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GENERATION OF
THREE DIMENSIONAL BODY FITTED COORDINATES
USING HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

JOSEPH L STEGER AND Y. M. RIZK

SUMMARY
An efficient numerical mesh generation scheme capable of creating orthog-
onal or nearly orthogonal grids about moderately complex three dimensional con-
figurations 1s described The mesh 1s obtained by marching outward from a user
specified grid on the the body surface. Using a spherical grid topology, grids have
been generated about full span rectangular wings and a simphfied space shuttle
orbiter.

INTRODUCTION

Body conforming curvilinear grids are often used in finite difference flow
field simulations One reason for this is that the application of boundary conditions
can be simphfied in finite difference calculations if grid lines coincide with boundary
lines. This 1s especially important in high Reynolds number viscous flow simulation
in which high flow gradients near the body surface must be resolved

The task of generating a satisfactory body conforming coordinate system is
not easy. The grids must not be too distorted, they should have smooth variation.
and they should be clustered to flow field action regions - typically near boundary
surfaces. Moreover, the grids should be generated in an automatic manner that
requires a minimum of user input.

One approach for generating body conforming grids with minimum user
input has been to solve a set of partial differential equations. In this technique
level lines of &(z,y,z2), n(z,y,2), and ¢(z,y,z) that have monotone variation are
sought as a solution of a set of partial differential equations. Generally, values of
€, n, and ¢ are user-specified on the boundary surface, and constraints expressed
as differential equations are used to develop the grid away from the boundaries.
The most popular such approach requires the solution of a set of elliptic equations
that satisfy the maximum principle ,1-5]; however, hyperbolic {6,7] and parabolic {8]
governing equations have been used as well, at least in two dimensional applications.

In this paper one way of extending the hyperbolic grid generation method
of Steger and Chaussee [6! to three dimensions is developed. In two dimensions this
grid generation method requires the solution of two partial differential constraints

ExNz + fyny =0 (la')



EzNy — EyNz = (AV)_I (lb)

where the subscripts r and y denote partial derivatives These equations are trans-
formed to £. n computational space as

T:Tp —yeyr =0 (2a)

TeYn — Tpye = AV (2b)

and are solved by marching in 5 from an initial data plane n(z.y) = const The first
equation is a constraint of orthogonality. The second equation controls the mesh
spacing with the user specifying the mesh control volume AV’ (actually area in two
dimensions). A linearized version of Egs. (2) is readily shown to be hyperbolic and
suitable for marching in 7. Equations (2) are solved in computational space to give
the z,y location of the specified £ = const and n = const grid lines

The two partial differential equations. expressed as either Egs. (1) or (2).
have been referred to as a cell-volume procedure for grid generation For two di-
mensional external flow simulation 1n which the outer flow boundary need not be
precisely located. this cell-volume hyperbolic partial differential grid generation pro-
cedure has been found to be an efficient way of generating orthogonal or nearly or-
thogonal grids In the next section. a three dimensional extension of this procedure
is developed

THREE DIMENSIONAL GRID GENERATION EQUATIONS

A body fitted exterior grid about an arbitrary closed boundary surface is
desired. Only a simple topology such as that illustrated in Fig. (1) will be considered
here. The body surface is chosen to comncide with ¢(z,y,2) = 0 and the surface
grid-line distributions of £ = const and 1 = const are user-specified. The outer
boundary ¢(z,y.2) = ¢maz is not specified; 1t is only required to be sufficiently
far removed from the inner boundary. Using ¢ as the marching direction, partial
differential equations are sought that produce surfaces of constant £, n, and ¢ to
form a nonsingular mesh system

An extension of the cell-volume procedure to three dimensions is proposed.
In three dimensions, however, there are three orthogonality relations and one cell-
volume constraint. At any point four equations are available to predict the three
unknowns z, y. and z, so one equation must be discarded. Because ¢ is the marching
direction. it 1s natural to use only the two orthogonality relations that involve ¢,
this leads to the governing equations

TeT, + YeYe + 262, =0 (3a)
TnZ. + YnYs + 2n2, =0 (3b)
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~ 4 — ~ P — 7
TeYnZc + TeYe2n + TnlYe2e — TeYcln — TpYe2: — TeYn2e = AV (3c)

or. with 7 defined as (z,y, 2)*

Fe-Te=20 (4a)
fp =0 (4b)
' d(z.y.z) -1 ,
—— = = Al 4c
(€ mag) (4c]

The first two equations represent orthogonality relations between £ and ¢ and be-
tween n and ¢. and the last equation is the volume or finite Jacobian constraint.
Equations (3) comprise a system of nonlinear partial differential equations
in which z, y, and z are specified as initial data at ¢ = 0. As developed below,
linearization and analysis of Eqs. (3) about a nearby known state reveals that the
system is hyperbolic with ¢ taken as the marching direction.
Let z°,y". 20 represent a nearby known state so that

r=z"-(r~-z% =2"~%
y=y"-1¥
z=2+32

where Z, g, and 2 are small. Substitution of these expressions into Egs. (3) and
elimination of products of tilde terms results in the locally linearized system

—

A()(F— Fo)g iy BO(F_ Fo),, -+ CQ(F_ Fo)g = f (5)
with .
z. Y. 2; \
A= 0 0 0 (6a.)
(ynze — yezn) (2520 — Tn2zg)  (Tqye - :zgy,,))
0 0 )
Ye z. (6b)
(yeze — yfz (zez — xgz_e) (zcye = zeyo)
T¢ Ye 2¢
C = Zy Yn Zy (6¢)
(yezn — ynze) (Tnze — Te2n) (Teyn — TqYe)
and

o
oF , Z-;)o = 0 (6d)



Equation (5) 1s rewritten as
Acfe — Bofy — Cof. = € (7)

with € = (0.0. AV — 2A1%)! Now C7 1 exists unless (AVy) — 0 r. which we will
not impose. so (7) can be rewritten as

CilAwie~CT'Bar, -7 =C7'¢ (8)

Although the algebraic verification is nontrivial € =14, and C7!B. are svmmetric
matrices and are given in the Appendix (The matrices and the verification of
symmetrv were carried out using MACSYMA by Dennis Jesperson of the Ames
Research Center.) Because C; ' Ao and Cj ' By, are symmetric. the hnearized system
Eq. (8) is hyperbolic and can be marched with ¢ serving as the “time-like” direction.

It can be pointed out that an analysis was attempted for the three orthogo-
nality relations alone. These equations. however, are found to be improperly posed
for marching with imtial data 1in ¢ Indeed. as best as we can discern, these three re-
lations do not lend themselves to unmique solutions regardless of the type of boundary
conditions specified

SOLUTION PROCEDURE

The nonhlinear system of grid generation equations given by Egs. (3) are
solved with a nomiterative implicit finite difference scheme. An unconditionally
stable imphcit scheme 1s chosen so the marching step size in ¢ can be arbitrarily
selected based only on considerations of accurately generating the grid. Iterative
solution of the nonlinear grid generation equations 1s avoided by expanding the
equations about the previous marching step. As a consequence Eq. (7) is solved
with the nearby known state O taken from the previous ¢ step.

The following subsections describe the numerical method for marching in ¢
and describe the procedures for chosing the mesh-cell increments. Special differenc-
ing must also be incorporated at axis singularities and at £ and n boundaries. This
detail is also described.

Numerical Method

Let A§ = An = A¢=1suchthat £ =)3-1,n=k-1,and ¢ =1-1.
Central spatial differencing of Eqgs. (5) in € and n with two-point backward implicit
differencing in ¢ leads to

Abe(T1y — 71) + Biby(fie1 — 71) + CiV(T141 = G141 (9)
where
0
Jiy1 = 0
AV



and ~ _
Tyrp— 7 T -~ F
~ __ T+l j=1 —  Tk-1 k—1
ber, = - byTh = ———F———
VrFl—r-l :Fl-—] —T—[

Note that A4;6¢7; and Bé,7; were subtracted from the left-hand side of (7) to put
the equations 1n a ‘delta’ form Throughout onlv those indices that change are
indicated. thus i1 = T4 ,‘land ;=1 =>7,~1k1. €tc

Muluplying through by C; ' gives

CrlAbe(Frar — 71) + C7 ' By (Fin — 71) ~ I(T141 — 71) = C g1 (10)

where I is the identity matrix. To reduce the inversion cost the difference equations
are approximately factored as

(I~ C7 B ) (I = Cy A )(Fiey — 71) = Cf M1 (11)

so that 7_; 15 obtained by solving sequences of one~-dimensional-like block tridiag-
onal systems

(1= C7 ' Biby)§ 141 = Cf g1 (12a)
(I~ Cy1A16)V Fler = § 141 (12b)
Tle1 =71 — VT (12¢)

In practice, numerical dissipation terms are added in the £- and n- directions.
Typically, we have used a combination of fourth and second differences which are
explicitly and implicitly included in the basic algorithm as

:]+ CI_IBI6,, - G,U(AV),,”I + Cl_lAlég - €,£(AV)€](?I+1 — Fl) =

L - (13)

where, for example,
(AV),,FI ~k+] - 2Fk -+ Fk—l
and
(AV)iF=Fag —4F, ~ 6F, —4F,_1 +7,_2

The dissipation coefficients are scaled to the local mesh usinge., = 0.5/|C~ YAl €y =
0.5/C !B} and ¢, 15 3 » ¢.. For simplicity. the matrix norms [|C !4} and [|C~ !B}
have been approximated by a pseudonorm consisting of the square root of the sum of
the squared elements. As an alternative to fourth differences, numerical dissipation

terms such as
e|]AVT|AVT

)



have been tried, but these are less effective than the fourth difference terms

Following Kinsey and Barth {9 . additional smoothing and implicitness are
put into the algorithm by differencing V.r = F asrj_y—r; = (1~ 6)F;; —0F;. with
0 > 0 Ignoring the adjustments this entails in the user specified volume increments.
which need not be exact. this differencing 1s ¢ 1s incorporated Eq (13) as

1= (1 =80C7 ' Bibn — ¢,n(AV)y I~ (1 = 0)C7  Atbe — €, (AN ) ei(Flan — 71) =

C7'g-1 = 1tee(AV)E — €, (AV) 37
(14)
Values of 8 of 1 to 5 are effective in preventing numerical breakdown 1n the case of
highly concave body shapes. If some loss of grid orthogonality can be tolerated, ¢
can be set to 3 for most applications
The coefficient matrices A;. B; and C: contamn £- and 7-derivatives which
are formed using central differences. These matrices also contain derivatives for z,.
Y.. and z. which are obtained from Eqs (3) in terms of ¢- and n-derivatives. That
1s. Egs. (3) are linear in the unknowns z.. y.. and . The} are easily solved as

AV Yszn — Ynz¢
—-1=
= (DetC) Tpze—Tezny | =C7 g
TeYn — Inle

noe R

with
Det(C) = (yezq - ynzi)2 + (Tgze — Ifzn)z + (Teyn 1',,y$)2

Note that (AV)?/(z2 + y? + 2%) = Det(C) so that Det(C) will be zero if and only
if the user specified AV = 0. Hence, C~! will exist as noted earlier. The Det(C) is
the square of a mesh area along a ¢ = const plane.
Cell Volume Specification

The user has control of the grid by means of the initial surface point distri-
bution and by specification of the cell volumes. AV, i ;. Through the cell volumes
the extent and clustering of the grid can be essentially controlled. Because the cell
volume at each point must be given, it 1s clear that the user must devise some
simple kind of method for specifying volumes There are many possibilities. and
two approaches that have been used are illustrated here

One way of generating mesh cell volumes 1s to form a grid about a ‘similiar’
but simple reference body for which the grid can be generated analytically. and to
use the cell volumes from this reference grid for the more complex problem. For
example, suppose we wish to grid an aircraft fuselage as a warped spherical-like
grid following the topology shown in Fig.1 To specify cell volumes we first find a
sphere that has the same surface area as our fuselage and analytically build a grid.

6



For simplicity. choose a spherical grid that has uniform angle spacing and a radial
distribution that varies exponentially In this special case. the control cell volumes
are analytically known The grid cell volumes of this spherical reference grid are
then used to specify the cell volumes of the fuselage grid. However. the fuselage will
not have the same kind of surface area distribution as a sphere with equal angle
distribution So here we use an adjustment of the form

] (AA] k)fu:clag:

AV, . =1(1-v) - AV, D ashere 15
7k [( V) (DA, 0} cunere AL st 1)

-

where v — 1 for small ! and v — O for large / That 1s. the volumes are ad)usted
initially to the local boundary surface increments But as the solution is marched
out, the u :form spherical volumes gradually become specified. Such an approach
has been u-ed, and. as a result. the far field portion of the grid tends to be uniformly
spherical. Some of the results shown later will illustrate this behavior.

Another method of specifving the volumes that has been used depends on
the grid being generated and for this reason this second method 1s sometimes less
robust. In this method. the specified volume at each point is set equal to the
computed surface area element times a user specified arc length Specifically.

AV ki+1 = A8; k1AS; k1 (16)

where As is the user specified arc length and AS 1s the surface area. In all of
our applications As has been given as an exponential stretching. In this kind of
volume control specification, if an initial distribution of points is highly clustered
in € and 7, then these points tend to remain highly clustered in £ and n even far
away from the body. To obtain a more uniform far-field distribution, the volumes
specified from Eq. (16) have been averaged in £ and n with each step taken in g.
For example

AV, kis1 = (AVs1 k1 F AV, D1 ka1 AV k01 = AV k1,141 +4AYV. ,k,l+1()/5)5
17
has been applied one or more times with each step in ¢. Alternatively, in the far-
field the volumes given by Eq. (16) can be weighted with the uniform spherical
volumes.
Axis Treatment
A coordinate singularity will be encountered whenever a whole grid face
is mapped onto a closed body Here we will generate warped spherical grids, so
Egs. (3) become singular at the axis. With ¢ the marching direction and using
¢ and n as sketched in Fig.1 ( 1.e. & from pole to pole and 7 equatorial), then
the axis at £ = 0 and the axis at £ = £,,,- represent singularities. In particular.
n-derivatives approach zero at the pole and Egs. (3b) and (3c) are lost. There

7



are kmar points 1n the n-direction. but. at a given ¢-station, all x,y.z values are
the same. Consequently. the difference equation corresponding to Eq. (3a) can
be imposed kmazr times to solve for only three unknowns. namely z, y. and z on
the axis. Thus. the axis points are overdetermined and can be solved for via a
generalized inverse scheme However. such a constraint 1s difhcult to implement
mmplicitly 1into the solution algorithm (12)

In the approach actually used at the axis. the bodv 1s ahigned so that y
changes along the axis more rapidiv than x or z We assume that the direction of
the axis leaving the body surface ¢ = 0 can be predicted from the surface distribution
of points near the axis. For example, for the £ = £,,,, axis as sketched in Fig.2.
averaging points in n at £ = £, — A€ and or £, — 2A€ allows us to find an
axis point inside the body from which the direction of the axis can be determined.
Knowing the direction of the axis, changes of z and z along the axis can be expressed
in terms of changes in y as

T, = gg;; ; (18a)
z, = Eg;; v (18b)

where %—V—y% and -((V—y% are the known axis slopes and V implies backward differencing
in the ¢-direction. These relations along with the orthogonality relation provide
enough information to back out the variables on the axis. Eliminating z, and z,
from the orthogonality relation Eq. (3a) by using Eq. (18) gives

(Vz)
(Vy)

(V2)
(Vy)

bex + bey + 652] by=0

or since 6.y # 0

(Vz) (V2) .
(Vo) bex + bey + (Vy)6$ =0 (19)

Equations (18) and (19) can be readily built into the implicit solution process by
modifying the end points of the &-block tridiagonal matrix formed by Eq. (12b).
Let the axis points be denoted as 7 = 1 and j = ymaz and define M; = (C; ' 4;)/2.
Then Eq. (12b) can be represented for a given index k from 3 = 1 to j = ymaz as

8



Fl Gl 0 0 0 g, g—l
- M- I M 0 0 g go
0 - M. ] M. 0
- Af{]maz—] 1 ‘\]zma:r—]
L 0 0 E:m‘.: 'Frﬂn." gjma;r gimm:r
(20)

where the contribution from the dissipation terms 1s not being shown The endpoint
blocks Fy. Gy. Ejpmaz and F ., are supplied from the axis conditon, Eqs. (18)
and (19), put into delta form as

Vz

(T, 0141 = Zj k1) — V_y(y],k I~1—Y;k1) =0

Vz Vz
v—y5s(-’€] kie1 = Ty k) = Oe(Us ki1 — Yy k1) — v—y55(2].k,z-1 -z k1) =0

V2
- V*y(yj ka1 — Yy det) = (2) k1=1 — 2;.60) = 0

Approximating é¢ with A¢ at 3 = 1. the blocks F; and G; become

1 -E 0
=1 - %;— -1 - —% (21a)
0o -F 1
0 0 O
Gi=|& 1 & (21b)
0 0 O

with §1 = 0. At a given ¢ = const step, the inversion of a &-block tridiagonal
results in slightly different predicted values of z, y, and z around the axis in 75
Because these values should all be 1dentical. their averaged value 1s used as the axis
. N (Vz) (Vz! _ . .
point. New axis slopes 5v) and oy are formed as each ¢ = const grid surface is
generated. and in this way the axis i1s allowed to curve.
As a modification to what is described, second-order three-point differencing
in £ is used (slightly weighted with the first-order differencing indicated above).

Because three-point differencing is used at the ends. a modified block-tridiagonal

9



system that allows for additional blocks at locations (1.3) and (ymaz,ymaz — 2) is
solved
Boundary Surfaces

If the grid is not being generated about a completely closed body surface as
shown in Fig 1. then boundary conditons other than periodicity or axis treatment
must be imposed For example as sketched in Fig 3 1t mav be necessary to
generate a grid about a half-span wing attached 1o fuselage or a plane of symmetry
at. sav. £ = 0 In this situation. the grid at £ = 0 {see Fig 31 cannot be prescribed
as this would be incompatible with the grid deveioping in the interior when marched
in ¢ Consequently. the grid distribution on this boundary surface must evolve as
part of the overall solution process There are multiple ways of generating the
boundary grid along with the interior. one of which 1s to use one-sided differencing
tied to the eigensystem of the C~'A4 and C~!B coefficient matrices.

The eigenvalues of C~!'A and C~!B have not been computed analytically,
but. because of the special form of each coefficient matrix, one eigenvalue must be
zero and the remaining two eigenvalues are real and of equal and opposite sign (see
the Appendix). As a consequence, at least two proper combinations of the grid
generation equations can be differenced to one side on a £ or n boundary surface.
Specification of the surface provides the third necessary condition to determine the
grid points. At a £ = O boundary, for example, the characteristic combination
of equations corresponding to the zero and the negative eigenvalues of C~14 can
be one- sided differenced. However. at this point we do not have analytical for-
mula for the eigenvalues and eigenvectors of C~'A and C ~!B. and have, therefore.
implemented another less rigorous approach.

In lieu of working with the eigensystem. we have specified the surface and
have simply discarded a governing equation. For example. the £ = 0 surface shown
in Fig. 3 can be represented as

flz,y.2)=0 (22)

As long as this surface is close to a y = const plane. Eq. (22) can be used in place
of the £-¢ orthogonality condition. The remaining two conditions, restricted to a
y = const plane. are essentially the two-dimensional governing equations, Eq. (2),
so this approach would seem to a good one provided we can ensure compatibility
with the interior mesh. To ensure this compatibility. we have built Eq. (22) into
the solution algorithm, Eq. (11). as follows. Equation (22) is first differentiated
with respect to ¢ as

/- :fzzg"‘fyyg'*‘fzzg =0

and then approximating . as z;4+; — z;. etc gives

felzivr — ) + fylvisr —w) + fz(2141 —2) =0 (23)
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Use of this relation in place of Eq (3a) leaves the coefficient matrix B; and the
vector g; of Eq. {9) unaltered, the first row of A4, is replaced with zero elements. and
the first row of C; 1s replaced by the elements (f,. f,, f-} In the special case of a
planar boundary. say y = 0. 1t can be verified that Cl,_]A[ has only zero eigenvalues.
Therefore. é: can be backward-differenced at ¢ = 0 without instability in this special
case Bachward differencing of ¢ at £ = 0 for a more general surface f(zr.y.2) =0
with moderate curvature has also been stable

RESULTS

To demonstrate the capabilities of the current hyperbolic grid solver, grids
were generated about two wings and about a simple wing-body configuration In
all cases a spherical mesh topology was employed so an axis singularity exists.

As a first illustration. a spherical-like grid was generated about a rectangular
wing with a NACA 0012 airfoil section. The planform, the thickness distribution.
and the airfoil section are shown in Fig. 4a where a nearly rectangular wing planform
1s defined from the superellipse

(-'5/17maa:)f5 + (y//ymaz)8 =1

and the thickness distribution is elliptical

(:‘/,/yma.:t)2 + (Z/Zma.‘c)z =1

Also shown is the user specified surface grid-point distribution which was arranged
so that an axis extends from the back of the wing tips The surface grid has 79 points
distributed in the £-direction from pole to pole and 120 points in the periodic -
direction. The £ = const surface lines were generated by computing the intersection
of planes originating from a point located on the symmetry plane with the wing
surface. The n = const surface lines were clustered as a cosine distribution.

The grid was marched out in ¢ using 40 steps to sweep out a distance of
approximately 8 chords with a uniform grid spacing of 1/2 percent maximum chord
specified as the first grid spacing off the body An entire warped spherical grid
was generated without a plane of symmetry being used, but Figs.4b to 4e show
only various segments of the generated grid for £ and 1 = const planes. Portions
of two different n = const planes in the z = 0 plane and in the vicinity of the
axis are shown in Fig. 4b to indicate that the grid near the axis is relatively well
behaved. The grid at the wing midspan { y = 0) is shown in Fig. 4c. Thisis a
& = const plane. As seen, the grid is very smooth and uniform off the body and
nearly orthogonal everywhere The tendency for the grids lines in the far-field of
the grid to be circular reflects the fact that spherical mesh incremental volumes
have been specified Finally. Figs. 4d and 4e show close-up views of this same grid

11



plane and 1illustrate that the grid generated near the profile nose and trailing edge
regions 1s quite satisfactory

A similar grid was computed as illustrated by Figs 5a to 5d in which the
grid spacing off the bodv 1s much finer and corresponds to the type of mesh spacing
used 1n viscous flow simulation The wing in this case has a cambered airfoil section
with the profile defined as

=4\ T — 1)

and a parabolic camber given by
z2=2z~+4cx(l - 1)

is sheared into the profile. Figures 5a to 5c show the plane of symmetry grid plane,
while Fig. 5d shows a & = const plane in the vicinity of the the left wing tip.

It must be remarked that the above wing calculation contained an airfoil
with a sharp trailing edge. but unless the the airfoil trailing edge radius is rounded,
the method can frequently break down. Provided the trailing edge radius is not
zero. breakdown can be avoided by clustering a sufficient number of grid points in
this region and adjusting the specified volumes to be compatible.

Grids have also been generated for low aspect ratio wing-body combina-
tions. and Fig. 6 shows portions of a mesh generated for a simplified space shuttle
configuration which 1s missing the OMS pods. engine bells. and vertical fin. Figure
6a shows segments of the grid 1n the windward and leeward planes of symmetry
(n = const planes). A blowup of the nose region, showing the axis and canopy
region. 1s provided by Fig. 6b. (The back of the shuttle was terminated in this
case at a = const plane.) Three cross sectional views (projected onto z = const
planes) are provided by Figs. 6c-6d. To prevent grid line crossing in the corner of
the upper wing body juncture region, it was necessary to run the grid solver with a
value of @ = 3 1n Eq. (14). Flow calculations using these grids were recently carried
out by Rizk and Ben-Shmuel [10].

CONCLUDING REMARKS

A procedure has been developed for generating body fitted coordinates in
three dimensions using hyperbolic partial differential equations. In this paper the
scheme has been used to generate warped spherical-like grids about simple wing and
wing-fuslage configurations. The hyperbolic grid generator can fail whenever the
body surface is discontinuous or when the user specified surface grid distribution
is too irregular. For simple continous body shapes, however, the hyperbolic grid
generation scheme can be very fast and reliable. It requires a minimum of user
interaction, and 1t can be used to generate grids suitable for either inviscid or
viscous flow simulation.
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APPENDIX

Properties of the matrices C !4 and € ~!B are needed to determine the
hyperbolicity of the grid generation equations. These matrices can be written as

Cl4
(JDet|C))
(UnSz = 2nSy)Te + $2€ad !
(2n¢z — an’z)I; - g.,f,J'l
(ZnSy — UnSz)Tc = 2627}

and
C~B
(JDet C})
(2eqy — yscz)xg Ny At

(zfgz - zfgz)z: N nzgy‘]—l
(yfgz - xfgy)zc - 77:§z~7_]

(yn§z - ‘:n(y)y‘ - §zfuJ_]

(zn§: — Tpéz)y. — §y£yJ

-1

(TnSy = Ynsz)y- + €y J ™!

2eCy — Ye$)Ys T Mysed ™!
(xi‘z - z$§z)y: + 77yS'yJ_:l

(y£§: - zfgy)y' - nyng_l

where the Jacobian J = (AV)7!is

-1 _ .
J7 = Zeynze - Toyezn + ToYezs —

(Yn¢z = 2ngy) 2 + 52620 !
(zn§: - Tngz)z§ T+ §y§z-I—l
(Ingv - yngz)zc - S'zfz-]—]

(2eSy — Yesz)ze + naged 71

(z

3
>
3
-
£
S

€z — zfgz)zg s nzgq-]-l

(y Cr — 1'5§y)2§ -+ nzgz']—l

TeYely — Tp¥Yeie — TcYnie

and the transformation metrics which appear in the elements of A, B. and C are

§z = J(y,,z; - ygzr))



sz = J(yezqn — yn2¢)
Sy =J(Tnze —Te2y)
¢z = J(reyy — zqye)

Using the orthogonality relations and the definition the metrics £;. &y..
m terms of r¢,z,. .1t can be shown that the matrices C~'A4 and C~!B are
svmmetric For example. the (3.1} and (1.3} elements of (""'4 are found to be
equivalent as shown by subtracung (3.1) from (1.3) 10 obtain

(Unsz = 2nSy)z- — ¢ 71 = (Tncy — YnSz)T- — £, 071 = 07
Using the definitions of J=1¢, and J £, and eliminating terms which cancel leaves
’(znzg T xnxg)s'u ~ TpY:$z — Y:2p = 07
Now using the metric definitions for ¢, etc
~(2n2; + TnZ)(Tnze — Tezn) + Toye(yezn - Ynze) = Ye2n(Teyn — Toye) = 07

Collecting the y,y. terms to complete the orthogonality relation 7, - 7. = 0 leaves
two terms containing y. that sum to zero. that is

—(znz: + Yny- — Inx§)(InZ$ — Tezn) T TpYeYe2n — Ye2nToyYe =0

The remaining elements have also been checked for symmetry. The reader can also
quickly verify that the degenerate case £ = r. n = y. and ¢ = z gives the symmetric
matrices

00 1]

C'A={(0 0O

1 00

and _ -
0 0 0O

C'B=|0 0 1

010

The matrices C ! A and C~! B have other interesting symmetries. In partic-
ular. the determinant and the trace of of both matrices are zero. For example. the
Det A is clearly zero from inspection of Eq. (6a) and Det(C~'A) = DetADetC !,
The trace of C ! A 1s given as

trace(C‘lA) = (yngz - any)xt - S':EIJ_I + (zn§1 - Ingz)yc + §y§zJ—l

+(I7I<y - yngz)zc + gzsch_l

14



Or regrouping
trace(C_lA) = (yngz“zngu)xr‘“(zn\'r~1n§2)y-"'(»’Cn\'y_ynfz)z:+(§7£r+§yErT§zfz)J_1

However. (zpy- — Ynz-)cr 1s —J 7 £2¢,. etc . so the trace 15 zero

Because 3> 3 matrix C! 4 1s svmmetric and has zero trace and determimant.
one eigenvalue of C~!.4 must be zero and the other two real distinct eigenvalues
must sum to zero Therefore. these nonzero eigenvalues must be of equal and
opposite sign The matrix C~!B has similar properties
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Fig 2 Geometric method for determining the grid axis
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Fig. 5 Hyperbolic grid generated about a rectangular wing with camber
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a. grid segments in the windward and leeward plane of the shuttle orbiter.

Fig 6 Spherical-like grid generated for a simplified space shuttle orbiter.
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Grid in the leeward plane near the nose of the shuttle orbiter.
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