Congress ISSN 0568-0581

Supported by
National Aeronautics and Space Administration

Department of Electrical and Computer Engineering
University of Illinois
Urbana, Illinois
AERONOMY REPORT
NO. 116

ROCKET MEASUREMENTS OF
MESOSPHERIC IONIZATION IRREGULARITIES

by
R. B. Stoltzfus
S. A. Bowhill

June 1, 1985

Supported by
National Aeronautics
and Space Administration
Grant NGR 14-005-181

Department of Electrical and
Computer Engineering
University of Illinois
Urbana, Illinois
ABSTRACT

The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small-scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. This work describes the fine structure experiment flown by the University of Illinois and presents methods of analyzing the collected data. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Statement of the Problem</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Previous Work</td>
<td>1</td>
</tr>
<tr>
<td>1.3 University of Illinois Rocket Program</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Outline of Investigation</td>
<td>3</td>
</tr>
<tr>
<td>2. LANGMUIR PROBE THEORY</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 The D Region Plasma Environment</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Langmuir Probes in the D Region</td>
<td>8</td>
</tr>
<tr>
<td>2.4 DC Operation of a Rocket-Borne Langmuir Probe</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>17</td>
</tr>
<tr>
<td>3. THEORIES OF HOMOGENEOUS TURBULENCE</td>
<td>18</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Qualitative Description of Turbulence</td>
<td>19</td>
</tr>
<tr>
<td>3.3 Sources of Turbulence in the Atmosphere</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Statistical and Spectral Approach</td>
<td>24</td>
</tr>
<tr>
<td>3.5 Dimensional Analysis and Turbulence Spectra</td>
<td>33</td>
</tr>
<tr>
<td>3.6 Estimation of Spectral Form in the Middle Atmosphere Using a Model by Hill and Bowhill (1976)</td>
<td>40</td>
</tr>
<tr>
<td>4. FINE STRUCTURE EXPERIMENT AND METHODS OF DATA ANALYSIS</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>45</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.2 Fine Structure Experiment</td>
<td>46</td>
</tr>
<tr>
<td>4.3 Sources of Noise and Distortion</td>
<td>52</td>
</tr>
<tr>
<td>4.4 Analog Preprocessing</td>
<td>55</td>
</tr>
<tr>
<td>4.5 Digitizer</td>
<td>61</td>
</tr>
<tr>
<td>4.6 Data Postprocessing</td>
<td>71</td>
</tr>
<tr>
<td>4.7 Summary</td>
<td>80</td>
</tr>
<tr>
<td>5. RESULTS</td>
<td>84</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>84</td>
</tr>
<tr>
<td>5.2 Observations of Irregularities</td>
<td>84</td>
</tr>
<tr>
<td>5.3 Discussion of Results</td>
<td>101</td>
</tr>
<tr>
<td>5.4 Conclusions</td>
<td>107</td>
</tr>
<tr>
<td>6. SUMMARY AND SUGGESTIONS FOR FUTURE WORK.</td>
<td>109</td>
</tr>
<tr>
<td>6.1 Summary</td>
<td>109</td>
</tr>
<tr>
<td>6.2 Suggestions for Future Work</td>
<td>110</td>
</tr>
<tr>
<td>APPENDIX I FREQUENCY RESPONSE OF AN AC AMPLIFIER</td>
<td>113</td>
</tr>
<tr>
<td>APPENDIX II SOFTWARE LISTINGS</td>
<td>117</td>
</tr>
<tr>
<td>II.1 DIGIAUTOSTART</td>
<td>117</td>
</tr>
<tr>
<td>II.2 TEXTIFY</td>
<td>122</td>
</tr>
<tr>
<td>II.3 APL2CDC</td>
<td>123</td>
</tr>
<tr>
<td>II.4 SPECTRA</td>
<td>125</td>
</tr>
<tr>
<td>II.5 DATPLOT</td>
<td>149</td>
</tr>
<tr>
<td>II.6 SPINFIX</td>
<td>151</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>155</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>IRIG telemetry channel assignments for 28 May 1975 Peru flight</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Flight log from 28 May 1975 Peru flight</td>
<td>56</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Parameters of irregularities for nine rocket shots. No irregularities are found with the last four shots listed</td>
<td>86</td>
</tr>
<tr>
<td>Table I.1</td>
<td>Measured frequency response of ac amplifiers</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>I-V characteristic for a Langmuir probe.</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of a scalar spectrum $\Gamma(k)$ and its calculated one-dimensional spectrum $\psi(k)$.</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Energy and scalar spectra illustrating the various wave number ranges (Hill and Bowhill, 1976).</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>One-dimensional spectra for various values of the parameter ξ (Hill and Bowhill, 1976).</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Probe current from 28 May 1975 Peru flight.</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Block diagram of dc probe and fine structure experiment. Sweep generator is held at 4.05 V for electron density fine structure measurements (Klaus and Smith, 1978).</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Spin contamination of fine structure signal from 18 January 1976 Wallops Island flight at 81.0 km. Launch time is 14 12 (IST).</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Analog data reduction system (Klaus and Smith, 1978).</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Fine structure signal filtered into wave number bands.</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Portion of fine structure signal from 28 May 1975 Peru flight at 69.6 km. Launch time is 15 26 (IST).</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Digitizer system</td>
<td>63</td>
</tr>
<tr>
<td>4.8</td>
<td>6522 system diagram</td>
<td>65</td>
</tr>
<tr>
<td>4.9</td>
<td>Digitizer software flow chart</td>
<td>67</td>
</tr>
<tr>
<td>4.10</td>
<td>Integer BASIC program DIGITIZER CONTROL.</td>
<td>68</td>
</tr>
<tr>
<td>4.11</td>
<td>Memory map for digitizer software.</td>
<td>70</td>
</tr>
<tr>
<td>4.12</td>
<td>Calibration for digitizer system</td>
<td>72</td>
</tr>
<tr>
<td>4.13</td>
<td>Format of a data record using the Wallops Island format.</td>
<td>75</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Spectra calculation from program SPECTRA</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Flow chart for program SPECTRA</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Spectrum of spin noise before application of program SPINFIX</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Spectrum of spin noise after application of program SPINFIX</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Upper plot shows portion of digital record from the 28 May 1975 Peru flight. Launch time at 15 26 (LST). Altitude of the irregularity center is 74.9 km. Lower plot shows the magnetometer output.</td>
<td></td>
</tr>
<tr>
<td>5.2a</td>
<td>Power spectrum estimate of the irregularity shown in Figure 5.1.</td>
<td></td>
</tr>
<tr>
<td>5.2b</td>
<td>Estimated noise power spectrum for the 74.9 km irregularity</td>
<td></td>
</tr>
<tr>
<td>5.2c</td>
<td>Difference between the irregularity power spectrum and the noise power spectrum shown in Figures 5.3a and 5.3b, respectively</td>
<td></td>
</tr>
<tr>
<td>5.2d</td>
<td>Smoothed difference spectrum with window multiplication factor of 1.4</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Smoothed difference spectrum of the 87.5 km irregularity</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Electron concentration profile for the 28 May 1975 Peru flight.</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Smoothed difference spectrum of the 82.2 km irregularity from the 18 January 1976 Wallops Island flight.</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Smoothed difference spectrum of the 83.5 km irregularity from the 12 August 1976 Wallops Island flight.</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Smoothed difference spectrum of the 75.9 km irregularity from the 8 January 1977 Wallops Island flight.</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Spectrum of the 85.8 km irregularity from the 27 February 1983 Peru flight.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.9a Suggested profile of cutoff wave number demarcating range where \(-5/3\) power law holds \((k < k_v)\). Wave number of Jicamarca (50 MHz) and Arecibo (430 MHz) incoherent scatter radars are shown. The wave number range used for VHF forward scattering is also shown. From model 1 (Rastogi and Bowhill, 1976)

Figure 5.9b Suggested profile of cutoff wave number demarcating range where \(-5/3\) power law holds \((k < k_v)\). Wave number of Jicamarca (50 MHz) and Arecibo (430 MHz) incoherent scatter radars are shown. The wave number range used for VHF forward scattering is also shown. From model 2 (Rastogi and Bowhill, 1976)

Figure I.1 Circuit diagram of ac amplifier used in fine structure experiment.
1. INTRODUCTION

1.1 Statement of the Problem

Electron density irregularities in the mesosphere are often observed by both radar and rocket techniques. The advection of electrons and ions by atmospheric turbulence is one possible cause of the irregularities. Turbulence in the field of a scalar such as electron density may be analyzed by decomposing the spatial fluctuations into sinusoidal components. The strength of the components as a function of spatial frequency, or wave number, is called the scalar spectrum. In coherent-scatter radar studies, scattered power is measured as a function of altitude. Irregularities show up as isolated regions of high scattered power. Analysis of coherent-scatter data gives the value of the scalar spectrum at a particular wave number. In rocket studies measuring electron density the irregularities show up as small-scale fluctuations on an otherwise smooth electron density profile. Analysis of the rocket data can ideally give the scalar spectrum at all wave numbers. The measurable wave number range is limited by system noise and performance of the equipment used in the experiment.

The present study has three main objectives: (1) to review theories of isotropic, homogeneous turbulence predicting three-dimensional and one-dimensional spectra of turbulence, (2) to describe the analysis of data from the electron density fine structure experiment flown by the University of Illinois rocket program, and (3) to compare power spectra of irregularities measured by nine rocket flights with theoretical turbulence spectra.

1.2 Previous Work

Rocket studies of mesospheric electron density irregularities have been conducted by a number of groups using similar experiments. A rocket
equipped with a Langmuir probe passes through an electron density irregularity and observes temporal current fluctuations superposed on a background current. The temporal fluctuations are attributed to spatial fluctuations in electron density. If the spatial fluctuations are assumed to be isotropic, then the temporal and spatial fluctuations are related simply by the velocity of the rocket.

Prakash et al. (1969) describe the results from a number of flights at Thumba, India. Their experiment essentially measures the amplitude of the probe current in a frequency range of 70 to 1000 Hz. They observe a number of irregularities between 85 and 92 km. The irregularities occur in bands with altitude extents of the order of 100 m. Prakash et al. (1969) attribute these irregularities to atmospheric turbulence. Power spectra of the observed irregularities are not calculated.

Thrane and Grandal (1981) present fine structure measurements from two nighttime launches at the Andoya Rocket Range in Norway. One of the launch conditions was the presence of D region irregularities measured with a partial reflection radar operated at Tromso, 120 km away from the rocket range. The rocket data show ionization fine structure throughout the flight. Spectral analysis of the mesospheric irregularities show a power spectral index close to \(-\frac{5}{3}\), consistent with the presence of isotropic, homogeneous turbulence.

Royrvik and Smith (1984) compare rocket and radar measurements of a single irregularity at 85 km altitude. The rocket launch took place at Chilca, Peru. Coincident coherent-scatter radar measurements were made at the Jicamarca radio observatory. Spectral analysis of the rocket data shows a power spectral index close to \(-\frac{5}{3}\). The spectrum is extrapolated to the wave number measured by the Jicamarca radar, and agreement is found between
the rocket and radar results.

1.3 University of Illinois Rocket Program

The rocket program in the Aeronomy Laboratory at the University of Illinois conducts three separate experiments based on the Langmuir probe. First, the probe current is used to measure the ambient electron density as a function of altitude. Calibration between probe current and electron density is provided by a radio propagation experiment (Mechtly et al., 1967). Second, electron temperature is measured in the E region by sweeping the probe potential and analyzing the I-V characteristic of the probe (Zimmerman and Smith, 1980). Third, the ac component of the probe current is used to study electron density fine structure.

The University of Illinois has launched nine daytime flights carrying a fine structure experiment described by Klaus and Smith (1978). The experiment apparatus consists of a Langmuir probe extended from the rocket into the ionosphere. As the rocket passes through electron density irregularities, temporal fluctuations in the probe current are observed. The ac component of the probe current is amplified and telemetered to the ground. Digital analysis of the data estimates the power spectra of the irregularities.

1.4 Outline of the Investigation

Chapter 2 reviews the theory of the Langmuir probe in the D region. Debye length and various plasma parameters in the D region are discussed. The values of the parameters in the D region present certain difficulties in interpreting the probe current. Some of these problems are overcome by use of a dc mode of operation developed by Smith (1969).

Chapter 3 reviews various theories of isotropic, homogeneous turbulence. The basic parameters of fluids and fluid flows are given. The
A spectral approach to describing turbulence and the relationship of three-dimensional to one-dimensional spectra are discussed. Application of dimensional and physical arguments leads to a number of important theories predicting turbulence spectra, which are presented. In particular, a scalar spectrum model by Hill and Bowhill (1976) suitable for describing atmospheric turbulence is discussed.

Chapter 4 describes the University of Illinois fine structure experiment and methods of data analysis. Using analog preprocessing, irregularities may be quickly identified and distinguished from interference. The appropriate data segments are digitized using a microcomputer based digitizer. The development and operation of the digitizer are discussed in detail. Following transfer of the data to a CDC Cyber mainframe computer, the data are Fourier analyzed to calculate power spectra of the irregularities. Software needed for the transfer and analysis is described.

Results of the data analysis are given in Chapter 5. Five of the nine flights examined reveal ionospheric irregularities. The power spectra of the irregularities are examined and various parameters of the irregularities and spectra are tabulated. Comparisons are made to the Hill and Bowhill (1976) scalar spectral model and to some spectral predictions by Rastogi and Bowhill (1976).
2. LANGMUIR PROBE THEORY

2.1 Introduction

Rockets using Langmuir probes are capable of measuring electron density and other plasma parameters in the ionosphere. In a simple Langmuir probe experiment an electrode at a known potential is inserted into a plasma. As the potential of the probe is varied the current drawn by the probe is monitored. Analysis of this I-V characteristic gives information about various properties of the plasma. Due to collisions of particles within a few Debye lengths of the probe, exact relations of the plasma parameters to probe current do not exist in the D region. Assuming a direct proportion between the current and the electron density, a calibration constant between the two may be obtained with a radio propagation experiment. When the probe is operated in a dc mode high spatial resolution is attainable, allowing detailed examination of small-scale ionization structures. Detailed discussions of Langmuir probes in the ionosphere are available in Smith (1965, 1969) and Cicerone and Bowhill (1967).

Section 2.2 discusses the D region environment and its relevant parameters. Section 2.3 presents the collisionless regime theory and the problems it faces in the D region. Section 2.4 describes the dc method of operation of the Langmuir probe in the D region. This method gives measurements of electron density and fine structure thereof.

2.2 The D Region Plasma Environment

The D region of the ionosphere may be described as a weakly ionized plasma consisting of electrons, negative ions, and positive ions. Solar radiation is believed to be the chief source of this ionization. Daytime electron concentrations typically run from 10^2 cm^{-3} at 70 km to 10^4
cm⁻³ at 90 km; the neutral concentration varies from 10^{15} to 10^{14} cm⁻³ over the same range. At these densities it is assumed that the plasma does not affect the macroscopic dynamics of the neutral atmosphere. The free electrons may thus be used as a tracer in detecting macroscopic motions of the neutral atmosphere (Thrane and Grandal, 1981). In turn, the motion of the neutral atmosphere is assumed not to alter the reaction rates of the production and recombination of ions and electrons.

An ideal plasma consists of a charge-neutral collection of positively and negatively charged particles. If the particles have different masses, then a gravitational field induces a charge separation, resulting in an electric field. Such a separation is present in the earth's ionosphere. Lemaire and Scherer (1970) show that in an isothermal ionized atmosphere in hydrostatic and diffusive equilibrium the vertical induced field is

$$ E = \frac{\mu(z)}{e} g $$

where g is the acceleration due to gravity, z is the altitude, and e is the electronic charge. $\mu(z)$ is an effective particle mass:

$$ \mu(z) = \frac{\sum_i Z_i m_i n_i / k_i T_i}{\sum_i Z_i^2 n_i / k_b T_i} $$

where the sums are over all i species of particles, Z_i is the degree of ionization (−1 for electrons), m_i is the mass of the i'th species, n_i is the concentration of the i'th species at altitude z, T_i is the temperature of the i'th species, and k_b is Boltzmann's constant. Since the effective mass is of the order of the ion mass, the field as given above is quite small and has little effect on the probe operation as described in this chapter.

The Debye length is a characteristic length parameterizing the response of a plasma to an imposed potential. If a potential is imposed at a point
in the plasma the particles rearrange themselves to cancel the resulting
field. When equilibrium is reached the plasma exhibits a local field in the
neighborhood of the imposed potential. This field decreases exponentially
with distance from the imposed potential, in contrast to the inverse square
decrease of a point charge's field in free space. In the absence of
negative ions, Poisson's equation in one dimension gives:

\[\frac{d^2 V}{dx^2} = -\frac{1}{\epsilon_0} e(N_+ - N_e) \]

where \(e \) is the electron charge, \(V \) is the potential, \(\epsilon_0 \) is the permittivity
of free space, \(N_+ \) is the positive ion density, and \(N_e \) is the electron
density. The presence of negative ions would replace \(N_e \) by \(N_e + N_- \)
where \(N_- \) is the negative ion density. Chen (1965) shows that if the
positively charged particles are much heavier than the negatively charged
particles, then

\[V = V_0 e^{-x/h} \]

where \(V_0 \) is the imposed potential with respect to the plasma, and \(h \) is the
Debye length defined, in rationalized units, as

\[h = (\epsilon_0 k_B T_e / N_e e^2)^{1/2} \] (2.1)

where \(T_e \) is the electron temperature, and \(N_e \) is the ambient electron
concentration. At points located a few Debye lengths from the perturbing
potential the field is small. It is important to note that charge
neutrality does not hold within a few Debye lengths of the imposed
potential. It is this net charge which shields the rest of the plasma from
the imposed potential. The charged region is often referred to as the
plasma sheath. Care must be taken not to visualize the sheath as a sharply
bounded layer outside of which the field does not exist. The Debye length
only characterizes the exponential decrease in the field.
To calculate the Debye length it is necessary to find the electron temperature and the electron density. A number of techniques are available for measuring electron density, which may be considered a well-known parameter. Given a distribution of velocities for electrons or ions it may be possible to apply a Maxwellian distribution, defining an electron or ion temperature. For low collision rates these two temperatures could be quite different from each other and that of the neutral atmosphere. Unfortunately, direct measurements of electron temperature using Langmuir probes (Banks and Kockarts, 1973; Zimmerman and Smith, 1980) are obtainable only above 100 km. Below this height, conventional Langmuir probe theory fails and electron temperature measurements must be obtained in other manners. Due to the high neutral concentration and high collision rates in the D region it is assumed that the ion and electrons are in thermal equilibrium with the neutral atmosphere (Hill and Bowhill, 1976). Neutral temperatures in the D region range from approximately 180 to 220 °K (U.S. Standard Atmosphere, 1976). Thus Debye lengths ranging from 1 to 10 cm may be expected in the D region.

2.3 Langmuir Probes in the D Region

Langmuir probes provide a simple method of measuring charged particle densities in the D region. This simplicity, unfortunately, is counterbalanced by a rather complex theory. A general probe theory does not exist for all atmospheric regions, and useful results may be obtained only under certain restrictive assumptions. This section describes the basic theory of probes in a plasma and the applicability of the theory to the D region. A more complete description of Langmuir probes is available in Chen (1965).

In the basic operation of a Langmuir probe an electrode is inserted
into the plasma and a potential imposed. The potential is swept repeatedly over a wide range, and the induced current is measured as a function of potential, the rocket body acting as an electrode for the return current. Such an arrangement is termed a bipolar probe. Figure 2.1 shows a typical I-V characteristic for a probe. At V_s, the plasma or space potential, the probe potential equals that of the plasma. No sheath forms about the probe and the plasma is undisturbed. The observed current is entirely due to the thermal migration of charges in the plasma. Since an electron mass is many orders of magnitude less than an ion's, the electron thermal velocity is much greater than the ion's (for equal ion and electron temperatures). This results in a net electron current into the probe. To induce zero current the probe potential must be lowered, accelerating positive ions and retarding electrons. At V_f, the floating potential, the sum of the electron and ion currents adds to zero. Alternatively, if the potential is raised above V_s the positive ions are retarded and the electrons are accelerated. For potentials much greater than the plasma potential the current is due totally to the thermal electrons (region A in Figure 2.1). For potentials below V_s the current is totally due to positive ions (region C in Figure 2.1). The slope of the curve in region B gives information about the electron and ion temperatures. It is important to note that an isolated conductor in a plasma assumes the floating potential (Chen, 1965). A satellite or rocket in a plasma assumes this potential. All measurements of probe potential are thus made with respect to V_f. Moreover, these measurements must account for the plasma sheath which naturally accompanies a conductor not at the plasma potential.

Quantitative predictions of the I-V behavior of a spherical probe may be made for an ideal plasma of electrons and positive ions with Maxwellian
Figure 2.1 I-V characteristic for a Langmuir probe.
distributions. From Smith (1965) the number of electrons collected per unit area by a probe at the plasma potential is

\[j_e = N_e \overline{v}_e / 4 \]

(2.2)

where \(N_e \) is the electron concentration, \(\overline{v}_e \) is the electron mean velocity, and \(j_e \) is the average electron current density. For a Maxwellian electron velocity distribution

\[\overline{v}_e = (8k_b T_e / \pi m_e)^{1/2} \]

(2.3)

where \(T_e \) is the electron temperature, \(k_b \) is the Boltzman constant, and \(m_e \) is the mass of an electron. A similar analysis applies to positive ions. A comparison of the two current densities for equal temperatures gives

\[j_e / j_i = (m_i / m_e)^{1/2} \]

(2.4)

where \(j_i \) is the ion current and \(m_i \) is the ion mass. For NO\(^+\), a common ion in the D region, this ratio is 235. It is then quite justifiable to approximate the measured current as due to electrons only. This approximation becomes even better when the probe is above \(V_s \) and positive ions are repelled from the probe. If the electron mean free path, \(L_e \), is much greater than both \(h \) and \(a_p \), the probe radius, then Smith (1965) shows that for electron retarding potentials \((V < V_s) \) the electron current is

\[j = j_e \exp[e(V-V_s)/k_b T_e] \]

(2.5)

independent of probe shape. A probe operating under these conditions is said to be operating in the collisionless regime. For electron accelerating potentials on a small spherical probe \((h >> a_p) \)

\[j = j_e [1 + e(V-V_s)/k_b T_e] \]

(2.6)

Both relations give \(j \) proportional to \(N_e \) for constant \(T_e \). This property is essential in justifying the fine structure experiment to be described in Section 2.4. From these relations it is theoretically possible to derive
electron density, electron temperature, and average ion composition.

There are a number of restrictions on the use of the above relations. Many of these restrictions are met in the D region, given due attention to the experimental apparatus. First, it must be assumed that the current drawn by the probe does not affect the plasma. Given the high electron velocities in the D region, any dearth of electrons created locally by the probe current is quickly replenished by diffusing electrons. Equation (2.3) numerically gives

$$\frac{v_i}{v_e} = 6.21 \times 10^3 \frac{T_e^{1/2}}{m/sec}$$

or approximately 10^5 m/sec in the D region. Second, photoemission of electrons at the probe surface can interfere with current measurements. Smith (1965) finds that photoelectrons in the F region limit electron density measurements to altitudes less than 1000 km. It is assumed that this effect is absent in the D region since much of the hard solar radiation is attenuated by the atmosphere above. Third, it must be assumed that the contact potential (the bias appearing between the probe and rocket body when the internal circuitry shows no potential) remains constant over the altitude range under study. Such a bias might be caused by the dissimilar metals in the probe and rocket body (Smith, 1965). Fourth, the telemetry system and any radio propagation experiments must be designed such that they do not excite any plasma resonances near the probes.

Two important conditions do not hold in the D region. First, the above relations, equations (2.2) through (2.6), assume that the negative current is totally due to electrons. However, below 90 km negative ions are present in sufficient numbers to disqualify this assumption. Second, the above analysis has not taken collisions into account. If the Debye length is larger than or of the order of the electron mean free path (λ_e),
then collisions can occur in the sheath, disrupting the free movement of electrons traversing the sheath to the probe. Such a free-fall condition is necessary to derive equation (2.6) (Chen, 1965). If the condition $L_e \gg a_p$ is violated then collisions can occur in the region close to the probe. This region can only receive electrons from that portion of all 4π steradians not subtended by the nearby probe. The anisotropy prevents the formation of the Maxwellian velocity distribution necessary to derive equation (2.6). Due to the large variation of L_e, h, and other parameters in the D region, it is not possible to derive general relations between measured current and electron density. However, Smith (1969) suggests that the relationship is a simple proportionality, allowing the current to be calibrated by other experiments, thus extending the useful range of the Langmuir probe into the D region.

The measured current is also affected by the rocket's high speed, typically on the order of 1 km/sec. This is comparable to the mean positive ion velocity (from equation 2.3 N_0^+ at 200° has $\bar{v}_+ = 664$ m/sec) in the D region but is far less than the mean electron velocity. The effect on positive ion current is discussed by Smith (1965) who gives the increase expected in ion current as a function of rocket speed divided by \bar{v}_+. For example, at $\bar{v}_+ = 664$ m/sec and rocket velocity of 1 km/sec the N_0^+ ion current is 1.6 times the value expected for a stationary rocket. The measured electron current is largely unaffected due to the great difference between \bar{v}_e and the rocket's velocity. Since the measured ion current increases, the total measured current density decreases. However, the ion current at zero rocket speed is so small compared to the electron current that the effect is negligible. The rocket's motion may also distort the current if the probe passes through the rocket's wake. Although the
electrons have sufficient velocity to quickly refill the rarefied wake region, preservation of the plasma charge neutrality demands that the plasma respond to the rarefaction at the slower ion velocity. As the rocket spins and precesses, an extended probe may sweep through the trailing rarefied wake, modulating the measured current at the spin frequency. Finally, it is important to discuss the effect of the supersonic nature of the rocket’s velocity. Such high velocities are necessary in assuming a frozen atmosphere during measurements. At these velocities, however, a shock front develops ahead of the probe. This region exhibits temperatures and densities above those of the ambient atmosphere. It is found, however, that the ratio of the neutral densities \(\frac{n_{\text{shock}}}{n_{\text{ambient}}} \) depends only on the Mach number (Thrane and Grandal, 1981) where \(n_{\text{shock}} \) is the neutral density in the shock front and \(n_{\text{ambient}} \) is the neutral density in the ambient atmosphere.

2.4 DC Operation of a Rocket-Borne Langmuir Probe

In the previous section it was found that exact formulae for electron density versus current do not exist for D region measurements. Mechtly et al. (1967) describe an experiment to calibrate the current. Since collisionless regime theory does not hold in the D region, a potential sweep of the probe gives questionable results for temperature and other quantities. The probe is therefore operated at a fixed potential, sacrificing temperature data but gaining altitude resolution. This dc mode is particularly useful in discerning any fine structure in electron density. These irregularities may be related to irregularities in the neutral atmosphere. Such a relationship found by Thrane and Grandal (1981) is given here.

In the dc mode of operation the probe is set at a particular voltage,
and the electron current versus time is measured. The main assumption is that the current is proportional to the electron density over ranges in which the electron temperature is constant (Smith, 1969). The probe potential is set high enough above the floating potential that the I-V characteristic is well into the linear part of the curve (Figure 2.1), above the plasma potential. The relation of current to electron concentration is found by means of a propagation experiment (Mechtly et al., 1967). In this experiment a circularly polarized wave at a few megahertz is launched from the ground and received at the rocket. The differential absorption and Faraday rotation of the wave are monitored as a function of height. These quantities can be used to find the electron concentration as a function of altitude. The two experiments work in tandem, the uncalibrated probe having high spatial resolution and the propagation experiment giving a coarse proportionality between concentration and current.

Amplification of the ac component of the probe current can reveal details of the fine structure in electron concentration. Such experiments have been carried out by Prakash et al. (1980), Smith and Klaus (1978), and Thrane and Grandal (1981). These irregularities can occur over ranges of tens of meters to kilometers. To measure them one assumes that the fluctuations are statistically stationary, that is,

\[N_e = \langle N_e \rangle + \Delta N_e \]

where \(N_e \) is the electron concentration and \(\Delta N_e \) is the fluctuation about the mean. If in addition the proportionality between probe current and electron density is steady over a particular altitude range, then appropriate signal analysis of the current alone yields \(\Delta N_e / \langle N_e \rangle = \Delta I / \langle I \rangle \) (Smith and Klaus, 1978) the percentage fluctuation. Due to the proportionality of \(N_e \) to \(I \) calibration of the current is unnecessary. Thrane and Grandal
(1981) extend the proportionality of n_{shock} to n_{ambient} and show that percentage fluctuations in N_e are independent of velocity.

Further analysis is necessary to relate $\Delta N_e / \langle N_e \rangle$ to $\Delta n / \langle n \rangle$ where n is the neutral atmosphere concentration and Δn is the fluctuation about the mean, $\langle n \rangle$. The thermodynamic state equation

$$p = n k T$$

may be differentiated with respect to height in an ideal exponential atmosphere, yielding

$$-\frac{1}{H_p} = -\frac{1}{H_n} + \frac{1}{\gamma} \frac{dT}{dz}$$

(2.7)

where H_p is the pressure scale height and H_n is the neutral density scale height in the unperturbed atmosphere. The fluctuations are assumed to occur over altitude ranges small compared to the scale height. Thrane and Grandal (1981) show that for adiabatic displacements of air parcels

$$\frac{\Delta n}{\langle n \rangle} = \left(\frac{1}{H_n} - \frac{1}{\gamma H_p}\right) \Delta z$$

(2.8)

where Δz is the vertical displacement off equilibrium, and γ is the ratio of the specific heat of air at constant pressure to that at constant volume.

Letting H_e be the scale height of the electron concentration, Thrane and Grandal (1981) find a relation similar to equation (2.8):

$$\frac{\Delta N_e}{\langle N_e \rangle} = \left(\frac{1}{H_e} - \frac{1}{\gamma H_p}\right) \Delta z$$

Thus

$$\frac{\Delta n}{\langle n \rangle} = \frac{(\gamma H_p / H_n - 1) \Delta N_e}{(\gamma H_p / H_e - 1) \langle N_e \rangle}$$

giving a relationship between electron density and neutral density fluctuations. This analysis assumes that fluctuations are caused only by
vertical displacements of air parcels in which the adiabatically shifted parcels' densities differ from those of the ambient atmosphere. Ambient properties in the horizontal direction are assumed to change slowly with respect to the vertical changes.

2.5 **Summary**

Rocket-borne Langmuir probes are capable of measuring a variety of plasma properties: electron and ion temperature and electron and ion concentrations. Collisionless regime Langmuir probe theory applies above 90 km. Below 90 km, in the D region, the Langmuir probe may be used only to measure electron density (when calibrated with an independent radio propagation experiment) and fluctuations in electron density. These fluctuations in electron concentration may then be related to fluctuations in the neutral atmosphere. Homogeneous turbulence is believed to be responsible for creating the irregularities. Mechanisms for production and a theoretical description of homogeneous turbulence are discussed in the next chapter.
3. THEORIES OF HOMOGENEOUS TURBULENCE

3.1 Introduction

Electron density fluctuations as a function of altitude in the mesosphere are often observed by both radar and rocket techniques. These fluctuations have been observed to occur in layers with a wide range of thicknesses ranging from the order of tens of meters (Rastogi and Bowhill, 1976) to the order of kilometers (Royrvik and Smith, 1984; Rottger et al., 1979). Isotropic turbulence is generally believed to cause these layers (Hocking and Vincent, 1982; Thrane and Grandal, 1981; Royrvik and Smith, 1984). Some radar investigations have indicated very narrow angular spectra for layers below 75 km (Fukao et al., 1980), suggesting very flat structures with horizontal scales greater than one Fresnel zone (Hocking and Vincent, 1982), making turbulence an unlikely mechanism for generating such layers. In the absence of coincident rocket and radar observations and under the limitations of the one-dimensional nature of rocket measurements, rocket data cannot discern the exact three-dimensional nature of the layers. One can only determine the consistency of rocket data with theoretical predictions. This chapter discusses theories of homogeneous, isotropic turbulence, providing a base for comparison with experimental results to be presented in Chapter 5. A complete development of turbulence is not intended in this chapter. More extensive presentations are available by Tennekes and Lumley (1972) and Lumley and Panofsky (1964).

Section 3.2 gives a qualitative description of turbulence and its associated parameters and measurable features. Section 3.3 reviews various sources of atmospheric turbulence. Section 3.4 discusses the Navier-Stokes equations, the problem of their closure, and their spectral interpretation.
Dimensional and similarity arguments are presented in Section 3.5, leading to a power law spectrum for certain length scales. Various theories for the spectrum at high wave numbers are examined in Section 3.6. Also, a scalar spectral model by Hill and Bowhill (1976) is applied to predict the type of spectra expected from the rocket data in this thesis.

3.2 Qualitative Description of Turbulence

Turbulence is often described as a cascade of energy from larger scales to smaller scales. A turbulent flow may be visualized as consisting of eddies of different sizes. The various scales of whirlpools and eddies seen in a river downstream from a bridge pier provide a graphic example of turbulence. These scales may be divided into three regimes with respect to their mechanisms of energy transfer. The first regime contains the largest scales (e.g., size of the bridge pier) in the flow. They draw their energy from instabilities in the mean flow. All smaller eddies find themselves in the rate of strain field of these large eddies, and energy is transferred to the smaller scales through vortex stretching (Tennekes and Lumley, 1972). Tennekes and Lumley also show that most of the energy transferred to an eddy comes from eddies with only slightly larger scales. Thus an energy cascade develops, energy being continuously transferred to decreasing scale sizes.

In the second regime the mean flow no longer contributes energy to the turbulent flow. Energy is transferred to the second regime only through cascading from the larger eddies in the first regime. The cascading process continues, with little energy lost through other processes. This regime is often called the inertial regime. The cascading energy eventually is transferred to the eddies of the third regime, containing the smallest scales in the turbulent flow. At these small scales viscosity removes significant amounts of energy from the cascade. Decreasingly smaller scales
receive less and less energy as it is removed by viscous dissipation. This regime is often called the viscous range.

Fluids and fluid flows may be described by a variety of parameters. Dynamic viscosity \(\mu \), a constant for a fluid at a given temperature and independent of pressure, gives the proportionality between a fluid flow's shear stress and rate of shear strain. Kinematic viscosity, \(\nu \), a more common term in describing fluids, is the dynamic viscosity divided by the density of the fluid. Due to this dependence on density, the kinematic viscosity is a strong function of pressure, in contrast to the dynamic viscosity. Viscosity damps velocity shears, dissipating kinetic energy as heat. \(D \), the molecular diffusivity, describes the rate of diffusion of a scalar contaminant in the fluid.

\[
\frac{\partial N}{\partial t} + \nabla \cdot VN = DV^2N \tag{3.1}
\]

where \(N \) is the scalar concentration and \(V \) is the velocity field. In analogy to \(\nu \), a fluid with a high \(D \) rapidly dissipates any large gradient in the scalar concentration. Another useful parameter, the Schmidt number, may be defined from \(\nu \) and \(D \):

\[
Sc = \frac{\nu}{D}
\]

Substitution of the thermal diffusivity, \(\kappa \), for \(D \) gives the Prandtl number.

A fluid flow, described by a velocity field, may be characterized by another set of parameters. The Reynolds number is given by

\[
Re = \frac{VL}{\nu} \tag{3.2}
\]

where \(V \) is a characteristic velocity of the flow, \(L \) is a characteristic length, and \(\nu \) is the kinematic viscosity of the fluid. For flows with Reynolds numbers higher than some critical value, the flow becomes unstable. This number must be found experimentally and depends on the boundaries of
the flow. For stratified flows, the Richardson number, R_i, provides another criterion for the creation of turbulence:

$$R_i = \frac{\omega_B^2}{(\partial V_o / \partial z)^2}$$

where

$$\omega_B^2 = \frac{(\gamma - 1) g^2}{c^2} + \frac{g}{T} \frac{\partial T}{\partial z}$$

ω_B is the Brunt-Väisälä frequency, V_o is the horizontal flow's mean velocity, z is perpendicular to the planes of stratified flow, λ is the ratio of the specific heats, g is the acceleration due to gravity, c is the speed of sound, and T is the temperature. The negative of the temperature gradient, $-\frac{\partial T}{\partial z}$, is known as the lapse rate. Note that for sufficiently high lapse rates the Brunt-Väisälä frequency becomes imaginary. The lapse rate at which $\omega_B = 0$ is known as the adiabatic lapse rate. An atmosphere in adiabatic equilibrium assumes this lapse rate. A lapse rate greater than the adiabatic lapse rate is termed a superadiabatic lapse rate. If R_i is less than unity the decay rate of turbulence is smaller than the generation rate. Under such conditions a turbulent flow is sustained (Hodges, 1967). However, R_i less than unity is not a sufficient condition for the creation of turbulence in a laminar flow. For this to occur R_i must fall below some critical value (R_{icr}). Using theoretical arguments Miles (1961) and Howard (1961) propose a value of $1/4$.

3.3 Sources of Turbulence in the Atmosphere

A number of mechanisms are believed responsible for the creation of atmospheric instabilities necessary for the generation of turbulence. Two important instabilities discussed here are the convective instability and the Kelvin-Helmholtz instability (KHI). Convective instability is produced by lapse rates greater than the adiabatic lapse rate. Such an inversion can
be produced by large amplitude gravity waves altering the background atmosphere. The RHI is produced in unstable wind shears characterized by a Richardson number less than Ric_r. This instability may also be induced in a stable wind shear by interaction of a gravity wave and a critical layer within the shear. A detailed theoretical treatment of the two instabilities is available in Chandrasekhar (1961). Measurements of the instabilities in the atmosphere are reviewed by Gossard and Yeh (1980).

Convective, or Rayleigh-Taylor, instabilities are the result of a vertical temperature gradient smaller than that of an adiabatic atmosphere. If a parcel of air at position z and temperature $T(z)$ is displaced adiabatically and vertically by Δz it expands, acquiring a temperature $T(z) + \Gamma_a \Delta z$ where $\Gamma_a = -g/c_p$, g is the acceleration due to gravity at height z, and c_p is the specific heat of air at constant pressure. However, the ambient temperature at $z + \Delta z$ is $T(z + \Delta z)$. If this temperature is greater than $T(z) + \Gamma_a \Delta z$, then the parcel is cooler and hence heavier than the ambient air. The parcel tends to return to its initial position. Overshoot and subsequent oscillation of the parcel may lead to the excitation of a gravity wave. Conversely, if the ambient temperature is less than $T(z) + \Gamma_a \Delta z$, the parcel continues to rise. The convection of these parcels creates turbulent eddies as the parcels move through the ambient atmosphere.

Convective instability is more generally described as the result of an atmosphere in which ω_B^2 is negative. In such a situation ω_B is imaginary, and a displaced air parcel does not oscillate but continues to accelerate away from its initial position. A negative ω_B^2 also forces the Richardson number below zero. A negative Richardson number thus indicates convective instability. The Brunt-Vaisala frequency may be more conveniently defined in terms of potential temperature. The potential
temperature, \(\theta \), of an air parcel is that temperature the parcel would assume if adiabatically compressed or expanded to a pressure of 1000 mb.

\[
\theta = T \left(\frac{1000}{P} \right)^{\gamma - 1}
\]

where \(P \), the pressure, is given in millibars. The Brunt-Vaisala frequency, in terms of potential temperature, is

\[
\omega_B^2 = \frac{g}{\theta} \frac{\partial \theta}{\partial z}
\]

The lapse rate at which \(\frac{\partial \theta}{\partial z} = 0 \) is the adiabatic lapse rate. An atmosphere in adiabatic equilibrium has \(\frac{\partial \theta}{\partial z} = 0 \) for all \(z \). Under such a condition a displaced air parcel neither oscillates nor accelerates. If \(\frac{\partial \theta}{\partial z} \) is greater than zero, a superadiabatic lapse, then \(\omega_B^2 \) is negative. Thus the sign of the potential temperature gradient determines stability.

Such convective instabilities can result from gravity wave growth. As a gravity wave propagates upward its amplitude increases with decreasing density to preserve energy flux. The wave eventually reaches an altitude where the increased amplitude significantly modifies the background atmospheric parameters, producing regions of superadiabatic lapse rate. Hodges (1967) calculates the Richardson number as modified by a monochromatic gravity wave and finds negative values at periodic intervals for sufficiently large wave amplitudes. These planar regions of convective instability propagate with the wave, are normal to the direction of wave propagation, and occur at the minima of the wave's wind shear.

The KHI is produced in regions of high vertical shear in a horizontally stratified flow. If Ri falls below the critical value, it is energetically feasible for vertical perturbations to overcome the stabilizing effect of decreasing density with altitude. The perturbations grow and the vorticity
accumulates in billows forming a wave pattern. The billows continue to draw vorticity from the mean flow, eventually forming what are often referred to as cat's eyes. The growth of the cat's eyes from the billows is numerically simulated by Patniak et al. (1976). The eventual breakdown of the cat's eyes produces turbulence. Gossard et al. (1970), using a high resolution radar, show the development of KHI in the lower atmosphere and the resulting turbulence.

An initially stable flow can develop KHI through interaction of a gravity wave and a critical layer in the flow. A critical layer exists in a shear at that level where the flow's velocity equals the horizontal component of the incident gravity wave's phase velocity (Booker and Bretherton, 1967). The analysis of Booker and Bretherton (1967) models the interaction using a monochromatic wave incident upon an inviscid, adiabatic, Boussinesq fluid. The flow has an initial Richardson number everywhere greater than 1/4. Booker and Bretherton (1967) find that the gravity wave is strongly attenuated upon passing through a critical layer and that the wave's energy is deposited into the flow without loss through the generation of turbulence or other dissipative processes. Geller et al. (1975), using a similar model, show that the deposited energy modifies the flow such that regions of dynamic instability are produced. However, the model is incapable of showing the detailed initial development of the instability. Such a detailed simulation is described by Fritts (1978). Neither simulation can demonstrate the final turbulent breakdown of the Kelvin-Helmholtz instabilities.

3.4 Statistical and Spectral Approach

So far only a qualitative description of turbulence has been given. Due to the chaotic and three-dimensional nature of turbulence, a mathematical
treatment requires the use of random variables and statistical methods. Despite this statistical treatment the Navier-Stokes equations for fluids have no closed form solution, requiring the addition of observational and physical arguments. Such arguments are most easily applied to the power spectra of the velocity and advected scalars. Simpler spectra may be derived with various statistical assumptions. This section shows the development of these spectra and the restrictions on their use.

As with the kinetic theory of gases, turbulence requires a statistical approach. Although the motion of a fluid in a turbulent velocity field is in theory a classically deterministic process, the amount of information required to treat it as such makes a deterministic approach wholly impractical. The statistical treatment essentially examines a quantity’s fluctuation about a mean and the spatial dependence of averages of those fluctuations. The quantity might be a velocity component, a temperature, or the density of an advected scalar in a velocity field. For example, the i’th velocity component $V_i(x,t)$ and a scalar’s density $N(x,t)$ can be decomposed into a mean and a fluctuation:

$$V_i(x,t) = U_i(x,t) + u_i(x,t)$$

$$N(x,t) = N(x,t) + n(x,t)$$

where

$$U_i(x,t) = <V_i(x,t)>$$

$$N(x,t) = <N(x,t)>$$

and <$>$ denotes an ensemble average. The calculated averages of most interest are the covariances of the fluctuations. These may be written as

$$<u_i(x,t)u_j(x',t)>$$

$$<n(x,t)n(x',t)>$$
To make practical measurements of the covariances some assumptions must be made. First, a moving probe (e.g., rocket borne Langmuir probe) is often used to measure scalar density along a path. Due to the finite velocity of the probe the turbulent field evolves during the time of the measurement. To make meaningful spatial covariances the turbulence must be assumed to be "frozen" during this time. For example, a rocket travelling at 1 km/sec traverses a turbulent layer 1 km thick in 1 second. Radar measurements (Rottger et al., 1979) indicate that turbulent layers have lifetimes on the order of minutes. The frozen-in assumption is hence quite applicable to rocket measurements of such layers. A second assumption, ergodicity, must be made from a practical point of view. This allows for replacement of the ensemble averages by spatial or time averages. In the rocket experiment described above, spatial averages are used. As a different example, measurements of wind turbulence using a fixed, ground based hot wire anemometer would replace the ensemble average by a time average.

Under the conditions of statistical homogeneity and statistical isotropy the covariances may be simplified. Statistical homogeneity, hereafter referred to as just homogeneity, implies that the probability density of the fluctuations is not a function of position. In addition, the averages $\langle v_i \rangle$ and $\langle \phi \rangle$ do not depend on position. Under this condition $\langle u_i(x,t)u_j(x',t) \rangle$ can only be a function of $r = x' - x$. Due to the inherent inhomogeneity of the large energy producing scales, such an assumption can only approximate an actual flow (Batchelor, 1953), and the less restrictive, more realistic, assumption of local homogeneity is necessary. Under this condition homogeneity is restricted to small-scale variations. The covariance $\langle u_i(x,t)u_j(x',t) \rangle$ is then independent of position only for small r. Statistical isotropy, a refinement of
statistical homogeneity (Kolmogorov, 1941), implies that there is no preferred direction in the velocity or scalar field. As with homogeneity, the qualifier "statistical" is implied. It is quite conceivable that a field be homogeneous yet anisotropic. For example, a field may have a homogeneous preference for \(u_i \) components over \(u_j \) components, thus representing a homogeneous anisotropic field. Isotropy, like homogeneity, is most realistically applied at small scales. This condition is called local isotropy. When both isotropy and homogeneity hold, the covariances of \(u_i \) and \(n \) depend only on \(|x - x'| \). Kolmogorov (1941) claims that for flows with high Reynolds number a wide gap in \(k \)-space exists between the large and small eddies. Under such conditions Kolmogorov hypothesizes local isotropy for the smaller scales. Tennekes and Lumley (1972) make a similar claim by examining the interdependence of different sized eddies. They find that although the strain rate field of a large eddy induces anisotropy in passing energy to a small eddy, at sufficiently small scales the anisotropy is temporary, and the small eddy's mean state is isotropic.

Fluid flows may be described by the Navier-Stokes equations:

\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \mathbf{u} \tag{3.6a}
\]

\[
\nabla \cdot \mathbf{u} = 0 \tag{3.6b}
\]

where \(\mathbf{u} \) is the velocity field, \(P \) is the pressure, and \(\rho \) is the fluid density. Equation (3.6b) states that the fluid is incompressible. As mentioned earlier, turbulent flows must be described statistically. Decomposing \(\mathbf{u} \) and \(P \) into \(\mathbf{u} + \mathbf{u}_i \) and \(P + p \) evaluated at \(x \) and \(t \), assuming the tensor summation notation, and applying the incompressibility condition gives

\[
\frac{\partial (\mathbf{u}_i + u_i)}{\partial t} + \frac{\partial (\mathbf{u}_i + u_i)(\mathbf{u}_j + u_j)}{\partial x_j} = -\frac{1}{\rho} \frac{\partial (P + p)}{\partial x_i} + \nu \frac{\partial^2 (u_i + u_i)}{\partial x_j \partial x_j}
\]
Multiplying by \(u_q(x',t) \) and averaging gives an equation in terms of
\[\langle u_q(x',t)u_i(x,t) \rangle, \langle u_q(x',t)u_i(x,t)u_j(x,t) \rangle, \text{ and other terms}. \]

Attempting to solve for the triple correlation using the Navier-Stokes equations leads to an equation involving a fourfold correlation. This continued predicament is referred to as the closure problem. Various statistical assumptions may be made to allow for an approximate numerical solution. Some of these methods are reviewed by Tatsumi et al. (1978).

Hill and Bowhill (1976) point out that even under isotropy and homogeneity the equations only reduce to a single equation involving two unknowns: the double and triple correlations. It should also be noted that the diffusion equation
\[
\frac{\partial N}{\partial t} + \nabla \cdot \nabla N = D \nabla^2 N
\]
is coupled to the Navier-Stokes equations, resulting in a closure problem for scalar turbulence also.

It is often physically enlightening to take the spatial Fourier transform of the covariances. The resulting spectrum facilitates comparison of the energy at various scales. The following spectral formulae are taken from Hill and Bowhill (1976). The three-dimensional velocity fluctuation power spectrum, assuming homogeneity, is given by the Fourier transform of the covariance:
\[
\frac{1}{(2\pi)^3} \int \int \int \langle u(x,t) \cdot u(x + \xi, t) \rangle \exp(-i\xi \cdot \xi) \, d\xi
\]

Physically, this gives the strength of a velocity fluctuation at the wave vector \(k \). Since \(|k| = 2\pi/\lambda \) the spectrum also is a measure of fluctuations with scale size \(\lambda \). This spectrum can be averaged over all directions to give the three-dimensional energy spectrum, commonly referred to as just the energy spectrum:
\[E(k,t) = \frac{1}{2} \iint k^2 d\Omega_k \iint \frac{1}{(2\pi)^3} <u(\xi,t) \cdot u(\xi + \xi, t)> \exp(-ik \cdot \xi) \, d\xi \]
(3.7)

where \(d\Omega_k \) is the solid angle in \(k \) space and \(k = |\xi| \). The factor of \(1/2 \) normalizes the spectrum such that \(E(k,t) \) integrated over all \(k \) gives \((1/2) <u \cdot u>, \) called the turbulent kinetic energy. For a given magnitude \(k \), \(E(k,t) \) gives the average energy per unit mass per unit wave number. An analogous three-dimensional spectrum also may be constructed for scalar quantities. Assuming homogeneity, the three-dimensional scalar power spectrum and its spatial average, the scalar spectrum, can be written as

\[S(k,t) = \prod \frac{d\xi}{(2\pi)^3} <n(\xi,t)n(\xi + \xi, t)> \exp(-ik \cdot \xi) \]
(3.8a)

\[\Gamma(k,t) = \int k^2 d\Omega_k \iint \frac{1}{(2\pi)^3} <n(\xi,t)n(\xi + \xi, t)> \exp(-ik \cdot \xi) \, d\xi \]
(3.8b)

Like the velocity energy spectrum, \(\Gamma(k,t) \) is an average over all directions of \(k \). \(\Gamma(k,t) \) is normalized so that

\[<n^2> = \int_0^\infty \Gamma(k,t) \, dk \]

Physically, \(\Gamma(k,t) \) gives the strength of the scalar magnitude's fluctuation at a given wave number, whereas \(S(k,t) \) gives the same for a particular wave vector. The units of \(\Gamma(k,t) \) are mean squared density per unit wave number. The two types of spectra, three-dimensional scalar power spectrum and its spatial average, the scalar spectrum, serve different functions in studying turbulence. The three-dimensional scalar power spectrum plays a major role in the theory of coherent scatter of radiation from atmospheric turbulence. The scalar spectrum is for the most part a theoretical tool for describing spectral energy in a field. Yet a third spectrum is needed to interpret in situ experimental data.
Many in situ measurements of turbulence are made in only one dimension with a rapidly moving probe. The turbulent field's spatial variation may be derived from the probe's temporal signal and speed relative to the field. However, for a measured variation of \(k_1 \), wave vectors \(k \) with \(|k| > k_1 \) and \(k \) not parallel to the probe's path alias as \(k_1 \) variations. One-dimensional spectra are defined as follows:

\[
\phi(k_1, t) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx_1 <u_x(x, y, z, t)u_x(x+x_1, y, z, t)> \exp(-ik_1 x_1) \tag{3.9a}
\]

or

\[
\psi(k_1, t) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx_1 \left| u_x(x+x_1, y, z, t) \exp(-ik_1 x_1) \right|^2 \tag{3.9b}
\]

for the \(x \) velocity component and

\[
\psi(k_1, t) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx_1 <n(x, y, z, t)n(x+x_1, y, z, t)> \exp(-ik_1 x_1) \tag{3.9c}
\]

or

\[
\psi(k_1, t) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx_1 \left| n(x+x_1, y, z, t) \exp(-ik_1 x_1) \right|^2 \tag{3.9d}
\]

for the scalar spectrum. The second forms of equations (3.9a) and (3.9b) are usually chosen for computational ease. In the isotropic case these are related to the energy spectra by

\[
\phi(k_1, t) = \int_{k_1}^{\infty} \frac{E(k, t)}{k} \left(1 - k_1^2/k^2 \right) dk \tag{3.10a}
\]

\[
\psi(k_1, t) = \int_{k_1}^{\infty} \frac{\Gamma(k, t)}{k} dk \tag{3.10b}
\]

\(\psi \) is the \(k \) space sum of \(\Gamma(k, t) \) over all \(k > k_1 \). To obtain \(\psi(k_1, t) \) each \(\Gamma(k, t) \) value is weighted by the ratio of the wave vectors from \(k \) to \(k + dk \) contributing to the aliasing and the total number of wave vectors ending on a sphere of radius \(k \). The energy relationship, equation (3.10a), is given
by Hill and Bowhill (1976). The above equations are valid only under isotropy. Consequently if the turbulent field is locally isotropic only for \(k_1 > k_1' \), then the equations apply only to that range. It should be noted that for \(\Gamma(k,t) \) or \(E(k,t) \) proportional to a power of \(k \), the related one-dimensional spectrum has the same characteristic power law. If such a power law is limited to a particular range of \(k \), then the observed break points in the one-dimensional spectrum differ from those in the energy spectrum. Figure 3.1 compares a scalar spectrum and its corresponding one-dimensional spectrum calculated from equation (3.10b).

Under the restrictions of homogeneity and isotropy, the Navier-Stokes equations yield the following for \(E(k,t) \) and \(\Gamma(k,t) \) (Hinze 1975):

\[
\frac{\partial E(k,t)}{\partial t} = \mathcal{T}_u(k,t) = -2\nu k^2 E(k,t) \quad (3.11)
\]

\[
\frac{\partial \Gamma(k,t)}{\partial t} = \mathcal{T}(k,t) = -2Dk^2 \Gamma(k,t) \quad (3.12)
\]

where \(\mathcal{T}_u(k) \) and \(\mathcal{T}(k) \) are called the spectral transfer functions. \(\mathcal{T}_u(k) \) has the units energy per unit mass per unit wave number per unit time and represents the loss of energy by viscous dissipation at a scale size \(k \). Metaphorically, it is the leakage in the energy cascade described in Section 3.2. \(\mathcal{T}(k) \) has the units of mean squared scalar fluctuation per unit wave number per unit time. It too represents dissipation of spectral content at a wave number of size \(k \). Two important parameters may be defined from the spectra \(\Gamma(k,t) \) and \(E(k,t) \). These are the energy dissipation rate and the mean squared scalar dissipation rate \(\chi \):

\[
\chi = 2D \int_0^\infty k^2 \Gamma(k,t) dk
\]

\[
\varepsilon = 2\nu \int_0^\infty k^2 E(k,t) dk
\]

\(\varepsilon \) measures the rate at which kinetic energy is dissipated by viscosity.
Figure 3.1 Comparison of a scalar spectrum $\Gamma(k)$ and its calculated one-dimensional spectrum $\psi(k_1)$.
Similarly, χ measures the rate at which mean squared fluctuations are dissipated by molecular diffusion. These quantities aid in the dimensional analysis of the turbulence spectrum.

3.5 Dimensional Analysis and Turbulence Spectra

Applying local homogeneity and isotropy, dimensional and similarity arguments leads to a power law form of the energy and scalar spectra in the inertial range. The range over which this dependence applies is derived in a similar fashion. Spectra derived by Batchelor (1959) and Batchelor et al. (1959) for wave numbers above the inertial range are also presented here. Models of a scalar flux function, defined from the spectral transfer function $T(k)$, are examined and lead to refinements of the simple power law spectra.

In addition to local isotropy and homogeneity Kolmogorov (1941) introduced a third concept: local similarity. Under local similarity, if there is a large wave number range between the scale sizes at which the turbulence is created and the scale sizes at which viscosity becomes important, then the spectrum for large k is independent of the detailed morphology of the large scales at which energy is drawn from the mean flow. Such a wide range of scales is present in flows with high Reynolds number (Kolmogorov 1941). Due to this independence turbulence produced by different sources in different media is found to be comparable at scales where local similarity holds. The comparison is subject only to certain parameters of the fluid and the flow. For example, a knowledge of these similarity parameters allows for comparison between turbulence generated in the ocean and turbulence generated in the atmosphere although the media, energy sources, and scales are quite different. Local similarity is obeyed under local statistical equilibrium (Batchelor, 1953). This requires that
the time evolution at small scales proceed much more rapidly than at large scales. Equilibrium is established at small scales with negligible influence by the large-scale evolution. Small-scale structures may then be studied in general without considering the detailed time evolution at the large scales or the particular method of the turbulence's generation.

Before deriving the various spectra, a few characteristic wave numbers need to be defined. As mentioned previously, turbulent energy cascades from larger scales to smaller scales, the scales being divisible into three regimes with respect to their methods of energy transfer. The concept of an inertial range may be extended to scalar fluctuations. The analogous regime is called the convective range: scalar fluctuations therein are not dissipated by diffusion. Similarly, the diffusive range is analogous to the viscous range. \(k_d \), called the inner scale or Kolmogorov scale, is a measure of the wave number at which viscosity begins to significantly damp the velocity fluctuations. \(k_d \) identifies the boundary between the inertial and viscous ranges. \(k_b \), sometimes called the Batchelor wave number, defines a scale beyond which diffusion damps out the scalar concentration fluctuations which are already subject to viscous damping. \(k_c \), referred to as the Obukhov-Corrsin wave number, defines a scale beyond which diffusion effects are important in the absence of viscous damping.

\[
\begin{align*}
 k_d &= \left(\frac{\varepsilon}{\nu^3}\right)^{1/4} \\
 k_b &= \left(\frac{\varepsilon}{\nu D^2}\right)^{1/4} \\
 k_c &= \left(\frac{\varepsilon}{D^3}\right)^{1/4}
\end{align*}
\]

Batchelor (1959) shows that \(k_c \) applies only when \(D \gg \nu \) and that \(k_b \) applies when \(\nu \gg D \). It should be noted that scalar fluctuations may persist for wave numbers beyond \(k_d \) when \(\nu \gg D \). In that case \(k_b \gg k_d \).

Assuming similarity, isotropy, and homogeneity to apply locally,
Kolmogorov (1941) hypothesized that the structure of turbulence should depend only on the similarity parameters \(\varepsilon \) and \(\nu \). Using dimensional analysis, Tennekes and Lumley (1972) find that

\[
E(k) = \varepsilon^m \nu^n f(k/k_d)
\]

where \(m \) and \(n \) are constants, \(f(k/k_d) \) is a nondimensional function, and \(k_d \) depends only on \(\varepsilon \) and \(\nu \). Given the units for \(\nu \), \(\varepsilon \), and \(E(k) \) the only possible choice for \(m \) and \(n \) is \(1/4 \) and \(5/4 \), respectively. This equation implies that for all flows \(E(k)/(\varepsilon \nu^5)^{1/4} \) should yield the same dimensionless curve \(f(k/k_d) \) at scales subject to homogeneity, isotropy, and similarity. Kolmogorov (1941) further argued that in the inertial range viscosity is unimportant. \(E(k) \) then depends only on \(\varepsilon \). This condition requires that \(f(k/k_d) \) cancel out the \(\nu^{5/4} \) constant in front, leading to the energy spectrum

\[
E(k) = \alpha \varepsilon^{2/3} k^{-5/3} \quad k << k_d
\]

where \(\alpha \) is a nondimensional constant called the Kolmogorov constant. \(k << k_d \) is a reminder that this spectrum applies only for \(k \) for which viscosity is unimportant. It should also be noted that the above development assumes locally a steady state turbulence field, eliminating the \(t \) dependence from \(E(k,t) \).

By similar methods, Boston and Burling (1972) use the similarity parameters \(\chi \), \(\nu \), \(\varepsilon \), and \(D \) to find the form for the scalar spectrum:

\[
\Gamma(k) = \chi \varepsilon^{-3/4} \nu^{5/4} \psi(\nu/D, k/k_d)
\]

where \(\psi(\nu/D, k/k_d) \) is a dimensionless function. An inertial range may be found by disallowing effects of \(\nu \) and \(D \).

\[
\Gamma(k) = \beta \chi \varepsilon^{-1/3} k^{-5/3} \quad k << \text{smaller of } k_d \text{ and } k_c
\]

where \(\beta \) is a dimensionless constant.

The shape of the scalar spectrum beyond the inertial range has been
studied by Batchelor (1959) and Batchelor et al. (1959). The relation between D and ν affects not only the cutoff wave numbers k_d, k_b, and k_c but also the spectral shape and slope. For $D \ll \nu$ the scalar fluctuations can occur at wave numbers beyond k_d in spite of the loss of kinetic energy through viscous damping. Batchelor (1959) shows that this leads to a scalar spectrum

$$\Gamma(k) = -\chi \sigma^{-1} k^{-1} \exp(Dk^2/\sigma)$$

(3.14)

where σ is an average strain rate estimated by Batchelor (1959) to be

$$\sigma = -5(\epsilon/\nu)^{1/2}$$

(3.15)

The argument of the exponent in equation (3.14) then becomes $-2(k/k_b)$. Thus for $k_d \ll k \ll k_b$ the scalar spectrum varies as k^{-1}. This range is termed the viscous-convective range since viscosity dominates the energy spectrum and diffusion is unimportant in the scalar spectrum. The range $k > k_b$ is called the viscous-diffusive range since both viscosity and diffusion affect the spectra. In the case $D \gg \nu$ Batchelor et al. (1959) predict

$$\Gamma(k) = (1/3) \alpha \chi \epsilon^{2/3} D^{-3} k^{-17/3} \quad k_c << k << k_d.$$
Figure 3.2 Energy and scalar spectra illustrating the various wave number ranges (Bill and Bowhill, 1976).
effects occur at approximately the same wave number. This situation is not
dressed by Batchelor (1959) or Batchelor et al. (1959). Its discussion
here is deferred until the presentation of the model by Hill and Bowhill
(1976) in Section 3.6.

As an alternative to directly estimating $P(k)$, the spectra may be
derived by modelling $T(k)$ and working from the steady state equation (3.12).
Models of $T(k)$ leading to scalar spectra are extensively reviewed in Hill
and Bowhill (1976). Three of the models are presented here. To model $T(k)$,
the spectral flux function $F(k)$ needs to be developed.

$$\frac{\partial F(k)}{\partial k} = T(k)$$ \hspace{1cm} (3.16)

Physically, $F(k)$ describes the rate of the spectral energy cascade through a
scale size with wave number k. Its units are mean squared scalar per unit
time. In the inertial range the flux should be approximately constant and
equal to X. Since viscosity is unimportant, $T(k)$ should be quite small.
$T(k)$ should increase considerably in the diffusive regime.

Using results for spectral flux from Corrsin (1964), Pao (1964) shows
that

$$\Gamma(k) = k^{-5/3} \exp\left(-\frac{3}{2}\right)(k/k_c)^{4/3} \quad k << k_d$$ \hspace{1cm} (3.17a)

$$\Gamma(k) = k^{-1} \exp\left(-\frac{D}{\lambda'\sigma}k^2\right) \quad k >> k_d$$ \hspace{1cm} (3.17b)

where λ' and λ'' are nondimensional constants and σ is the strain rate given
by equation (3.15). If $v >> D$ and k is assumed to be of the order of unity,
then $k_c >> k_d$, making the exponential term in equation (3.17a) close to
unity for $k << k_d$. This results in the familiar $-5/3$ power law for the
inertial range. For $\lambda'' = -1$ equation (3.17b) is of the same form as Batch-
elor's, equation (3.14), predicting an exponential decrease with k above
k_b. If, however, $D >> v$ then equation (3.17a) predicts a rapid decrease in
in \(\Gamma(k) \) for \(k \ll k_c \). This decrease with \(k \) is steeper than the \(-17/3\) power law predicted by Batchelor.

For high \(Pr \) or \(Sc \) in the viscous-convective and viscous-diffusive ranges a model by Kraichnan (1968) predicts the scalar flux function to be

\[
F(k) = \Lambda \frac{4}{3} k^4 \frac{\partial}{\partial k} [k^{-2} \Gamma(k)]
\]

where \(\Lambda \) is independent of wave number but increases with Reynolds number. Assuming a steady state in equation (3.12) gives (Mjolsness, 1975)

\[
\Gamma(k) = 5(\chi/\Lambda)k^{-1}(1+Z)\exp(-Z)
\]

where

\[
Z = (30D/\Lambda)^{1/2} k
\]

Mjolsness (1975) also derives the corresponding one-dimensional spectrum

\[
\psi(k_L) = 5(\chi/\Lambda)k_L^{-1} \exp(-Z_L)
\]

If \(Z \ll 1 \) the scalar spectrum is approximately

\[
\Gamma(k) \propto k^{-1}
\]

the dependence found by Batchelor (1959) in equation (3.14). For large \(k \), \(Z \) also becomes large, causing an exponential decrease in the spectrum.

Hill and Bowhill (1976) also analyze a model by Howells (1960) which is applicable for all \(Pr \) and \(Sc \). They find that the proportionality

\[
\Gamma(k) \propto k^{-5/3} \left[C + C'(\frac{k}{k_c})^{-8/3} \right]
\]

holds in the inertial-convective range with \(C \) and \(C' \) constants. \(C' \) is taken to be small since the spectrum should approach a \(-5/3\) power law for \(k \ll k_d \) as \(k \) becomes small although still in the inertial range. The viscous-convective and viscous-diffusive range spectra agree with the form of Batchelor's, equation (3.14). For \(D >> v \) the model predicts an inertial-diffusive spectrum of the same form as equation (3.17a).
In summary, all models agree on the \(-5/3\) power law for \(k\) well inside the inertial range. For \(v >> D\) most models predict a scalar spectrum proportional to \(k^{-1}\) for \(k_d << k << k_b\). The models differ substantially for the inertial-diffusive range \((D << v)\), Batchelor et al. (1959) predicting a power law and other models predicting an exponential decrease above \(k_c\). None make solid claims to the spectral behavior for \(D \approx v\). This is unfortunate as such conditions are found in the middle atmosphere.

3.6 Estimation of Spectral Form in the Middle Atmosphere Using a Model by Hill and Bowhill (1976)

The scalar spectrum models given so far say little about the spectrum between ranges and apply only for the asymptotic cases of \(v >> D\) and \(v << D\). Hill and Bowhill (1976) have devised a spectral model, based on Corrsin (1964) and Pao's (1964) results for \(F(k)\) to describe the spectrum for all spectral ranges and all values of \(Sc\) and \(Pr\). This section presents Hill and Bowhill’s (1976) model with some clarifications added by Hill (1978). A spectral shape for middle atmospheric turbulence, based on estimates of \(Sc\) for those altitudes, is also predicted.

The Corrsin-Pao model determines the scalar spectrum by modelling the scalar flux as (Corrsin, 1964):

\[
F(k) = s(k) \kappa(k)
\]

where \(s(k)\), called the flux rate, is estimated by Pao (1964) to be

\[
s(k) = 2 \kappa^{1/3} k^{5/3} \quad k << k_d \quad (3.18a)
\]

\[
s(k) = 2 \kappa^{\gamma} \quad k >> k_d \quad (3.18b)
\]

This applies to both the cases \(D >> v\) and \(v >> D\) (Pao, 1964). Pao describes \(s(k)\) physically as the rate that a spectral element is transferred across \(k\).

Since \(F(k)\) is a measure of spectral content at \(k\) the product of \(F(k)\) and
s(k) is dimensionally the spectral flux $F(k)$, as Corrsin's hypothesis states. Hill and Bowhill (1976) hypothesize that the flux rate dependence on k varies from 5/3 to 1 in the k range close to k_d. The scalar spectrum then also has a smooth transition. A characteristic wave number k^* located between the inertial-convective and viscous-convective ranges may be defined:

$$\frac{\partial \ln[\Gamma(k)]}{\partial \ln(k)} \bigg|_{k = k^*} = -\frac{4}{3} \quad \text{for} \quad \nu \gg \nu$$

Although the corresponding one-dimensional scalar spectrum has a shape similar to the three-dimensional scalar spectrum, it is found that $k_{1*} < k^*$ where k_{1*} is the transitional wave number for the corresponding one-dimensional spectrum. To form $s(k)$, and subsequently $\Gamma(k)$, Hill and Bowhill (1976) form a nondimensional wave number expression,

$$K = \ln(k/k^*) \quad (3.19)$$

and create a parameter

$$\phi(K) = -\frac{4}{3} + \frac{1}{3} \tanh(aK) \quad (3.20)$$

which varies from $-5/3$ to -1 over the range of all k. The value of a determines the rate at which $\phi(K)$ changes from $-5/3$ to -1. $s(k)$ is then proposed to be

$$s(k) = s(k_0) \exp \left[- \int_{k_0}^{K} \phi(y) dy \right]$$

where k_0 is the lowest wave number in the inertial-convective range. To find $\Gamma(k)$, $F(k)$ is formed by multiplying $s(k)$ and $\Gamma(k)$ and substituting into the steady state version of equation (3.12), giving a differential equation for $\Gamma(k)$. Taking k_0 to approach zero, Hill and Bowhill (1976) find the solution to be

$$\Gamma(k) = C \epsilon^{-1/3} (k^*)^{-5/3} \Gamma(k)$$
where $\tilde{g}(K)$ is given by

$$
\ln[\tilde{g}(K)] = -\frac{4}{3} K + \frac{1}{3a} \ln[2 \cosh(ak)]
$$

$$
- \xi \int_{-\infty}^{K} e^{\frac{ay}{3}} [2 \cosh(ay)]^{1/3a} dy
$$

$$
\xi = 2\beta \left(\frac{k^*/k_c}{k^d}\right)^{4/3}
$$

k^*/k_d and a are assumed constant over all ν/D (Hill, 1978). The model makes no assumptions about D's relation to ν. Although k^* is defined above for $D < \nu$, Hill (1978) points out that for $D > \nu$, k^* represents the transition wave number between the inertial-diffusive and the viscous-diffusive range. Figure 3.3 shows the calculated normalized one-dimensional spectra as a function of k^*_1/k^* for various values of the parameter ξ where symbols with subscript 1 are associated with the corresponding one-dimensional spectrum $\tilde{g}(K_1)$.

It is of interest to estimate the type of spectra the above model predicts for middle atmospheric parameters. Since only a general shape is desired, the important parameter to estimate is ξ. Many experiments have made measurements of the constant β_1. Experiments reviewed by Hill and Bowhill (1976) give a range centered about 0.6. They estimate that $\beta = 5\beta_1/3$, making β of the order of unity. Values of k_c and k_d vary with altitude. Three parameters are necessary to compute k_c and k_d: ν, ν, and D. As an example, at 80 km D is 1.0×10^3 cm2/sec (Heicklen, 1976), and ν is 7.15×10^{-1} m2/sec (U.S. Standard Atmosphere, 1976). Since ν is so close to D (i.e., $Sc \approx 1$), k_d and k_c are quite close together. k^*, the transition wave number between the inertial- and viscous-diffusive ranges is between these two numbers, making k^*/k_c close to unity. Thus ξ is of the order of unity, independent of ν. Referring to Figure 3.3 it is observed that Hill's model predicts neither a well-defined inertial-diffusive or
Figure 3.3 One-dimensional spectra for various values of the parameter ξ (Hill and Bowhill, 1976).
viscous-convective range. The slope of the spectrum should be $-5/3$ up until a rolloff at the characteristic k value of k_d or k_c, whichever is smaller. Comparisons to actual data from the University of Illinois rockets are given in Chapter 5.
4. FINE STRUCTURE EXPERIMENT AND METHODS OF DATA ANALYSIS

4.1 Introduction

To measure the spectrum of electron density irregularities in the D region a Langmuir probe is mounted on a sounding rocket and flown through the ionosphere. The fine structure experiment flown by the University of Illinois is described by Klaus and Smith (1978). All flights have carried this same configuration, with two exceptions described in Roth (1982b). In the fine structure experiment the probe current, assumed proportional to the electron density over regions of constant electron temperature, is measured as a function of time. Rapid current fluctuations superposed upon the relatively slowly varying mean current are sometimes observed. Signal processing on board the rocket converts these current fluctuations to \(\Delta N_e / \langle N_e \rangle \) where \(\Delta N_e \) is the fluctuation in electron density about a mean value \(\langle N_e \rangle \). This signal is then telemetered to ground and recorded on an FM tape recorder. Analog preprocessing of these data helps to distinguish possible ionospheric irregularities from interference caused by other experiments on board the rocket.

Once suitable regions of interest have been established, the analog data are digitized for further processing. The digitizer consists of an 8-bit A/D peripheral card controlled by an Apple II microcomputer. The data are digitized at a 5 kHz rate and stored on floppy disk. Each data file contains 25000 bytes, or 5 seconds of data. These data are then transferred to a CDC Cyber mainframe computer. After additional formatting the data are segmented and Fourier analyzed with a FORTRAN program called SPECTRA. This program estimates the power spectrum of a data segment by calculating the square magnitude of the discrete Fourier transform (DFT) of the segment.
It should be emphasized that these spectra represent a one-dimensional spatial spectrum, where isotropy is assumed in converting the temporal variations to spatial variations. The theories of turbulence described in Chapter 3 are concerned with three-dimensional spectra, and theoretical one-dimensional spectra are derived therefrom only under the assumption of isotropy. Since no independent measure of isotropy is usually made during the rocket experiments, spectra calculated in this chapter cannot be directly compared with the theoretical one-dimensional spectra; they can at most demonstrate consistency with theory.

Section 4.2 describes the University of Illinois fine structure experiment. Section 4.3 discusses three possible sources of noise and distortion. An analog preprocessing method is presented in Section 4.4. Section 4.5 discusses the digitizing of the analog data. Section 4.6 describes postprocessing on a mainframe computer.

4.2 Fine Structure Experiment

The fine structure experiment carried out by the University of Illinois uses essentially the same instrumentation as described by Klaus and Smith (1978). A Langmuir probe is extended from the rocket body into the ionosphere and held at 4.05 V above the potential of the rocket body. The probe may be either a single electrode at the rocket nose or a pair of electrodes in parallel extended from the sides of the rocket. As the rocket passes through the ionosphere, spatial fluctuations in electron concentration are observed as current fluctuations in time. The mean current is usually in the range of 10^{-8} to 10^{-5} A in the D region. A plot of current versus height for the 28 May 1975 Peru flight is shown in Figure 4.1. The current is processed by a logarithmic electrometer and an ac amplifier to give the percentage fluctuation in electron density,
Figure 4.1 Probe current from 28 May 1975, Peru flight.
$\Delta N_e / \langle N_e \rangle$, as a function of time. This signal, along with data from other experiments on the rocket, is telemetered to the ground and stored on an FM tape recorder.

A block diagram of the system is shown in Figure 4.2. For fine structure measurements the sweep generator is held constant at 4.05 V, the sweep mode being activated to collect electron temperature data. The log electrometer produces a voltage proportional to the logarithm of the input current. Its output is 0.80 V per decade of probe current. Klaus and Smith (1978) investigate the frequency response of the logarithmic electrometer and find that it acts as a low pass filter. The upper 3 dB point is determined by measuring the rise time of the output in response to a current input consisting of a square wave superposed on a dc current. At an input dc current of 10^{-8} A and a square wave adjusted to produce a 50 mV output swing, Klaus and Smith (1978) find the upper 3 dB frequency to be 2.5 kHz. Furthermore, Zimmerman and Smith (1980) find that the 3 dB frequency increases with an increasing dc current component. Since currents greater than 10^{-8} A are expected in the D region (Figure 4.1), the frequency response of the electrometer should extend at least up to 2.5 kHz. The output of the electrometer is fed to an ac amplifier. This has a measured upper 3 dB frequency of at least 1 kHz and a gain of 100. Frequency response measurements vary between devices. Measurements of three amplifiers are presented in Appendix I. In addition, the amplifier has a single pole roll-off below 50 Hz, ensuring that the amplifier is not saturated by low frequency noise expected at the spin frequency of the rocket (4 to 8 Hz).

To predict the output of this system it is assumed that the input current, I, may be decomposed into a mean and a fluctuating component:

$$I = \langle I \rangle + \Delta I$$
Figure 4.2 Block diagram of dc probe and fine structure experiment. Sweep generator is held at 4.05 V for electron density fine structure measurements (Klaus and Smith, 1978).
where \(< >\) represents a time average. This current is assumed proportional to the electron density as described in Chapter 2. The electrometer output, \(V_{LE}\), is

\[V_{LE} = 0.80 \log (<I> + \Delta I) . \]

Conversion to the natural logarithm allows expansion of \(V_{LE}\) to

\[V_{LE} = 0.80 \frac{\ln (<I>)}{\ln 10} + 0.80 \frac{\ln (1 + \Delta I/<I>)}{\ln 10} \]

If the fluctuations in current are small compared to the mean current, then the output may be approximated by

\[V_{LE} = 0.80 \frac{\ln (<I>)}{\ln 10} + 0.80 \frac{\Delta I}{\ln 10 <I>} \quad (4.1) \]

The constant component of \(V_{LE}\) disappears due to the ac coupling of the ac amplifier following the logarithmic electrometer:

\[V_{AC} = 100 \frac{0.80}{\ln 10} \frac{\Delta I}{<I>} \quad (4.2) \]

where \(V_{AC}\) is the ac amplifier output. Since current and electron density are assumed to be proportional, this is equivalent to \(35 \Delta N_e/<N_e>\), a 0.35 V deviation for a 1.0 % deviation in electron density.

The data signal on the rocket is telemetered to the ground and stored on analog tape. Following the ac amplifier the \(\Delta N_e/<N_e>\) signal is centered about zero volts. This is stepped up to 2.5 V to conform to the 0 to 5 V input swing allowed by the voltage controlled oscillator (VCO) of the telemetry system. In the IRIG FM telemetry system employed by the University of Illinois the VCO output frequency varies by \(\pm 7.5\%\) for a \(\pm 2.5\) V input. The modulation index is 5. Each experiment on the rocket is assigned an IRIG channel. As an example, Table 4.1 gives the IRIG channel assignment for each experiment on the 28 May 1975 Peru flight. The
Table 4.1 IRIG telemetry channel assignments for 28 May 1975 Peru flight.

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Center Frequency* (kHz)</th>
<th>Information Bandwidth** (Hz)</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>93</td>
<td>1395</td>
<td>RF probe, output</td>
</tr>
<tr>
<td>18</td>
<td>70</td>
<td>1050</td>
<td>Tip probe, fine structure</td>
</tr>
<tr>
<td>17</td>
<td>52.5</td>
<td>790</td>
<td>Receiver #1, modulation</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>600</td>
<td>Receiver #2, modulation</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>450</td>
<td>Tip probe, log output</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>330</td>
<td>Boom probe, log output</td>
</tr>
<tr>
<td>13</td>
<td>14.5</td>
<td>220</td>
<td>Boom probe, linear output</td>
</tr>
<tr>
<td>12</td>
<td>10.5</td>
<td>160</td>
<td>RF probe, monitor</td>
</tr>
<tr>
<td>11</td>
<td>7.35</td>
<td>110</td>
<td>Receiver #1, AGC</td>
</tr>
<tr>
<td>10</td>
<td>5.4</td>
<td>81</td>
<td>Receiver #2, AGC</td>
</tr>
<tr>
<td>9</td>
<td>3.9</td>
<td>59</td>
<td>Magnetometer</td>
</tr>
</tbody>
</table>

*deviation = ±7.5%
**modulation index = 5
channel assignment depends on the desired bandwidth. Channel 18 is usually selected for the fine structure experiment, giving a bandwidth of 1050 Hz. The various channels are combined and transmitted to ground on a 240.2 MHz carrier. The telemetry ground station strips off the 240.2 MHz carrier and records the raw FM signal (containing all channels) on one track of an FM tape recorder. This track is usually called the "combiner" track. In addition to this data signal the ground station simultaneously records a number of other signals on different tracks. To aid in the digitization of the data a 100 kHz reference signal is recorded on a separate track. Another track, called the "station multiplex" (labelled MUX), contains two time codes for absolute determination of elapsed time on the tape, a voice record of the flight progress, and miscellaneous data from instruments monitoring the telemetry signal.

4.3 Sources of Noise and Distortion

There are a number of noise sources which must be identified to properly analyze the data. A periodic modulation of the fine structure signal at the rocket spin frequency is often observed. Axial spin provides stability for the rocket. The spin frequency, nearly constant throughout a particular flight, is generally from 4 to 8 Hz. This is most accurately measured by an on board magnetometer measuring the component of the earth's magnetic field along the axis of the magnetometer. The strength and character of the effect on the fine structure signal varies from rocket to rocket, and even during the same flight the effect slowly changes with time. Figure 4.3 shows a segment of data exhibiting severe spin contamination. The most probable source of this noise is the passing of the Langmuir probe through the rarefied wake of the rocket. This is borne out in the observation that spin noise shows up strongly in flights using boom probes
as opposed to nose tip probes. Figure 4.3 exhibits a spin frequency of 3.984 Hz from a rocket equipped with boom probes. The existence of two oscillations every spin period is consistent with the suggestion that the booms are passing through the wake of the rocket: in one revolution each of the two booms passes through the wake once. It is assumed that this spin noise is an added component to the fine structure signal. Modelling the noise as band limited and consisting only of harmonics of the spin frequency opens the possibility of filtering out the spin noise.

A second source of noise is the distortion added by the logarithmic electrometer. In the analysis leading to equations (4.1) and (4.2) it is assumed that \(\Delta N_e/\langle N_e \rangle \ll 1 \). Smith and Royrvik (1985) discusses the generation of harmonics by the electrometer for a sinusoidal input. He finds that the strength of each harmonic falls off rapidly as the order of the harmonic increases. The signal expected from the probe contains a large range of frequencies. If the power spectrum obeys a power law, \(k^{-n} \), and has a large spectral index \(-n \), then harmonics from the lower frequencies could be comparable to the strength of the spectrum at high frequencies. This would lead to overestimation of the spectrum at high frequencies. Smith and Royrvik (1985) concludes that for a power spectral index of \(-7\) or greater the distortion is negligible. Spectra with smaller spectral indices are not expected from the fine structure experiment. However, spectra with exponential decreases as described in Section 3.5 could indeed be affected by this distortion. Fortunately, most of the information extracted from the spectra resides in the wave number ranges below the exponential decrease. Efforts to obtain information from the higher frequency ranges of a steeply sloping spectrum must not overlook the possibility of distortion.

A third source of noise is interference from other experiments on board
Figure 4.3 Spin contamination of fine structure signal from 18 January 1976 Wallops Island flight at 81.0 km. Launch time is 14 12 (LST).
the rocket. The fine structure experiment is especially susceptible to voltage transients that temporarily change the potential between the rocket body and probe. Other probe experiments on the rocket which use the rocket body as an electrode can generate such transients. Transients can also be generated by mechanical vibrations of the rocket. As an example, Table 4.2 gives various events during a flight that could lead to electrical noise. Door ejection and boom erection refer to the insertion of the boom-mounted Langmuir probes into the ionosphere. These events are quite violent and vibrations can persist for about a second. An aural replay of the fine structure signal exhibits surprisingly distinct metallic vibrations corresponding to these events. Fortunately, the noise from these various sources of interference is easily identified, and although it is much stronger than the first two sources of noise described, its transient nature only causes isolated data dropouts as opposed to persistent contamination of the signal.

4.4 Analog Preprocessing

An analog processing method developed by Klaus and Smith (1978) allows for easy identification of irregularities and a rough estimation of their spectra. The basic purpose of the system is to plot in various frequency bands the rms amplitude of the fine structure signal as a function of time. A block diagram is shown in Figure 4.4. The FM tape recorder plays back the combiner track, and the tunable discriminator decodes the desired channel. The 100 kHz reference signal is passed through a discriminator with a center frequency at 100 kHz. Tape speed fluctuations cause fluctuations in both the data signal and the recorded reference signal. The 100 kHz discriminator produces a voltage proportional to the tape speed fluctuation. Adding this difference signal to the discriminator output prevents
Table 4.2 Flight log from 28 May Peru flight.

Nike Apache 14.532

<table>
<thead>
<tr>
<th>Event</th>
<th>Time (UT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site: Chilca Peru</td>
<td></td>
</tr>
<tr>
<td>Date: 28 May 1975 (Day 148)</td>
<td></td>
</tr>
<tr>
<td>Launch Time: 20 26 Universal Time (nominal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 26 Local Standard Time</td>
</tr>
<tr>
<td></td>
<td>20 25 : 59.7 (actual)</td>
</tr>
<tr>
<td>Second Stage Ignition</td>
<td>20 26 : 19.5 UT</td>
</tr>
<tr>
<td>40 kft Baroswitch</td>
<td>20 26 : 21.0 UT</td>
</tr>
<tr>
<td>70 kft Baroswitch</td>
<td>20 26 : 27.0 UT</td>
</tr>
<tr>
<td>Door Ejection (61 km)</td>
<td>20 26 : 50.6 UT</td>
</tr>
<tr>
<td>Boom Erection (62 km)</td>
<td>20 26 : 51.1 UT</td>
</tr>
<tr>
<td>Probe Sweep On (128 km)</td>
<td>20 27 : 41.1 UT</td>
</tr>
<tr>
<td>70 kft Baroswitch Off</td>
<td>20 32 : 50.1 UT</td>
</tr>
<tr>
<td>40 kft Baroswitch Off</td>
<td>20 32 : 54.5 UT</td>
</tr>
<tr>
<td>Loss of Signal (Splash)</td>
<td>20 33 : 07.7 UT</td>
</tr>
</tbody>
</table>
Figure 4.4 Analog data reduction system (Klaus and Smith, 1978).
fluctuations in tape speed from distorting the amplitude. The delay of the 100 kHz discriminator is matched by a 75 μsec delay added to the data line, preserving synchronicity between the tape speed compensation and data signals. Due to the FM nature of the tape, jitter in the tape speed causes jitter in both amplitude and phase of the output. The phase jitter is uncorrectable by analog means and must simply be tolerated as a source of noise. The compensated signal is then fed to a bandpass filter. The frequency bandwidths are chosen to increase geometrically (e.g., 10-20 Hz, 20-40 Hz, 40-80 Hz, etc.). This gives spectral content at evenly spaced points on a logarithmic scale. The bandpass filtered signal is fed to an ac-to-dc converter and the resulting rms voltage is recorded on a chart recorder. A time code is simultaneously plotted. The result is a plot such as that in Figure 4.5, from the 28 May 1975 Peru flight. The frequency bands are converted to wave number bands by multiplying the frequencies by $2\pi/v$ where v is the rocket speed.

This plot gives a broad view of the data, allowing for quick comparisons between structures at different altitudes. The regularly spaced spikes seen clearly in the 0.18 - 0.36 rad/m band result from another probe measuring plasma resonance. The spike at 70.3 km is attributed to interference from an unknown source. Magnification of the raw fine structure data at 70.3 km is shown in Figure 4.6. A similar extraordinarily large signal swing occurs at 84.8 km. The apparent extended bandwidth of this spike observed in Figure 4.5 arises from clipping of the signal. Since the 28 May 1975 Peru flight is an equatorial flight the beginning of the electrojet is visible at 90 km. The regions of most interest are the altitudes between 75 and 80 km and the irregularity at 87.5 km. Once the regions of interest have been identified from this broad overview, detailed
Figure 4.5 Fine structure signal filtered into wave number bands.
Figure 4.6 Portion of fine structure signal from 28 May 1975 Peru flight at 69.6 km. Launch time is 15 26 (LST).
inspection may begin at the proper altitudes.

4.5 Digitizer

To perform further analysis the analog data must be digitized. Prior to the development of the present digitizer system all digitization was carried out at the NASA facility at Wallops Island, Virginia. Since the turnaround time for the digitization varied from weeks to months, a digitizer system based on an Apple II microcomputer was developed at the University of Illinois capable of an 8-bit resolution, a digitizing rate of 5 kHz, and a continuous record size of 25 kilobytes. This system solves a number of problems with the old system. The Wallops Island system returns a digital tape in a format compatible with a PDP computer. To use these data on the CDC mainframe this tape must be converted to CDC format with a conversion program (McInerney and Smith, 1984). The program is quite lengthy and complicated, requiring the user to have a fair degree of familiarity with the CDC Cyber tape system at the University of Illinois. To obtain data from the converted tapes, another Cyber program must be run to control the mounting and playback of the tapes. The data generated are in a rather bulky format, making disk storage expensive.

In the new system the turnaround time for digitization is of the order of days, and the data are stored conveniently on floppy disks rather than on tapes. The data are transferred to the Cyber via a telephone modem. Essentially, the new system shifts control of the data to the user, avoiding complications and delays. Familiarity with the analog tape system is necessary to the extent needed for the analog processing described in Section 4.3. It is not suggested that the new system is suitable for all applications; it is most efficient when handling small amounts of data. The time overhead needed for the old system can pay off in studies requiring
large quantities of continuous data. In smaller projects this overhead may
dominate the expended effort, making the microcomputer system a more
attractive choice.

A block diagram of the digitizer system is shown in Figure 4.7. The
recorder plays back the FM combiner track, the 100 kHz reference, and the
two time codes. The EMR tunable discriminator selects the appropriate data
channel and corrects for tape speed fluctuations as described in Section
4.4. In addition, the discriminator has a built-in low pass filter
necessary for reducing the cross talk from adjacent data channels. As
suggested by Table 4.1, this filter is set to 1050 Hz for IRIG channel 18.
The tape speed compensated data are sent to the A/D card for processing by
the Apple computer. To assist in sampling data at regular intervals with
respect to the tape, the 100 kHz reference signal is converted to a logic
signal by a phase locked loop circuit. The Apple repeatedly counts a fixed
number of these logic pulses and takes a sample, resulting in a constant
sampling rate.

Use of the Apple internal clock for timing is avoided for a number of
reasons. First, fluctuations in tape speed would cause the data to be
sampled at irregular intervals with respect to the tape time frame. The 100
kHz reference exhibits the same fluctuations as the tape, providing a clock
synchronized to the data. Second, the Apple 1.023 MHz clock is not regular:
every 65th μsec an approximately 140 μsec delay is added for videoscreen
control. Continuing with Figure 4.7, to ensure that the digitization starts
at a precise time, a 1 pulse per second (1 pps) clock signal is obtained
from the Datum time decoder, giving a positive transition exactly on the
second. This transition is used to trigger the digitization at a precise
and reproducible instant.
The A/D card is made by Mountain Computer and is capable of taking a sample every 9 μsec. The card can sample data on any one of 16 input channels. The input lines are bundled in a standard 26 wire ribbon cable. To minimize high frequency noise on this unshielded cable, the cable is wrapped in copper tape. The analog to digital converter on the card accepts an input in the range -5 to 5 V, converting this to a digital value in the range 0 to 255. The -5 to 5 V range is not adjustable, so any scaling of the input must take place external to the card. Software controlling the card is straightforward. Each of the 16 inputs is treated as a memory location in the Apple peripheral card I/O space (addresses $C080 - $COFF).

If the card is in slot S, channel X may be read from address $C080 + S * $10 + X. Each time the address is queried the card begins another sample. Two read commands are thus required to take a valid sample: one to start sampling and one to load the result into the Apple.

Interfacing of the timing signals to the Apple is performed by a 6522 Versatile Interface Adapter (VIA) on a peripheral card made by John Bell Engineering. A system diagram of the VIA is shown in Figure 4.8. The card occupies 16 bytes of address space in the Apple II peripheral card ROM space ($C100 - $C7FF). The various functions on the 6522 can request servicing from the Apple by setting a bit in the interrupt flag register (IFR). Each bit in the IFR has a corresponding bit in the interrupt enable register (IER). Preconfigured high, this corresponding bit enables a set bit in the IFR to pull the Apple IRQ line low, initiating an interrupt.

The first timing signal required by the digitizer is a trigger to begin taking data. This is derived from the 1 pps signal from the time decoder, attached to line CA1 of the VIA. By configuring the peripheral control register (PCR) bit 0 high any positive transition on CA1 sets IFR bit 1.
Figure 4.8 6522 system diagram.
IER bit 1 is low, disabling IFR bit 1 from pulling IRQ low. The Apple, waiting in a loop which continually examines the IFR, exits the loop when IFR bit 1 goes high, starting the sampling.

The second timing signal needed by the digitizer is an interrupt every 20 cycles of the 100 kHz reference (for a 5kHz digitizing rate). There are two timers on the VIA: TIMER1 and TIMER2. TIMER2 is used to count the 100 kHz reference pulses from the phase locked loop circuit, the output of which is attached to line PB6 of the VIA. Each negative transition causes the counter value in TIMER2 to decrement by one. When the counter value decrements from $0000 to $FFFF, TIMER2 sets IFR bit 5. Since IER bit 5 is set high, the VIA pulls IRQ low. The starting values of the counting registers are written by the interrupt service routine to the TIMER2 low latch and high counter byte. The second act, writing to the high counter byte, causes the VIA to place the low latch value into the low counter byte, to clear IFR bit 5, and to start TIMER2 counting pulses. Appropriately refilling the counter every interrupt cycle results in an interrupt request every 20 reference cycles.

A flow chart of the digitizer software is shown in Figure 4.9. The system consists of a BASIC program named DIGITIZER CONTROL and a collection of assembly language subroutines called DIGIAUTOSTART.OBJO (complete listing in Appendix II.1). DIGITIZER CONTROL, listed in Figure 4.10, uses POKE statements to pass various parameters to DIGIAUTOSTART.OBJO. These include the number of samples to be taken and various addresses. DIGIAUTOSTART.OBJO is assumed to begin at $8000. However, a NOP instruction is placed at $7FFF, and line 470 calls this address. This odd starting point is due to an idiosyncrasy of the Apple II that prevents a BASIC program from calling address $8000. The first subroutine called by DIGITIZER CONTROL (called in
Figure 4.9 Digitizer software flow chart.
50 REM DIGITIZER CONTROL
60 REM THIS PROGRAM CONTROLS THE ASSEMBLER PROGRAM DIGIAUTOSTART.OBJO.
100 REM TO SAVE MEMORY SPACE, REMOVE ALL REMARKS BEFORE LOADING.
200 D$="": REM D$ EQUALS CTRL D.
400 POKE -32754,47: REM CHANNEL PARAMETER = A/D SLOT * 16 + A/D INPUT CHANNEL.
410 POKE -32759,16: REM HIGH BYTE OF BUFFER ADDRESS. LOW BYTE ASSUMED ZERO.
420 POKE -32752,168: REM LOW BYTE OF NUMBER OF SAMPLES TO BE TAKEN.
430 POKE -32751,97: REM HIGH BYTE OF NUMBER OF SAMPLES.
460 POKE -32748,128: REM HIGH BYTE OF INTERRUPT SERVICE ROUTINE.
465 POKE 32767,234: REM PUTS A NOP AT $7FFF.
470 CALL 32767: REM CALLS DIGIAUTOSTART.OBJO AT $7FFF. FIRST
472 REM ROUTINE INITIALIZES THE BUFFER AND PERIPHERAL CARDS.
480 CALL -32757: REM CALLS THE WAIT LOOP FROM WHICH INTERRUPT OCCURS.
500 PRINT D$;"BSAVc R#####TYP@XXS,A$1000,L25000"
600 END

Figure 4.10 Integer BASIC program DIGITIZER CONTROL.
line 470) configures the VIA and creates a buffer to hold the sampled data. Before returning to DIGITIZER CONTROL, the subroutine waits for the positive transition on line CA1. Once triggered the subroutine starts the counter on the VIA and returns to DIGITIZER CONTROL. The next subroutine called is simply a wait loop (called in line 480). When the VIA counter finishes counting down, IFR bit 5 is set, pulling TRQ low. An interrupt service routine takes a sample from the A/D card, restarts TIMER2, places the sample in the buffer, and returns to the wait loop. Since five seconds of data are needed, the buffer is 25000 ($618B) bytes long. When the final sample is taken the interrupt service routine does not return to the wait loop but rather to DIGITIZER CONTROL. The buffer is then saved on floppy disk in binary format.

Once the external hardware of the digitizer system is set up, running the program only requires loading the appropriate files into the Apple and starting the sampling at the desired time. The two files needed are DIGITIZER CONTROL and DIGIAUTOSTART.OBJO. Omission of address parameters in loading DIGIAUTOSTART.OBJO causes the file to be loaded at the default address $8000. Loading at another address necessitates changing the POKE statements of DIGITIZER CONTROL. An alternate starting address also requires the reassembly of the assembly code of DIGIAUTOSTART.OBJO. A memory map showing the addresses used by the digitizer is given in Figure 4.11. To take a 5 second data segment at, for example, 50 seconds into a flight, the analog tape is started about 20 seconds earlier. When the time code translator displays 49 seconds DIGITIZER CONTROL is run. Digitization then starts at exactly 50 seconds, the next positive transition on CA1. After five seconds the sampling stops and the buffer is written to disk. The file name has the following format: "R" + rocket number + file type +
Figure 4.11 Memory map for digitizer software.
"@" + elapsed flight time from launch to first sample + "S". For example, a data file for the 28 May 1975 Peru flight (code number 14.532) at 50 seconds into the flight would be labelled R14532DAT@50S. This name must be substituted into DIGITIZER CONTROL before the program is run.

To achieve the highest resolution possible the data signal is amplified to the threshold of saturating the ±5 V input range. This amplification is provided by the EMR discriminator. To calibrate the amplified data the digitizer is run with a frequency generator substituted for the FM data from the tape recorder. A block diagram is given in Figure 4.12. Since the frequency generator does not suffer from tape speed fluctuations, the 100 kHz reference is disconnected from the EMR discriminator and the delay is omitted, eliminating tape speed compensation. The frequency generator mimics the output of a VCO. Stepping the frequency generator from 7.5% below to 7.5% above the center frequency of the VCO simulates stepping the VCO input from 0 to 5 V. The digitized values for a number of frequencies are taken with the A/D system, treating the generator as a data signal. This provides a calibration between VCO input and digitized output. Since the frequency generator does not exhibit tape speed fluctuations the tape speed compensation is disabled.

4.6 Data Postprocessing

The final process in the data analysis is transferring the binary files from floppy disk to the Cyber mainframe computer and performing spectral analysis. Properly transferring and formatting the data is a three-step process. The binary files must first be converted to text files. Next, these files are transferred to the Cyber via a 300 baud modem. Finally, on the Cyber the data must again be reformatted to simulate files created from Wallops Island tapes. Once the files are in the proper format they may be
Figure 4.12 Calibration for digitizer system.
submitted to SPECTRA and other programs. SPECTRA estimates the power spectrum of an irregularity by processing the discrete Fourier transform (DFT) of a number of data segments. The estimate is then compensated for the filtering imposed by the experimental apparatus. The corrected estimate is plotted on a high resolution graphics terminal. The spectrum may be stored while others are calculated. Further processing can calculate averages, differences, and smoothing of the stored spectra. In an attempt to reduce the effects of spin noise, a simple moving average can be applied to the data before spectral analysis. In some cases this allows for a more confident estimation of the spectrum at lower wave numbers.

To transfer a binary data file to the Cyber it must first be converted to a text file. The binary file is stored in memory starting at $1000. An APPLESOFT program called TEILMY (listing in Appendix II.2), stored at $800, converts segments of 20 bytes into text strings 60 characters long. Single and double digit numbers are padded with zeros. These strings are collected into a text file and stored on floppy disk. Due to Apple DOS limits on file sizes, one binary file, 25000 bytes or 99 disk sectors, must be converted to two text files with a total of 302 sectors.

These text files are then transferred to the Cyber via a telephone modem. The transfer is supervised by a set of programs called APPLE TERM (Version 3.0), written by Neil Romy for the Computing Services Office at the University of Illinois. The modem used is a 300 baud Micromodem II made by D.C. Hayes and Associates, Inc. It may be inserted into any of the peripheral card slots in the Apple. Booting APPLE TERM loads various subroutines and asks the user for the telephone number of the Cyber hookup. Once connected, the Apple acts as a Cyber terminal. The user opens a destination file for the text files using the Cyber's ICE editor. A useful
file name format is "D" + the last three digits of the flight number + "A" +
the elapsed seconds from launch corresponding to the first datum in the file
(e.g., D532A50). After opening the file the insert mode is invoked. The
Cyber displays a line number and a question mark, the insert mode prompt.
To start the transfer the user types <ESC> T. APPLE TERM then takes control
of the keyboard, opens the specified text file, and sends the data. Each
line of the ICE file receives one record of the text file. Upon completion
of the transfer the user saves the ICE file.

At this point the ICE file is still not in the format acceptable to
many programs developed for rocket data analysis. These accept the Wallops
Island format. In this format, diagrammed in Figure 4.13, the data are
segmented into records, each with 1251 bytes. Each record consists of one
real byte giving the starting time of the record, followed by 1250 integers
divided into 250 frames. A frame has five channels, each of which is
assigned to a different experiment. This channel arrangement facilitates
synchronous comparisons between two or more experiments. Thus each record
contains 250 samples from a single experiment. If data from only a single
experiment are needed, this format is rather uneconomical in memory usage
when compared to the ICE files.

Conversion of the ICE files to the Wallops Island format requires a
simple FORTRAN program called APL2CDC (complete listing in Appendix II.3).
Program APL2CDC reads in data from the ICE file, inserts the proper time
bytes, packs each data point into a frame with four filler points, and
writes out the constructed records to a new file. The unformatted write
statement used writes out a whole 1251 point array at once. Other programs
reading this file must use a corresponding unformatted read statement with
an identically sized input array. Files created with unformatted write
Figure 4.13 Format of a data record using the Wallops Island format.
statements cannot be edited by ICE. Due to the approximately fivefold increase in file size, limits on the Cyber system force the new file to be a direct access file, as opposed to the original indirect access file. The only major difference between the two file types lies in the way the Cyber stores them. In a FORTRAN program, both file types are read from and written to in the same manner. Since the Wallops Island format entails an appreciable increase in storage costs and required memory, long-term data storage is most efficient using the ICE files.

Once in the appropriate format the data may be Fourier analyzed and the power spectrum estimated. This is accomplished with an interactive FORTRAN program called SPECTRA (complete listing in Appendix II.4). A flow chart of SPECTRA is shown in Figures 4.14 and 4.15. SPECTRA, written by Bruce Tomei (in Roth, 1982b), employs a power spectrum estimation method developed by Welch (1967). In this method consecutive, possibly overlapping, periodograms are averaged together. An introduction to various methods of power spectrum estimation is available in Oppenheim and Schafer (1975).

SPECTRA requires access to two software libraries available on the Cyber: International Math and Statistical Library (IMSL) and the Graphics Compatibility System (GCS) library of plotting routines. SPECTRA first asks a number of questions allowing the user to control the analysis. These include the starting time of the data of interest, the number of data points desired, and the DFT block length. The starting time is approximately known from the analog preprocessing. A plot of the digital data allows for an even more precise determination of a starting point. Such plots are made by a FORTRAN program called DATPLOT (complete listing in Appendix II.5). The number of points to which SPECTRA is applied is also determined from a DATPLOT output. Figure 4.3 is an example of a plot by DATPLOT. The time
Figure 4.14 Spectra calculation from program SPECTRA.
Figure 4.15 Flow chart for program SPECTRA.
span of interest is multiplied by the digitizing rate to give the number of points to be analyzed. This sequence of points may be divided into smaller, possibly overlapping segments. It is these segments to which the Fourier analysis is applied.

The chosen length of the DFT may either match or exceed an individual data segment length, an inadequately long data segment being padded with zeros. When the data are segmented, the digital values are calibrated to give values of $\Delta N_e/\langle N_e \rangle$. A Hanning window is applied to each segment to produce a better power spectrum estimate. The DFT of each windowed data segment is found with a fast Fourier transform (FFT) routine in IMSL. The squared magnitude of the DFT times some scaling constants gives the power spectrum estimate. To correct for the various filters in the rocket experiment, SPECTRA divides the spectrum by the theoretical transfer function of the filters. This corrected spectrum is plotted using GCS graphics routines. The individual spectra are then averaged together to give a best estimate of the power spectrum. The averaged spectrum may be stored while a different averaged spectrum is calculated. Two spectra may be stored at one time.

A number of modifications to SPECTRA allow for further processing of the spectra. The aim of these processes is to produce a better estimate of the spectral index. First, two stored spectra may be averaged together. This allows for the spectra of two nonconsecutive segments to be averaged. Such an average may be necessary to avoid a data segment flawed by interference. Second, the difference of two spectra may be calculated. With this function an estimate of the background noise power spectrum may be subtracted from another spectrum with both signal and noise. Third, a spectrum may be smoothed by dividing the frequencies into groups whose size
increases with frequency by a constant factor. This has the effect of dividing a logarithmic frequency axis into equal segments. The corresponding magnitudes in each frequency range are averaged and plotted.

To study the effects of spin on the power spectrum, a moving average is applied to the raw data prior to spectral analysis. This process is performed by a FORTRAN program called SPINFIX (complete listing in Appendix II.6) which convolves an entire file of data points with a rectangular window function. The window has height of unity and length equal to the spin period. In the frequency domain this process transforms to multiplying the power spectrum by \(\frac{T_p^2 \sin^2(\omega T/2)/(\omega T/2)^2}{T_p} \), where \(T_p \) is the number of data points in a spin period, \(T \) is the spin period in seconds, and \(\omega \) is the angular frequency. The filtering action of the averaging necessitates some minor changes to SPECTRA. Multiplying the calculated power spectrum by \(\left(\frac{\pi TF}{T_p}\right)^2 \) leaves a spectrum multiplied only by \(\sin^2(\pi fT) \) where \(f \) is the frequency. This should eliminate strong peaks at multiples of \(1/T \), the spin frequency. The power spectrum of the data in Figure 4.3 is shown in Figure 4.16. Figure 4.17 shows the power spectrum of the same data after SPINFIX is applied. The FFT length is chosen to extend over at least one spin period. Figure 4.17 shows a dramatic reduction of spectral power in the lower frequency ranges.

4.7 Summary

The analysis described in this chapter may be viewed as a series of refinements toward the ultimate goal of estimating the power spectrum and the spectral index. Irregularities must first be identified and distinguished from noise added by the experimental apparatus. The identification is achieved by the analog processing system developed by Klaus and Smith (1978). This system also provides a rough estimate of the fine structure
Figure 4.16 Spectrum of spin noise before application of program SPINFIX.
Figure 4.17 Spectrum of spin noise after application of program SPINFIX.
spectrum. Once interesting portions of the signal are identified, the data may be digitized. Detailed plots of the digital data provide the exact locations of irregularities within the data record. These irregularities are then subjected to digital analysis. The resulting spectrum has far better resolution than that afforded by the analog analysis. Smoothing and noise subtraction provide further ways of improving the spectral index estimates.
5. RESULTS

5.1 Introduction

This chapter presents some results of the analysis described in Chapter 4. Fine structure data are examined from the nine daytime rocket flights since 1975 that have carried the fine structure experiment. Possible ionospheric irregularities are found with five of the nine flights, and power spectra of the irregularities are calculated. Many spectra exhibit a wave number range with a spectral index close to \(-5/3\), consistent with the existence of an inertial range of turbulence. The slope and wave number range of the best fit lines to the spectra are tabulated. Of particular interest is the upper wave number extent of the best fit line. This limit is compared to predictions made by Rastogi and Bowhill (1976).

Section 5.2 describes each rocket flight on which irregularities are observed. A particular irregularity from the 28 May 1975 Peru flight is analyzed to illustrate the analysis procedure. Measured parameters of all observed irregularities are tabulated. Section 5.3 discusses the results derived in Section 5.2 and makes comparisons to the spectral model of Hill and Bowhill (1976) and to the inertial range predictions of Rastogi and Bowhill (1976). Section 5.4 presents the conclusion that the observed irregularities are consistent with those expected from atmospheric turbulence.

5.2 Observations of Irregularities

The 28 May 1975 Peru flight was launched from the Punta Lobos rocket range at Chilca, Peru at 15 26 local standard time (LST). The coordinates of the site are 12.5° S and 76.8° W. The prime objective of the flight was to observe the equatorial electrojet. This site is particularly interesting
since the Jicamarca radio observatory is located only 60 km north of the rocket range. The close proximity of the two sites facilitates coincident rocket and radar measurements. More details of the launch operations and flight are available in Klaus and Smith (1978), including comparison of Langmuir probe electron density measurements to incoherent scatter measurements taken at Jicamarca.

The fine structure data from the 28 May 1975 Peru flight, although containing some interference, in general are of exceptional quality. There is no discernible spin contamination since a nose tip probe was used. Analog preprocessing produces the strip chart records shown in Figure 4.5. The data are marred by interference spikes appearing every half second, attributable to an RF resonance probe on the rocket. Two isolated noise spikes occur at 70.3 and 84.8 km. Their source is unknown, but the shortness and strength of the spikes suggest they are due to interference. Not so easily explained are the four fluctuations seen following the large spike at 84.8 km. Examination of the digital record reveals no obvious common features between them. They cannot be attributed to spin since their spacing is not exactly regular or close to the spin period. Aside from these three groups of isolated noise spikes, the only other noise present is the unavoidable noise due to the telemetry system.

The fine structure data reveal the presence of six irregularities between 70 and 90 km. Table 5.1 lists their altitudes and vertical extent. To illustrate the analysis process, the irregularity at 74.9 km is considered here in detail. The top plot in Figure 5.1 shows a portion of the digital record at 74.9 km. This represents the raw fine structure signal without correction for the various filters in the experiment. In particular the observed signal is not corrected for the low frequency
Table 5.1 Parameters of irregularities for nine rocket shots. No irregularities are found with the last four shots listed.

<table>
<thead>
<tr>
<th>Rocket Flight</th>
<th>Altitude of Center of Irregularity (km)</th>
<th>Irregularity Thickness (km)</th>
<th>Maximum $\Delta n_e/<N_e>$ (percent)</th>
<th>$<N_e>$ (cm$^{-3}$)</th>
<th>Electron Concentration Gradient (cm$^{-3}$/km)</th>
<th>Slope of Best Fit Straight Line</th>
<th>Approximate Limits of Spatial Frequency for Best Fit Line (rad/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilca, Peru 28 May 1975 (#14,532)</td>
<td>87.5</td>
<td>0.67</td>
<td>12</td>
<td>9.6×10^2</td>
<td>$(1.0 \pm 2.2) \times 10^3$</td>
<td>-1.8</td>
<td>0.022 - 0.19</td>
</tr>
<tr>
<td></td>
<td>77.5</td>
<td>0.72</td>
<td>1.5</td>
<td>2.9×10^2</td>
<td>30 ± 5</td>
<td>-1.7</td>
<td>0.052 - 0.23</td>
</tr>
<tr>
<td></td>
<td>76.3</td>
<td>0.29</td>
<td>1.1</td>
<td>2.8×10^2</td>
<td>20 ± 10</td>
<td>-1.8</td>
<td>0.021 - 0.39</td>
</tr>
<tr>
<td></td>
<td>74.9</td>
<td>0.48</td>
<td>1.9</td>
<td>2.2×10^2</td>
<td>30 ± 5</td>
<td>-1.7</td>
<td>0.042 - 0.42</td>
</tr>
<tr>
<td></td>
<td>74.3</td>
<td>0.22</td>
<td>1.1</td>
<td>2.1×10^2</td>
<td>-20 ± 10</td>
<td>-1.9</td>
<td>0.020 - 0.13</td>
</tr>
<tr>
<td></td>
<td>70.8</td>
<td>0.43</td>
<td>0.65</td>
<td>1.1×10^2</td>
<td>30 ± 10</td>
<td>-1.6</td>
<td>0.040 - 1.8</td>
</tr>
<tr>
<td>Wallops Island, Virginia 18 January 1976 (#18,169)</td>
<td>82.2</td>
<td>0.44</td>
<td>7.2</td>
<td>9×10^3</td>
<td>10^2</td>
<td>-2.1</td>
<td>0.036 - 0.25</td>
</tr>
<tr>
<td></td>
<td>77.6</td>
<td>0.36</td>
<td>4.7</td>
<td>8×10^3</td>
<td>10^2</td>
<td>-2.1</td>
<td>0.034 - 0.24</td>
</tr>
<tr>
<td></td>
<td>73.5</td>
<td>0.60</td>
<td>4.9</td>
<td>3×10^2</td>
<td>10^2</td>
<td>-2.1</td>
<td>0.033 - 0.23</td>
</tr>
<tr>
<td></td>
<td>70.8</td>
<td>0.49</td>
<td><1.5</td>
<td>7×10^2</td>
<td>10^2</td>
<td>-2.1</td>
<td>0.032 - 0.59</td>
</tr>
<tr>
<td>Wallops Island 12 August 1976 (#18,1006)</td>
<td>83.5</td>
<td>0.66</td>
<td>13</td>
<td>4.3×10^3</td>
<td>$(8 \pm 1) \times 10^2$</td>
<td>-1.9</td>
<td>0.028 - 0.17</td>
</tr>
<tr>
<td>Wallops Island 8 January 1977 (#18,1008)</td>
<td>75.9</td>
<td>0.25</td>
<td><4.1</td>
<td>5.4×10^2</td>
<td>30 ± 10</td>
<td>-1.7</td>
<td>0.029 - 0.40</td>
</tr>
<tr>
<td>Peru 27 February 1983 (#31,028)</td>
<td>85.8</td>
<td>1.3</td>
<td>4.9</td>
<td>2.1×10^3</td>
<td>$(7.5 \pm 2.5) \times 10^3$</td>
<td>-1.5</td>
<td>0.010 - 0.17</td>
</tr>
<tr>
<td>Ontario 24 February 1979 (#18,1022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario 26 February 1979 (#18,1021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario 26 February 1975 (#18,1022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 12 March 1983 (#31,029)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.1 Upper plot shows portion of digital record from the 28 May 1975 Peru flight. Launch time at 15 26 (LST). Altitude of the irregularity center is 74.9 km. Lower plot shows the magnetometer output.
attenuation from the ac amplifier. Low frequency components thus appear
de-emphasized. The upper independent axis gives relative distance along the
flight path while the lower axis shows elapsed time from launch. The center
of the irregularity, at 900 m on the distance scale, occurs at 74.9 km
altitude. Interpretation of the observed temporal fluctuations as spatial
fluctuations with scale sizes read directly from the distance axis requires
the assumption of isotropy. With this assumption, a temporal oscillation
with frequency f corresponds to a spatial oscillation with wave number k
given by
\[k = \frac{2\pi f}{v} \]
(5.1)

where \(v \) is the rocket velocity. Most spectra presented in this chapter,
although calculated for temporal frequencies, display a wave number axis
with values found from equation (5.1).

The two-sided character of the 74.9 km irregularity suggested by Figure
4.5 shows up quite strongly in Figure 5.1. It might be suspected that the
two distinct portions of the irregularity are the result of rocket spin.
However, analysis of the irregularity reveals two countering arguments.
First, as observed in Figure 4.3, each cycle of the spin modulation should
closely resemble the neighboring cycles. This is not the case in the top
portion of Figure 5.1. Second, any matching features of the two suspected
cycles should be separated exactly by the spin period. A portion of the
magnetometer signal coincident with the irregularity is shown in the bottom
portion of Figure 5.1. The spin period is measured to be 0.245 seconds. In
contrast, the time displacement between the two large dips on the left of
each apparent spin cycle in Figure 5.1 is 0.207 seconds.

Two power spectra are estimated, one for each of the two prominent
halves of the irregularity. The two power spectra each have an FFT length
of 512 points. The average of the two spectra is shown in Figure 5.2a. The frequency scale is converted to a wave number scale using equation 5.1 with a speed of 1.50×10^3 m/sec. The units on the vertical axis are converted from Hz$^{-1}$ to (rad/m)$^{-1}$. A noise floor due to the telemetry system is seen at approximately 10^{-7} (rad/m)$^{-1}$. This limits the useful wave number range to below 1 rad/m, where the irregularity spectrum crosses the noise floor. To help measure the spectral index, a noise estimate, Figure 5.2b, is subtracted from the averaged spectrum. The difference is shown in Figure 5.2c. The data used in calculating the noise estimate come from a data segment adjacent to the irregularity. The observed noise is attributed to the telemetry system. Since the telemetry noise enters the signal after the ac amplifier, the SPECTRA correction for the high pass filtering boosts the low frequency telemetry noise components above their actual level. This partially accounts for the spectral strength at low frequencies observed in Figure 5.2b. The difference spectrum is smoothed by SPECTRA using the process discussed in Chapter 4. The window multiplication factor is 1.4. The resulting smoothed spectrum is shown in Figure 5.2d.

Three separate regions of the smoothed spectrum may be distinguished. A line may be fitted between the first point on the left and the point at 0.23 rad/m. The best fit line has a slope of -1.7. The second region, between 0.23 and 2.6 rad/m, exhibits a slope of -3.7. The third region is that above 2.6 rad/m. In this region telemetry noise overwhelms the signal and little information may be extracted. The V-shaped dips shown in Figure 5.2d are an artifact of the computer plotting routine, which rounds up off-scale points to the lowest point on the graph. The average of a set of points on the difference spectrum (Figure 5.2c) may be negative and hence off-scale. Negative points are therefore set to the lowest point on the
Figure 5.2a Power spectrum estimate of the irregularity shown in Figure 5.1.
Figure 5.2b Estimated noise power spectrum for the 74.9 km irregularity.
Figure 5.2c Difference between the irregularity power spectrum and the noise power spectrum shown in Figures 5.3a and 5.3b, respectively.
Figure 5.2d Smoothed difference spectrum with window multiplication factor of 1.4.
vertical axis.

Figure 5.3 shows the smoothed power spectrum of an irregularity at 87.5 km. The best fit line to the wave number region below 0.19 rad/m has a slope of -1.8. The second steeper slope has a value of -7.5. The total power is much greater than that in the irregularity at 74.7 km. Figure 5.4 shows the electron density profile from the 28 May 1975 Peru flight. Note that the altitude of the 87.5 km irregularity coincides with a large electron density gradient. It might be suspected that the irregularity is merely the response of the ac amplifier to the sudden increase in electron density. However, the data record at times immediately following the irregularity shows very little activity, in spite of the continued presence of the gradient. It is thus reasonable to assume that the source of the irregularity is geophysical and not instrumental.

The results described above are given in Table 5.1, along with the results from other irregularities from the 28 May 1975 Peru flight. The wave number range over which the power law extends is determined from the unsmoothed difference spectra. In most cases the best fit line extends to the lowest wave number on the spectrum. The low limit listed in Table 5.1 thus reflects the lowest wave number for which the DFT is calculated and is a function of the FFT size and the digitizing rate. The high limit listed is the largest wave number at which the spectrum remains on the best fit line.

As mentioned previously, the digitized fine structure signal (e.g., Figure 5.1) is not corrected for the low frequency attenuation from the ac amplifier. To measure the maximum deviation of an irregularity, this attenuation must be accounted for. To correct the observed maximum deviations, the main frequency component of the deviation is estimated and
Figure 5.3 Smoothed difference spectrum of the 87.5 km irregularity.
Figure 5.4 Electron concentration profile for the 28 May 1975 Peru flight.
the attenuation calculated. For example, the maximum deviation observed in Figure 5.1 is 1.2%. The main frequency component of the deviation appears to be 44 Hz. With a lower 3 dB frequency of 54 Hz, the amplifier attenuates a 44 Hz signal by 1.6. The corrected deviation is thus 1.6 x 1.2% = 1.9%. All deviations in Table 5.1 represent corrected values.

The 18 January 1976 Wallops Island flight was launched from Wallops Island, Virginia (37.80° N 75.5° W) at 14 12 LST. The primary purpose of the flight was to observe the winter anomaly. The rocket also carried a mass spectrometer prepared by the University of Bern, Switzerland. The placement of the spectrometer beneath the nose cone prevented the use of a nose tip probe configuration. Instead, the probes were placed on booms extended from the sides of the rocket payload. Unfortunately, the nose cone shell detachment to expose the spectrometer malfunctioned during the flight, damaging the telemetry system and the propagation experiment. Thus no calibration between electron density and probe current could be calculated. The probe and fine structure experiments were not damaged. A description of this flight is given in Edwards (1976).

Since no calibration is available for the probe current the electron density can be only roughly estimated. Processed values for the probe current are also unavailable. Fortunately, the raw probe current signal is available on analog tape (IRIG channel 15). Plotting this signal on a strip chart provides a way to measure the probe current, albeit with less accuracy than a digital analysis would yield. To convert the observed current to electron density, an average calibration value from other flights is applied. Using a calibration value of 3 x 10⁹ cm⁻³/A yields the concentration data shown in Table 5.1. Due to the coarseness of the probe current measurement and the high degree of spin contamination, calculations of the
electron density gradient are unreliable, and only order of magnitude estimates are given. It is possible to observe a large positive gradient in the probe current beginning at 84 km.

The data reveal four ionospheric irregularities. Their altitudes and thicknesses are given in Table 5.1. As observed in Figure 4.3, spin contamination is a serious problem in the fine structure data from the 18 January 1976 Wallops Island flight. To calculate a power spectrum estimate, a number of noise samples are analyzed and their average spectrum subtracted from the irregularity spectrum. The segments of noise and irregularity data have the same phase with respect to the spin contamination. The slope and limits of the beat lines fit to the spectra are given in Table 5.1. A smoothed spectrum from the irregularity at 82.2 km is given in Figure 5.5.

The 12 August 1976 Wallops Island flight was launched at 10 54 (IST). The main purpose of the probe experiment on the rocket was to observe sporadic E layers. Details of the probe current analysis are given in Edwards (1977). The fine structure experiment again used a boom probe configuration. The spin contamination was very small. It should be noted that the propagation experiment data on this flight are unreliable above 84 km (Edwards, 1977). This unreliability contributes uncertainty to the electron density calculations above 84 km since the propagation experiment is used to calibrate the probe current.

Only one irregularity is observed in the data, occurring at 83.5 km. A smoothed spectrum from this irregularity is shown in Figure 5.6. This irregularity is superposed upon the steep electron density gradient often observed between 80 and 90 km. The peak fluctuation of the irregularity is unusually high: 13%.

The 8 January 1977 Wallops Island flight was launched at 14 03 (IST).
Figure 5.5 Smoothed difference spectrum of the 82.2 km irregularity from the 18 January 1976 Wallops Island flight.
Figure 5.6 Smoothed difference spectrum of the 83.5 km irregularity from the 12 August 1976 Wallops Island flight.
The primary purpose of the flight was to observe the winter anomaly. A description of the flight preparations is given in Edwards (1977). The data suffered from moderate spin contamination.

Only one irregularity was observed. As shown in Table 5.1, the irregularity extended over a relatively short altitude range. Figure 5.7 gives the smoothed spectrum. The large dip at 0.06 rad/m results from the estimated noise spectrum exceeding the estimated signal plus noise spectrum.

The 27 February 1983 Peru flight was launched from the Punta Lobos site at 11 33 (LST). Its principal purpose was to study electron concentration in the equatorial D and E regions. On this flight the fine structure experiment was modified to allow greater gain in the ac amplifier. These changes are documented in Roth (1982a, 1982b). The flight did not carry the mass spectrometer, permitting use of the nose tip probe configuration.

The data reveal one irregularity at 85.8 km, superposed on a steep electron density gradient. This irregularity is thoroughly investigated by Royrvik and Smith (1984) and is compared to simultaneous coherent scatter measurements at Jicamarca. A spectrum of this irregularity is shown in Figure 5.8.

5.3 Discussion of Results

All spectra calculated show a low wave number range over which a power law may be fitted. That the slope of this fitted line usually has a value close to -5/3 (Table 5.1) suggests the presence of an inertial range of turbulence. As a consequence of spectral aliasing, the one-dimensional spectra do not show the spectral decrease expected below the inertial range in the three-dimensional spectra. In the wave number ranges above the suspected inertial range, the measured spectra do not always demonstrate the same behavior. Some show a second power law range, as in Figures 5.2a and
Figure 5.7 Smoothed difference spectrum of the 75.9 km irregularity from the 8 January 1977 Wallops Island flight.
Figure 5.8 Spectrum of the 85.8 km irregularity from the 27 February 1983 Peru flight.
5.3, while others show a more curved decrease in spectral power. In all spectra the telemetry noise floor prevents observation of the upper wave number behavior over any sizable wave number range. It is interesting to note that three of the five flights discussed show irregularities superposed upon the electron density gradients. All three irregularities have quite high maximum $\Delta N_e / \langle N_e \rangle$ values.

Qualitative comparisons may be made with the spectral model of Hill and Bowhill (1976) described in Chapter 3. Figure 3.3 shows the predicted spectra for various values of the parameter ξ, equal to $2\beta (k^*/k_e)^{4/3}$. This parameter should be of the order of unity in the D region. The predicted spectrum for $\xi = 1$ shows no viscous-convective range or power law above the inertial range. No viscous-convective range is found in any of the irregularities observed, in agreement with the model. Figures 5.5, 5.6, 5.7, and 5.8 show a curved decrease as predicted by the spectral model. In contrast to the model, Figures 5.2a and 5.3 show a power law dependence above the apparent inertial range.

The results of Table 5.1 may be compared with predictions by Rastogi and Bowhill (1976) of the wave number extent of the $-5/3$ power law dependence. For two models of ε, Rastogi and Bowhill (1976) calculate the variation of k_4 with altitude. Figures 5.9a and 5.9b, using model 1 and model 2 of ε, respectively, show three wave number ranges. Below k_4 the energy spectrum should vary as $k^{-5/3}$. Above k_4 the spectrum is predicted to fall off exponentially. Superposed upon Figures 5.9a and 5.9b are the upper wave number limits given in the last column of Table 5.1. It should be noted that the calculated spectra used in creating Table 5.1 are one-dimensional spectra. As suggested by Figure 3.1, the upper limit of the $-5/3$ power law reaches a higher wave number in the three-dimensional
Figure 5.9a Suggested profile of cutoff wave number demarcating range where $-5/3$ power law holds ($k < k_c$). Wave number of Jicamarca (50 MHz) and Arecibo (430 MHz) incoherent scatter radars are shown. The wave number range used for VHF forward scattering is also shown. ε from model 1 (Rastogi and Bowhill, 1976).
Figure 5.9b Suggested profile of cutoff wave number demarcating range where -5/3 power law holds ($k < k_\nu$). Wave number of Jicamarca (50 MHz) and Arecibo (430 MHz) incoherent scatter radars are shown. The wave number range used for VHF forward scattering is also shown. ϵ from model 2 (Rastogi and Bowhill, 1976).
scalar spectrum than in the one-dimensional spectrum. The values in Table 5.1 thus underestimate the upper wave number limit of the apparent inertial range. Also, the values plotted in Figures 5.9a and 5.9b are from scalar spectra, as opposed to energy spectra. However, viscous and diffusive effects should be expected to begin at approximately the same wave number since \(k_c = k_d \) in the mesosphere. It is thus not surprising that the scalar spectrum inertial range extends to the same order of wave number as the energy spectrum as suggested by Figures 5.9a and 5.9b.

5.4 Conclusions

The scalar spectra shown in this chapter demonstrate consistency with theories of homogeneous, isotropic turbulence measured in one dimension. All the spectra show a definite wave number range over which the scalar spectrum varies as a negative power of \(k \). Most theories of turbulence predict an inertial range with a \(k^{-5/3} \) dependence. The data in Table 5.1 give spectral slopes close to \(-5/3\), consistent with an inertial range. Above the inertial range, turbulence theory predicts that viscous and diffusive effects cause a precipitous decrease in the spectrum. Due to the small Schmidt number, no viscous-convective range is expected in mesospheric turbulence.

Although not in agreement on the exact form, most turbulence theories predict an exponential decrease in the spectrum above the inertial range. Hill and Bowhill (1976) incorporate these theories into a model for the scalar spectrum. The model is extended to one-dimensional spectra under the assumption of isotropy. Many of the measured spectra agree qualitatively with the shape of the predicted spectrum. To show further consistency with turbulence theory the spectra are compared to predictions by Rastogi and Bowhill (1976). They predict the upper wave number extent of the inertial
range. The measured limits agree approximately to the predictions. Perhaps more importantly, the measured inertial limits decrease with increasing altitude, in agreement with the functional dependence on altitude predicted by Rastogi and Bowhill (1976). The agreement of the measured spectra with the models of Hill and Bowhill (1976) and Rastogi and Bowhill (1976) support the conclusion that the observed ionospheric irregularities are consistent with irregularities expected from atmospheric turbulence.
6. SUMMARY AND SUGGESTIONS FOR FUTURE WORK

6.1 Summary

Mesospheric electron density irregularities are often observed by both radar and rocket studies. These irregularities are suspected to be the result of turbulent advection of ions and electrons. Possible mechanisms for generating atmospheric turbulence include Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Turbulence may be qualitatively described as the cascading of energy from large scales to small scales. At the smallest scales the turbulent energy is dissipated by viscosity (for turbulence in a velocity field), or by molecular diffusivity (for turbulence in a scalar field). Most theoretical studies of turbulence attempt to estimate the spectrum of homogeneous, isotropic turbulence. Physically, such a spectrum gives the turbulent energy per wave number. Most theories predict an inertial range in the spectrum for flows with sufficiently high Reynolds number. The spectrum is expected to vary as $k^{-5/3}$ in the inertial range. The theories do not agree closely in describing the scalar spectrum above the inertial range, although most theories in general predict an exponential decrease with increasing wave number.

Langmuir probes on sounding rockets provide an in situ method of measuring mesospheric electron density irregularities. In the fine structure experiment flown by the University of Illinois, a Langmuir probe is extended from the rocket into the ionosphere. As the rocket passes through an irregularity, the probe current fluctuates in time. With the assumption of isotropy, temporal fluctuations are interpreted as spatial fluctuations measured in one dimension. The measured current from the probe is processed on board the rocket to produce a voltage proportional to $\Delta N_e/\langle N_e \rangle$. The
signal is telemetered to the ground and is stored on an FM analog tape.

Using digital analysis, the power spectra of the irregularities are estimated. The analog data are digitized with a microcomputer-based digitizer. The microcomputer stores the digital data on floppy disks. The data are then transferred to a CDC Cyber mainframe computer for spectral analysis. The FORTRAN program SPECTRA estimates the power spectra of the irregularities using an FFT routine available on the Cyber. Further processing subtracts estimates of the background noise spectra and smooths the result of the subtraction. These smoothed spectra help to identify spectral indices and general trends in the spectra.

The measured spectra appear consistent with the predictions of turbulence theory. The observed spectra all exhibit power laws with spectral indices close to -5/3, consistent with an inertial range of turbulence. Comparisons to a spectral model by Hill and Bowhill (1976) and to predictions of inertial range limits by Rastogi and Bowhill (1976) show further consistency with theory.

6.2 Suggestions for Future Work

There are two significant ways by which the fine structure experiment could be improved. Coincident radar measurements would help to establish the existence of a turbulent layer and perhaps help to determine isotropy. Reduction of telemetry noise would increase the upper wave number limit of the turbulence spectrum.

Coincident radar measurements of an irregularity would provide data unattainable from the Langmuir probe experiment. The coherent-scatter radar technique can measure a single component of the scalar spectrum. The advantage of the radar technique is its ability to measure a spectral component that in the rocket data is obscured by telemetry noise. The radar
thus provides insight into the shape of the spectrum at wave numbers above the inertial range. The combination of radar and rocket measurements is used by Royrvik and Smith (1984) to compare measurements of an irregularity from the 27 February 1983 Peru flight with coincident radar measurements at Jicamarca. Radar can also measure aspect sensitivity of an irregularity, an indication of anisotropy. This property cannot be measured by the fine structure experiment. Knowledge of isotropy is essential in allowing comparisons of measured one-dimensional spectra with theories predicting three-dimensional spectra.

Reduction of telemetry noise would increase the highest observable wave number of a measured spectrum. Telemetry noise could be greatly reduced by use of a digital telemetry system. One possible analog noise reduction scheme is described in Roth (1982b). Essentially, the method takes advantage of the relatively large spectral magnitude expected at low frequencies in an irregularity spectrum. The fine structure experiment described by Klaus and Smith (1978) uses an approximately 50 Hz 3 dB point in the ac amplifier high pass filter to prevent saturation of the telemetry system by the low frequencies. Further attenuation of the low frequencies allows the overall gain to be increased, giving a better ratio of signal to telemetry noise. The new system places the 3 dB point at 400 Hz and raises the ac amplifier gain to 400. The power spectra calculated from this new system show an order of magnitude decrease in the telemetry noise floor. Ideally the 3 dB point should occur just below the frequency at which the irregularity spectrum crosses the telemetry noise floor. Inclusion of this system in future rocket flights would raise the highest observable wave number of the calculated spectra.

The above analog noise reduction scheme could be improved by the use of
a more elaborate filter. If instead of a single-pole low pass filter the ac amplifier used a filter more closely matched to the expected irregularity spectrum, then the amplifier gain could be increased further, improving the ratio of signal to telemetry noise. SPECTRA could then easily correct the calculated irregularity spectra for the filter transfer function.
APPENDIX I FREQUENCY RESPONSE OF AN AC AMPLIFIER

To make corrections for the filtering of the ac amplifier used in the fine structure experiment, the upper and lower 3 dB points of the frequency response need to be known. Figure I.1 shows a circuit diagram of the amplifier circuit. The logarithmic electrometer driving the ac amplifier has an output impedance of 1 kΩ. Including the electrometer output impedance in series with the 11 kΩ resistor gives an amplifier gain of 100 and upper and lower 3 dB frequencies of 1.7 kHz and 60 Hz, respectively.

The frequency response of three amplifier circuits was measured. To simulate payload conditions, the amplifiers were tested after their incorporation into circuit modules used in an actual payload. A Hewlett Packard frequency synthesizer (model 3325A) was used as the input to the ac amplifiers. The frequencies at which the amplifier output was attenuated by $2^{-1/2}$ times the maximum output are given in Table I.1.

The deviation of the measured values from theoretical predictions does not seriously affect the data analysis. The measured lower 3 dB frequencies are in good agreement with the value of 54 Hz found by Klaus and Smith (1978) for the 28 May 1975 Peru flight. Unfortunately, the lower 3 dB frequencies were not measured on the other eight flights studied in this thesis. The lower 3 dB frequency is needed by SPECTRA to correct for the ac amplifier high pass filter. The value 54 Hz is adopted to represent the 3 dB point for all flights. Although the measured upper 3 dB frequencies differ markedly from the expected values, telemetry noise dominates the irregularity spectrum at frequencies of the order of the upper 3 dB frequency. Exact correction for the ac amplifier low pass filtering is thus unimportant. However, should telemetry noise be reduced on future flights.
Figure I.1 Circuit diagram of ac amplifier used in fine structure experiment.
Table I.1 Measured frequency response of ac amplifiers.

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>Lower 3 dB Frequency (Hz)</th>
<th>Upper 3 dB Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57</td>
<td>806</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>1140</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>1000</td>
</tr>
</tbody>
</table>
to such a level that the irregularity spectrum is stronger than the high frequency telemetry noise, then pains should be taken to accurately measure the upper 3 dB frequency.
APPENDIX II SOFTWARE LISTINGS

II.1 DIGIAUTOSTART

SOURCE FILE: DIGIAUTOSTART

0000: 1 ;THIS PROGRAM TAKES A LARGE NUMBER
0000: 2 OF SAMPLES FROM THE A/D CARD AND PUTS THEM IN A BUFFER. THE STARTING
0000: 3 ADDRESS IS GIVEN BY BUFN AND BUFL. SINCE BASIC MEMORY STARTS AT $9600
0000: 4 (WITH DOB LOADED) AND WORKS DOWN, DIGIAUTOSTART SHOULD BE LOADED A WAYS
0000: 5 BELOW THAT TO ALLOW FOR A BASIC PROGRAM. $8000 IS SUGGESTED. THE PROGRAM
0000: 6 PROGRAM DIGITIZER CONTROL TAKES UP ABOUT A PAGE OF MEMORY ($1000). AS IS,
0000: 7 THIS PROGRAM RUNS AT A DIGITIZING RATE OF 5 KHZ. THE JOHN BELL INTERFACE
0000: 8 CARD IS IN SLOT 4. THE A/D SLOT IS NOT FIXED BUT IS CONTROLLED BY CHNL.
0000: 9 THIS PROGRAM ALSO ASSUMES A REFERENCE FREQUENCY OR 100 KHZ, OR 10 USEC
0000: 10 PER REFERENCE PULSE. TO CHANGE THE DIGITIZING RATE THE DIGPAUS ASSIGNMENT
0000: 11 MUST BE CHANGED. TO CHANGE THE J.B. CARD SLOT THE BELSLT ASSIGNMENT MUST
0000: 12 BE CHANGED, BOTH CHANGES REQUIRE RECOMPILING. THE DATA COLLECTION IS
0000: 13 TRIGGERED BY A POSITIVE TRANSITION ON THE CAL LINE OF THE JOHN BELL CARD.
0000: 14 A 1 PULSE PER SECOND SIGNAL IS AVAILABLE FROM THE TIME CODE TRANSLATOR
0000: 15 IN THE ROCKET LAB. THE PROGRAM USES THE JOHN BELL CARD TO COUNT A
0000: 16 NUMBER OF EXTERNAL CLOCK CYCLES. WHEN THE COUNT IS UP, THE J.B. CARD
0000: 17 GENERATES AN AN INTERRUPT REQUEST SIGNAL. THE COMPUTER GETS OUT OF
0000: 18 THE LOOP AND JUMPS TO THE INTERRUPT SERVICE ROUTINE CALLED IHNDLR.
0000: 19 THIS PROGRAM IS A MODIFICATION OF A PROGRAM CALLED CLKREAD. CLKREAD
0000: 20 AND OTHER A/D PROGRAMS CAME WITH THE MOUNTAIN HARDWARE D/A A/D CARD.
0000: 21 DIGIAUTOSTART BY ROD STOLTZFUS, WRITTEN SEPTEMBER 1984
0000: 22 FOR THE AERONOMY LAB AT THE UNIVERSITY OF ILLINOIS.

--- NEXT OBJECT FILE NAME IS DIGIAUTOSTART.OBJ0

8000: 23 ORG $8000 ;PUT PROGRAM AT LOCATION $8000
8001: 24 START SEI ;CALLED FROM A BASIC PROGRAM, START JUMPS TO
8001: 25 ;SUBROUTINE INIT AND Initializes THE PERIPHERAL CARDS.
8001: 26 JMP INIT
8001: 27 STOP SEI ;RESTORES REGISTERS AND SUC.
8004: 28 JMP FINISH
8005: 29 JMP IHNDLR ;PROGRAM USES THE JOHN BELL CARD TO COUNT A
8006: 30 ;TEMPORARY REGISTER ARRAY.
8008: 31 ;DATA STORAGE LOCATIONS: POKED BY A BASIC PROGRAM.
8008: 32 """
8008: 33 """
8009: 34 ;DATA STORAGE LOCATIONS: POKED BY A BASIC PROGRAM.
8009: 35 """
8009: 36 CHNL DS 1 ;"A/D SLOT# * 16 + A/D CHANNEL NUMBER (0 TO 15)."
800A: 37 BUFRER DS 1 ;"HIGH BYTE OF STARTING ADDRESS OF THE BUFFER"
800B: 38 ;"WHICH HOLDS THE DATA. LOW BYTE ASSUMED TO BE $00."
800B: 39 ;"THIS ASSUMPTION MAY BE ALTERED BY CHANGING BUFL"
800C: 40 ;"IN THE INIT SUBROUTINE."
800D: 41 COUNT DS 2 ;"NUMBER OF SAMPLES TO BE TAKEN AND STORED."
800D: 42 NPO
800E: 43 NOP
800F: 44 INTDAH DS 1 ;"HIGH BYTE OF IHNDLR ADDR. PROBABLY EQUAL TO THE"
8010: 45 ;"HIGH BYTE OF THE ORG ADDRESS (SEE FIRST LINE)."
8011: 46 """
8011: 47 ;EXTERNAL VARIABLES NEXT
8011: 48 """
8012: 49 FLAG DBF $00 ;NOT USED
8013: 50 STATUS DBF $00 ;NOT USED
8014: 51 BUFL DBF $00 ;"USED FOR TEMPORARILY HOLDING A BYTE."
8015: 52 BUFL DB $00 ;"USED FOR TEMPORARILY HOLDING A BYTE."
8016: 53 SAMPLE DS 1 ;"USED FOR TEMPORARILY HOLDING A BYTE."
8017: 54 TMPFDB DS 1 ;"USED FOR TEMPORARILY HOLDING A BYTE."
8018: 55 """
8018: 56 """
8018: 57 """
8018: 58 """
8018: 59 """
8018: 60 """
8018: 61 """
8018: 62 """
110
0004: 63 BELSLT EQU 4 ;J.B. CARD IN SLOT 4.
C400: 64 JBBASE EQU BELSLT*256+49152 ;THE BASE ADDRESS OF THE J.B. CARD.
0010: 65 SETINT EQU 14 ;INTERRUPT ENABLE ADDRESS REGISTER ON THE J.B. CARD.
0009: 66 CLAIRQ EQU 9 ;J.B. CARD TIMERS INTERRUPT CLEAR AND COUNTER START.
0008: 67 TMADD EQU 8 ;LOW BYTE OF TMER2 LATCH.
0011: 66 CNTL EQU COUNT ;LOW BYTE OF ADDRESS CONTAINING THE NUMBER
010B: 69 ;OF SAMPLES TO BE TAKEN.
002: 70 DDRA EQU 2 ;DATA DIRECTION REGISTER A ON J.B. CARD.
0003: 71 DDRB EQU 3 ;DATA DIRECTION REGISTER B ON J.B. CARD.
5011: 72 CNTL EQU CNTL+1 ;HIGH BYTE OF SAME ADDRESS.
001B: 73 ACB EQU 11 ;AUX REGISTER ADDRESS ON J.B. CARD.
C408: 74 T2CL EQU JBBASE+TMADD ;ABSOLUTE ADDRESS OF TMER2 COUNTER LOW BYTE.
010B: 75 ;WRITING T2CL WRITES TO THE LATCH. READING T2CL
010B: 76 ;READS FROM THE COUNTER LOW BYTE.
C409: 77 T2CH EQU JBBASE+CLAIRQ ;ABSOLUTE ADDRESS OF HIGH COUNTER BYTE.
010B: 78 ;THERE IS NO TIMES 2 HIGH LATCH BYTE.
000D: 79 IPR EQU 13 ;INTERUPT FLAG REGISTER ADDRESS ON J.B. CARD.
C40D: 80 JBIFR EQU JBBASE+IPR ;ABSOLUTE ADDRESS OF IPR.
000C: 81 PCR EQU 12 ;ADDRESS OF PERIPHERAL CONTROL REGISTER.
C40D: 82 JBPCR EQU JBBASE+IPR ;ABSOLUTE ADDRESS OF J.B. PCR
C012: 83 DGPAUS EQU 18 ;THIS CONTROLS THE DIGITIZING PERIOD, SEE INTHDL.
C402: 84 JBBASA EQU JBBASE+DDRA ;ABSOLUTE ADDRESS OF DATA DIRECTION REGISTER A
C403: 85 JBBASB EQU JBBASE+DDRB ;ABSOLUTE ADDRESS OF DATA DIRECTION REGISTER B
001B: 86 ;
001B: 87 ;***
001B: 88 ;INTERRUPT HANDLER
001B: 89 ;***
001B: 90 ;THIS ROUTINE IMMEDIATELY RESTARTS THE J.B. CARD
001B: 91 ;COUNTDOWN. IT THEN TAKES A SAMPLE FROM THE A/D CARD,
001B: 92 ;FIGURES OUT WHERE THE NEXT FREE BUFFER ADDRESS IS,
001B: 93 ;STORES THE SAMPLE THERE, INCREMENTS THE VALUE OF THE
001B: 94 ;NEXT FREE BUFFER ADDRESS, AND DECREMENTS THE NUMBER
001B: 95 ;OF SAMPLES YET TO BE TAKEN.
001B: 96 ;
001B: 97 ;
001B: A5 45 98 INHULR LDA $45 ;THE APPLE INTERRUPT RESPONSE
001D: 99 ;PUTS THE ACCUMULATOR AT $45.
001D: 4D 100 FPA ;GET THE ACCUMULATOR FROM $45
001E: 101 ;AND PUT IT ON THE STACK.
001E: 4D 102 ;
001E: 8A 103 TXA ;RELOAD AND RESET TIMER2 LATCH ON J.B. CARD.
001F: 4D 104 FPA
0020: 4D 105 TYA
0021: 4D 106 TAY
0022: 4D 107 ;
0022: 4D 108 ;
0022: 4D 109 ;
0022: 18 110 CLC
0023: AD 08 C4 111 LDA T2CL ;LOAD ACCUMULATOR WITH THE LOW COUNTER BYTE,
0026: 112 ;WHICH AT THIS POINT WAS DECREMENTED BELOW ZER.
0026: 69 12 113 ADC #DGPAUS ;ADD 18 TO IT. SINCE TIMER2 RESTART IS 20 CYCLES
0026: 114 ;AWAY AND THE REFERENCE PULSES ARE 10 USEC LONG,
0026: 115 ;TWO REFERENCE PULSES WILL HAVE PASED
0026: 116 ;PASSED BY THE TIME TIMER2 IS RESTARTED
0026: 68 08 C4 117 STA T2CL ;REMEMBER THAT WRITING T2CL WRITES
0028: 118 TO THE LATCH NOT THE COUNTER.
0028: 119 ;THIS STEP RELoads THE TIMER LATCH APPROPRIATELY.
0028: 89 00 120 LDA #60
0029: 121 NOP
0022: 12 122 NOP
0027: 123 NOP
0030: 124 NOP
0031: 68 09 C4 125 STA T2CH ;STORE 0 IN THE HIGH COUNTER BYTE, STARTING TIMER2.
0034: AE 08 80 126 LDX CHNL
0037: EU 80 CO 127 LDA $0800.X ;READ A SAMPLE AND START ON A NEW READING.
003A: EA 128 NOP
003B: EA 129 NOP
003C: EA 130 NOP
003D: EA 131 NOP
0033: EA 132 NOP
003F: 68 80 CO 133 LDA $0800.X ;READ SAMPLE STARTED BY PREVIOUS LINE.
0042: 68 19 80 134 STA SAMPLE ;STORE THE SAMPLE IN A TEMPORARY LOCATION.
SO45:AD 17 80 135 LDA BUFL LOAD ACCUMULATOR WITH THE LOW BYTE OF THE
0048: 136 ; AVAILABLE BUFFER SPACE.
0048:8D 55 80 137 STA PATCH+1 STORE IT AT ADDRESS PATCH+1. NOTE THAT THIS
0049: 138 ALTERS THE PROGRAM ITSELF.
004B: AD 18 80 139 LDA BUFL LOAD THE HIGH BYTE OF THE BOTTOM OF AVAILABLE
004E: 8D 56 80 140 STA PATCH+2 BUFFER SPACE IT AT ADDRESS PATCH+2.
0051: AD 19 80 141 LDA SAMPLE GET THE STORE SAMPLE OUT OF THE TEMPORARY LOCATION.
0054:8D 00 01 142 STA PATCH STORE ACCUMULATOR IN THE ADDRESS GIVEN BY THE
0057: 143 ; NEXT TWO BYTES. THESE ARE THE VALUES PUT IN BY
0057: 144 THE PREVIOUS "STA PATCH" LINES.
0057:EE 17 80 145 INC BUFL THE VALUE OF $0100 IS JUST A PLACE HOLDER.
005A: AD 18 80 146 LBA BUFL ; LOAD THE HIGH BYTE OF THE BOTTOM OF AVAILABLE
005E: 8D 56 80 147 STA PATCH+2 BUFFER SPACE IT AT ADDRESS PATCH+2.
0060: 148 IDA SAMPLE GET THE STORE SAMPLE OUT OF THE TEMPORARY LOCATION.
0062:AD 10 80 149 LDA CHTL MAKE SURE THAT AT LEAST ONE SAMPLE WILL BE TAKEN.
0066:AD 10 80 150 LDA CHTL IF NOT FORCE AT LEAST ONE SAMPLE TO BE TAKEN.
0069:EE 10 80 151 INC BUFL INCREMENT THE NUMBER OF SAMPLES YET TO BE TAKEN.
006C: 152 INC CNTL IF CNTL WAS NOT DECREMENTED TO ZERO
006F:AD 18 80 153 LBA BUFL THEN LEAVE HNDLR.
0073:AD 10 80 154 LDA CNTL OTHERWISE CHECK CNTL TO SEE IF IT IS ZERO.
0076:AD 10 80 155 LDA CNTL IF CNTL IS ZERO THEN ALL
0079:AD 10 80 156 LDA CNTL REQUIRED SAMPLES HAVE BEEN TAKEN
007C:AD 18 80 157 LDA BUFL IF ALL REQUIRED SAMPLES ARE IN
007F:AD 18 80 158 LDA BUFL EXIT FROM THE DIGITALIZ.
0082:EE 0F 7D 159 INC CNTL EXIT FROM THE DIGITALIZ.
0085:EE 11 80 160 INC CNTL IF CNTL WAS NOT ZERO, DECREMENT IT SINCE
0088: AD 11 80 161 LDA CNTL CNTL WENT THROUGH ZERO.
008B:AD 11 80 162 LDA CNTL MAKE SURE THAT AT LEAST ONE SAMPLE WILL BE TAKEN.
008E: AD 00 08 163 BNE OKEY ; If none of the four samples are valid.
0091:AD 10 80 164 LDA CNTL MAKE SURE THAT AT LEAST ONE SAMPLE WILL BE TAKEN.
0094:AD 00 08 165 BNE OKEY IF NOT FORCE AT LEAST ONE SAMPLE TO BE TAKEN.
0097:AD 10 80 166 LDA CNTL LOAD AND STORE HIGH BYTE OF DATA BUFFER
009A:AD 00 08 167 STA BUFL AT BUFL.
009D:AD 00 08 168 STA BUFL LOAD BUFL.
00A0:AD 00 08 169 LDA #00010 LOAD BUFFER.
00A3:AD 17 80 16A STA BUFL STORE AT LOW BYTE OF INTERRUPT VECTOR.
00A6:AD 17 80 16B STA BUFL STORE AT LOW BYTE OF INTERRUPT VECTOR.
00A9: AD 00 08 16C BNE OKEY FOR INTO ON INTAH SEE
00AB:AD 00 08 16D BNE OKEY "DATA STORAGE LOCATIONS" SECTION.
00AD:AD 00 08 16E BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00AE:AD 00 08 16F BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00B1:AD 00 08 170 BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00B4:AD 00 08 171 BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00B7:AD 00 08 172 BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00BA:AD 00 08 173 BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00BC:AD 00 08 174 BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00BE:AD 00 08 175 BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
00BF:AD 00 08 176 BNE OKEY ; STORE AT THE INTERRUPT VECTOR HIGH BYTE.
; Configure Data I/O Register B lines as inputs.
LDA $000
STA JBBRDR

; Finish up initialization upon receiving a positive transition on line CAI.

; First clear the IFR. Then set up the peripheral control register to
; set the CAI interrupt flag on a negative CAI transition. Then set in a
; wait loop, monitoring the IFR. Once a flag is set start the counter and
; start digitizing.

; Note that the CAI interrupt enable bit is NOT set.
; It is only necessary to detect IFR being set.
; Do not want interrupt sequence to start.

; Clear the IFR.

; Interrupt set on a negative transition on CAI.

; Interrupt set on a negative transition on CAI.

; First clear the IFR.

; Clear the IFR.

; Clear the IFR.

; Load up Timer 2 latch

; Since the J.B. counter is running at this point, the following steps
; should not take longer than the total time counted down by the J.B. card.

; Since the J.B. counter is running at this point, the following steps
; should not take longer than the total time counted down by the J.B. card.

; The following routine is reached by a jump from INHL.R. Exit's purpose
; is to return to the basic program from the call to the wait loop.

; To do this the address of the
; wait loop, placed on the top of the stack by the interrupt,
; must be skipped over, bringing up the address of the basic statement
; after the call to the wait loop.

; The following routine is reached by a jump from INHL.R. Exit's purpose
; is to return to the basic program from the call to the wait loop.

; To do this the address of the
; wait loop, placed on the top of the stack by the interrupt,
; must be skipped over, bringing up the address of the basic statement
; after the call to the wait loop.
LDA #$FF ;Restore the
PLA
STA $3FF ;registers.

STA TMPHLD ;Save accumulator temporarily
PLP ;Take processor status byte from stack.

;This mimics
;the RTI instruction without returning to the
;interrupt call
;waste the return-to-wait-from-interrupt addresses.

;Get accumulator from temporary holding spot.

;Return to basic program, not to wait loop

JMP BACK

BCE
II.2 TEXTIFY

40 REM PROGRAM TEXTIFY. RODNEY STOLTZFUS, FEB.1 1984.
50 REM THIS PROGRAM CONVERTS A BINARY FILE TO A TEXT FILE
51 REM WITH THE FORMAT XYZXYZXYZ WHERE XYZ IS A THREE PLACE DECIMAL
52 REM INTEGER.
53 REM THE USER SUPPLIES THE START ADDRESS OF THE BINARY FILE IN
54 REM APPLE MEMORY.
55 REM THE RECORDS OF THE GENERATED TEXT FILE HAVE 20 THREE DIGIT
56 REM NUMBERS.
100 D$ = CHR$ (4)
110 INPUT "AT WHAT ADDRESS DOES THE BINARY DATA START IN MEMORY?"; START
120 INPUT "HOW MANY BYTES TO BE CONVERTED SHOULD BE A MULTIPLE OF 20."; LNG
130 INPUT "NUMBER OF FILE (N) ? (FILE NAME IS ROCKET TEXT#)"; N$
150 PRINT "RUNNING..."
200 PRINT D$"OPEN ROCKET TEXT"; N$
300 PRINT D$"WRITE ROCKET TEXT"; N$
410 REM START GIVES THE ADDRESS OF THE FIRST BYTE TO BE TRANSMITTED.
500 FOR J = 1 TO (LNG / 20)
550 C$ = ""
600 FOR I = 1 TO 20
610 REM ADD 1000 TO EACH NUMBER TO GIVE EACH NUMBER THE SAME LENGTH.
700 K = 1000 + PEAK (START + (J - 1) * 20 + (I - 1))
750 REM BUILD STRING WITH RIGHT 3 CHARACTERS OF THE OFFSET DATA
800 C$ = C$ + RIGHTS ((STR$ (K)), 3)
900 NEXT I
910 PRINT C$
920 Y = FRE (0)
1000 NEXT J
1100 PRINT D$"CLOSE ROCKET TEXT"; N$
1110 PRINT "FINISHED: DATA ON DISK"
1200 END
II.3 APL2CDC

PROGRAM APL2CDC(INPUT, OUTPUT, APLFIL, APLOUT, TAPE1=INPUT, + TAPE2=OUTPUT, TAPE3=APLFIL, TAPE4=APLOUT)
C
C THIS PROGRAM CONVERTS AN ICE FILE TO A FILE CAPABLE OF
C BEING READ BY THE PROGRAM SPECTRA AND OTHERS WITH THE
C SAME FORMAT NEED. THE ICE FILE CONVERTED IS TRANSFERRED
C FROM THE .APLFIL (SEE APPLE PROGRAM TEXTIFY FOR FORMAT).
C THE APPLE FILE IS CALLED ROCKET TEXT.
C THIS PROGRAM ASSUMES A 5KHZ DIGITIZING RATE AND A .05 SECOND
C RECORD LENGTH. TO CHANGE THIS, CHANGE THE LENGTH OF THE ARRAYS.
C AND FIX THE TIME SPACING BETWEEN RECORDS (I.E. CHANGE RECPRD,
C THE TIME PERIOD OF ONE RECORD)
C THE OUTPUT RECORDS HAVE THE FORMAT [F/DATA/F/F/F] WHERE F IS
C FILLER (I.E. IS ONLY TAKING UP SPACE) AND DATA IS THE DATUM.
C THIS FIVE POINT SEQUENCE IS CALLED A FRAME AND THERE ARE 250
C FRAMES PER .05 SECOND RECORD.
C TEXTIFY AND APL2DCDC WERE CREATED BY RODNEY STOLTZFUS
C DECEMBER, 1983
C AS OF FEB. 3, 1984 THE FORMAT OF THE APPLE FILE IS 20
C 3 DIGIT NUMBERS PER TEXT LINE. THIS CAUSES PROBLEMS AS THE
C APL2CDC OUTPUT SHOULD BE IN BLOCKS OF 250. THE SOLUTION IS
C TO READ IN 500 POINTS AT A TIME AND PRINT OUT 2 ARRAYS AT
C ONE PASS THROUGH SUBROUTINE REFORM. ESSENTIALLY THIS MEANS
C THAT THE NUMBER OF INPUT POINTS SHOULD BE A MULTIPLE OF 500
C RATHER THAN 250.
C
C***
C VARIABLE DICTIONARY
C***
C IARRAY: HOLDS THE INTEGER DATA BEFORE TRANSMITTING. IARRAY
C IS EQUIVALENT TO ARRAY(2 TO 1251).
C ARRAY : HOLDS THE IARRAY AND THE TIME CODE. THE TIME CODE IS
C IN ARRAY(1).
C DATNUM: IS THE TOTAL NUMBER OF DATA POINTS IN THE FILE
C DATA : IS AN ARRAY THAT HOLDS 500 PIECES OF RAW DATA.
C I,J,K : GENERAL PURPOSE COUNTERS.
C BLOCKS: GIVES THE NUMBER OF 250 POINT BLOCKS IN THE INPUT FILE.
C RECPRD: GIVES THE TIME DURATION OF ONE RECORD.
C***
C INTEGER DATA(500), I, J, K, DATNUM, BLOCKS, J19
C REAL TIME
C
C PRINT*, "WHAT IS THE UNIVERSAL TIME OF THE FIRST RECORD?"
C READ*, TIME
C PRINT*, "HOW MANY DATA POINTS ARE IN THE INPUT FILE?"
C PRINT*, "(MUST BE MULTIPLE OF 500. SEE OPENING PROGRAM COMMENTS)"
C READ*, DATNUM
C
C READ IN THE DATA IN DOUBLE BLOCKS
C BLOCKS=DATNUM/250
C DO 100 I=1,BLOCKS,2
C DO 100 J=1,500,20
C J19=J-19
C READ (3,900) (DATA(K),K=J,J19)
C CONTINUE
C
C INSERT THE FILLER DATA AND THE TIME CODE FOR TWO BLOCKS.

C WRITE THEM OUT TO TAPE6 (SEE PROGRAM STATEMENT).
C
CALL REFORM(DATA,I,TIme)
110 CONTINUE
900 FORMAT(20I3)
STOP
END
C
SUBROUTINE REFORM INSERTS THE EXTRA DATA POINTS, PUTS ON
C THE TIME MARK, PUTS THE DATA INTO ARRAY, AND WRITES OUT ARRAY.
C IT PUTS OUT TWO ARRAYS IN A PASS.
C
SUBROUTINE REFORM (DATA, RECNUM, TIME)
REAL ARRAY(1251), TIME, RECPRD
INTEGER RECNUM, DATA(500), IARRAY(1250), K
EQUIVALENCE (ARRAY(2), IARRAY(1))
C
C PUT IN EXTRA GARBAGE DATA POINTS
C
C SET THE RECORD DURATION TIME. FOR 5KHZ IT SHOULD BE .05 SECONDS.
C
RECPRD=.05
DO 210 K=1,2
DO 200 J=1,250
IARRAY((J-1)+5+1)=9999
IARRAY{((J-1)*5)+2)=DATA(J+250*(K-1))
IARRAY((J-1)*5)+3)=9999
IARRAY((J-1)*5+4)=9999
IARRAY((J-1)*5+5)=9999
200 CONTINUE
C
THE NEXT STATEMENT ATTACHES A TIME CODE RELATIVE TO TIME.
C WITH A RECPRD SECOND RECORD LENGTH, EACH AFFIXED TIME CODE SHOULD
C BE RECPRD SECONDS GREATER THAN THE PREVIOUS ONE.
C (RECNUM-1) IS USED SINCE THE NTH RECORD SHOULD HAVE A TIME CODE
C OF (N-1)*RECPRD, THE (K-1) IS USED SINCE SUBROUTINE REFORM PUTS
C OUT 2 RECORDS, ONE AT K=0 AND ONE AT K=1.
C
ARRAY(1)=TIME+(FLOAT(RECNUM-1)+(K-1)*RECPRD)
WRITE(4) ARRAY
210 CONTINUE
RETURN
END
II.4 SPECTRA

Program Spectra is an interactive routine which allows the computation of power spectra to be used in the calculation of fine structure irregularities. The fine structure data file to be analyzed is entered through device 3. The user is then prompted to provide information regarding the data and the analysis. A linear fit may also be performed on the data and the spectral index calculated. The user may store values of the spectral index and magnitude in array array. Program Spindex may then be used to plot the spectral index and magnitude as a function of altitude.

Prior to execution of Spectra, the user must provide certain parameters. These parameters are:

1) Gain -- This is the gain of the experiment.
2) Channel -- This refers to the channel number of the required data as stored on a CDC format tape.
3) MinMag -- This is the lower boundary on the plotting axis.
4) BandCal -- This is the array which contains the data calibrations as determined from Program CWCal.
5) Lolimit -- Lolimit is the lower bound on the frequency of data points to be included in the least squares fit.
6) Hilimit -- Hilimit is the upper bound on the frequency of data points to be included in the least squares fit.
7) FC -- This is the upper 3dB frequency of the telemetry low pass filter.
8) FAC -- This is the upper 3dB frequency of the AC amplifier.
9) FLE -- This is the upper 3dB frequency of the logarithmic electrometer.
10) Brand -- This is the number of the broadband amplifier output being processed. (To bypass deemph, set Brand = 0)

These values are entered under the title "Experiment Parameters" in the program. (Written by Bruce Tomei, 1983).

This version of Spectra is modified from the original version by Bruce Tomei. An attempt has been made to document major changes. Debugging of the original is not recorded. There is an extended plotter routine allowing inclusion of the rocket shot number, the launch time (in Universal Time), the number of seconds into the launch at which Spectra are desired, the rocket speed at that time, the altitude, the rocket angle off vertical, the FFT block length, the segment overlap, the digitization rate, the rocket spin rate, and the gain of the experiment.

New variables and constants are: SHOTNUM, ALTITUD, and ROCKETSPD. This version of Spectra does not ask for the angle, or the spin rate of the rocket.

Rodney Stoltzfus. 10/11/83

Another modification:
Spectra used to plot a string of sequential plots. You could plot as many as you wished out of the available segments. However, you could not pick out individual plots. For example, you could not plot only the fifth segment; you had to plot segments 1, 2, 3, 4, and 5.

The modification allows you to choose any available plot or plots. The computed average is over these selected plots rather than over the whole range of segments. This extensively constrains the average plot to cover only those spectra which are actually printed. You must plot all spectra you wish to have included in the average.

This modification is performed by putting the desired plot numbers in an array called Plots. You can include up to 99 plots.

The subroutine Select handles the construction of the array called plots.

2/16/84 Rodney Stoltzfus
MODIFICATION: SPECTRA NOW HAS THE ABILITY TO SAVE AVERAGE PLOTS FOR LATER PROCESSING. YOU CAN PUT AN AVERAGE PLOT INTO MEMORY LOCATIONS (CALLED PLOT BAYS) AND GO BACK TO CREATE MORE AVERAGE PLOTS.

PROCESSING INCLUDES AVERAGING TWO PLOTS, TAKING THE DIFFERENCE OF TWO PLOTS, PERFORMING AN INCREMENTED WINDOW AVERAGE, AND PLOTTING THE FINAL RESULT.

THERE ARE CURRENTLY TWO PLOT BAYS PLUS A WORKING BAY IN WHICH PROCESSED DATA IS KEPT. IF NECESSARY, MORE BAYS CAN BE IMPLEMENTED BY DECLARING NEW ARRAYS AND ADJUSTING THE SUBROUTINE CALLS.

NOTE: DEPENDING ON THE NUMBER OF PLOT BAYS, THE PROGRAM MAY REQUIRE MORE CENTRAL MEMORY THAN IS USUALLY GIVEN TO A RESEARCH ACCOUNT. IF THE PROGRAM WILL NOT RUN AT NORMAL TIMES, YOU MAY NEED TO HAVE YOUR CENTRAL MEMORY LIMITS EXPANDED.

3/12/84

SPECTRA WAS WRITTEN BY BRUCE TOMEI, 1983.

SPECTRA REQUIRES THE FOLLOWING EXTERNAL INFORMATION:
THE IMSL LIBRARY (ACCESSED BY GRAB, IMSL)
THE GCS LIBRARY (ACCESSED BY GRAB, GCS(3D))
AN INPUT FILE IN STANDARD ROCKET FILE FORMAT

PROGRAM SPECTRA (INPUT,OUTPUT,DATA1,INDEX,TAPE1=INPUT, TAPE2=OUTPUT,TAPE3=DATA1,TAPE4=INDEX)
INTEGER N,K,M,OVLP,WINDONO,DISPLAY,OPTION,CHANNEL,IHRS,IMIN,B,
NUMBER,FT1,FT2,REPEAT,M2,BAND,DIAGNATE,JJ,PLOTS(100),
TOTAL,QUES,PLTSIZE,FTPSIZE,
REAL DATA(4096),MAG(2049),MAGAVE(2049),FREQ(4096),X(4096),
BANDCAL(5),MAGMAX,MAGMAX,FREQMAX,FT1,FT2,SECS,GAIN,
MAGMIN,MAGMAX,SECT,SECS,SECS,GAIN,
ALTITUDE,ROCKSND,SYNTHAG(1025),SYNTHAG(1025),
WORKAG(1025),SAVFREQ1(1025),SAVFREQ2(1025),
WORKAG(1025),PARAMS1(10),PARAMS2(10),
WPARMS(10),WPARMS(10),
COMPLEX Z(2049)
EXTERNAL CABS
DATA Z,DATA,MAG,MAGAVE,X,FREQ,SYNTHAG1,SYNTHAG2,SYNTHAG,
SAVFREQ1,SAVFREQ2,WORKAG,PARAMS1,PARAMS2,
WPARMS,WPARMS/2048(*0.0),4096(*0.0),
2048(*0.0),2048*(*0.0),4096*(*0.0),
1025(*0.0),1025*(*0.0),1025*(*0.0),
1025(*0.0),1025*(*0.0),1025*(*0.0),10*(*0.0),
10(*0.0),10*(*0.0),10*(*0.0)

COMPLEX Z(2049)
EXTERNAL CABS
DATA Z,DATA,MAG,MAGAVE,X,FREQ,SYNTHAG1,SYNTHAG2,SYNTHAG,
SAVFREQ1,SAVFREQ2,WORKAG,PARAMS1,PARAMS2,
WPARMS,WPARMS/2048(*0.0),4096(*0.0),
2048(*0.0),2048*(*0.0),4096*(*0.0),
1025(*0.0),1025*(*0.0),1025*(*0.0),
1025(*0.0),1025*(*0.0),1025*(*0.0),10*(*0.0),
10(*0.0),10*(*0.0),10*(*0.0)

REMINDER TO CHECK EXPERIMENT PARAMETERS.
PRINT*,"REMINDER:MAKE SURE YOU HAVE SET THE EXPERIMENT"
PRINT*,"PARAMETERS CORRECTLY (I.E. GAIN,BANDCAL,ETC.)"
PRINT*,""

ENTER USER-SPECIFIED VARIABLES
PRINT*,"ENTER THE LAUNCH TIME. (HH MM SEC.)"
READ*,IHRS,IMIN,SECS
LTIME=FLOAT(IHRS*3600+IMIN*60)+SECS
10 PRINT*,"ENTER THE DESIRED STARTING TIME. (SECONDS AFTER LAUNCH)"
READ*,STIME
IF(REPEAT .EQ. 1)GO TO 50
PRINT*,"ENTER THE NUMBER OF DATA POINTS."

REMINDER TO CHECK EXPERIMENT PARAMETERS.
PRINT*,"REMINDER:MAKE SURE YOU HAVE SET THE EXPERIMENT"
PRINT*,"PARAMETERS CORRECTLY (I.E. GAIN,BANDCAL,ETC.)"
PRINT*,""

ENTER USER-SPECIFIED VARIABLES
PRINT*,"ENTER THE LAUNCH TIME. (HH MM SEC.)"
READ*,IHRS,IMIN,SECS
LTIME=FLOAT(IHRS*3600+IMIN*60)+SECS
10 PRINT*,"ENTER THE DESIRED STARTING TIME. (SECONDS AFTER LAUNCH)"
READ*,STIME
IF(REPEAT .EQ. 1)GO TO 50
PRINT*,"ENTER THE NUMBER OF DATA POINTS."
READ*,N
PRINT*,"ENTER THE SEGMENT LENGTH (MUST BE AN EVEN INTEGER)"
READ*,L
PRINT*," NUMBER OF SEGMENTS OVERLAP"
S=N/L
PRINT4,6,0
IF(G .EQ. 1) GOTO 40
DO 100 I=2,L
KREAL=FLOAT(N-(I-1))/FLOAT(L-(I-1))
IF(KREAL-AINT(KREAL))GT.0.020
K=IFIC(KREAL)
PRINT4.K,1-1
FORMAT(13X,14,19X,14)
100 CONTINUE
40 PRINT*,"ENTER THE NUMBER OF SEGMENTS"
PRINT*,"THE DATA SHOULD BE DIVIDED INTO"
READ*,K
OVLP=(L-K-N)/(K-1)
PRINT*,"ENTER THE DESIRED WINDOW, 1-RECTANGULAR" PRINT*," 2-BARTLETT" PRINT*," 3-HAMMING" PRINT*," 4-BLACKMAN" PRINT*," 5-BLACKMAN-HARRIS"
READ*,WINDOW
PRINT*,"ENTER THE FFT BLOCK LENGTH (MUST BE A POWER OF 2)"
READ*,N
M=N/2+1
PRINT*,"ENTER THE DESIRED PLOT. 1-LINEAR" PRINT*," 2-LOGARITHMIC" PRINT*," 3-NO PLOT"
READ*,OPTION
FIT2=2
DISPLAY=2
FITI=1
PRINT*,"DO YOU WISH TO PLOT INDIVIDUAL PERIODograms? 1-YES" PRINT*." 2-NO"
READ*,DISPLAY
THE FOLLOWING ALLOWS THE USER TO SELECT INDIVIDUAL PLOTS TO BE PLOTTED (AND INCLUDED IN THE AVERAGE). PLOTS(100) HOLDS THE RESPONSE TO THE QUESTION.
MODIFICATION TO ORIGINAL SPECTRA PROGRAM. SEE INITIAL PROGRAM COMMENTS OR COMMENTS FOR SUBROUTINE SELECT. 2/16/84
PRINT*,"DO YOU WISH TO DISPLAY AND AVERAGE ONLY CERTAIN PLOTS?" PRINT*," 1-YES, I ONLY WANT SOME OF THE SEGMENTS" PRINT*," 2-NO, I WANT ALL SEGMENTS AVERAGED"
READ*,PLOTS(100)
CALL SUBROUTINE SELECT. THIS WILL PUT THE DESIRED PLOT NUMBERS INTO THE ARRAY CALLED PLOTS. YOU CAN INCLUDE UP TO 99 PLOTS.
CALL SELECT(PLOTS,N,PLOTS,TOTAL)
PRINT*,"PERFORM LINEAR FIT TO INDIVIDUAL PERIODograms? 1-YES" PRINT*," 2-NO"
READ*,FIT2
30 PRINT*,"PERFORM LINEAR FIT TO AVERAGE PERIODogram? 1-YES" PRINT*," 2-NO"
READ*,FITI
PRINT*,"WHAT IS THE NUMBER OF THE ROCKET SHOT?"
READ*,SHOTNUM
PRINT*,"WHAT IS THE ALTITUDE FOR THIS ANALYSIS?"
READ*,ALTITUDE
PRINT*,"WHAT IS THE ROCKET SPEED AT THIS ALTITUDE?"
READ*,ROCKSPD
PRINT*,"WHAT IS THE DIGITIZING RATE OF THE DATA?"
READ*,DIGRATE
70 PRINT*,"ANY CHANGES? 1-YES" PRINT*," 2-NO"
READ*,S
IF(S .EQ. 1) GOTO 10
128

EXPERIMENT PARAMETERS

GAIN=35.000
CHANNEL=2
MINMAG=0.000000000001
BANDCAL(1)=115.50
BANDCAL(2)=5.0600
BANDCAL(3)=127.000
BANDCAL(4)=248.000
BANDCAL(5)=370.000
PRINT*, "DO YOU WANT TO CHANGE THE BANDCALS? 1-YES"
PRINT*, "2-NO"
READ*, QUE
IF (QUE .EQ. 2) GOTO 75
PRINT*, "ENTER THE BANDCALS AS YOU ARE ASKED:"
PRINT*, "BANDCAL(1)?"
READ*, BANDCAL(1)
PRINT*, "BANDCAL(2)?"
READ*, BANDCAL(2)
PRINT*, "BANDCAL(3)?"
READ*, BANDCAL(3)
PRINT*, "BANDCAL(4)?"
READ*, BANDCAL(4)
PRINT*, "BANDCAL(5)?"
READ*, BANDCAL(5)
75
LOLIMIT=100.0
HILIMIT=2500.0
FC=1050.0
FAC=1880.0
PLE=2500.0
BEGIN PROCESSING
50
RENEW 3
CALL LOAD(DATA,N,CHANNEL,LTIM,STIME,SNPTIM)
CALL CALINI(DATA,N,BANDCAL,GAIN)
CALL SPECTRUM(DATA,MAG,MAXMAC,FREQ,X,Z,N,K,M,M,H2,L,OVER,WINDOW, *
 SNPTIM,OPTION,DISPLAY,NUMBER,MINMAC,PITZ,FITZ, *
 LOMIT,HILIMIT,FC,FAC,FLE,BAND,LTIM,STIME,SNPTIM, *
 DIGRADE,TOTAL,FLTS)
CALL FILTCA(MAGAVE,FREQ,M2,FC,FAC,FLE)
CALL DEMPH(MAGAVE,FC,FAC,PLE)
CALL MAXMIN(MAGAVE,FREQ,MAXMAC,MAXFREQ,M,H2)
JJ=0
CALL STORE(MAGAVE,FREQ,M,H,BAND)
CALL PLOTTER(MAGAVE,FREQ,M,H,MACAVE,FREQ,MAXMAC,MAXFREQ,OPTION, *
 SLOPE,TINT,FITZ,LOLIMIT,HILIMIT,STIME,SNPTIM, *
 ALTITUD,ROCKSPD,INRE,INRE,SECS,DIGRADE,OVER,CAIN,JJ)
PRINT*, "DO YOU WANT TO STORE THE SPECTRAL INDEX? 1-YES"
PRINT*, "2-NO"
READ*, S
IF (S .EQ. 2) GOTO 60
CALL STORE(SLOPE,TINT,STIME,SNPTIM,INRE)
60
PRINT*, "ARE YOU FINISHED? 1-YES"
PRINT*, "2-NO"
READ*, S
IF (S .EQ. 1) STOP

**
THE FOLLOWING SECTION ALLOWS FURTHER ANALYSIS OF SPECTRUM.
SPECIFICALLY IT ALLOWS THE USER TO SAVE THE AVERAGE PLOT MADE BY
SUBROUTINE SPECTRUM, AND ALLOWS THE USER TO CREATE MORE SPECTRA.
THE SPECTRA ARE SAVED IN ARRAYS SAVMAG AND SAVHAG.
EACH ARRAY CAN HOLD UP TO 1025 POINTS (CORRESPONDING TO A 2048 POINT FFT.
*/
Frequencies associated with the saved magnitudes are in arrays SAVFRQ and SAVFRQ2. Certain plot parameters are stored in PARAM1 and PARAM2. The order of storage is time, number of points, and FFT size.

In addition to these three arrays there is a working plot called WORKMAG. WORKFRQ and WORKPARMS store the frequencies and the associated frequencies and parameters.

First, store the average plot in one of the plot bays. Also set up an array AVPARAM.

Print*, "Do you wish to store the last average plot? 1=YES" PRINT*, "2-NO"
READ*, QUES
IF (QUES .EQ. 2) GOTO 100
AVPARMS(1)=STIME
AVPARMS(2)=M
AVPARMS(3)=M

Display which plots are where

CALL PRTSTAT(PARAMS1, PARAMS2, WKPARMS)
PRINT*, "In which bay do you wish to store the average plot?"
PRINT*, "1-BAY1"
PRINT*, "2-BAY2"
PRINT*, "3-DON'T STORE"
READ*, QUES

Use subroutine TRANSPLT to switch the average plot into a plot bay.

IF (QUES .EQ. 1) CALL TRANSPLT(MAGAVE, FREQ, AVPARMS, SAVMAC1, SAVFRQ1, * PARAMS1)
IF (QUES .EQ. 2) CALL TRANSPLT(MAGAVE, FREQ, AVPARMS, SAVMAC2, SAVFRQ2, * PARAMS2)
100 CALL PRTSTAT(PARAMS1, PARAMS2, WKPARMS)
PRINT*, "Do you wish to continue to processing? 1=YES"
PRINT*, "2-NO, GO BACK"
PRINT*, "3-DON'T STORE"
READ*, QUES
IF (QUES .EQ. 2) GOTO 110
IF (QUES .EQ. 3) STOP

Begin processing

Ask the user which process is desired. The subroutine MENU asks this and returns with a number in QUES.

105 CALL MENU(QUES)

Any subroutine with "SET" in it merely sets up a call to the actual mathematical routine desired.

IF (QUES .EQ. 1) CALL DIFFSET(SAVMAC1, SAVFRQ1, PARAMS1, SAVMAC2, * SAVFRQ2, PARAMS2, WORKMAG, WORKFRQ, WKPARMS)
IF (QUES .EQ. 2) CALL WIDSET(SAVMAC1, SAVFRQ1, PARAMS1, SAVMAC2, * SAVFRQ2, PARAMS2, * WORKMAG, WORKFRQ, WKPARMS)
IF (QUES .EQ. 3) CALL TRNSSET(SAVMAC1, SAVFRQ1, PARAMS1, SAVMAC2, * SAVFRQ2, PARAMS2, * WORKMAG, WORKFRQ, WKPARMS)
IF (QUES .EQ. 4) CALL AVERSET(SAVMAC1, SAVFRQ1, PARAMS1, SAVMAC2, * SAVFRQ2, PARAMS2, WORKMAG, WORKFRQ, WKPARMS)
IF (QUES .EQ. 5) CALL PRTSTAT(PARAMS1, PARAMS2, WKPARMS)

FFTSIZE=IFIX(WKPARMS(3))
PLOTSIZE=IFIX(WKPARMS(2))
IF(QUES .EQ. 6) CALL PLOTTER(WORKMAG, WORKFRQ, FPBSIZE,
 * PLSIZE, MAXMAG, MINMAG, MAXFRQ,
 * OPTON, SLOPE, TINT, FIT1, LOGINT, HILIMIT,
 * WPARRMS(I), SHOTHUM, ALTITUDE, ROCKSPD, THRS,
 * IMIN, SEC0, BICRATE, VLP, GA*N, JJ)

IF(QUES .EQ. 8) CALL COPYSET(SAVMAG1, SAVFREQ1, PARAMS1,
 * SAVMAG2, SAVFREQ2, PARAMS2,
 * WORKMAG, WORKFRQ, WPARRMS)

IF(QUES .GT. 8) CALL PRINTERR(3)

C IF QUES WAS NOT EQUAL TO 7, GO BACK TO THE MENU.
C
IF (QUES .NE. 7) GOTO 105

C GO BACK TO THE BEGINNING OF SPECTRA FOR MORE PLOTS
C
110 PRINT+, "ARE YOU FINISHED? 1-YES"
 PRINT+, " 2-NO"
 READ+, QUES
 IF (QUES .EQ. 1) STOP
 PRINT+, "GO BACK TO MAKE MORE PLOTS."
 PRINT+, "DIFFERENT TIME, SAME ANALYSIS? 1-YES"
 PRINT+, " 2-NO"
 READ+, QUES
 REPEAT=0
 IF (QUES .EQ. 1) REPEAT=1
 GOTO 10

STOP
END

C SUBROUTINE LOAD READS A SPECIFIED CHANNEL ON A
C PDP11/23 CONVERTED TAPE AND STORES THIS DATA IN ARRAY
C DATA. THE NUMBER OF DATA POINTS TO BE READ AND THE
C TIME CORRESPONDING TO THE FIRST DATA POINT ARE ENTERED
C BY THE USER. IF THE STARTING TIME ENTERED DOES NOT
C CORRESPOND TO A SPECIFIC DATA POINT, THE FIRST DATA
C POINT OF THE DESIRED CHANNEL FOLLOWING THE GIVEN
C STARTING TIME WILL BE THE FIRST TO BE READ. FOLLOWING
C IS A LIST OF THE SUBROUTINE VARIABLES:
C (NOTE -- THE NUMBER IN PARENTHESES IN THE READ STATEMENT
C SPECIFIES THE DEVICE TO BE READ. THIS SHOULD BE MODIFIED
C IN ACCORDANCE WITH THE USER'S PROGRAM STATEMENT.)
C
DATA -ARRAY CONTAINING THE CHANNEL SAMPLES.
N -NUMBER OF SAMPLES TO BE READ.
LYME -LAUNCH TIME IN UNIVERSAL TIME (IN SECONDS).
TIME -TIME CORRESPONDING TO THE FIRST SAMPLE TO BE
 READ (IN SECONDS FROM LAUNCH).
PTIME -TIME CORRESPONDING TO FIRST SAMPLE IN A RECORD.
SMPTIME -CHANNEL SAMPLING PERIOD.
TIME -TIME OF DATA POINT IN UNIVERSAL TIME (LYME+
 STIME).
FRAME -THE FRAME NUMBER (A FRAME IS A SET OF FIVE DATA POINTS).
CHANNEL -THE DESIRED CHANNEL TO BE READ.
POINT -THE DATA POINT CORRESPONDING TO TIME
IOPOINT -THE LARGEST INTEGER LESS THAN OR EQUAL TO POINT.
STPOINT -THE FIRST DATA POINT TO BE READ (STARTING POINT).

SUBROUTINE LOAD (DATA,N,CHANNEL,LYME,TIME,SMPTIME)
REAL DATA(N),ARRAY(1251),LYME,TIME,SMPTIME,PTIME,POINT,
 * TIMEL1
INTEGER IARRAY(1250),IPOINT,STPOINT,CHANNEL
EQUIVALENCE (ARRAY(2),ARRAY(1))
TIME=LYME+STIME
READ(3) ARRAY
C LOCATE THE PROPER RECORD

C TIME1 IS THE TIME OF THE RECORD PREVIOUS TO THE DESIRED ONE.
THE .0001 IS USED TO PREVENT ROUND OFF ERRORS.
TIME1 = TIME - (SHPTIME*250.0000) + .0001
IF (ARRAY(1) .GT. TIME1) GOTO 20
GOTO 10

C POINT = (TIME - ARRAY(1))/ (SHPTIME/5.0) + 1.0
IF (POINT .LT. 0.000001) GOTO 30
POINT = POINT + 1
IF (POINT .LE. 1250) GOTO 30
READ(3) ARRAY
POINT = 1

C FRAME = (POINT - 1)/5 + 1
STPOINT = FRAME*5 + CHANNEL
IF (STPOINT .LE. STPOINT) GOTO 40
STPOINT = STPOINT + 5
IF (STPOINT .LE. 1250) GOTO 40
READ(3) ARRAY
STPOINT = CHANNEL

C READ IN THE DATA

C DO 100 I = 1, N
DATA(I) = FLOAT (ARRAY (STPOINT))
STPOINT = STPOINT + 5
IF (STPOINT .LE. 1250) GOTO 100
READ(3) ARRAY
STPOINT = CHANNEL
100 CONTINUE
RETURN
END

SUBROUTINE GLIB PERFORMS THE NECESSARY
CALIBRATIONS SO THAT THE DATA IS REPRESENTATIVE
OF THE OUTPUT FROM THE EXPERIMENT. THESE
CALIBRATIONS INCLUDE ADJUSTMENTS FOR EXPERIMENT
GAIN, DIGITIZER GAIN, SIGNAL OFFSETS, AND
DISCRIMINATOR NON-LINEARITIES. THE NON-LINEARITIES
ARE REMOVED WITH A CALIBRATION CURVE OBTAINED BY
A PIECEWISE-LINEAR FIT TO THE CALIBRATION VALUES
(BANDCAL(5)).

SUBROUTINE GLIB (DATA, N, BANDCAL, GAIN)
REAL DATA(N), BANDCAL(5), GAIN
INTEGER N
DO 100 I = 1, N
IF (DATA(I) .GT. BANDCAL(2)) GOTO 10
DATA(I) = ((1.25/(BANDCAL(2) - BANDCAL(1)))*DATA(I)
* (-1.25*BANDCAL(1)/(BANDCAL(2) - BANDCAL(1)))+2.5)/GAIN
GOTO 100
10 IF (DATA(I) .GT. BANDCAL(3)) GOTO 20
DATA(I) = ((1.25/(BANDCAL(3) - BANDCAL(2)))*DATA(I)
* (-1.25*BANDCAL(2)/(BANDCAL(3) - BANDCAL(2)))+1.25)/GAIN
GOTO 100
20 IF (DATA(I) .GT. BANDCAL(4)) GOTO 30
DATA(I) = ((1.25/(BANDCAL(4) - BANDCAL(3)))*DATA(I)
* (-1.25*BANDCAL(3)/(BANDCAL(4) - BANDCAL(3)))/GAIN
GOTO 100
30 DATA(I) = ((1.25/(BANDCAL(5) - BANDCAL(4)))*DATA(I)
* (-1.25*BANDCAL(4)/(BANDCAL(5) - BANDCAL(4)))+1.25)/GAIN
SUBROUTINE SPECTRM SEGMENTS THE DATA, REMOVES THE MEAN,
WINDOWS THE DATA, COMPUTES THE PERIODOGRAM, UPDATES AN
AVERAGE OF THE PERIODOGRAMS, AND THEN DISPLAYS THE
INDIVIDUAL PERIODOGRAMS. AN AVERAGED PERIODOGRAM IS
OBTAINED UPON RETURN FROM THE SUBROUTINE.

SUBROUTINE SPECTRM(
DATA, MAC, MAGAVE, FREQ, X, Z, N, K, M2, L, OVLP,
* WINDOW, SHIFT, OPTION, DISPLAY, NUMBER, NINHAG,
* FIT2, FIT1, LOLLIMIT, HILIMIT, PC, FAC, FLE, BRAND,
* LTIM, STIM, SHOTNUM, DIGRATE, TOTAL, PLOTS)
INTEGER N, K, M2, OVLP, D, L, WINDOW, IWK(12), DISPLAY, OPTION,
* NUMBER, S, BRAND, V, FIT1, FIT2, PLOTS(100), TOTAL, PRESPLT, DIGRATE
REAL DATA(N), MAG(M2), MAGAVE(M2), FREQ(M2), X(M), MEAN, WK(1),
* SHMTME, MAXMAG, MINMAG, MAXFREQ, LOLLIMIT, HILIMIT, PC, FAC, FLE,
* LTIM, STIM, SLOPE, YINT
COMPLEX Z(M2)

C INITIALIZE ARRAYS
DO 100 I=1, M2
 MAGAVE(I)=0.0
 Z(I)=((0.0,0.0))
100 CONTINUE

DO 700 I=1, L
 X(I)=0.0
700 CONTINUE

D=(N-OVLP)/K
S=1
PRESPLT=1

C BEGIN SPECTRAL ESTIMATION

PRINT*, PLOTS(1), PLOTS(2), PLOTS(3), PLOTS(100)

DO 200 J=1, K

C THE ARRAY PLOTS CONTAINS THE PLOT NUMBERS DESIRED BY THE USER.
C THE FOLLOWING STEP CHECKS WHETHER THE DESIRED PLOT NUMBER (CON-
C TAINED IN PLOTS(PRESPLT)) MATCHES THE J'TH PLOT ABOUT TO
C BE CALCULATED BY THE "DO 200" LOOP. IF THERE IS A MATCH THE
C LOOP IS EXECUTED AND PRESPLT IS INCREMENTED. IF THERE IS NO
C MATCH THE LOOP IS SKIPPED (J BEING AUTOMATICALLY INCREMENTED)
C AND AGAIN THE STEP SEES IF PLOTS(PRESPLT) = J.
C A MODIFICATION BY ROD STOLTZENUS, 2/16/84

PRINT*, PLOTS(PRESPLT), J
IV (PLOTS(PRESPLT) .NE. J) GOTO 200
PRESPLT=PRESPLT+1

C READ IN THE APPROPRIATE DATA SEGMENT.

DO 300 I=1, L
 X(I)=DATA(I+(J-1)*D)
300 CONTINUE

C MEAN REMOVAL

MEAN=0.0
DO 400 I=1, L
 MEAN=MEAN+(X(I)-MEAN)/FLOAT(I)
400 CONTINUE
 DO 300 I=1,L
 X(I)=X(I)-MEAN
300 CONTINUE
C APPLY WINDOW TO DATA.
C CALL WINDOW(X,L,M,WINDOLO)
C COMPUTE PERIODOGRAM
C FOR MORE INFORMATION ON FFTRC SEE THE IMSL DOCUMENTATION.
C CALL FFTRC(X,L,M,WINDOLO)
C DO 500 I=1,M2 (OPTIONAL)
C Z(I)=CONJG(Z(I)) (OPTIONAL)
C500 CONTINUE (OPTIONAL)
 DO 600 I=1,M2
 MAC(I)=(2.0*SMTIME/FLOAT(L))*(CABS(Z(I)))*2
 FREQ(I)=(I-1)/(FLOAT(M)*SMTIME)
600 CONTINUE
C AVERAGE PERIODOGRAMS
C DO 900 I=1,M2
 MAGAVE(I)=(1.0/FLOAT(TOTAL))*MAG(I)+HAGAVE(I)
900 CONTINUE
C DISPLAY INDIVIDUAL PERIODOGRAM
C IF(DISPLAY .EQ. 2)GOTO 200
IF(S .GT. NUMBER)GOTO 200
CALL FILECAL3(MAG,FREQ,M2,FC,FAC,PLF)
CALL DEMPHH(MAG,FREQ,M2,BAND)
CALL MAXMIN(MAG,FREQ,MAXMAG,MAXFREQ,M,M2)
CALL PLOTTER(MAG,FREQ,M2,MAXMAG,MAXFREQ,OPTION,SLOPE, *
 YINT,FITZ,LOLIMIT,HILIMIT,STIME,SHPTIME,ALTITUD, *
 ROCKSPD,TIMS,IMHS,SECS,DIGRATE,GVLP,GAIN,1)
IF(FITZ .EQ. 2)GOTO 10
PRINT*,"DO YOU WISH TO STORE THE SPECTRAL INDEX? 1—YES"
PRINT*," 2—NO"
READ*,V
IF(V .EQ. 1)CALL STORE(SLOPE,YINT, LTIME,STIME,SMPTIME,N)
10 S=S+1
200 CONTINUE
C RECONSTRUCT ARRAY FREQ() SINCE SUBROUTINE PLOTTER DESTROYS IT.
FOLLOWING LOOP ADDED ON B. TOMEY'S SUGGESTION. 10/24/83
C DO 999 I=1,M2
 FREQ(I)=(I-1)/(FLOAT(M)*SMTIME)
999 CONTINUE
RETURN
END
C SUBROUTINE MAXMIN CALCULATES THE VALUES OF MAXMAG, MAXMIN,
AND MAXFREQ AND ROUNDS THEM TO APPROPRIATE VALUES FOR AXES
PLOTTING.
C SUBROUTINE MAXMIN(MAG,FREQ,MAXMAG,MAXFREQ,M,M2)
INTEGER M,M2
REAL MAG(M2),FREQ(M2),MAXMAG,MAXFREQ
MAXMAG=0.0
MAXFREQ=FREQ(M2)
DO 100 I=1,M2
 IF(MAG(I) .GE. MAXMAG) MAXMAG=MAG(I)
100 CONTINUE

SUBROUTINE FILTCAL PERFORMS A CALIBRATION TO THE SPECTRUM IN ORDER TO COMPENSATE FOR THE ROLLOFF EFFECTS OF THE TELEMETRY FILTER, THE AC AMPLIFIER, AND THE LOGARITHMIC ELECTROMETER. THE TELEMETRY FILTER IS MODELLED AS AN IDEAL 3-POLE LOW PASS FILTER (SEE ZIMMERMAN, 1980). THE AC AMPLIFIER AND LOG ELECTROMETER ROLLOFFS ARE MODELLED AS SINGLE POLE LOW PASS FILTERS. THE INPUT PARAMETERS ARE:

- FC -- THE UPPER 3DB FREQUENCY OF THE TELEMETRY FILTER.
- FAC -- THE UPPER 3DB FREQUENCY OF THE AC AMPLIFIER.
- FEL -- THE UPPER 3DB FREQUENCY OF THE LOG ELECTROMETER.
- HC, HAC, HLE ARE THE MAGNITUDES SQUARED OF THE TRANSFER FUNCTIONS CORRESPONDING TO THE RESPECTIVE FILTER.

SUBROUTINE FILTCAL(MAG,FREQ,M2,FC,FAC,FLE)
INTEGER M2
REAL MAG(M2),FREQ(M2),OMEGA,PI,WC,WAC,WLE
PI=3.14159265
WC=2.0*PI*FC
WAC=2.0*PI*FAC
WLE=2.0*PI*FLE
DO 100 I=1,M2
 OMEGA=2.0*PI*FREQ(I)
 HC=7.53385*WC**6/C((2.10199*WC**2-OMEGA**2)**2
 (4.40165(WC*OMEGA)**2)+(1.75480*WC**2
 +OMEGA**2))
 VAC=WAC**2/(WAC**2+OMEGA**2)
 HLE=WLE**2/(WLE**2+OMEGA**2)
 MAG(I)=MAG(I)/(HC*HAC*HLE)
100 CONTINUE
RETURN
END

1) BRAND -- THIS NUMBER REFERS TO THE NUMBER OF THE BROADBAND AMPLIFIER WHOSE OUTPUT IS UNDER ANALYSIS. FOR BRAND = 0, DE-EMPHASIS IS BYPASSED.
2) WC -- THIS IS THE LOWER 3DB CUTOFF FREQUENCY OF THE BROADBAND AMPLIFIER.
3) HDE -- THIS IS THE MAGNITUDE SQUARED OF THE DE-EMPHASIS FILTER TRANSFER FUNCTION.

SUBROUTINE DEEMPH(MAG,FREQ,M2,BRAND)
INTEGER M2,BRAND,L
REAL MAG(M2),FREQ(M2),PI,OMEGA,WC,HDE
PI=3.14159265
IP(BRAND.EQ.0)RETURN

SUBROUTINE PLOTTER PLOTS THE POWER DENSITY VERSUS FREQUENCY OR SCALE SIZE IN LINEAR OR LOGARITHMIC FORM.
A LINEAR FIT MAY ALSO BE PERFORMED ON THE LOGARITHMIC PLOT.

NOTE THAT THIS SUBROUTINE WILL ROUND OFF POINTS WHICH ARE OFF THE PLOTTING SURFACE. THIS THE ROUTINE IS A BIT DESTRUCTIVE. A LOCAL COPY OF THE MAGNITUDE ARRAY COULD BE BE MADE IF ABSOLUTE INTEGRITY OF THE DATA IS REQUIRED.

IF CURVE FITTING IS CHOSEN, THE INPUT MAGNITUDE INFORMATION IS TOTALLY DESTROYED IN PROVIDING INFORMATION TO THE LINE FITTING SUBROUTINE.

SUBROUTINE PLOTTER (HAG,FREQ,M,M2,MAZMAG,MIRMAG,MAXFREQ,ONMN,
SLOPE,YINT,FIT,LOLIMIT,HILIMIT,BTIME,BHOTNUM,
ALTITUD,ROCKSPD,IHRS,IMIN,SECS,DIGRATE,OVL,P,
GAIN,PLOTNUM)

INTEGER M,MZ,OPTION,FIT,J,IHRS,IMIN,OVLP,DIGRATE,PLOTNUM
REAL MAG012),FREQ(M2),MA)OfAG, MINMAG,HAXFREQ,YINT, SLOPE,
+ GAIN,PLOTNUM)
INTEGER M,M2,OPTION,FIT,J,IBNS,IMIN,SECS,DIGRATE,PLOTNUM
REAL MAG012,MAG012),FREQ(M2),MA)OfAG,MINMAG,MAXFREQ,YINT,SLOPE,
ALTITUD,ROCKSPD,THNS,IMIN,SECS,DIGRATE,OVL,P,
SECS,GAIN,SHOTNUM,REALS,REALM,REALV,REALD,REALG,LOCNAG(2049)

SUBROUTINE PLOTTER ADJUSTS THE DATA TO FIT INTO THE LEGAL BOUND C OF THE REQUESTED PLOT. FOR EXAMPLE, IT CHANGES ANYTHING < MINMAG TO MINMAG. TO PRESERVE THE ORIGINAL DATA THE ORIGINAL DATA IS SAVED IN HAG.

DO 5 I=1,M2
5 CONTINUE

INITIALIZE PLOTTING PARAMETERS

CALL USTART

THE FOLLOWING DISPLAY CAPABILITY WAS ADDED BY RODNEY STOLTZB.
10/09/83.
TO USE, REMOVE THE C'S AT THE BEGINNING OF THE LINES.
ALSO MAKE SURE APPROPRIATE PARAMETERS ARE PASSED INTO SUBROUTINE PLOTTER AND SHOT.
CALL UWRITE(52.,98.,"ROCKET SHOT");"
CALL UWRITE(52.,95.,"LAUNCH TIME");"
CALL UWRITE(52.,95.,"PLOT NUMBER;")
CALL UWRITE(52.,92.,"SEC AFTER LAUNCH;")
CALL UWRITE(52.,92.,"SPEED");"
CALL UWRITE(52.,98.,"ALTITUDE");"
CALL UWRITE(52.,93.,"ROCKET ANGLE");"
CALL UWRITE(52.,80.,"SEG BLOCK LENGTH;")
CALL UWRITE(52.,77.,"SEGMENT OVERLAP;")
C CALL UWRITE(52.,75.,"DIGITIZING RATE ;")
C CALL UWRITE(52.,72.,"ROCKET SPIN RATE ;")
C CALL UWRITE(52.,69.,"GAIN ;")
CALL USET("PRECISION",6.)
CALL USET("REAL")
CALL UWRITE(84.,98.,SHOTNUM)
CALL UWRITE(84.,72.,SPINRAT)
CALL UWRITE(84.,83.,ANGLE)
CALL UWRITE(84.,86.,ALTITUD)
CALL UWRITE(84.,89.,ROCKSPD)

STIME IS THE TIME AFTER LAUNCH
WHEN STIME IS PASSED TO SUBROUTINE PLOTTER IT CONTAINS THE
TIME OF THE FIRST PLOT. IN PLOTTER, A LOCAL COPY CALLED TIME
IS USED FOR LOCAL HANDLING.

C IF PLOTNUM IS 0 THE AVERAGE PLOT IS BEING REQUESTED. THIS

C THE FOLLOWING FORMULA ASSUMES FFT LENGTH = SEGMENT LENGTH.
C
TIME=STIME+((FLOAT(PLOTNUM-1))+(FLOAT(M-OVLP))/(FLOAT(DIGRATE)))
IF(PLOTNUM .EQ. 0) TIME=STIME

CALL UWRITE(84.,92.,TIME)
CALL UWRITE(96.,95.,SECS)
CALL UWRITE(84.,69.,GAIN)
CALL USET("INTEGER")

C MUST MAKE ALL VARIABLES REAL TO BE PASSED WHEN PLOTTING.

CALL UWRITE(84.,95.,FLOAT(PLOTNUM))
CALL UWRITE(84.,95.,FLOAT(IN))
CALL UWRITE(84.,72.,FLOAT(DIGRATE))
CALL UWRITE(84.,77.,FLOAT(OVLP))
CALL UWRITE(84.,80.,FLOAT(N))
CALL USET("TEXT")

END DISPLAY MODIFICATIONS BY R.S.

CALL USET("XBOTHLABEL")
CALL USET("YBOTHLABEL")
CALL USET("OWNSCALE")
CALL USET("XLABEL",";")
CALL USET("YLABEL",";")
CALL USET("TERMINATOR",";")
CALL USET("VERTICAL",3.0)
CALL USET("HORIZONTAL",2.0)
CALL USET("SOFTWARE")
CALL UDAREA(0.0,MAXFREQ,0.0,MAG)
IF(OPTION .EQ. 2)GOTO 10

C PERFORM LINEAR PLOTTING

THE FOLLOWING THREE STATEMENTS MAY BE USED TO
SUPERCEDE THE OUTPUT OF SUBROUTINE HRMIN. IF
THIS IS DESIRED, REMOVE THE COMMENT MARKERS.

MINMAG=10E-12 (OPTIONAL)
MAXMAG=10E-4
MAXFREQ=1000.0 (OPTIONAL)
CALL UWINDO(0.0,MAG,0.0,MAG)
IF(OPTION .EQ. 2)GOTO 10

PERFORM LINEAR PLOTTING
CALL UPL0TI(FREQ,MAG,FLOAT(M2))
GOTO 20
C
C PERFORM LOGARITHMIC PLOTTING
C
10 CALL UWINDO(1.0,MAXFREQ,MINMAG,MAXMAG)
CALL USET("XYLOGARITHMIC")
CALL USET("LOGYAXIS")
CALL USET("LOGYAXIS")
J=0
DO 100 I=1,M2
IF(MAG(I) .LE. MINMAG) MAG(I)=MINMAG
IF(FREQ(I) .LE. MAXFREQ) J=J+1
100 CONTINUE
FREQ(1)=0.01
CALL UPL0TI(FREQ,MAG,FLOAT(J))
CALL UFLUSH
CALL UPAUSE
C
C RESTORE THE MAG USING THE SAVED LOCMAG.
C
DO 195 I=1,M2
MAG(I)=LOCMAG(I)
195 CONTINUE
C
C PERFORM LINEAR LEAST-SQUARES FIT IF FIT .NE. 2.
C
IF(FIT .EQ. 2)RETURN
FREQ(1)=0.0
C
FLAG DATA POINTS WITH MAGNITUDE EQUAL TO ZERO
C OR WITH FREQUENCY OUT OF LIMITS.
C
**** ORIGINALLY R. TOWEY HAD .EQ. IN THE SECOND PAIR OF FOLLOWING
**** CONDITIONALS. THEY HAVE BEEN CHANGED TO .LE.
**** R.S. 3/11/84
C
DO 200 I=2,M2
IF(FREQ(I) .LT. LOLIMIT)FREQ(I)=0.0
IF(FREQ(I) .GT. RILIMIT)FREQ(I)=0.0
IF(MAG(I) .LE. MINMAG)FREQ(I)=0.0
IF(MAG(I) .LE. 0.0)FREQ(I)=0.0
200 CONTINUE
C
C REMOVE FLAGGED DATA POINTS AND COMpress DATA
C
****FLAGGED POINTS ARE THOSE WITH FREQUENCY LESS
****THAN 0.1. IF THE PLOT'S LOWEST FREQUENCY IS
****LESS THAN 0.1 CHANGE THE CONDITIONAL WHICH
****REMovES THE DATA POINT
C
J=1
DO 300 I=1,M2
IF(FREQ(I) .LE. 0.0)GOTO 300
MAG(J)=ALOG10(MAG(I))
FREQ(J)=ALOG10(FREQ(I))
J=J+1
300 CONTINUE
C
C PERFORM LINEAR FIT
C
CALL ULIN0FT(FREQ,MAG,FLOAT(J-1),SLOPE,YINI
C
C GENERATE FITTED CURVE (THREE POINTS ONLY)
C
X1(1)=LOLIMIT
Y1(1)=(10.0**YINT)*(X1(1)**SLOPE)
X1(2)=(LOLIMIT+RILIMIT)/2.0
Y1(2)=(10.0**YINT)*(X1(2)**SLOPE)
X1(3)=RILIMIT
Y1(3)=(10.0**YINT)*(X1(3)**SLOPE)
C PLOT FITTED LINE
CALL USET("LINE")
CALL USET("OLDSCALE")
CALL UPL(1,1,1,3.0)
20 CALL UFLUSH
CALL UPAUSE
CALL UERASE
C RESTORE ARRAY MAG USING THE SAVED DATA IN LOCMA
DO 25 I=1,N2
MAG(I)=LOCMA(I)
25 CONTINUE
CALL UEND
RETURN
END
C C C
SUBROUTINE STORE STORES THE SPECTRAL INDEX DATA IN ARRAY
INDEX IN THE FOLLOWING FORMAT: TIME, SPECTRAL INDEX,
MAGNITUDE. ARRAY INDEX THEN SERVES AS THE INPUT ARRAY
FOR PROGRAM SPINDEX.

SUBROUTINE STORE (SLOPE, YINT, LTIME, STIME, SHPT, N)
INTEGER N
REAL SLOPE, YINT, LTIME, STIME, SHPT, AVTIME
AVTIME=(LTIME+STIME)+(FLOAT(N)*SHPT)/2.0
WRITE(4,11) AVTIME, SLOPE, (10.0**YINT)
11 FORMAT(1X, F9.2, 1X, P10.5, 1X, E13.6)
RETURN
END
C C C
SUBROUTINE WINDOW APPLIES A SPECIFIED WINDOW TO THE DATA
SEGMENT X. THE WINDOW IS SPECIFIED BY WINDONO. THE
WINDOWED DATA IS ALSO NORMALIZED BY THE INCOHERENT
POWER GAIN OF THE WINDOW (IPG).

SUBROUTINE WINDOW (X, L, WINDONO)
INTEGER L, J, N, WINDONO, M
REAL X(M), PI, IPG
PI=3.141592653
GOTO(10, 20, 30, 40, 50, 60) WINDONO
C
10 RETURN
C BARTLETT WINDOW
20 J=L/2
E=J+1
IPG=0.0
DO 100 I=1, J
WEIGHT=FLOAT(I-1)/FLOAT(J)
X(I)=X(I)*WEIGHT
IPG=IPG**2+IPG
100 CONTINUE
DO 200 I=J+1, L
WEIGHT=FLOAT(L-I+1)/FLOAT(J)
X(I)=X(I)*WEIGHT
IPG=IPG**2+IPG
200 CONTINUE
RETURN
END
DO 201 I-1,L
 X(I)=X(I)/SQRT(IPG)
201 CONTINUE
RETURN

C FANNING WINDOW
C
30 IPG=0.375
 DO 300 I-1,L
 WEIGHT=0.5*(1.0-COS(2.0*PI*(I-1)/L))
 X(I)=X(I)*WEIGHT/SQRT(IPG)
300 CONTINUE
RETURN

C BLACKMAN WINDOW
C
50 IPG=0.3666
 DO 500 I=1,L
 WEIGHT=0.42-0.5*COS(2.0*PI*(I-1)/L)+0.08*COS(4.0*PI*(I-1)/L)
 X(I)=X(I)*WEIGHT/SQRT(IPG)
500 CONTINUE
RETURN

C BLACKMAN-HARRIS WINDOW (4-TERM)
C
60 IPG=0.289672277
 DO 600 I=1,L
 WEIGHT=0.40217-0.49703*COS(2.0*PI*FLOAT(I-1)/L)
 +0.09392*COS(4.0*PI*FLOAT(I-1)/L)
 -0.00183*COS(6.0*PI*FLOAT(I-1)/L)
 X(I)=X(I)*WEIGHT/SQRT(IPG)
600 CONTINUE
RETURN
END

SUBROUTINE LIMITS ROUNDS THE VALUE OF MAX FOR EASE IN AXES
PLOTTING. FOR 10**(N+1) > MAX > 10**N , (N GREATER THAN OR
EQUAL TO 1.0), LIMITS ROUNDS THE VALUE OF MAX UP TO
THE NEXT (N-1)TH POWER OF TEN. FOR 10**-(N-1) > MAX > 10**-N ,
(N LESS THAN 1.0), LIMITS ROUNDS THE VALUE OF MAX UP TO
THE NEXT -(N+1)TH POWER OF TEN.

SUBROUTINE LIMITS (MAX)
REAL Z,Y,FACTOR,MAX,DELTA
IF(MAX .GE. 10.) GOTO 10
 DO 100 I=1,15
 Z=10.0**(I-16)
100 IF(MAX .GE. Z)FACTOR=10.0**(I-14)
 Y=(1.0+MAX/FACTOR)/10.0
 MAX=FACTOR*(Y+.1)
 RETURN
10 DO 200 I=1,8
 Z=10.0**(I+1)
200 IF(MAX .GE. Z)FACTOR=10.0**(I-1)
 DELTA=0.0
 IF(ANDD(MAX,FACTOR).GE.0.00001)DELTA=1.0

THE SUBROUTINE ALSO RETURNS NUMBER WHICH TELLS THE HIGHEST PLOT NUMBER REQUESTED. THIS VALUE IS NEEDED FOR OTHER SUBROUTINES, VARIABLE TOTAL CONTAINS THE TOTAL NUMBER OF INDIVIDUAL PLOTS BEING REQUESTED.

THE VARIABLE K CONTAINS THE NUMBER OF SEGMENTS THE DATA WILL BE DIVIDED INTO. IT IS THE MAXIMUM NUMBER OF PLOTS PERMITTED.

PLOTS(100) CONTAINS 1 IF INDIVIDUAL PLOTS ARE DESIRED, 2 IF ALL SEGMENTS ARE TO BE PLOTTED. IN THE LATTER CASE, PLOTS WILL CONTAIN 1 TO K.

SUBROUTINE SELECT(PLOTS,NUMBER,K,TOTAL)
INTEGER PLOTS(100),NUMBER,K,TOTAL,VER

INITIALIZE

50 NUMBER=0
PRINT","'GOT TO SELECT ROUTINE"

CHECK IF THE USER WISHES ALL POSSIBLE SEGMENTS OR JUST A FEW. PLOTS(100) IS 1 IF SELECTED PLOTTING IS DESIRED, 2 IF ALL ARE WANTED.

IF (PLOTS(100) .NE. 1) GOTO 400
PRINT","'ENTER THE TOTAL NUMBER OF DESIRED PLOTS"
READ*,TOTAL
IF (TOTAL .EQ. K) GOTO 400
PRINT","'ENTER THE DESIRED PLOT NUMBERS, ONE AT A TIME, AND"
PRINT","'IN ORDER AS YOU ARE QUERIED."

PUT THE PLOT NUMBERS INTO PLOTS. FIND THE HIGHEST PLOT NUMBER AND PUT IT IN NUMBER.

DO 100 I-1,TOTAL
PRINT","'PLOT NUMBER?"
READ*,PLOTS(I)
NUMBER=PLOTS(I)
100 CONTINUE

VERIFY THAT THE PLOT NUMBERS ARE IN ORDER.

VER=0
DO 200 I=1,TOTAL
IF (PLOTS(I) .LE. VER) GOTO 300
VER=PLOTS(I)
200 CONTINUE

IF THE PROGRAM GETS HERE, VERIFICATION IS COMPLETE AND THE SUBROUTINE CAN RETURN TO WHERE IT WAS CALLED FROM.

RETURN

VERIFICATION ERROR COMES HERE.
300 PRINT*, "***PLOT NUMBERS ARE NOT SEQUENTIAL. TRY AGAIN."
 PRINT*, "***REMEMBER, IF YOU WANT ALL THE PLOTS, RESPOND"
 PRINT*, "TO THE NEXT QUESTION WITH ",K
 GOTO 50

C IF ALL PLOTS ARE DESIRED, PUT IN ALL POSSIBLE PLOT NUMBERS,
THAT IS, 1 TO K.

400 NUMBER=K
TOTAL=K
DO 500 I=1,K
PLOTS(I)=1
500 CONTINUE
RETURN
END

SUBROUTINE MENU(QUES)
INTEGER QUES
C THIS SUBROUTINE EXPLAINS THE VARIOUS PROCESSES WHICH CAN BE
APPLIED TO STORED PLOTS. THE USER Chooses, SETTING QUES
TO 1-8.
C
PRINT*, "************THANK YOU************
PRINT*, "
PRINT*, "
PRINT*, "1) SUBTRACT PLOT #1 FROM #2. THE PLOTS MUST BE OF THE"
PRINT*, "SAME SIZE. THE RESULTING PLOT IS PLACED IN THE"
PRINT*, "WORK PLOT."
PRINT*, "
PRINT*, "2) MAKE AN INCREMENTED WINDOW AVERAGE OF THE WORK"
PRINT*, "PLOT. THE RESULT IS PLACED IN THE WORKPLOT."
PRINT*, "
PRINT*, "3) TRADE THE CONTENTS OF TWO PLOT BAYS. THE PLOTS"
PRINT*, "NEED NOT BE OF THE SAME SIZE."
PRINT*, "
PRINT*, "4) AVERAGE PLOTS #1 AND #2 TOGETHER. THE RESULT"
PRINT*, "IS PLACED IN THE WORK PLOT."
PRINT*, "
PRINT*, "5) SHOW THE TIME, SIZE, AND FFT SIZE OF PLOT BAYS."
PRINT*, "
PRINT*, "6) PRINT OUT THE WORK PLOT ONTO THE SCREEN."
PRINT*, "
PRINT*, "7) GO BACK FOR MORE PLOTS OR QUIT THE PROGRAM."
PRINT*, "
PRINT*, "8) COPY A STORAGE BAY TO THE WORK BAY."
PRINT*, "
PRINT*, "
PRINT*, "************THANK YOU************
PRINT*, "
PRINT*, TYPE IN YOUR CHOICE"
READ, QUES
PRINT*, "
PRINT*, "
RETURN
END
SUBROUTINE DIFFSET(SAVHACI, SAVFRQ1, PARAWSI, SAVMAG2, SAVFRQ2,
* PARAHS2, WORKHAC, WORKFRQ, WKPARNS)
C
THIS SUBROUTINE SUBTRACTS PLOTOI FROM PLOT#. THE TWO PLOTS MUST
BE OF THE SAME SIZE. THE RESULTING SPECTRUM IS PUT IN WORKHAC.
C
INTEGER QUES
REAL SAVHACI(1025), SAVMAG2(1025), SAVFRQ1(1025),
* SAVFRQ2(1025), WORKHAC(1025), WORKFRQ(1025),
* PARAHSI(10), PARAHS2(10), WKPARNS(10)
PRINT*, "THIS ROUTINE SUBTRACTS PLOTOI FROM PLOT#. THE PLOTS"
PRINT*, "MUST BE OF EQUAL SIZE. THE RESULTING PLOT IS"
PRINT*, "PLACED IN THE WORK PLOT"
CALL PRTPRNT(PARAWSI, PARAHS2, WKPARNS)
PRINT*, "DO YOU NEED TO SWITCH PLOTS 1 AND 2? 1-YES"
PRINT*, "2-NO"
PRINT*, "3-ABORT ROUTINE"
READ*, QUES
IF (QUES .EQ. 3) RETURN
IF (QUES .EQ. 1) CALL TRNSPLT(SAVHACI, SAVFRQ1, PARAHSI, SAVMAG2,
* SAVFRQ2, PARAHS2)
CALL DIFFRNC(SAVMAG1, SAVFRQ1, PARAHS1, SAVMAG2, SAVFRQ2, PARAHS2,
* WORKHAC, WORKFRQ, WKPARNS)
RETURN
END

SUBROUTINE WNDAVE(SAVHACI, SAVFRQ1, PARAHSI, SAVMAG2, SAVFRQ2,
* PARAHS2, WORKHAC, WORKFRQ, WKPARNS)
REAL SAVHACI(1025), SAVMAG2(1025), SAVFRQ1(1025), SAVFRQ2(1025),
* PARAHSI(10), PARAHS2(10), WORKHAC(1025), WORKFRQ(1025),
* WKPARNS(10)
INTEGER QUES

THE FOLLOWING DOES AN INCREMENTED WINDOW AVERAGE OF THE WORK PLOT.
THE RESULT IS PUT IN WORKPLOT ALSO.

PRINT*, "THIS ROUTINE COMPUTES AN INCREMENTED WINDOW AVERAGE OF THE "
PRINT*, "WORK PLOT. THE RESULT IS ALSO PUT INTO THE WORK PLOT."
PRINT*, "DO YOU NEED TO PUT A SAVED PLOT INTO THE WORK PLOT?"
PRINT*, "1-YES, BAYE1"
PRINT*, "2-YES, BAYE2"
PRINT*, "4-NO"
PRINT*, "5-ABORT"
READ*, QUES
IF (QUES .EQ. 1) CALL TRNSPLT(SAVHACI, SAVFRQ1, PARAHSI, WORKHAC,
* WORKFRQ, WKPARNS)
IF (QUES .EQ. 2) CALL TRNSPLT(SAVMAG2, SAVFRQ2, PARAHS2, WORKHAC,
* WORKFRQ, WKPARNS)
IF (QUES .EQ. 5) RETURN
CALL WNDAVE(WORKHAC, WORKFRQ, WKPARNS)
RETURN
END

SUBROUTINE TRNSPLT(SAVHACI, SAVFRQ1, PARAHSI, SAVMAG2, SAVFRQ2,
* PARAHS2, WORKHAC, WORKFRQ, WKPARNS)
REAL SAVHACI(1025), SAVMAG2(1025), SAVFRQ1(1025), SAVFRQ2(1025),
* WORKHAC(1025), WORKFRQ(1025), PARAHS1(10), PARAHS2(10),
* WKPARNS(10)
INTEGER QUES
SUBROUTINE COPYBET(SAVMAG1,SAVFRQ1,PARAMS1,SAVHAG2,SAVFRQ2,PARAMS2,WORKMAG,WORKFRQ,WKPARMS)
C THIS ROUTINE COPIES A STORAGE BAY TO THE WORK BAY. NOTE THAT
C THIS WILL DESTROY WHATEVER IS IN THE WORK BAY PREVIOUS TO THE
C CALL TO COPY THE WORK BAY TO A STORAGE BAY, TRADE THE WORK
C BAY WITH THE DESIRED STORAGE BAY, AND THEN DO THE COPYING.
C
INTEGER QUES
REAL SAVMAG1(1025),SAVHAG2(1025),WORKMAG(1025),
* SAVFRQ1(1025),SAVFRQ2(1025),PARAMS1(10),PARAMS2(10),
* WKPARMS(10)

PRINT*,"COPIES A STORAGE BAY TO THE WORK BAY"
PRINT*,"WHICH STORAGE BAY DO YOU WISH TO COPY?"
PRINT*,"1—BAY01"
PRINT*,"2—BAY02"
PRINT*,"3—ABORT ROUTINE"
READ*,QUES
IF (QUES .EQ. 1) CALL COPY(SAVHAG1,SAVFRQ1,PARAMS1,WORKMAG,
* WORKFRQ,WKPARMS)
IF (QUES .EQ. 2) CALL COPY(SAVHAG2,SAVFRQ2,PARAMS2,WORKMAG,
* WORKFRQ,WKPARMS)
IF (QUES .EQ. 3) RETURN
RETURN
END

SUBROUTINE AVRGSET(SAVMAG1,SAVFRQ1,PARAMS1,SAVHAG2,SAVFRQ2,PARAMS2,WORKMAG,WORKFRQ,WKPARMS)
REAL WORKFRQ(1025),SAVFRQ1(1025),SAVFRQ2(1025),PARAMS1(10),PARAMS2(10),
* WKPARMS(10)

PRINT*,"AVERAGES PLOT BAYS 1 AND 2. 1—CONTINUE"
PRINT*,"2—ABORT ROUTINE"
READ*,QUES
IF (QUES .EQ. 1) RETURN
IF (QUES .EQ. 2) RETURN

MAKE SURE BAYS 1 AND 2 ARE OF THE SAME SIZE

ERR=0
CALL SIZEERR(PARAMS1,PARAMS2,2,ERR)
IF(ERR .NE. 1) RETURN

PERFORM AVERAGING

CALL AVERAGE(SAVMAG1,SAVFRQ1,PARAMS1,SAVHAG2,SAVFRQ2,
* PARAMS2,WORKMAG,WORKFRQ,WKPARMS)
SUBROUTINE DIFFRNC(I4CHAGI, LOCPRQI, LOCPRAI, LOCAG2, LOCPRQ2,
 * LOCPAR2, WORKMAC, WORKFRQ, WKPARMS)
 INTEGER I, ERR, K
 REAL LOCAG1(1025), LOCPRQ1(1025), LOCAG2(1025), LOCPRQ2(1025),
 * WORKMAC(1025), WORKFRQ(1025), LOCPRAI(10), LOCAG2(10),
 * WKPARMS(10)

 CHECK TO SEE THAT THE TWO ARRAYS HAVE SAME SIZE.

 ERR = 0
 CALL SIZEERR(LOCPRAI, LOCPRAI, 1, ERR)
 IF (ERR .NE. 1) RETURN

 TAKE THE DIFFERENCE

 K = INTXLOCPRAI(2) + 1
 DO 100 I = 1, K
 WORKMAC(I) = LOCAG2(I) - LOCAG1(I)
 WORKFRQ(I) = LOCPRQ1(I)
 100 CONTINUE

 PUT LOCPRAI INTO WKPARMS, I.E. EXCHANGE PARAMETERS

 WKPARMS(1) = 0.0
 WKPARMS(2) = LOCPRAI(2)
 WKPARMS(3) = LOCPRAI(3)
 RETURN
END

SUBROUTINE WNDOAVE(WORKMAC, WORKFRQ, WKPARMS)
 INTEGER TOTLFRQ, K1, N, BINS, ENDCT
 REAL WNDOSIZ, POWRLAW, WNDOFREQ(1025), F1, M, M1(1025),
 * WORKMAC(1025), WORKFRQ(1025), MULTSZ, WKPARMS(10)
 PRINT*, "THIS ROUTINE COMPUTES A WINDOWED AVERAGE OF A"
 PRINT*, "PLOT IN THE WORK PLOT."
 PRINT*, "THE RESULTING PLOT IS PUT IN THE WORK PLOT."
 PRINT*, "IT WILL HAVE A DIFFERENT SIZE THAN THE INPUT"
 PRINT*, "PLOT."
 PRINT*, "THE FIRST FREQUENCY OF THE INPUT PLOT IS ", WORKFRQ(2)
 PRINT*, "WHAT SHOULD THE FIRST WINDOW FREQUENCY BE?"

 WNDOFREQ(1) SHOULD BE 0.0, CORRESPONDING TO WORKFRQ'S FIRST
 FREQUENCY BEING 0.0.

 READ*, WNDOFREQ(2)
 WNDOFREQ(1) = 0.0
 PRINT*, "WNDOSIZ = WNDOFREQ(2)
 PRINT*, "HOW MANY WINDOWS DO YOU WANT?"
 READ*, TOTLFRQ
 PRINT*, "WHAT SHOULD THE MULTIPLICATIVE WINDOW INCREMENT BE?"
 PRINT*, "(SHOULD BE GREATER THAN 1)"
 READ*, MULTSZ
 PRINT*, "TO WHAT POWER LAW DO YOU WISH TO FIT THE SPECTRUM?"
 PRINT*, "(SHOULD BE A NEGATIVE NUMBER)"
 READ*, POWRLAW
 PRINT*, "VALIDATE POWRLAW AND MULTSZ"

 IF (POWRLAW .LT. 0.0) CALL PERR(1)
 IF (POWRLAW .GT. 0.0) RETURN
IF (MULTSZ .LT. 1.0) CALL PRNTERR(2)
IF (MULTSZ .LT. 1.0) RETURN

C SET UP AN ARRAY OF THE LOWER FREQUENCIES OF EACH WINDOW
C THE FIRST TWO FREQUENCIES WERE DETERMINED BY WNDOSIZ AND
C THE USER SPECIFIED FIRST FREQUENCY.

DO 50 I=3,TOTLFRQ
 WND0FRQ(I)=(WND0FRQ(I-1)-WND0FRQ(I-2))*MULTSZ+WND0FRQ(I-1)
50 CONTINUE

C NOW SEARCH THROUGH THE WORKFRQ, FIND ALL POINTS THAT FALL IN
C A BIN, AVERAGE THEM, AND PLACE EACH AVERAGE SUCCESSIVELY IN
C THE WORKMAC. IF NO FREQUENCIES FALL IN A BIN, PUT ZERO IN THE
C PROPER WORKMAC SLOT.
C
C THIS MIGHT PLACE ZERO IN THE FIRST BIN AND IN THE HIGHER BINS
C IF TOTLFRQ TAKES THE SEARCH ABOVE THE HIGHEST FREQUENCY IN
C THE WORKFRQ ARRAY.
C
C THERE IS ONE LESS BIN THAN THERE ARE WINDOW FREQUENCIES.
C SO BINS=TOTLFRQ-1.
C
C LOOK THROUGH ALL BINS FOR APPROPRIATE POINTS.
C ALSO WATCH FOR EMPTY BINS. AFTER 2 EMPTY BINS IT CAN BE ASSUMED
C THAT NO FREQUENCIES EXIST IN THE HIGHER BINS. COUNT THESE WITH ENDCNT.
C EVERY TIME WE GET A BIN WITH AT LEAST ONE COUNT, RESET THE
C ENDCNT TO 0.
C
Ki=IFIX(WKPARMS(2)+.1)
ENDCNT=0
DO 300 I=1,BINS
 N=0
 ADDUP=0.0
 DO 200 J=1,Ki
 WNDOFRQ(I) IS THE LOWER FREQUENCY OF THE I'TH BIN, AND
 WNDOFRQ(I+1) IS THE UPPER FREQUENCY OF THE I'TH BIN
 IF((WORKFRQ(J) .GT. WNDOFRQ(I)) .AND. (WORKFRQ(J) .LT.
 WNDOFRQ(I+1))) 110,200
 110 N=N+1
 ADDUP=ADDUP+WORKFRQ(J)
 200 CONTINUE
C
C AT THIS POINT, N=0 MEANS NO POINTS WERE FOUND.
C ADJUST ENDCNT ACCORDINGLY.
C
 IF(N .EQ. 0) HI0BARY(I)=0.0
 IF(N .NE. 0) ENDCNT=0
 IF(N .EQ. 0) ENDCNT=ENDCNT+1
 IF(ENDCNT .EQ. 2) WKPARMS(2)=FLOAT(I)
 IF(N .NE. 0) HI0BARY(I)=ADDUP/(FLOAT(N))
300 CONTINUE

C CHECK IF THE DATA BINS WERE NOT ENOUGH TO COVER THE INPUT
C DATA. DO THIS BY CHECKING FOR ENDCNT LESS THAN 2. IF THIS
C IS THE CASE THEN WKPARMS(2) SHOULD BE SET TO BINS.
C IN ANY CASE PRINT OUT HOW MANY BINS WERE ACTUALLY USED.
C
 IF (ENDCNT .LT. 2) WKPARMS(2)=FLOAT(BINS)
 PRINT*, "THERE ARE ",WKPARMS(2), " FREQUENCY BINS IN THE"
 PRINT*, "INCREMENTED WINDOW AVERAGE SPECTRUM."
C
C NOW WE HAVE A COLLECTION OF AVERAGE MAGNITUDES FOR A SET OF BINS.
C TO PROPERLY ASSIGN EACH VALUE TO A PARTICULAR FREQUENCY IN
C A BIN WE MUST ACCOUNT FOR THE POWER LAW WEIGHTING.
C
DO 400 I=2,BINS
 F1=WND0FRQ(I)-WND0FRQ(I-1)
WORKFRQ(I) = (((WINDFREQ(I) * (MULTSZ * (1.0) - WINDFREQ(I) - (1.0)) / (POWRLAW + 1.0)) / (WINDFREQ(I) * (POWRLAW + 1.0))) / (1.0 / POWRLAW))

C NOW PUT THE TEMPORARY HOLDING ARRAY (HLDARRY) INTO THE WORKMAG ARRAY.

K1 = IFIX(WKPARMS(2) + .1)
DO 350 I = K1, K1
WORKMAG(I) = HLDARRY(I)
350 CONTINUE

C CHANGE THE PARAMETERS IN WKPARMS
WKPARMS(3) THE FFT SIZE IS THE SAME.

WKPARMS(1) = 0.0
RETURN
END

THE FOLLOWING SUBROUTINE MOVES ONE WORK ARRAY TO ANOTHER

SUBROUTINE TRANSPLX(LOCMAG1,LOCFRQ1,LOCPAR1,LOCMAG2,LOCFRQ2, LOCPAR2)
REAL LOCMAG1(1025), LOCMAG2(1025), LOCFRQ1(1025), LOCFRQ2(1025),
SAVEMAG, SAVEFRQ, SAVEPAR
INTEGER I, J, K, MAXSIZE

MAXSIZE = IFIX(LOCPAR1(2) + .1)
IF (LOCPAR2(2) .GT. LOCPAR1(2)) MAXSIZE = IFIX(LOCPAR2(2) + .1)

SWITCH ELEMENTS OF THE TWO ARRAY SETS

DO 200 I = 1, MAXSIZE
SAVEMAG = LOCMAG1(I)
LOCMAG1(I) = LOCMAG2(I)
LOCMAG2(I) = SAVEMAG
SAVEFRQ = LOCFRQ1(I)
LOCFRQ1(I) = LOCFRQ2(I)
LOCFRQ2(I) = SAVEFRQ
200 CONTINUE

DO 300 I = 1, 10
SAVEPAR = LOCPAR1(I)
LOCPAR1(I) = LOCPAR2(I)
LOCPAR2(I) = SAVEPAR
300 CONTINUE
RETURN
END

SUBROUTINE COPY(LOCMAG1,LOCFRQ1,LOCPAR1,LOCMAG2,LOCFRQ2, LOCPAR2)

THIS ROUTINE COPIES LOCAL BAY#1 TO LOCAL BAY#2. THE CONTENTS
OF BAY#2 ARE DESTROYED.

INTEGER I, SIZE
REAL LOCMAG1(1025), LOCMAG2(1025), LOCFRQ1(1025), LOCFRQ2(1025),
LOCPAR1(10), LOCPAR2(10)

SIZE = IFIX(LOCPAR1(2) + .1)
SUBROUTINE PRTSTAT GIVES THE PLOT BAYS AND THEIR SIZES

SUBROUTINE PRTSTAT(PARAMISl, PARAMSZ, WKPARMS)
REAL PARAMS1(10), PARAMS2(10), WKPARMS(10)
INTEGER I, J, K

PRINT*, "PLOT BAY	 TIME	 SIZE (POINTS) FFT SIZE"
PRINT*, "*****ca+***v****as***a**r.**^wray.************:*""}
PRINT*, "WRITE(2,900) 1,PARAMS1(1),PARAMS1(2),PARAMS1(3)
WRITE(2,900) 2,PARAMS2(1),PARAMS2(2),PARAMS2(3)
WRITE(2,1000) WKPARMS(1),WKPARMS(2),WKPARMS(3)
900 FORMAT(I1,11X,F6.3,2X,F5.0,13X,F5.0)
1000 FORMAT(9RWORK PLOT, 3X, P6.3,2X, F5.0,13X, F5.0)
RETURN
END

SUBROUTINE AVERAGE TAKES THE AVERAGE OF TWO PLOTS.

SUBROUTINE AVERAGE(LOCMAG1, LOCFRQ1, LOCPAR1, LOCMAG2, *
* LOCFRQ2, LOCPAR2, WORKMAG, WORKFRQ, WKPARMS)
REAL LOCMAG1(1025),LOCMAG2(1025), WORKMAG(1025), WORKFRQ(1025), *
* LOCFRQ1(1025),LOCFRQ2(1025),LOCPAR1(10),LOCPAR2(10),ADJUP
INTEGER I,J, POINTS

POINTS=IFIX(LOCPAR1(2) + .1)
DO 100 I=1,POINTS
WORKMAG(I)=(LOCMAG1(I)+LOCMAG2(I))/2.0
WORKFRQ(I)=LOCFRQ1(I)
100 CONTINUE

PUT PARAMETERS INTO THE WORK PARAMETERS

WKPARMS(1)=0.0
WKPARMS(2)=LOCPAR1(2)
WKPARMS(3)=LOCPAR1(3)
RETURN
END

THE FOLLOWING TWO ROUTINES DEAL WITH ERRORS

SUBROUTINE PRNTERR(I)
INTEGER I
CUTO(10,20,30)I
10 PRINT*, "" PRINT*, "*** POWER LAW MUST BE A NEGATIVE NUMBER***"
PRINT*, "" RETURN
20 PRINT*, "***THE MULTIPLICATIVE INCREMENT OF THE WINDOW MUST" PRINT*, " BE GREATER THAN 1.00***"
PRINT*, "" RETURN
SUBROUTINE SIZEERR(LOCPAR1, LOCPAR2, I, ERR)

REAL LOCPAR1(10), LOCPAR2(10)
INTEGER I, ERR, SIZE1, SIZE2

C THIS ROUTINE CHECKS IF TWO ARRAYS HAVE THE SAME SIZE. ERR=1
C IF THE ARRAYS HAVE THE SAME SIZE. OTHERWISE ERR=0.
C
SIZE1 = IFIX(LOCPAR1(2) + .1)
SIZE2 = IFIX(LOCPAR2(2) + .1)

IF (SIZE1 .EQ. SIZE2) ERR = 1
IF (ERR .EQ. 1) RETURN
GOTO (10, 20) I
10 PRINT*, "***ARRAYS ARE OF DIFFERENT SIZES IN DIFFRC***"
PRINT*, "" RETURN
20 PRINT*, "***ARRAYS ARE OF DIFFERENT SIZES IN AVGSET***"
PRINT*, "" RETURN
END
II.5 DATPLOT

PROGRAM DATPLOT(INPUT,OUTPUT,DATA29,TAPE1=INPUT,
+TAPE2=OUTPUT,TAPE3=DATA29)
C
C THIS PROGRAM READS 2000 POINTS FROM A ROCKET FILE AND PLOTS
C THE POINTS AS A FUNCTION OF TIME. THIS PARTICULAR VERSION ASSUMES
C A RECORD LENGTH OF 250 (SEE OTHER ROCKET PROGRAMS FOR ROCKET FORMAT)
C AND A DIGITIZING RATE OF 5000. THE PLOTTING STARTS AT STRTIM
C SECONDS INTO THE FILE, RELATIVE TO THE FILE'S BEGINNING.
C THIS ALLOWS USE WITHOUT KNOWLEDGE OF THE ABSOLUTE TIME OF EACH
C RECORD. THE USER MUST ONLY KNOW THE DESIRED POSITION RELATIVE
C TO THE PARTICULAR FILE'S STARTING TIME.
C TO RUN THIS PROGRAM THE GCS PLOTTING LIBRARY MUST BE ACCESSED
C WITH: GAB,GCS(TEXT,3D). THIS IS ENTERED PRIOR TO RUN. THE
C LIBRARY IS NOT NEEDED TO COMPILATE DATPLOT.
C
REAL ARRAY(1251),TIME(2000),CHAN(2000),START,STRTIM
INTEGER ARRAY(1250),I,J,K,L,STRTREC,DIGRATE,SKIP,MAXMAG,
* QUES
EQUIVALENCE (ARRAY(2),IARRAY(1))

DIGRATE IS THE DIGITIZING RATE OF THE DATA.
MAXMAG IS THE LARGEST EXPECTED VALUE OF DATA.

PRINT*,"THIS PROGRAM PLOTS 2000 POINTS. IT ASSUMES'
PRINT*,"A ROCKET FILE AS THE INPUT."
PRINT*,"AT HOW MANY SECONDS INTO THE FILE SHOULD THE PLOT BEGIN?"
READ*,STRTIM
CALL USTART

30 REWIND 3
C
STRTREC IS THE FIRST RECORD WHICH WILL BE PLOTTED.
C THE FOLLOWING LOOP PUTS THE FILE READ POINTER AT THE PROPER PLACE.
C THE RECORD IS NOT READ.
C THE "$.1" HELPS PREVENT ROUNDOFF ERRORS FROM THE IFIX

STRTREC=IFIX((FLOAT(DIGRATE/250))*STRTIM + .1)+1
SKIP=STRTREC-1
IF (SKIP .EQ. 0) GOTO 50
DO 40 L=1,SKIP
READ(3) ARRAY
40 CONTINUE
DO 300 L=1,8
READ(3) ARRAY

DO 100 I=1,250
TIME(I+(K-1)*250) = CHAN(I+J*250)
100 CONTINUE
C
NOW LOAD UP THE ARRAY CALLED CHAN. NOTE THAT CHAN IS REAL AS
ALL GCS GRAPHICS ROUTINES REQUIRE REAL NUMBERS AS INPUTS.
DO 200 J=1,250
CHAN(J+K*R*250) = FLOAT(IARRAY(J*5-3))
200 CONTINUE
300 CONTINUE
C
SET UP A USER DEFINED AREA THE SIZE OF A TECKTRONIX SCREEN.
C ALSO SET THE VIRTUAL UNITS IN THE RANGE OF THE DATA BY MEANS OF A
C UWINDO COMMAND.
C
CALL UPSET("PRECISION",5.)
CALL USET("OWNSCALE")
CALL UDAREA(0.0,7.0,0.0,5.7)
CALL UWINDO(TIME(1),TIME(2000),0.00,FLOAT(MAXMAG))
CALL UPLOTI(TIME,CHAN,2000.0)
CALL UPAUSE
PRINT*,"DO THE NEXT ONE? 1-YES"
READ* , QUES
CALL UERASE
STRTIM = STRTIM + 6
IF (QUES .EQ. 1) GOTO 30
CALL UEND
STOP
END
II.6 SPINFIX

PROGRAM SPINFIX(INPUT, OUTPUT, DATAIN, DATOUT, TAPE1=INPUT,
+ TAPE2=OUTPUT, TAPE3=DATAIN, TAPE4=DATOUT)

C C
C PROGRAM SPINFIX BY RODNEY STOLTZFUS 11/1/83
C C
C THIS PROGRAM FILTERS OUT THE SPIN FREQUENCY
C FROM ROCKET DATA. THIS FREQUENCY IS OF THE
C ORDER OF 4-8 HZ. THIS FILTERING INVOLVES CONVOLVING THE
C DATA WITH A RECTANGULAR WINDOW 1 HIGH AND OF LENGTH
C SPINPRD. THIS CONVOLUTION TRANSFORMS TO MULTIPLYING THE
C SPECTRUM BY A SIN SQUARED FUNCTION, PUTTING HOLE IN THE
C SPECTRUM EVERY 1/SPINPRD HZ. THE CONVOLUTION PERFORMED IS
C NOT EXACTLY CONVENTIONAL. INSTEAD OF ADDING UP THE WHOLE
C INTERSECTING GROUP OF POINTS, THE LEAD POINT IS ADDED AND THE
C TRAILING POINT IS SUBTRACTED FROM THE PREVIOUS SUM. THE
C INITIAL VALUE IS SET AT ZERO. THE ONLY EFFECT THIS HAS IS TO
C DISTORT THE OFFSET. ALSO, EACH POINT IS NOT NORMALIZED BY
C THE TIME INCREMENT BETWEEN POINTS.
C
C ARRCNT SUBBLOCKS OF DATA ARE READ INTO A LARGE ARRAY.
C THIS DATA IS ANALYZED UNTIL ANOTHER SUBBLOCK IS NEEDED,
C WHEREUPON DATA IS READ IN AND PLACED IN THE APPROPRIATE
C POSITION WITH RESPECT TO THE OTHERS. THUS THE
C DATA CYCLES THROUGH THE MAIN BLOCK.
C THE MAIN BLOCK MAY BE VIEWED AS CIRCULAR. TWO WIPERS
C ROTATE, SAMPLING THE DATA. WHEN THE TRAILING WIPER
C FINISHES A SUBBLOCK A NEW ONE IS INSERTED.
C THE COUNTER ARRCNT RUNS FROM 1 TO HOWEVER MANY DATA
C POINTS ARE DESIRED. THIS WILL RUN INTO THE THOUSANDS.
C EVERYTIME IT PASSES AN INCREMENT OF ARRCNT+250 THE FLAG OVERFLOW
C IS INCREMENTED. THE COUNTER PNTCNT INDEXES THE SUBBLOCK
C IDATA. WHEN IDATA IS FULL IT IS WRITTEN INTO TAPE3.
C PNTCNT IS RESET AFTER A DATA RECORD IS WRITTEN OUT.
C WHEN RUNNING THE OUTPUT DATA THROUGH THE "SPECTRA" PROGRAM
C YOU MUST MULTIPLY THE SPECTRUM BY (CONSTANT)*(FRE-
C QUENCY)**2 TO ADJUST FOR THE RECTANGULAR WINDOW.

C IMPORTANT NOTE
C THIS PROGRAM ASSUMES DATA RECORDS IDENTICAL TO THOSE OF
C ROCKET SHOTS 31.029 AND 31.028. THAT MEANS A DIGITIZING
C RATE OF 5000, RECORD SIZE OF 1250, AND FIVE DATA CHANNELS
C PER FRAME, THE SECOND CHANNEL BEING THE ONE OF INTEREST.

VARIABLE DICTIONARY

TIMEI THE TIME MARKER OF THE RECORD PRIOR TO THE
STATING RECORD.
BLKCNT THE NEXT SUBBLOCK TO BE FILLED.
ARRAY CONTAINS 1251 DATA POINTS. AS USUAL THE
FIRST CONTAINS THE CORRESPONDING TIME.
ARRAY IS THE EQUIVALENT OF ARRAY BUT IN INTEGER
FORM.
IRANDAT CONTAINS FOUR SUBBLOCKS WITH THE TIME AND THE
FOUR OTHER DATA CHANNELS STRIPPED OFF.
SPINFKQ IS THE SPIN FREQUENCY OF THE ROCKET.
SPINPRD IS THE PERIOD OF THE SPIN IN TERMS OF
DATA POINTS.
ARRCNT IS THE NUMBER OF SUBBLOCKS IN THE MAIN BLOCK.
THERE SHOULD BE ENOUGH SUBBLOCKS TO COVER THE SPIN PERIOD
PLUS AN EXTRA SUBBLOCK.
LEFTOVER IS THE DIFFERENCE BETWEEN THE BLOCK LENGTH AND
THE SPIN PERIOD.
IDATA CONTAINS THE INTEGER FORM OF THE PROCESSED DATA.
I,J ARE ASSORTED COUNTERS.
NORM IS THE NORMALIZED INDEX (POSITION IN IRAWDAT)
OF THE DATA POINT SPNPRD AHEAD OF THE CURRENT POINT.
OVERFLW TELLS THE INCREMENT OF ARRCHT*250 THAT REDCNT
IS ON. SEE PROGRAM NOTES ABOVE THIS DICTIONARY.
REDCNT INDEXES THE ARRAY IRAWDAT. REDCNT IS UNBOUNDED.
SEE OVERFLW. REDCNT COUNTS THE POINTS THAT HAVE
BEEN READ ALREADY.
PNTCNT INDEXES THE ARRAY IDATA. PNTCNT IS CYCLED FROM
2 TO 251.

REAL ARRAY(1251),SPINFRQ,STRTIME,TIME,TIMELI,SPAN
INTEGER SPNPRD,ARRCHT,LEFTOVR,IDATA(251),IRAWDAT(2000),
+ I,J,LEFTCNT,REDPNT,PNTCNT,OVERFLW,IRAWDAT(1250),SPNFRD
EQUIVALENCE(ARRAY(2), IARRAY(1))

C INPUT THE SPIN FREQUENCY.
PRINT*,"WHAT IS THE SPIN FREQUENCY OF THE ROCKET"
READ*,SPINFRQ
PRINT*,"WHAT IS THE STARTING TIME IN U.T. SECONDS"
READ*,STRTIME

PUT THE DATA CORRESPONDING TO STRTIME INTO ARRAY.
10 READ(J) ARMY
 TIME=STRTIME-.05100.
 IF (ARMY(1) .GT. TIMELI) GOTO 20
 CONTINUE
20 CONTINUE
 TIME=ARMY(1)

FIND SPIN PERIOD, BLOCK SIZE, AND LEFTOVER.
SPNFRD=IFIX(5000.0/SPINFRQ)
ARRCHT=2*((IFIX((5000.0/SPINFRQ)+.5))/250)
LEFTOVR=(ARRCHT*250)-SPNFRD

LOAD UP IRAWDAT WITH ROCKET DATA
DO 100 I=1,250
 IRAWDAT(I)=IARRAY((I-1)*5+2)
100 CONTINUE
DO 120 J=2,ARRCHT
 READ(3) ARRAY
 DO 110 I=1,250
 IRAWDAT(I+(J-1)*250)=IARRAY((I-1)*5+2)
 110 CONTINUE
120 CONTINUE

BEGIN FILTERING
BLKNCNT=1
IDATA(1)=0
REDPNT=1
PNTCNT=2
OVERFLW=0

ASK FOR THE DESIRED NUMBER OF SECONDS.
MUST BE A MULTIPLE OF 0.05000...
PRINT*, "HOW MANY SECONDS OF DATA DO YOU WANT?"
READ*, SPAN
SPANPTS = IFIX(SPAN*5000.00+.1)
DO 300 I = 1, SPANPTS
CALL PROCESS(PNTCNT, REDPNT, IRAWDAT, IDATA, SPNPRD, TIME, +	OVERFLW, BLKCNT, ARECT)
300 CONTINUE
STOP
END

C SUBROUTINES GETNEXT AND PROCESS
C
C SUBROUTINE GETNEXT(BLKCNT, LOCIRAW)
C
REAL LOCARRY(1251)
INTEGER LOCIARR(1250), I, LOCIRAW(2000), BLKCNT
EQUIVALENCE(LOCARRY(2), LOCIARR(1))
READ(3) LOCARRY
C PUT DATA INTO LOCIRAW AT THE POSITION BLKCNT.
C
DO 400 I = 1, 250
LOCIRAW((BLKCNT-1)*250+1) = LOCIARR((I-1)*5+2)
400 CONTINUE
RETURN
END

SUBROUTINE PROCESS(LPNTCNT, LREDPNT, IRAWDAT, IDATA, +	SPNPRD, TIME, OVERFLW, BLKCNT, ARECT)
REAL OUTPUT(1251), TIME
INTEGER IOUTPUT(1250), LPNTCNT, LREDPNT, IRAWDAT(2000), IDATA(251 +	SPNPRD, OVERFLW, BLKCNT, NORM, OFFSET, ARECT
EQUIVALENCE(OUTPUT(2), IOUTPUT(1))
IF ((LREDPNT) .GT. (ARECT*250+(OVERFLW+1))) OVERFLW = +	OVERFLW+1
C
SUBTRACT ARECT*250 FROM THE IRAWDAT INDEX IF THE INDEX +
BECOMES GREATER THAN ARECT*250.
C
NORM = LREDPNT - ARECT*250*OVERFLW + SPNPRD
IF (NORM .GT. ARECT*250) NORM = NORM - ARECT*250
IDATA(LPNTCNT) = IDATA(LPNTCNT-1) - IRAWDAT(LREDPNT - ARECT* +	250*OVERFLW) + IRAWDAT(NORM)
C
IF THERE ARE 250 ELEMENTS IN DATA, THEN WRITE OUT.
IF (LPNTCNT .LT. 251) GOTO 700
OUTPUT(1) = TIME
C
LOAD UP THE FIRST, THIRD, FOURTH, AND FIFTH CHANNELS OF THE +
DATA FRAME WITH JUNK.
C
OFFSET = 0000
DO 500 I = 1, 250
IOUTPUT((I-1)*5+1) = IRAWDAT(I)
IOUTPUT((I-1)*5+2) = IDATA(I+1) + OFFSET
IOUTPUT((I-1)*5+3) = IRAWDAT(I+250)
IOUTPUT((I-1)*5+4) = IRAWDAT(I+500)
IOUTPUT((I-1)*5+5) = IRAWDAT(I+750)
500 CONTINUE
IDATA(1) = IDATA(251)
WRITE(4) OUTPUT
LPNTCNT = 1
TIME = TIME + .050000
C WHEN REDPNT IS PAST A SUBBLOCK, THAT SUBBLOCK MAY
C BE DISCARDED AND REPLACED BY A NEW ONE. THIS IS DONE
C VIA THE GETNEXT SUBROUTINE.

700 CONTINUE
DO 800 I=1,ARRCNT
 IF ((LREDPNT-ARRCNT*250*OVERFLW) .EQ. 250*I) CALL
 + GETNEXT(I,IRAWDAT)
800 CONTINUE
LREDPNT=LREDPNT+1
LPNTCN=LPNTCN+1
RETURN
END
REFERENCES

Batchelor, G. K., I. D. Howells, and A. A. Townsend (1959), Small-scale variation of convected quantities like temperature in turbulent fluid, Part 2. The case of large conductivity, J. Fluid Mech., 5, 134-139.

Edwards, B. (1976), Editor, Research in Aeronomy, Prog. Rep. No. 76-1,

Edwards, B. (1977), Editor, Research in Aeronomy, Prog. Rep. No. 77-1,

Fritts, D. C. (1978), The nonlinear gravity wave-critical level interaction,
J. Atmos. Sci., 35, 397-413.

from the tropical mesosphere observed with the Jicamarca radar, Radio

Geller, M. A., H. Tanaka, and D. C. Fritts (1975), Production of turbulence
in the vicinity of critical levels for internal gravity waves, J.
Atmos. Sci., 32, 2125-2135.

atmosphere from high-resolution radar measurements, J. Geophys. Res.,
75, 3523-3536.

Hill, R. J. (1978), Models of the scalar spectrum for turbulent advection,

Hill, R. J., and S. A. Bowhill (1976), Small-scale fluctuations in D-region
ionization due to hydrodynamic turbulence, Aeron. Rep. No. 75, Aeron.
Lab., Dep. Elec. Eng., Univ. IL, Urbana-Champaign.

Edition.

Hocking, W. K., and R. A. Vincent (1982), A comparison between HF partial
reflection profiles from the D-region and simultaneous Langmuir probe

Mechtly, E. A., S. A. Bowhill, L. G. Smith, and H. W. Knoebel (1967), Lower ionosphere electron concentration and collision frequency from rocket

Roth, P. (1982b), Editor, Research in Aeronomy. Prog. Rep. No. 82-2,

Rottger, J., P. K. Rastogi, and R. F. Woodman (1979), High-resolution VHF radar observations of turbulence structures in the mesosphere,

Royrvik, O., and L. G. Smith (1984), Comparison of mesospheric VHF radar echoes and rocket probe electron concentration measurements, J.

Smith, L. G. (1965), Langmuir probes for measurements in the ionosphere,

Smith, L. G., and D. E. Klaus (1978), Rocket observations of electron density irregularities in the equatorial E region, Space Res. XVIII,

43, 179-189.

Welch, P. D. (1967), The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified