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Abstract

This thesis has two major parts. The first part of the thesis will describe

a high energy cosmic ray detector -- the High Energy Isotope Spectrometer

Telescope (HEIST). HEIST is a large area (0.25 m 2sr) balloon-borne isotope

spectrometer designed to make high-resolution measurements of isotopes in

the element range from neon to nickel (10 s Z s 28) at energies of about 2

GeV/nucleon. The instrument consists of a stack of 12 NaI(TI) scintillators, 	 j

two Cerenkov counters, and two plastic srintillators. Each of the 2-cm thick

NaI disks is viewed by six 1.5-inch photomultipliers whose cumbined outputs

measure the energy deposition in that layer. In addition, the six outputs

from each disk are compared to determine the position at which incident 	 ^!4

nuclei traverse each layer to an accuracy of —2 Trim. The Cerenkov	
i

counters, which measure particle velocity, are each viewed by twelve 5-inch

photomuitipliers using light integration boxes.

HEIST-2 determines the mass of individual nuclei by measuring both the

change in the Lorentz factor (Dy) that results from traversing the NaI stack_,

and the energy loss (AE) in the stack. Since the total energy o' an isotope is

given by E = yM, the mass M can be determined by M = AE/Ay. The instru-

ment is designed to achieve a typical mass resolution of 0.2 amu. .,t

The second part of this thesis presents an experimental measurement
r

of the isotopic composition of the fragments from the breakup of high 	 !

energy 40Ar and 58Fe nuclei. Cosmic ray composition studies rely heavily on
f

semi-empirical estimates of the cross-sections for the nuclear fragmenta-

tion reactions which alter the composition during propagation through the

interstellar medium Experimentally measured yields of isotopes from the

fragmentation of 40Ar and 16 Fe are compared with calculated yields based

on semi-empirical cross-section formulae. There are two sets of	
t
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measurements. The first set of measurements, made at the Lawrence Berke-

ley Laboratory Bevalac using a beam of 287 MeV/nucleon 40Ar incident on a

CH2 target, achieves excellent mass resolution (amA 0.2 amu) for isoto pes of

Mg through K using a Si(Li) detector telescope. The second set of measure-

ments, also made at the Lawrence Berkeley Laboratory Bevalac, using a

beam of 583 MeV/nucleon 56Fe incident on a Clip target, resolved Cr, bIn,

and Fe fragments with a typical mass resolution of — 0.25 amu, through the

use of the Heavy Isotope Spectrometer Telescope (HIST) which was later car-

ried into space on ISEE-3 in 1978. The general agreement between calcula-

tion and experiment is good, but some significant differences are reported

here.

i
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Chapters

Introduction

Cosmic rays represent a directly accessible sample of material from

other regions of the galaxy. Measurements of cosmic ray abundances can

provide information on the environments under which these particles were

synthesized. Because cosmic rays are extremely young (-10 7 yr.) in com-

parison with the solar system which condensed —4.8x109 yr. ago, it is of

interest to know how astrophysical conditions for nucleosynthesis differ

from those of solar system material. To do this, one must determine the iso-

topic composition of the cosmic ray source materiul. The cosmic ray abun-

dances observed near earth are contaminated by the products of nuclear

interactions suffered in the interstellar medium. Since the cross-sections

for such interactions are mass-dependent, only by measuring the isotopic

composition can one adequately deconvolve observed abundances into

source abundances and at the same time understand the nature of the
	 i -u

galactic propagation process. Cosmic ray isotope measurements can also be v
used to determine the age of cosmic rays if radicactr: e nuclides, such as

zed with half-lives of the order of the cosmic ray age can be resolved from

the more abundant neighboring isotopes.

According to Woosley and Weaver (1981), isotopic abundances of cosmic

rays have implications for the metallicity (and neutron excess) of the sites

for nucleo synthesis. Moreover, Woosley (1978) has considered the implica-

tions of non-solar isotope ratios for cosmic ray Fe-peak elements (Cr

through Ni) and shows that isotope ratios are sensitive functions of the neu-

tron excess. Cosmic ray relative abundances for neutron-rich isotopes of

the elements Ne, Mg, and Si have been discovered to be enhanced when com.-
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pared to their relative abundances in the solar system (e.g., MewaldL, Spald-

ing, and Stone, 1980; and Wiedenbeck and Greiner, 1081). Isotopes for

higher charge elements generally have lower abundances, and have not vet

been measured with sufficient statistical accuracy to determine if the

cosmic ray and solar system compositions differ.

In the first part (Chapter 2) of this thesis, we will describe a new high-

resolution cosmic ray mass spectrometer with a relatively large geomeLry

factor. The instrument, the High Energy Isotope Spectrometer Telescope

(HEIST), is designed to make high-resolution measurements of isotopes for

the elements ranging from neon to nickel. A Cerenkov-AE-Cerenkov tech-

nique is employed. This technique involves measuring the velocity (or

Lorentz factor) of a particle before and after the particle traverses an

energy absorbing medium (NaI), which also measures the energy loss of the

particle. This technique will be discussed in detail in section 2.1. In addi-

tion, the mass uncertainty contributions associated with this technique will

be analyzed.

HEIST will analyze particles with incident energies from 1.3

GeV/nucleon to above 2 GeV/nucleon. The relatively high energy which this

instrument covers has some advantages. First of all, interpretative

difficulties such as energy dependent cross-sections, solar modulation, and

correction for dE/dx losses, which are most important at low energies, can

be minimized. In addition, balloon flights are most easily and inexpensively

carried out at the National Scientific Balloon Facility at Palestine, Texas,

where the geomagnetic cutoff limits observations to particles above a rigi-

dity of about 4.5 GV/c (Lorentz factor of about 2.5). Finally, observations

from this instrument will also be the first high-resolution measurements in

this energy range.
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With the combination of good mass resolution and large geometry fac-

tor, this instrument is expected to provide improved observations of the iso-

topic composition for the elements Ne, Mg, Si, and Fe; at the same time, it

also has the potential for yielding the first well-resolved observations of

some interesting, but rare, isotopes. In addition, since our observations gill

be done at high energy, they can be compared to those done at lower ener-

gies to identify any possible energy dependence of isotopic abundances.

Several innovations have been incorporated into this instrument. In

particular, the stack of Nai scintillators is used to measure the trajectory of

the incident particles as well as to ,nasure energy loss. These high-

resolution (about 2mm rms) trajectory measurements make it possible to

make corrections for variabons of light collection efficiency in the scintilla-

tors and the Cerenkov counters. Large-area trajectory measurements are

traditionally done with gas-filled multi-wire proportional counters. The

elimination of a non-solid state device from our instrument may make possi-

ble future space qualification easier.

The overall system design of HEIST-2 will be presented in section 2.2. In

section 2.3, we will describe the NaI scintillator stack and will discuss how a

position resolution of about 2 mm can be achieved with this kind of scintilla-

tor. Scintillation efficiency of NaI will also be discussed briefly. In section

2.4, we will describe the Cerenkov counters and will discuss why photoelec-

tron statistical fluctuations in these counters will be the dominating factor

in the mass measurement uncertainty. In the last section of chapter 2, we

will discuss the expected mass resolution of M1 ST-2.

In the second part (chapter 3) of this thesis, we will present an experi-

mental measurement of the isotopic composition of the iragments from the

breakup of high energy 40Ar and 5"Fe nuclei. Cosmic ray composition stu-

1
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dies rely heavily on the cross-secticns for nuclear fragmentation reactions

in or4er to correct for alterations that occur in the composition during pro-

pagation through the interstellar medium. Therefore, it is not adequate to

only improve the statistical accuracy of cosmic ray composition observa-

tions, but it is also necessary to obtain precise values (at least relative

values) for the nuclear fragmentation cross-sections. Direct measurements
of a wide range of nuclear .fragmentation reactions would be desirable.

However, these measurements are tedious and very time consuming. Today,

most of the propagation calculations rely heavily on semi-empirical cross-

section formulae.

A semi-empirical cross-section formula was first derived by Rudstam

(1955, 1956, 1988, 1969), to fit experimental data, and later extended by

several authors (see for example Bernas et al. 1987, Audouze et al. 1987, and

Beck and Yiou 1968), These formulae, however, are designed for specific

applications and have inherent limits to their usage. In 1973, Silberberg and

Tsao (1973a,b) constructed a semi-empirical formula for a more genoral

application. Using experimental cross-sections, a semi-empirical equation

was developed for calculating cross-sections of proton interactions with

various target nuclei:

a=o.f(A)•f(E)•e -P-AA.exp(-R- IZ-S•A+T•Az V)•fl•77•t.	 (1.1)

This equation is applicable for calculating cross-sections of targets having

mass numbers in the range of 9e.At s209 and products with 6sAs200,

except for very large and small values of AA. (i.e., At-A). The correction fac-

tors f(A) and 1(E) aie applicable only to products from heavy targets with

4> 30, when AA is very large. They are set to 1 for Zt s 30. The factor a -P'AA

describes the diminution of cross-sections as the difference between the
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target and product mass, AA, increases. The factor exp(—R . IZ—S:A +T•A2I )
describes the distribution of cross-sections for the production of various

iootopes of an element of atomic number Z. The width of the distribution of

cross-sections is represented by the parameter R. The parameter• S

describes the location of the peaks of these distribution curves. The param-

eter T describes the shift of the distribution curves toward greater neutron

excess as the atomic number of the product increases. The factor v is usu-

ally 2 except for 21sZ t. The factor fl is related to nuclear structure. The

factor 17 is the nucleon pairing factor of the product nuclides for the

different combinations of proton-neutron numbers : even-even, odd N, odd

7,, and odd--odd. The factor t represents an enhancement factor for light

evaporation products. The factor co gives the overall normalization factor

for the cross-sections.

Silberberg and Tsao also found that the cross-sections cease to

decrease with decreasing values of A. Hence, for large values of AA, AA c is

substituted in equation (1.1), where :

	

31.5+0.052•(At-36)•(lnE-3.17)	 E<E,

	

AAC— 31.5+0.045•(At 36)•(1nAt+1.23)	 EzE,	 1_^^

and F.=69-At"". The substitution is made if AAa AAA. The energy E is

expressed in units of MeV; E o is the critical energy above ;vhich no

significant change in the values of cross-sections is expected.

For very small values of AA, peripheral types of reactions play a dom

inant role. The general form of the cross-sections for peripheral reactions

is

ap = a(E.)-H(E)-Y(At,Zt)-rp(At,E).
	 (1.3)

Here a(Eo) is the high-energy value of the cross-sections, i.e., at the energy

'I
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E. above which the cross-sections are approximately independent of energy.

The function H(E) represents the energy dependence of the cross-sections.

The factor Y(A t,Z t) corrects for the neutron excess or deficiency of target.

nuclei. The nornvlization factor rp(A t,E) is not used here (applicable for

157sAt) and is set to 1. Equation (1.3) is used whenever the, number of neu-

trons ereLted is less thu a or equal to xmax . The correction functions and

parameters used in equations (1.1) and (1.3) as well as x a,,, are given in Sil-

berberg and Tsao (1973a,b).

Based on new experimental data, Silberberg and Tsao (1977b, 1979)

revised some of the parameters used in the above cross-sections equations.

These updated parameter are used in our Monte Carlo calculations.

Cross-sections for charge exchange reactions are given by Silberberg

and Tsao (1977a)

a(E) = a(E.)'G(E)•H(Zt,x)dl.	 (1.4)

Again a(E0) is the high-energy value of the cross-sections. The function G(E)

describes the energy dependence of the cross-sections. Evaporation of neu-

trons is reduced by competition from fission, and this is described by the

correction :actor H(Zt,x) where x is the number of neutrons emitted. The

factor fl is the nuclear structure factor which has different values from the

one used in equation (1.1).

Cross-sections for fragmentation OIL heavier nuclei (other than hydro-

gen) are scaled from proton-nuclei cross-sections using the scaling formula

of Silberberg and Tsao (1977c)

a(NI,N2) = a (NI,P)' S^'En E L' E I'E A-
	

(1.5)

Here a(Nl ,p) is calculated, using equations (1.1) through (1.4), at proton

energy equal to that of the total kinetic energy of the nucleus. The scaling
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.i
factor S. is a function of the nuclear skin thickness. The other factors en,

CL, e l , and eo respectively represent correction terms for neutron-deficient

products, light products, single-nucleon stripping, and for reactions with

large AA.

It is necessary to test th(:se semi-empirical formulate so that the accu-

racy of the formulae can ba determined and systematic deficiencies can be

identified and corrected. In this thesis, we will present a method which pro-

vides a mechanism for testing the semi-empirical formulae ,rithout directly

measuring cross-sections. This method involves the comparison of experi-

mentelly measured fragmentation yields with those expected from a Monte

Carlo simulation calculation based on the semi-empirical cross-section for-

mulae. Even though this method does not provide absolute measurements

of the cross-sections and their energy dependence, any systematic

difference between the measurements and calculations can be used as a

basis for refining the semi-empirical formulae.

In chapter 3 of this thesis, we will analyze two sets of experimental data

to obtain relative yields of isotopes from the fragmentation of 40A:  and 58Fe.

These measured fragmenLution yields will be compared with calculated

yields based on the semi-empirical cross-section formulae. Systematic

differences between the measured and calculated yields will be reported.

7
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Chapter 2

The High Energy Isotope Spectrometer Telescope

The High Energy Isotope Spectrometer Telescope is a balloon-borne

mass spectrometer which utilizes the Cerenkov-4E-Cerenkov technique for

resolving mass. Dr. Andrew Buffington was responsible for the conception of

the design for this instrument. The instrument consists of a top Cerenkov

counter (with index of refraction n = 1.10) and a bottom Cerenkov counter

(a combination of n = 1.34 and n = 1.49) with a stack of 12 NaI scintillators

(-90 gm/ cmz total thickness) in between the two Cerenkov counter ,. There

are two 1 cm thick plastic scintillators, one above and one below the

apparatus. In the first section of this chapter, we present a discussion on

the measurement technique and a discussion on the fundamental limita-

tions in mass resolution. We describe the overall system hardware

configuration in the second section. The construction of the NaI stack and

some of the stack's AE and position measuring capabilities is discussed in

section 3. In the fourth section, we will present discussions on the plastic

scintillators and the Cerenkov counters. The different contributions to th-2

mass resolution will be discussed in the final section of this chapter.

2.1. Measurement Technique

When a particle of charge Z, mass number A, and total energy E passes

through matter, it loses energy predominantly by means of collisions with

atomic electrons in the medium Some materials have characteristics that

allow the measurement of the energy deposition by such methods as the col-

lection of scintillation light, the collection of electron-hole pairs, etc. In

general, the energy depostion is not identically the same as the energy loss

in the medium However, in some cases, the energy deposition can be
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i
considered as a reasonable approximation to the energy loss. If in addition

to the energy loss, a velocity-related parameter is measured before a:;

after the charged particle's encounter with the energy absorbing medium.
ii
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the mass of the particle can be deduced. One such parameter is the Lorentz

factor, y, in the energy-mass equivalence relation

E = -/Mc2 	(2.1) ^I

where M is the mass of the particle, y	 is the velocity of the par-

ticle divided by the speed of light (i.e., 	 = v/c), and c is the speed of light.

Figure 2.1 illustrates the geometry of the measurement.
1

In this scheme, there are three measured quantities:

y i 	 the Lorentz factor of the particle prior to the penetration,
v`

ry2 	 the Lorentz factor of the particle after the penetration; if the

particle stops in the medium, y2 = 1,	 ((

&Ed the energy deposition of the particle in the medium; we will
a

assume here that AE = AEd , where AE is the energy loss of the i

particle in the medium

With y i , 72 and equation (2. 1), we obtain

E l = yiMc2 	and	 E2 = 72iNIc2	 (2.2)

Now, tine energy loss in medium is given by
J

AE = E l — E2 = (yi —y2)IbIc2 = A-/-MC 2.	 (2.3)

The only unknown in equation (2.3) is the mass M. Therefore, the mass can

be deduced from equation (2.3) by solving for AT.

Before continuing on to the discussion of mass resolution, we will pitt

things in terms of the particle's atomic mass number, A, instead of the abso-

lute mass, M. The mass of the particle can be expressed as
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figure 2.1

Schematic illustration of geometry for Cerenkov-GE-Cerenkov meas-

urement of particle mass. If particle stops in the medium, 72 = 1.

l
i

I	 (Ij
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M = Z•bfp + (A—Z)Mr,— Eb/ c2 .	 (2.4)

where MP = 938.28 MeV/ c2 and Mn = 939.57 MeV/ c 2 are the proton and ne:i-

tron masses respectively, and Eb is the nuclear binding energy of the parti-

cle. For particles we are interested in (10 s Z s 28), Eb is about.

MeV/nucleon. Equation (2.4) can be approximated as

where Ma = 931.50 MeV/ c2 is the mass per atomic mass unit. Combining

equations (2.3) and (2.4'),

A AE

	Mace A .
	 (2.5)
/ 

Equation (2.5) shows that the determination of mass number A depends on

the measurements of AE and Ay. Differentiating equation (2.5) gives

dA dAE and dA 6A'yA - AE '	 A	 Ay
	 (2.6)

Thus, for example, if one wants 0.1 a.mu. resolution for iron isotopes (A

58), one must measure both AE and Ay to better than 0.2%.

The uncertainties in the AE and Ay measurements have many contribut-

ing factors. Some of these contributions are intrinsic to the detector sys-

tern and will pose fundamental physical limitations on system performance.

These limitations cannot be reduced without altering system design. For

example, Cerenkov radiation and scintillation light are usually observes

using ph o to multipliers, and statistical fluctuations in the number of pho-

toelectrons produced in the photomultipliers is one such contribution.

Other contributions are not intrinsic, but they are results of technical

imperfections. For example, thickness variations in the detectors is one

such contribution, Imperfect correction for variations in detector responsz-
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with position introduces another such contribution. In designing an instru-

ment, one would like to reduce uncertainties due to technical Imperfections

so that these uncertainties are small compare to the fundamental physical

limitations on the system.

In this section, we will discuss the physical limitations on the mass reso-

lution. The technical limitations will be discussed in the later sections.
a

Since the AE and Ay measurements are done independently, the mass reso-

lution contribution due to their uncertainties are independent of each

other, Therefore, we will discuss the two contributions separately.

First, we will present an analysis of the physical limitations for the AE

measurement. As we will show later, it is possible to achieve a few tenths of

a percent accuracy in the 2E measurement. For AE of the order of

GeV/nucleon, NaI scintillators can be used to measure the energy loss. The

photoelectron statistical fluctuation will be a fundamental limitation on this

measurement. The number of photoelectrons, Np E , is given by

NpE = (DE/hv)•e•F; G•K.	 (2.7)

In this expression,

AE is the energy loss,

liv is the average energy of the scintillation photons,

C is the scintillation efficiency of the crystal for relativistic Z = 1

particles,

Fe is the light conversion saturation factor, F s = 1 fox relativistic Z

= 1 particle and F. < 1 for heavy ions,

G is the geometric light collection efficiency, i.e., the fraction of

scintillation light seen by photomultipliers,

0

r
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K is the photocathode quantum efficiency.

For NaI, the average wavelength of the scintillation light is around 400 mr,

(i.e., Div = 3,IeV), and the scintillation efficiency is about 15% (Harshaw Scin-

tillation Phosphors, 3rd Edition). According to Salamon et al. 1981, F, of Nat

can become quite low just before the charged particle stops because of the

higher value in dE/dx. However, if we average F, over a thickness of more

than 10 gm/ cm2 of NaI, the average value of F. does not go below 0.4 even

for iron (Z = 26) nuclei. A light collection systemzvith a geometric light col-

lection efficiency of a few percent can easily be constructed. The photo-

cathode quantum efficiency ranges from 20% to 25% for typical photomulti-

pliers. Now, if we take AE = 50GeV, b y = 3.1eV, e = 0,15, Fs = 0.4, G = 0.02,

and K = 0.20, then we will get about 4 . 106 photoelectrons and a photoelec-

tron statistical fluctuation of —0.05%. Therefore, the photoelectron statisti-
I

cal fluctuations in the AE measurement do not put a significant limitation on

the mass resolution.

Landau fluctuations in the energy loss also contribute to the mass

uncertainty. For example, in the AE-E' method (see Stone 1974), it is

required to have a knowledge of the rate of energy loss, dE/dx, as a func-

tion of energy (or the range-energy relationship). Such knowledge can be

obtained either empirically by experiment, or from tabulated tables (such as

Barkas and Berger, 1964; Janni, 1966). However, due to the statistical

nature of the ionization energy loss process, knowledge of dE/dx can only

be obtained for an average over many particles of the same charge and

same mass. In our present scheme, knowledge of dE/dx is not required for

deducing the mass. Therefore, the Landau fluctuations do not have a direct

contribution to the mass uncertainty in this case. However, as we will show

t=,{	 later, Landau fluctuatioi s will have an indirect contribution to the mass

F
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uncertainty through the Gy determination.

We have shown that physical limitations of the Gir measurement do no..

put any significant limit on the mass resolution. However, the Gy measure-

ment is a more difficult one. The Lorentz factors, yl and y2 , can be meas-

ured by Cerenkov counters. Now since y, and 72 are measured indepen-

dently, we have

( 6&y)Z = (3yt)2 + (6y2)2
	

(2.8)

When a particle travels at a velocity greater than that of light in the

medium, it will generate electromagnetic radiation (see page 638 of Jackson

1975). This is called Cerenkov radiation. The strength of the Cerenkov sig-

nal, C, is given by

+t

	where n is the index of refraction of the medium and P is the velocity of the	 j

particle divided by the velocity of light. Now, define f to be the ratio of the

Cerenkov light generated at velocity Q to that generated by relativistic (N=1)

particles,

1 — y22

1 — 727 S

or

f(Y) = n2(Y2-1)?`'Y2	 (2.10')(72-1)(n2- l)

Figure 2.2 shows f(y) for different indices of refraction. How well we can

measure y depends both on how well we can measure f , and the value of

df/dy. For an accurate y measurement, we should restrict y to be near the
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C_ ,.	 ....cam

Figure 2.2

A plot of the fraction, f, of relativistic Cerenkov light made by parti-

cles of Lorentz factor y incident on Cerenkov media of various in-

dices of refraction n. The slope dfldy evaluated at f 0 (Cerenkov

thresnoldj is simply 2n x ẑ . This plot ignores scintillation and

delta-ray contributions to the light, which are likely to be important

below f --d 0.05.
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threshold where the slope of f is reasonably steep.

The number of photoelectrons detected by the Cererkov counter s; s-

tem, N'PE,C, is	 '

	

NPE,C = Z2 ' Nrel' f	 (2.11)

where -NI is the number of photoelectrons that would be detected for a

relativistic Z = I particle. Taking the differentials of both sides, we get

dNPE,c = Z2'Nrel'6f

i

	

Z2'Nrel' dy'87• 	 (2.12)

The photoelectron statistical fluctuation is just the square root of NPE,C , and

df /d7 can be obtained by differentiating equation (2.10')

r

	

	d7 — (n2- 1)(y2 —l)2	
(2.13)

Combining these and equation (2.12), we get
f'

((57)2 = (n2-2)('2-1)3 [(n 2-i)y' — n21.	 (2.14)
4'Z '7-'Nrel

Substituting n1, Nrcl,l, 71 into equation (2.14) to get (87 1 ) 2 and n2, Nre1,2, 72 to

get (872) 2 , equation (2.8) gives

(n z —L )(72—i )3 1 z	 2_7PE — 2Z l

	

	 2	 ((nl-1)71 nl]
71 'Nrel,1

+ (n2-1)(—/R-1)3 
((n2- 1 )72 — n2, } . (2.15)

72'Nrel,2	 l	 JJJ

The mass uncertainty due to the Cerenkov photoelectron statistical flucLua-

tions is

^L

`f
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where 6Aypg is given by equation (2.15) above. At first glwnce, 6Apg,c doesn'L

seem to have any Z dependence for A = 2Z particles. Hovever, both 72 an:i

Ay do depend on Z. The mass uncertainty should be smaller for higher "Z

because Ay Is larger for higher charge particles. Also, y2 will be smaller for

higher charge particles and thus a higher dfMy will result.

With a certain given detector configuration (i.e., fix n 1 , n2 , and thickness

of the AE detector), the mass uncertainty depends on the energy of Lhe

incident particle and the angle of Incidence. The mass uncertainty also haj

a secondary dependence on the charge as discussed in the previous para-

graph. The energy dependence is clearly shown in equation (2.15) in terms

of y1 and y2 . The angular dependence comes into play through two contri-

butioris, First, both Yrei 1 and Nre1,2 have a seerâ dependence where 19 is the

angle of incidence of the particle. Secondly, the path length in the AE

detector also goes like sect â . As a result, a larger 'd will cause a larger Ay

and a smaller y2 , All of these point to better mass resolution (i.e., smaller

6A) as O increases.

It is difficult to show all the dependences of the mass uncertainty at the

same time. Figure 2.3 shows t h e energy dependence of the mass uncer-

tainty due to the y1 measurement alone. The curve in figure 2.0 is applica.

ble for all A = 2Z particles. Note that this is exactly 6ApE , c for particles sLo p

-ping in the AE detector. If the particle penetrates the AE detector, we can

still use this curve to estimate 6Ap F;,c as long as the y2 contribution in equa-

tion (2.15) is small compared to the y 1 contribution. in this case, a very

good approximation can be obtained by scaling the curve witl.

(y1- 1 )i (y1 —yz)•

What if the particle penetrates the AE detector but y2 is lower than the

Cerenkov threshold of the second Cerenkov counter? There are tWG

N

^y
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Figure 2.3

A plot of the mass uncertainty due to the Cerenkov photoelectron

statistical fluctuations, dApg,c, for A = 2Z particles g th Lorentz fac-

tor y incident on Cerenkov media with n = 1.10 and Nr., , , = 30. The

plot shows only the mass uncertainty contribution from the first

Cerenkov counter for normally incident particles (i.e., 19 = 0). For -0

other than 0, scale the curve by cos Y6 9. For Nre1,1 other than 30, scale

the curve by3 / rew-
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possibilities. If the particle penetrates the second Cerenkov counter, the

missing AE can be as high as 320 MeV/nucleon for n 2 = 1.50. Hc:rever,

can utilize an anti-coincidence scin icMator in the back of the second Ceren-

kov counter to reject these events. On the other hand, if the particle stop:

in the second Cerenkov counter, there is almost nothing we can do. This is

because we do not have an easy way to distinguish these events from the
1	 n

ones which stop in the AE detector. 	 We could introduce a thin anti- tj

coincidence scintillator between the AE detector and the second Cerenkov
I

f

counter to reject these events. 	 Otherwise, we will have a sow mass tail for

each of the isotope peaks in a mass histogram. Because of the higher dE/ dx rj

just before the particle stops, the fraction of the AE missing can be a few

times the ratio of the equivalent t=sickness of the second Cerenkov counter

to that of the AE detector. Now, if we have about 100 g/ cm2 of NaI for the Z^

AE detector and about 2 g/cm2 of NaI equivalent for the second Cerenkov

counter, the missing AE can be as high as 6%. From equation (2.5), the mass
k

is proportional to AE; therefore the tall can extend all the way to 6% lower I	 _f

than the real mass.	 The fraction of events contributing to the tails is

approximately equal to the ratio of stopping powers mentioned above. This

fraction will go higher if we only accept events which penetrate at least a

certain fraction of the AE detector. We have eliminated the problem, at the R^ ;

cost of somewhat reduced energy coverage, by using a segmented AE I

counter.

In the discussion of the Ay measurement, we have only talked about th-

photoelectron statistical fluctuations. So far, we have assumed that we have

knowledge of the incident angle, 19, and the charge of the particle. The

charge of the particle can be obtained by using a multi-element detector

system for the AE measurement. Since the charge Z is discrete, we can

i
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.' assume that there is no uncertainty in Z. The incident angle can be meas-

ured by using more than one position measuring device. Rer,-rlting equation.

(2.11) to show the 19 dependence, we get

NPE,C = Z2•Nrei,o •sec19•f	 (2.17)

or

f 
= 2 

PE,C COS19	 (2.17')
Z •Nrel,o

where Nre1,o is Nrel for 19 = 0. Taking the differentials of both sides, we get

di = dy dy = — Z2 N'C sin19•d19
re1,o

= —sec19•f•sfn19•619 = —f•tan19•d19.	 (2.18)

Substituting equation (2.13) for df/dy and equation (2.10') for f, equation

(2.6) gives

6Ao,c = A• 2y 1 in 2 (72- 1 ) — 72I . tan19 • d19	 (2.19)

for stopping particles. Equation (2.19) shows that 6A '% C goes linearly in A

and has a tan19 dependence. The mass is more uncertain for increasing A

and increasing 19. We will plug some numbers in equation (2.19) to see

whether a reasonable mass resolution can be achieved. For n = 1.10, y =

3.0, A = 50, dAj,c is equal to 23•tan19•619. This says that even with an angular

resolution of the order of a degree (i.e., 619 = 0.02), we still will not be able to

obt ir: a good mass resolution for 19 greater than 30'. Figure 2.4 shows a

plot a'. equation (2.19) for A = 50 and d19 = 0.02. The plot shows that ever_

for A = 50, this contribution to the rnass uncertainty is comparable to or

greater than the photoelectron statistical fluctuation contribution for most

P

i
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Fieure 2.4

A plot of the angular uncertainty contribution to the mass uncer-

tainty, 5A.O ,c, for a particle with mass A = 50, and several incident an-

gles -0. The index of refraction of the Cerenkov radiator is 1.10 and

the angular uncertainty is taken to be 0.02 rad. The solid curves

scale linearly with the mass, A. The dashed line is the photoelectron

statistical fluctuation contribution from figure 2.3.
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of the incident angles.

I=1— 1 —Raz.
n2	al

(2.23)

Fortunately, there is a way to go around this obstacle. Using a multi-

clement detector system for the AE measurement, we can deduce y from l.he

ratio of the Cerenkov signal to the response in the adjacent AE measuring

element. Since both responses increase as the secant of the incident angle,

we have eliminated the need for pathlength corrections in determining y.

The Cerenkov response can be written as

	

C = al• ^ sec19• it — yz — ly	 (2.20)
t	 n

and the response in the adjacent AE measuring element is approximately

given by

z
S = a2'#2 •sec19
	

(2.21)

! where a, and a 2 are just proportionality constants. Here, we have ignored

the relativistic rise factor, [In (-/2 )—Q2+K in the Energy loss equation (see

Janni, 1966). Taking the ratio of the two responses, we get

a
R = C =	 •(1 — 1 — 1 l	 (2.22)T a2 L	 2 n21

and thus,

fI

A

With this scheme, then, y is determined directly without ever having to get

involved with trajectory measurements except, of course, for correcting

spatial nonuniformities of the Cerenkov and scintillator responses. Since S

is in the ratio R, Landau fluctuations in S contribute to the uncertainty in y.

Taking the differentials of both sides of equation (2.23), we get

X

!	 a
1	 ^,

^h
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or

(2.24)

(2.25)6y = _ ys, 2a ,R , S = _ 2 i t _ 
_? 

_ 
R2

I . 
SSi	 L

where dS is the Landau fluctuation. We have parametrized the treatment in

Rossi's "High Energy Particles", pages 32 throught 35, to an accuracy of

about 1%. A 2 cm thick slab of NaI has a2 n^ 10 MeV and a characteristic

fluctuation size that drops from about 1.4 Z MeV at y = 3 to about 0.8 Z MeV

at y = 1.5. For particles with Z ^ 10, the distribution shape is nearly gaus-

sian. Taking the fluctuation size to be a 3 •Z-seci'h9, equation (2.25) gives

6y c – 
y3,o2 . 013 . 11 __L_    1 1.	 (2.26)

2Z •sec^â a2 	 y2 n2 j

Both dyl and dye can be obtained from equation (2.26); substituting them

back in equation (2.8), we get

2
cOS"'l7 a36AYL = -- — 

i

ye'Qi' 1 – i – i2 + ys'R2'	
21 –1, -̀2

1
I
I 

1I` (2.27)2Z a2 	 yl n i	 y2 rig 
J 1

Here we have assumed that the characteristics (i.e., a 2 and a3) of the adja-

cent AE measuring element for the second Cerenkov counter are the same

as those for the first Cerenkov counter. The mass uncertainty due to Laii-

dau fluctuations is

6AL,c = A-dAyL / Ay
	 (2.28)

where dayL is given by equation (2.27) above. Figure 2.5 shows the Landau

fluctuation contribution to the mass uncertainty due to the first Cerenkov

counter alone. The curve is for normally incident A = 2Z particles. For par-

ticles with non-zero incident angle, the Laudau fluctuation contribution will
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Figure 2.5

A plot of the Landau fluctuation contribution to the mass uncertain-

Ly, 6AL,c, for normally incident A = 2Z particles with Lorentz factor y.

The plot shows only the contribution from the first Cerenkov

counter. It assumes the adjacent AE measuring element to be a 2 cm

thick slab of NaI which has a2 me 10 MeV and a characteristic fluctua-

tion size that drops from about 1.4 Z MeV at y = 3 to about 0.8 Z MeV

at y = 1.5. The dashed line is the photoelectron statistical fluctua-

tion contribution from figure 2.3.
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be smauer by a factor of cosy â .

The mass uncertainty due to the A/ measurement is the sum in quadra-

Lure of 3ApE,c (equation 2.18), and 6AL c (equatior. 2.28). Assunurg that th—_

uncertainty in the DE measurement is small compared to this, this sun:

represents the full mass uncertainty. Monte Carlo simulations, which are

free of the Z2/ #2 assumption used in equation (2.21), have verified that

equation (2.21) is a very good approximation.

The full mass uncertainty should also contain contributions from multi-

ple Coulomb scattering, which causes a different value of seci9 for the C and

the S parts of the ratio R = C/S; and from delta-ray production in and near

the Cerenkov counters, which causes a departure from the curves in figure

2.2 and introduces additional fluctuations. Both of these extra sources of

error are expected to be small compared with the error contributions of

equations (2.18) and (2.28).

In this section, we have presented a method of identifying the mass of a

charged particle using a Cerenkov-AE-Cerenkov analysis. An analysis of the

mass uncertainty has shown that the Ay measurement is the major contri-

butor to the mass error. To eliminate the need for paLhlengLh corrections

in determining y, we can deduce -/ from the ratio of the Cerenkov signal Ui

the response in the adjacent AE measuring element. In the next section, vre

will present an overview of an instrument designed to separate isotope:-

using the method discussed in this section.

1
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22. System Configuration of IMST

22.1. Overview of the Instrument

k	 The High Energy Isotope Spectrometer Telescope is a balloon-borne
i

instrument designed to detect galactic cosmic ray heavy isotopes with mass

resolution better than 0.3 a.m.u. for elements from neon through iron. The

energy window of the instrument has the Lorentz factor ranging from 2.4 to

3.2. Figure 2.8 shows a cross sectional view of the instrument. A stack of

twelve NaI(Tl) discs 52 cm in diameter and a total of 87.2 gm/ cm2 in thick-

ness provides a direct measurement of AE. Each stack layer is viewed by six

photomultipliers which are individually digitized. Such an arrangement

measures not only the energy deposition, but also the trajectory location in

the layer (Buffington, Lau and Schindler, 1981). A direct measurement of AE

reduces the dependence of the experiment upon accurate trajectory meas-

urements, and independent determinations of response in many stack

layers provides a powerful means of removing the numerous fragmenting

events within the stack. Plastic scintillators above and below the apparatus

provide a means of identifying fragmenting events in the Cerenkov counters.

The lower plastic scintillator also identifies penetrating events which are

below the bottom Cerenkov cutoff. The refractive indices of the two Ceren-

kov counters, n w 1.10 (aerogel) above and a combination of n = 1.34

(teflori) and n = 1.49 (Pilot 425) below, fix the range of incident charge Z

and Lorentz factor y to be covered by this experiment.

Descriptions of the detectors will be presented in the succeeding sec-

tions. In this section, we will discuss the overall system of HEIST. The HEIST

system is constructed from subsystems which interface with eaoh other

through minimal number of protocol signals. The major subsystems are

trigger logic, data acquisition and housekeeping, data formatting and



Figure 2.6

Schematic diagram of the instrument (HEIST-2). (a) plastic scintilla-

tors; (b) vaeagel Cerenkov counter; (c) NaI scintillator stack; (d) bot-

tom Cerenkov counter with Pilot 425 and teflon.
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recording, high voltage, thermal control, command, and ground support

equipment. With the exception of the ground support equipment, the su',

systems are all on-board the gondola.

Figure 2.7 shows the configuration of the overall system. The micropro••

cessor in the on-board data acquisition and housekeeping subsystem con-

trols the experiment. It handles all the data ilo, telemetry, and other func-

tions for the system. However, the trigger logic subsystem makes the iinpor-

tant decision of what constitutes a valid trigger (i.e., an event of interest). A

valid trigger in this experiment is defined as an event which passes through

both the top scintillator (ST) and the fifth layer (L5) of the NaI stack with

energy depositions in these detectors greater than the thresholds. These

thresholds are command-adjustable individually. The fifth layer is in the

trigger requirement because particles in the desired charge range and

energy range do not stop before reaching layer 5.

All of the measurements in this experiment are done with photomulti-

pliers. There are a total of 108 photomultipliers used for the measurements:

each of the Cerenkov counters is viewed by twelve 5 inch tubes (ENMI 9709)

and each of the stack layers and scintillators is viewed by six 1.5 inch tubes

(A-Tnperex 2008), All of these 108 tubes are pulse-height-analyzed. For each

of the photomultipliers, the anode signal is connected to a charge integra-

tion circuit which is followed by a 12-bit (4096 channels) analog-to-digital

converter (ADC). Figure 2.8 shows a block diagram of the circuitry. The

I

combined circuitry is designed so that the ADC binning error will be th

dominating electronic error contribution. In addition to the anode signa

the last dynode signal is connected to the same circuitry through a pre

ampliflier with a 'typical gain of 100. The pre-amplifiiers are not turned o:

during normal operation; they are primarily used on muons for system func
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Figure 2.7

Schematic diagram of the overall system configuration of HEIST-2.
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Block diagram showing the signal processing circuitry for a pho-

tomulitplier.
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tional checkout and calibration purposes on the ground. The pre-ampliP_ier,

charge integration, and ADC circuits are all packaged on a printed-cin,u?'.

board with dual-inline-packaging so thy:? it looks like a 40- pin IC chip. We

call these ADC circuits even though they actually contain more than their

name implies. These ADC circuits are plugged onto the 18 motherboards (6

ADC circuits each) which supply the power, control signals, and data

readout circuitry. In addition to the 108 photomultipliers mentioned above,

there are two photo multipliers (labelled T1, T2) on the ton scintillator.

These two tubes are used for timing and coincidence purposes only and are

not pulse-height-analyzed.

2.2.2. Trigger Logic Subsystem

The trigger logic has two major coincidence requirements: fast coin-

cidence and slow coincidence. The fast coincidence is used to establish the

timing of the event and the slow coincidence is used to determine whether

the event constitutes a valid trigger. The fast coincidence has three inputs:

T1, T2, and EXT. T1 and T2 are the signals from the two timing tubes on the

top scintillator. The EXT input is used for generating false triggers to the

system. When ElY'P receives a pulse, the trigger logic will trigger the system

regardless of the states of T1, T2, and the slow coincidence. These false

triggers are required, and are provided by the ground support equipment

when it performs automated calibrations on the electronics. False triggers

are also generated by a timer in the trigger logic circuitry at half minute

intervals to keep a running record of the system baseline. In addition to

these half minute false triggers, the timer also generates false triggers

whenever there is no trigger in 1.5 second. This is done to prevent a partic-

ular failure mode in the data recording system. All of these false-triggered

events are tagged in the data format. The T1 and T2 photomultiplier signals
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go through two discriminators in the trigger logic. The fast coincidence

condition is given by the logic equation E-YT+f(T1,T2), where f(T1,T2) is

command-programmable to one of the four states: T1, T2, T1+T2, or TI-T2.

In the muon mode, the thresholds of the discriminators are set to roughly

two-thirds of the most probable response for muons. In the flight mode, the

thresholds are set to approximately 20 times the muon mode value so that

they will accept all of the incident C, N, 0 nuclei, but none of the He. "When

the fast coincidence condition is met, the trigger logic will consider the slow

coincidence condition about 4 us later, which is right before the charge

integration peak time. If the slow coincidence is met, the trigger logic will

issue a 40 As HOLD signal to the ADC circuits. Upon receiving the HOLD sig-

nal, the outputs of the charge integration circuits will be held (for the

length of the HOLD signal) and the analog-to-digital conversion process will

begin. The conversion process takes Ahout 35 µs. The leading edge of the

HOLD signal is designed to coincide with the peaks of the charge integrated

output signals so that error in timing will have the least impact on the pulse

height analysis. At the end of this 40 µs, the trigger logic will issue a DR

(data ready) signal to the microprocessor, and this signal will stay up until a

RC (read complete) signal is sent back by the microprocessor. This reading

process takes approximately 15 ms, and the system is dead during this time.

We will now go back to discuss the slow coincidence condition. The slow

coincidence is determined from the charge integrated outputs of the 12

photomultipliers from S T and L5. The 12 outputs are divided into four

groups: ST,A, ST,B, L5,A, and 4,13 . The 3 outputs in each group are added with

an analog summing junction and the sum is fed to a discriminator. The

thresholds of the four discriminators are normally set to accept sea-level

muons in the muon mode and everything from carbon and up in the flight

,
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y mode. The thresholds are also command-settable, individually, to one of the

eight discrimination levels which span a factor of more than 20 in input sid

nal amplitude. The slow coincidence condition is normally given by the logic

equation ST,A • ST,g • 4,A •I6,g; however, ST,A and ST,g are both command-

	

l • 	removable from the coincidence requirement.

	

`	
In addition to the coincidence capability, the trigger logic has a rate

meter which keeps track of the trigger rates of T1, T2, ST,A, ST,s, 4 A , and

t 4,3 . It also has a hazard timer which will tag the current event if another

event triggered the system within a 256 As window before the current

trigger.

22.3. Data Acquisition and Data Recording Subsystems

The data acquisition subsystem consists of a microprocessor and its

resident software. The data acquisition subsystem reads data from the AE)C

circuits, In addition, it also reads data from many of the housekeeping sen-

sors. There are temperature sensors which monitor temperatures in

different locations of the experiment, voltage sensors which monitor system

votage supplies, pressure gauges which monitor internal pressure of the

gondola, high voltage sensors which monitor voltages going to the NaI stack

photomultipliers, and magnetometers which monitor orientation of the

experiment with respect to the earth's magnetic field. These housekeeping

data are updated for every recorded event and every telemetry frame. The

microprocessor also handles the telemetry data stream at about 9

events/ sec (-20 kbit/sec). The most current event will be telemetered if

there are more than one event since the last telemetered event. On the

other hand, if there are no new events, the last event will be telemetered

again along with current housekeeping data. The microprocessor has a 50X

memory buffer which holds data for 200 events. When this memory buffer is

3
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full, the micropocessor will issue a HF'E (buffer full/empty) signal to the

video formatter and data will be transferred to the video formatter redun-

dantly through two DiIMA channels. The video formatter puts the data into

video format, 16 bits/line and two copies of the same event on a video Held,

and transfers the formatted data onto two commercial portable video

recorders. The two recorders are normally used in parallel and with the

data being recorded twice on each recorder, we thus have a four fold redun-

dancy in our data recording. In addition, a checksum is computed and

recorded for every data Held.

22.4. High Voltage Subsystem

Fk

	

	 High voltage for the 110 photomultipliers is provided by 6 DC-DC high

voltage supplies and a high voltage battery-pack. The top and bottom

I Cerenkov counters use four high voltage supplies. All four supplies are set

to have +1550V output. Each supply provides the high voltages for 6 non-

adjacent photomultipliers on one counter so that, in the event of a power

supply failure, we still have a symmetric measurement. The two supplies for

the plastic scintillators are connected with the same philosophy. Each sup-

ply provides the high voltages for 3 photomultipliers on the top scintillator,

3 photomultip ars on the bottom scintillator, and one timing tube. These

two supplies are set to have -1350V output. The timing tubes are run at

-1250V using a resistive voltage divider, Noise measurements and other

documentation on the high voltage supplies can be found in the On-board

HV Supply folder. High voltage distribution information can be found in the

Cerenkov FM Base Design and Scintillator PM Base Design folders.

The 72 stack photomultipliers get their high voltages from the high vol-

tage battery-pack. The pack consists of 800 silver oxide batteries (Eveready

384) in series. These batteries are the same as the ones used in digital wrist i1
--	 —	 _
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watches. They were chosen because of their good discharge characteristic

which provides relatively constant voltage throughout the last Lwo• thirds -f

their life time. The Eveready 384 'vas chosen because its current capability

matches the needs of our application. These batteries have a life time of

—35 mA-hr. The voltage of these batteries decreases throughout roughly

the first third of their life time and reaches a plateau value in -12 mA-hr.

Therefore, to minimize the voltage variation in the pack, the batteries were

pre-discharged to 13 mA-hr prior to connection to the system. The pack is

organized intu eight 160V packs, and each of these has twenty 8V sticks.

These 8V sticks are considered to be the basic units of the pack. They are

constructed from five 1.6V cells spot-welded together in series and wrapped

together with low-temperature shrink-tubing. Each stick has two terminals

for electrical connections. Twenty of these sticks are wired to a 24-pin con-

nector (Amphe-nol 67-02E18-24) to form a 160V pack. Each 160V pack is

wrapped with low-temperature shrink-tubing with the connector at one end

of the one meter long pack. The 24-pin connector carries the 21 voltages of

the 20 sticks with 3 pins unused. The eight 160V packs are connected to a

high voltage distribution box. They are connected so that three packs pro-

vide voltages up to +480V and the other five packs provide voltages down to

-800V. The distribution box has thirteen 104-pin connectors (Amphenol

201037). These thirteen connectors are bussed together with twelve of them

used for connections to the photo multipliers and the remaining one for con-

nections to external high voltage power supplies. The external connector is

used for non-battery operation and during the battery connecting pro-

cedures. Due to the system electrical capacitances,' the system has to be

charged up using external power supplies through this external connector

prior to battery-pack connection. There are high-voltage monitors con-on-

1 ,
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s,
nected to the -800V and +248V points of the high voltage distribution box.

Documentation on the pin assignments of connectors, battery-pack connec-

tion procedures, and the high voltage monitors, can be found in the Stack

m High Voltage folder.

We procured 100 Amperex 2008 tubes for use on the stack and the ti-,,o
t!r plastic scintillators. Extensive testing was done on 12 sample tubes before

this procurement. Some results of this testing will be discussed in The Nal

Stack section. These tubes have greater than a factor of t; ,To variation in

their tube to tube gains. If all of the stack photo multipliers were powered

with the same high voltage distribution, the maximum response on some of

the ADC circuits would be lower than half -scale in order to keep the others

on scale. To minimize this effect for maximum utilization of the ADC

dynamic ranges, we do not use the same high voltage setting for the 72

tubes. Instead, we use the following scheme. The photomultipliers are

grouped into 12 groups according to their rankings in gains so that each

group will have small variation ( typically 10%) in gain. The six tubes from

each group are used on the stack with tubes from the same group read out

by the same motherboard and sharing the same high voltages. Six tubes

from any given group are placed on six alternating layers of the stack. This

is done to minimi ze the relation of the electronics and high voltage to the

stack layers, so that information on any layer will not be totally lost in the

event of single electronics or high voltage failure. The Amperex 2008 tubes

are 10 stage photo multipliers and vie use the first 7 stages to adjust the

gains of the tubes. The anodes are all connected to +376V, D10's (the 10th

dynodes) are all connected to +248V, D9 ' s to +160V, D8 's to +72V, D7's to

ground, and D6's through K's (cathodes) will have different settings for

different groups. The voltages of D6 through K can be adjusted only by

\.1
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steps of BV because of the battery configuration. Nevertheless, this is good

enough to adjust the gains to within 10ia variation. The photomultiplirrs'

ranking, grouping, and location in the stack are documented in the Stack
v

i	 PM Info. folder; and the high voltage settings are documented in the Stacie

HVlhstribution folder.

22.5. Thermal Control Subsystem

The sodium iodide scintillators in the stack are extremely sensitive to

temperature, both in light output and structurally. Therefore, we like to

keep the stack at a near constant temperature. By thermally isolating the

hervaetic can, which contains the Naf detectors, as much as possible from

the remainder of the experiment, we can Flow down the rate of heat

transfer. However, with the experiment's electronics and power condition-

ing system dissipating about 280 watts, the temperature of the gondola will

increase with time unless a means is devised to remove the unwanted heat.

A number of possibilities were considered : flying a block of ice, utilizing

other means of "storing cold.” such as liquid nitrogen, improving the thermal

connection to the outside world during the nights, and active or passive

refrigeration systems. After careful consideration, a refrigeration system,

which utilizes the evaporation of water into the near-vacuum that exists

near the gondola during the balloon flight, was chosen. Water appears to be

the best choice for the working fluid because it is commonly available, has a

very large heat of vaporization near room temperature, and has a reason-

ably high vapor pressure near room temperature. About 18 kilograms of

water is needed to offset the heat generation by the system for a flight dura-

tion of 2 days. Our cooling system has a donut-shape aluminum container

with about 50 liter capacity (i.e., same as 50 Kg for water). At launch, this

container will be filled to about two thirds of its capacity to give us

"I
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1. a system console terminal for entering instructions to the com-

pater and editing programs
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1
approximately a factor of two safety margin for the 2 day flight. The cooling

i.'

I
system has three valves for controlling the cooling cycles so as to

single point failure of this system. These valves can be controlled automati-

cally by a group of temperature sensors located at different parts of the

gondola, or manually by sending commands, There are also two fans inside

the gondola to give air circulation to equilibrate the gondola thermally.

2.2.6. Command Subsystem

With a complex instrument such as this one, it is wise not to totally rely

on preconceptions, but rather leave the experimenters some real-time con-

trols on the instrument. To do this, we put a command system on board

DEIST. Through this command system, we can switch the power to the sub-

systems, including the high voltage supplies, define the trigger require-

ments, set the thresholds of discriminators on the trigger logic, switch the

video recorders on and off, select automatic or manual mode for the cooling

system and control the valves in the manual mode, and release gas stored in

a gas bottle in case of decreasing pressure inside the gondola due to leak-

age. This command system has two command receivers for redundancy.

They operate at different frequencies and only one of them is needed at any

given time.

^,	 l

^I

2.2.7, Ground Support Equipment

A minicomputer based ground support equipment system (GSE) was

built to do on-line monitoring, system calibrations, real-time data acquiii

tions and real-time data analysis. This is a PDPl1 /io based system with the

following peripherals :
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?	 'I 2. a set of console switches which interface to computer programs

for various control functions
i

3. 28 K words (16 bits) of random access memory for program cxe-

S :	 cution and data buffers
i

i. a dual floppy disk drive (Rx02) for program and data storage and

i	 retrieval

5. a magnetic tape drive (Kennedy 9-track) for transferring

telemetry data or video data onto magtapes

6. a clock (TCUIoo) for keeping time and generating 1-minute inter-

rupts to the CPU for housekeeping purposes

7. an arithmetic extention unit (KEilp) for fast arithmetics

8. a storage scope (Tektronics 603 driven by an ARIL) for graphic

diF,play of various types of data

9. terminal ' interfaces (DUI-B) for connetc ,lions to terminals and

printers for data entries, printouts, and pseudo-stripcharts

10. a DMA controller (MDB11, an equivalent of DRll) for taking data

input from either the telemetry interface or video interface

11. parallel i/o ports (DEC kit 11-H) which connects to a DAC for sys-

tem calibration and a command status display panel for cam-

mand verification.

For details on the hardware and system configuration, please see Koon Lau's

HEIST GSE Notebooks, volume I & II.

Extensive software packages have been written for this system to han-

dle. monitoring, calibrations, graphic displays, and data analysis. Directions

for using the software can be found in Eric Christian's User's Guide to HEIST

Software. We present here a very brief summary of the software

1
t
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capabilities. The HEIST GSE runs under the FORTH operating system which

contains an editor and other utility functions. Some of the most often used

functions are listed below:

1. MONITOR -- which monitors the systems voltages and currents.

It works like a storage scope with 16 input channels and samples

each of the channels at 2 ms intervals.

2. HCAL -- which does automated calibration of the ADC circuits at

8 voltages and determines the gains and offsets from these cali-

bration points

3. translation of data from video tapes onto migtape

4. on-line recording of telemetry data

5. verification of commands and system status through telemetry 	 ^!

data

	8, keeping a minute by minute record of all the housekeeping data	
I	

^̀ '

on Poppy disk

	

7, displaying housekeeping data on the storage scope and putting 	 f

up to 9 channels of housekeeping data on a pseudo-stripchart
i'

8. doing real-time data analysis through either telemetry or video

	

data link and displaying the results graphically on the storage 	 i

scope.

The GSE is a very important system both during accelerator calibrations

and flight. it allows the experimenters to perform real-time data analysis.

This is particularly important during flight, at which time the experimenters

need to get a real-time feedback from the system before they can make

such decisions as discriminator threshold settings, trigger requirement,

cooling system operations, etc.

^.	 .nNJ. Ad►^'^ur. NSA
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2.3. The Nal Stack

The sodium iodide stack is a major component of this instrument. Tliz

stack consists of twelve 2 cm thick NaI discs and provides measurements for

both AE Lnd particle trajectory, NaI(TI) is suitable for this purpose because

it is a hard, homogeneous material capable of being ground and polished to

an optical finish; and because for a given stopping power it causes fearer

fragmentation reactions than does plastic. In addition, Nal(TI) is efficient at

converting dE/dx energy losses into visible light, and this efficiency remains

more constant with the large dE/dx values for heavy ions as compared to

plastic scintillator (Salamon and Ahlen 1981, 1982). Another candidate for

the scintillation material would be Csf which has similar properties as NaI;

however, it costs five to seven times as r. Uch as NaI. The discs were

prepared in a similar fashion to that previously described (Buffington, Lau

and Schindler 1981), except here they are each viewed by six photomulti-

pliers rather than four; and the photomultipliers are mounted within the

hermetic can. The 72 photomultipliers are individually digitized, thus per-

mitting measurement cf the particle transverse coordinates and energy

deposition in each layer. A muon (relativistic Z = 1 particle) passing

through the stack near the axis yields typically 10 2 photoelectrons in each

photomultiplier. The individual layer energy deposition measurements are

constrained in the data analysis to fit a proper Bragg energy deposition

curve for the isotope, and the resulting fit is effective in removing most

types of fragmentation events. The position information can be used to

correct position dependences in the responses of the individual i`:aI stack

layers, and also provides the trajectory information for similar corrections

in the Cerenkov counters and plastic scintillatoos above and below the

stack. In this section, we will discuss the construction of the stack and
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`	 some of its AE and position measuring capabilities.

Because of the hygroscopic nature of Nal, the stack has to be kspt in a

dry environment. A hermetic can was built for this purpose. In addition to

the NaI discs, the hermetic can also houses the plastic lightpipes and the 72

photomultipliers. Cable harnesses and hermetic electrical feed-through

connectors were used for connecting the photomultipliers to the outside.

The lightpipes were constructed from 0.75 inch thick plexiglass. These light-

pipes have a 30 inch outer diameter. The inner diameters are 22.3 inches

except ! .:)r layer 5 where it is 20 inches to accommodate the smaller disc.

Figure 2.9 shows a picture of one of the lightpipes. A 1/16 inch thick, 5/8

inph wide, plexiglass ring was glued to the bottom of each lightpipe around

the inner diameter to support the scintillator disc. Six plexiglass tube hold-

ers were glued onto the outer edge of each lightpipe at 60' apart. Each of

the tube holders was constructed by glueing a plexiglass cylindrical cup

onto a near trapezoidal piece of plexiglass. The inner cylindrical surface

was threaded. Figure ?.10 shows some tube holders with and without pho-

tomultiplier. Threaded aluminum rings were used for holding the photomu-

litpliers in place. A thin piece of glass, with diameter slightly larger than

that of the photomultipliers, was glued on the face of each photomultiplier

for this tube attachment scheme. A 1/16 inch thick silicone wafer placed

between the photomultiplier and the holder was used to improve the optical

coupling.

The lightpipes i"ere sanded and painted black except on areas where

scintillation light might have a direct reflective path to one of the photomul-

tipliers. This was done to minimize the contribution of secondary light from

reflection and scattering. For better position resolution, we tried to minim

ize this secondary contribution to maximize the gradient of light collection
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	 Figure 2.9

Top view of one of the plexiglass lightpipe with one photomultiplier

attached. Ignore the gray background caused by the shadow of the

black paint on the lightpipe. The lightpipes were sanded and painted

black except in areas where scintillation light might have a direct

path to one of the photomultipliers. This is done to minimize the

contribution of secondary light from reflection and scattering. For

better position resolution, we tried to minfrnfze this secondary con-

tribution to maximize the gradients of light collection efficiencies.

The lightpi.pes were constructed from 0.75 inch thich plexiglass.

These lightpipes have a 30 inch outer diameter and a 22.3 inch inner

diameter except for layer 5 where the inner diameter is 20 inches to

accommodate the smaller disc. A 1/16  inch thick, 5/8 inch wide,

plexiglass ring was glued to the bottom of each lightpipe around the

inner diameter to support the scintillator disc. The inset of the

figure shows a cross-sectional view of the scintillator-lightpipe inter-

face. The silicone adhesive provides optical coupling between the

scintillator and the lightpipe as well as holding the scintillator in

place.
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Figure 2.10

Picture of tube holders with and without pho tomultip tiers. Threaded

aluminum rings were used for holding the photorultipliers in place.

A thin piece of glass, with diameter slightly larger than that of the

photomultiplier, was glued on the face rf eack photomultiplier for

this tube attachment scheme. A 1/16 inch tYdck silicone wafer

placed between the photomultiplier and the holder was used to im-

prove the optical coupling.
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' efficiency as a function of position. The inside of the hermetic can was

painted black, and black painted aluminum fails were employed between

layers to minimize inter-layer optical coupling. Figure 2.11 shows the com-

plete assembly of the stack lightpiping system

To remove most of the water content, we baked the hermetic can with

the lightpipe assembly inside (without scintillators and photo multipliers) at

85°C for about 100 hours, while flushing the hermetic can with dry nitrogen.

The hermetic can along with the lightpipe assembly was shipped to Cleveland

for installation of NaI scintillators inside a dry room at the Harshaw Chemi-

cal Company. Detailed installation history can be found in the HEIST Lab.

Notebook. The NaI scintillator discs were cut and machined to size. Each

disc was ground to a constant thickness within 50 /am and all of its surfaces

were polished to a bright specular finish. The discs were glued to their light-

pipes with a silicone adhesive material (see inset of figure 2.9). This silicone

adhesive provides optical coupling between the scintillators and the light-

pipes as well as holding the scintillators in place.

The Amperex 2008 was chosen for the photomultipliers because of its

good'«.earity characteristics and its low cost (-370 per tube for quantity of

100). Six different models of photomultipliers from 3 companies, were

tested for linearity, before the procurement of the Amperex 2008 tubes.

The results of this testing were reported in the PTV Selection memo by Koon

Lau (dated October 29, 1980). Before we present a summary of the findings,

we will discuss briefly saturation of photomultiplier response. Saturation, in

this context, occurs when the output current (or charge) no longer holds a

hneaa; relationship with the input light level. At any given operating voltage,

the output current of a photomultiplier will start to saturate when the input

light level is increased above a certain point. This is due to space charge

i
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FIgure 2.11

Picture of the complete assembly of the stack lightpiping system.

The lightpiping system is shown being supported by the bottom plate

of the hermetic can. The top plate and side wall were removed. The

inside of the hermetic can was painted black and black painted

alumirum, foils were employed between layers to minimize inter-layer

optical couplings.

1
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effects in the last few stages of the photomultiplier. At this point, while the

output current starts to saturate, if one integrates the total output chars,

the integrated charge will still remain linear with the integrated light input.

However, at a yet higher light input level, even the integrated charge wil

start to saturate. Since we are interested in the charge, rather than the

current, in this experiment, we are more concerned with the latter type of

saturation. These saturation points occur at lower light input levels :Vith

higher operating voltages. However, it was found that, to first order, satura-

tion starts at about the same output current or charge level with varying

high voltage.

The six models tested were: EMI 9837, EMI 98728, Amperex 2010, Ham
i	

mamatsu R1398V, EMI 98438, and EMI D550. The EMI 9837 had a Venetian

¢	 Blind dynode structure, whereas the others had a squirrel cage dynode

I
	 structure. There were two types of squirrel cage structures. The Amperex

2010 and the EMI D550 had linear focus structure and the other three squir- 	 a

rel cage models had a wrapped around structure. The Amperex 2010 was

identical to the Amperex 2008 electrically with only differences in the pack-

aging. A light box was used for the measurements. Six LED's, driven by

0.25µs current pulses, were used as the light source. Since the different

models had different photocathode sizes, a 0.88 inch diameter aperture was
r	 used in front of tube face to give roughly the same light level for the

r- different tubes. The light intensity was varied by using Kodak neutral den-

sity filters. For each photomultiplier, current and charge levels -were meat-

ured at various light levels. At least two tubes of each kind were tested

using this setup. The measurements showed that squirrel cage type tubes
S"' I

¢	 had much better linearity characteristics than the Venetian Blind type,

e.	 which was what the manufacturers indicated. The linear focus structure

`1
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was found to be better than the wrapped around structure among the squir-

rel cage models. The Amperex 2010 and EMI D550 were comparable In

linearity with the Amperex 2010 showing slight superiority. Twelve Amoerex

2008 tubes were then obtained and tested. Test results showed that a typi-

cal Amperex 2008 was as good as the Amperex 2010 tubes tested. Satura-

tion of charge did not occur until the output charge level was above 10,000

pico-Coulomb. Two of the twelve had worse than typical saturation charac-

teristics, but even these were very linear when output current was below

7,000 pico-Coulomb. Based on this result, we set the sensitivity of the ADC

circuits at 1.22 pico-Coulomb per bin (i.e., a fullscale of 5000 pico-Coulomb),

so that we could fully utilize the ADC dynamic range without having to worry

about saturation of photomultiplier responses.

Because of the positive results of the photomultiplier test, we decided to

use the Amperex 2008 for the stack. Another shipment of tubes was ordered

to give us a total of 100 Amperex 2008 tubes. After the glass discs were

glued on the photomultiplier faces, gain and linearity measurements were

made on each of the 100 tubes. They were then ranked and grouped

according to their gains as described in the previous section. Photomulti-

pliers were then installed on the lightpipes with the hermetic can inside a

dry glove box (descriptions of the glove box can be found in A Dry Box For

Working With Nod memo). The photomultipliers were carefully oriented so

that the least magnetic-sensitive axis was horizontal. This was done

because the horizontal component of the earth's field experienced by tha

photomultipliers would vary more than the vertical component during the

balloon flight. To futher minimize the effect of magnetic field variations, a

cylindrical magnetic shield was put around each of the photomultipliers.

The magnetic shields were constructed from one layer of 0.004 inch thick

1
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µ-metal (AD-MU-78 from Ad-Vance Magnetics, Inc.). Laboratory tests shoved

that, with this configuration, the earth's magnetic field iiould :iot have -L..}

significant effect on the photomultiplier responses. The high voltage distri-

butions on the first 7 stages of the photomultipliers were adjusted for each

group of photomultipliers so that the twelve groups had comparabla

responses for sea-level muons, The high voltages on the last 4 stages were

adjusted at the Bevalac, using data from stopping 55Mn. ions, such that the

maximum response from a slow Ni ion would not go off-scale on any one of

the 72 ADC circuits.

The stack of NaI discs was exposed to Bevalac carbon, neon, and argon

beams in June 1981 and to a manganese beam in November 1982. The first

Bevalac data set only covered less than half of the stack area. Nevertheless,

it provided us important information on position resolution. The latter pro-

vided data for adjusting the high voltage settings and hopefully would also

yield response maps for most of the stack. For both Bevalac runs, multi-

'wire proportional counters were used, in front of the apparatus, to record

particle trajectory.

Scintillators have been used in the past to determine the location at

which a charged particle traverses them (Arens t974; Rogers et al. 1974;

Zych et al. 1979; and Arens et al. 1979). These position-measuring scintilla-

tors (which Arens et al. call "entopistic") utilize the principle that the scin-

tillation light is gathered unequally by the photomultiplier viewing system,

depending upon the position at which the light was generated. A fundaineu-

tal limit of such systems is set by photoelectron statistical flucLuations

within the individual photomultipliers viewing the scintillator. Even though

this limit is theoretically only one or two millimeters for many of the sys-

tems which have been tested, systematic errors of various kinds have lirm

3
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iced the actual performance of these systems to about one centimeter accu-

racy, 9 1.73 cm thick, 50 cm diameter, NaI disc was exposed to a beern ):

670 MeV/nucleon neon in 1980, We (Buffington, Lau, and Schindler 1981)

have jhown that a position resolution of less than 3 mm was achievable icr

neon.

The amount of light detected by a photomultiplier viewing the \'aI

depends on the amount of scintillr„ion light generated, and the position at

which the light was generated. j"'fth more than one photornultiplier vie in,^

a scintillator, the first of the two dependences can be eliminated by taking a

ratio of different photomultiplier responses. Therefore, ratio- of photomial-

tiplier responses only depend on the position at which the light was gen-

erated. Figure 2.12a shows such a dependence for the ratio of responses

from two photomultipliers on one of the stack scintillators. The photomulti-

pliers are located opposite to each other on the lightpipe (i.e., 180' apart),

The data were taken with neon ions going through a 10 cm by 10 cm area at

the center of the scintillator disc. One can see from the width of the line

that position resolution of less than 1 em can be achieved.

It was found that the ratio of the responses of two photomultiplier

(denoted as R from now) changes by roughly a fixed percentage for a given

change ir. position; that is

Rc
 

/C-AX.	 (2.29)

Since AR/R is equivalent to G1ogR (log is natural log, not the log of base 1C),

equation (2.29) gives

AlogR ni K-AX.	 (2.30)

This says that logR forms a linear relationship with the position, at least in a

limited area. Figure 2.12b shows this linear relationship, for the data set of

i
I

3



Or rk-,17

-62-

Figure 2.12

Figures showing the correlations between the position, r-3 measured

by a multi-wire proportional counter, and, (a) the ratio of responses

from two photomultipliers which are located opposite to each other

on the lightpipe (i.e., 180 0 apart), (b) the natural log of the ratio

described in (a). It was found that the log of the ratio forms a linear

relationship with the position, at least in a limited area. The slope of

the line in figure (b) is 0.048 can 1 . The data were taken with neon

ions going through a 10 cm by 10 cm area at the center of a scin.tiLa-

tor disc.
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figure 2.12a, with k being 0.048 cm 1 . Equation (2.30) also says that the

uncertainty in logR (which is the same as the fractional uuicertainty in lh.

ratio) is proportional to the uncertainty in position (which is the same as

the position resolution). It was found that the uncertainty in logR does not

depend on the position to first order. Therefore, the uncertainty in logR can

be deduced from a distribution of the difference between logR and ic•X. Fig-

ure 2.13 shows such a distribution for a data set which the data of figura

2.12b is a subset of (this data set only has more events). The distribution is

not centered at 0.0 because the ratio, R, is not 1.0 at X = 0.0. This is due to

the fact that the gains of the photomultipliers are not balanced exactly,

which can be remedied by using software gain corrections. Notice the

uncertainty in logR is not affected by the gains; th:, is one of the nice

features of using "log". The distribution has a FWHM of 0.042, and thus a

deduced standard deviation of 0.018. With k = 0.048, this implies a position

resolution of 0.37 cm. However, this position resolution includes other sys- 	 i
tematic uncertainties such as multi-wire proportional counter position

	 x:

uncertainty, position uncertainty caused by multiple Coulomb scattering,
r

direction uncertainty caused by stochastic beam divergence, etc.

If we compare ratios of photomultiplier responses from two nearby Nal

sci itillators, instead of comparing a ratio with position measured by a

multi-wise proportional counter, some of the systematic uncertainties can

be eliminated and others can be reduced in magnitude. In this case, the

multi-wire proportional counter position resolution will at be contributing.

The multiple Coulomb scattering will be smaller in magnitude because the

amount of material, between the two locations in the measurements, will be

reduced. The distance between the locations is also reduced, thus reducing

the lever arm for both multiple Coulomb scattering and stochastic bea:ii
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FSgure 2.13

A distribution of the difference between the log of the ratio and

0.048% The distribution is for a data set which the data of figure	 ^.

2.12 is a subset of (this data set only has more events). The distribu-

tion is not centered at 0.0 because the ratio, R, is not 1.0 at X = 0.0.

This is due to the fact that the gains of the photomultipliers are not

balanced exactly. The distribution has a FWF.,13 of 0.042, and thus a 	 j

deduced standard deviation of 0.018. With a slope of 0.048 in figure

2.12b, this implies a position resolution of 0.37 cm. This position i
resolution includes other systematic uncertainties such as multi- 	 t

wire proportional counter position uncertainty, position uncertainty

caused by multiple Coulomb scattering, direction uncertainty caused

by stochastic beam divergence, etc. 	 I
Y
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divergence. Therefore, the ideal case seems to be one in which two adjacent

layers of the stack scintillators are used in the analysis, Unfortunately, t-^o

adjacent layers do not have their photomultipliers aligned in the same

places (as can be seen in figure 2.11). This makes the comparision a little

difficult. So, we will go to the next best situation by using two scintillators

separated by only one layer. In this case, the other uncertainty contribu-

tions are still negligible compared to the intrinsic position resolution of the

two layers. The position resolution obtained by this method has contribu-

tions from both layers involved, and therefore, is a weighted sum of two

position resolutions. The weighting factors are the energy depositions in

the respective layers.

Using the method described in the above paragraph, the position reso-

lution of a single NaI scintillr:tor is deduced to be 0.23 cm for neon ions,

instead of 0.37 cm. Similar analyses were done with moons and carbon ions.

The manganese data show a dependence, on the accelerator particle beam

intensity, for the photomultiplier responses. This dependence is different

for different photomultipliers. As a result, the ratio of responses from two

photomultipliers vdll have a dependence on the accelerator beam intensity.

To minimize this effect, we used one pair of photomultipliers to deduce the

position resolution (instead of using the above method). First order correc-

tions to photomultiplier responses were made to reduce the effect of the

beam intensity dependence. Uncertainties caused by multiple Coulomb

scattering and the multi-wire proportional counter are then subtracted

from this deduced resolution. For a pair of photomultipliers on layer 4, we

deduced a position resolution of 0.170±.003 cm from the log of the ratio. 	 1I

Uncertainties caused by multiple Coulomb scattering and the multi-wire

proportional counter are estimated to be 0.086±.010 cm and 0.070±.010 cm 	 fi

-s
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respectively. Therefore, the best estimate of the position resolution is

0.129--.014 cmfor manganese. These results are presented in Table 2.1.

The major determining factor of the position resolution is photcelectron

statistical fluctuations. The number of photoelectrons should scale with the

square of the charge, Z2, of the incident particle. For particles of the same

charge, lower energy particles have more photoelectrons because of the

higher dE/dx. On the other hand, with higher dE/dx, we have lower scintil-

lation efficiency. Figure 2.14 shows the position resolution as a function of

scintillation output with the dE/dx and scintillation efficiency factors taken

into account. The neon data point has relative response of greater than 10

because the neon ions viere at relatively low energy (-500 itfeV/nucleon).

The manganese data point has relative response of less than. 25 because of

saturation in scintillation efficiency. The muon, carbon, and neon data

points fall onto the Z2 scaling line which suggests that other systematic

uncertainties are not important for elements with Z s 10. The manganese

data point suggests that systematics will limit. us to —0.13 cm resolution.

Neverthele°s, this is good enough for measuring particle trajectory and for

correcting position variation of scintillator responses.

The variation of the sum of six photomultiplier responses for a stack

layer is less than 1%/cm for most of the area except for areas near a pho-

tomultiplier. Combined with a less than 0.2 cm position resolution, this

gives a better than 0.2% measurement on the scintillation light. This says

that position variations should not be the limiting contributor of the uncer-

tainty in the QE measurement. The major contributor of uncertainty in the

AE measurement is probably going to be the corrections for the scintillation

efficiency in the different layers and mapping errors.

The scintillation efficiency was studied using the 551vtn data of November

11



^J f

-70-

Table 2.1

Element Resolution (cm)

Muon 2.125 t .117

Carbon 0.351 t .013

Neon 0.231 t .006

Manganese 0.123 t .014

Table 2.1 Position resolution for a 2 cm thick NaI disc.

LA
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Figure 2.14

Figure showing position resolution achieved by the Nal scintillators

for muon, carbon, neon, and manganese icns. The position resolu-

tion is determined by the photoelectron statistical fluctuations. The

manganese data point falls out of the Z 2 scaling line suggesting that

other systematics will limit the position resolution to —0. 13 cm for a

single NaI scintillator disc.
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1982. The gains of the stack photomultipliers were balanced using on-axis

events from the front and rear entry exposures. Layer-to-layer gain adjus+.-

ment was done by fitting the data to an expected Bragg energy deposition

curve through the stack. There is good agreement fcr this adjustment by

comparing the front and rear entry data for the middle laye: •s. Values of

light output/energy deposition, dL/dE, are then obtained for the final four

layers before the 55Mn ions stopped. Figure 2.15 shows the result, together

with data from Salamon and Ahlen (1981). The data were normalized so that

our layer 1 value for Mn. agreed with an extrapolation of their data. Values

of dL/dE at smaller values of dE/dx are also obtained from the Bevalac data

with 5 cm of polyethylene placed in the beam upstream This material

caused substantial fragmentation of the Mu ions in the beam, and individual

charges down to magnesium can be discerned. The observed layer t

responses are plotted in figure 2.15 versus the calculated values of dE/dx.

There appears to be good agreement with the findings of Salamon and Ahlen

(1981), and for these charges and values of dE/dx, the saturation in dL/dE

depends mainly on dE/dx and very little on the charge Z.

^i



Cam)
7

Figure 2.15

Figure showing results from our scintillation efficiency study using

	

;, t
	 65Mn data, together with data from Salamon and Ahlen (1981). The

data was normalized so that our layer 1 value for Mn agreed with an

i extrapolation of their data. Values of dL/dE at smaller values of

dE/dx are also obtained from the Bevalac data with 5 cm of po-

lyethylene placed in the beam upstream. This material caused sub-

stantial fragmentation of the Mn ions in the beam, and individual

	

'	 charges down to magnesium can be discerned.
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2.4. The Plastic Scintillators and Cerenkov Counters

The plastic scintillators and the bottom. Cerenkov counter are con-

`. structed using readily available items. On the other hand, the top Cerenkov

counter uses aerogel as the radiator. There are 48 pieces of aerogel block

." which were fabricated at the banish Space Research Institute 	 by Ib
d. Rasmussen. In this section, we will present discussions on the plastic scin-

tillators, the bottom Cerenkov counter, and then the more complex top

^. Cerenkov counter.
a

Two 1 cm thick, 79 cm diameter, NE110 discs are used for the top and

bottom scintillators. 	 All the photomultipliers are held in place with the
t

n

saint ;, pe of tube holders used on the stack. These holders were glued onto

the edges of the scintillators with no other light-piping system Thickness

contour maps were made with a micrometer. Maximum to minimum varia-

tions on a disc is about 0.7 nrr The scintillators were wrapped with one 1

layer of aluminum foil (-25 pm) and four layers of black masking tape (-150 i

µin per layer). The two plastic scintillators are almost identical. The major I
difference is that the top scintillato.r has two timing photorultipliers in

addition to the six pulse-height-analyzed photomultipliers. The scintillators

have their pulse height- analyze d-pho tomultipliers aligned with the pho-

tomuitipliers on the even-numbered layers of the stack.

' The bottom Cerenkov counter has a 1.3 cm thick teflon (n = 1.34) radia-

tor and a 1.2 cm thick Pilot 425 (n = 1.49) radiator. They are both 60 cm in

i diameter.	 Two radiators; instead of one, lase used to extend the energy

cone age of the bottom Cerenkov counter. The light integration box is
'I

viewed by twelve 5-inch phototfuhipliers. I

The ton Cerenkov counter consists of a mosaic with 48 aerogel pieces

having refractive indices n ^_- I.I. Silica aerogeis have been used as

ml
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radiators in many Cerenkov counters with refractive indices between 1.015

and 1.055 (Bouffard et al. 1982; Henning et al. 1981). The refractive index of

the aerogel material can be increased by heating to a temperature near

900°C (DeBrion et al. 1981). An oven has been constructed at D.S.R.I. for

this purpose. As shown in figure 2.16, the radiator is fabricated from aero-

gel blocks 14cm square and 2 cm thick to form a mosaic 6 cm thick and

more than 58 cm in diameter. Triangular pieces fill in the corners. The

individual blocks were precision machined to within 50 µm of the desired

size using a fty-cutting technique. The mosaic was then pressed together

within a light integration box, using an array of small pressure plates

Around its periphery. The air gaps between Cle pieces of the mosaic are <

100 um everywhere.

The raw material consisted of aerogel blocks 19 cm square and 3 cm

thick, with n = 1.05, which were recycled from a CERN ISR experiment. The

blocks were originally produced by the University of Lund, Sweden (H,.q. ning

and Svensson 1981). No dete±f.ed production history is available. This is

unfortunate, as the response of the aerogel to heat treatment varies

between production batches far more than the pieces within each batch.

The variations are typically On < 0.005 within a batch, but frequently dn. >

0.05 between batches. Of 85 blocks obtained from the CERN experiment, 48

are employed in constructing the mosaic. The selected blocks are cl(sely

matched in groups of three, having indices within 0.005, to ensure unifor-

mity throughout the 6 cm total thickness. Like the bottom Ceren.kov light

integration box, the light integration box is also viewed b- +,welve 5 inch

photomultipliers.

Prel rninary analysis of the 1982 Bevalac calibration data shows that the

light produced by passage of a relativistic muon normal to the mosaic yields

i

:+



Figure 2.16

Schematic diagram showing the placement of individual acrogel

blocks to make up the fabricated mosaic.
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l 23±4 photoelectrons.	 The Bevalac calibration data covering —90% of the

counter surface show that >75% of the area has response variations bEl,

2%/cm. If the position can be determined to better than 2 mm at the Ceren-

kov counter, 2%/cm translates into 0.4% uncertainty in the Cerenkov

response. Even for iron particles, the photoelectron statistical fluctuation

will be 1% or higher. Therefore, position variation will not make a significant

contribution to the uncertainty of the Cerenkov response. More discussion

of this analysis is presented by Rasmussen et al. 1983.

."_ The B^valac calibration data also provides a light collection efficiency

map for the top scintillator. The calibration data was obtained with a beam

of 55Mn ions -with incident y = 2.75. With this incident energy, the 55Mn ions

'i	 stopped in the stack before reaching the bottom Cerenkov counter. As a
^k.

result, light collection efieciency maps cannot be obtained, using 55.Mn data,

for the bottom Cerenkov counter and the bottom scintillator. One might

attempt to obtain these maps using events which had nuclear interactions

in the stack. This requires a great deal of work, and yet might not have

enough statistics. However, since we do not have any other data set, further

investigation in this area is definitely worth doing. Inflight mapping of

detector response for these counters is also possible using relativistic car-

bon and oxygen particles.
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2.5. Summary and More Discussion on Mass Resolution

In the previous sections of this chapter, we have described an —

Instru-ment designed to resolve isotopes with resolution better than 0.3 a.m.u. for

elements from neon through iron. We have discussed some of ins capabilities

including the trajectory measuring capability of the stack. We have also dis-

cussed the fundamental limitations on mass resolution. In this section, we

will discuss the other contributions to the uncertainty in the mass measure-

ment; and will show that these contributions do not pose severe limitation
I	 <

on the mass resolution.

For the Cerenkov measurements, photoelectron statistical fluctuations	 I'
i

have fundamental Limitations on the mass resolution. As discussed in sec- 	 (I

tion 2.1, the photoelectron statistical fluctuation for a Cerenkov counter is
r

just the square root of the number of photoelectrons detected. The number

of photrAlectrons detected is given by equation (2.11) to be Z 2 •Nrel -f.	 For

Cerenkov counter with Nrel = 30, 2 . 104 photoelectrons will be detected for

relativistic iron particles. Since the instrument. is only capable of resolving

C
mass for f < 0.5, the maximum number of photoelectrons detected by this

Cerenkov counter would be _104 for any particle of interest. This implies a

photoelectron fluctuation of greater than 1%. The top Cerenkov counter

with Nrei = 23t4 will have even greater fluctuations (in

Other contributions to the Cerenkov measurement are temperature

deperidence of photomultiplier res ponse and position variations of the

Cerenkov counter response. The temperature is monitored to t0.1°C accu••

racy. With a typical temperature coefficient of 1%/°C for photoinultipliers,

the temperature uncertainty will cause a –0.1% uncertainty in the Cerenkov

measurement. This contribution is insignificant when it is added in quadra-

ture to the greater than 1% photoelectron fluctuation contribution.

p Y
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Since the stack provides trajectory information, the position variations

can be corrected using a response map. If we use the positions measured

the top 5 layers of the stack to calculate the position of the particle at the

top Cerenkov counter, the calculation will have an uncertainty of less than i

mm for iron particles (since positions are known at each layer to better

than 1.5 mm). However, multiple Coulomb scattering also contributes to the

uncertainty in this position calculation. We estimate that multiple Coulomb

scattering will have an effect of less than 1 mm for iron particles. There-

fore, taking account of the multiple Coulomb scattering effect, we still can

measure position at the top Cerenkov counter to better than 1,5 mm accu-

racy for iron particles. With the Cerenkov counter having position varia-

tions below 2%/cm (see section 2.4), the position uncertainty would give a

less than 0.3% uncertainty in the Cerenkov measurement. This is still small

when compared, in quadrature, to the greater than 1% photoelectron

fluctuation contribution.

As described in section 2.4, the top C r^renkov counter consists of a

mosaic with 48 aerogel pieces. These aerogel .pieces are closely matched in

index of refraction to ensure uniformity throughout the thickness of the

radiator. However, there are sigr-ificant variations in the index among the

18 groups even though the 3 pieces in each group are matched in index.

This causes two major problems. First, the position variations might be

greater than 27./cm for areas near the boundaries of the groups. Second, if

a particle goes through more than one group of aerogel blocks, the respec-

tive pathlengths in Each of the groups traversed by the particle are very

uncertain. To avoid these problems, we will reject events (during data

analysis) with calculated trajectories crossing or near (within 2 mm) one of

the boundaries. This results in a geometry factor loss of roughly 30%,

`!l
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assuming an isotropic flux.

For the AE measurement, we have shown that photoelectron statistical

.` fluctuations make a negligible contribution to the uncertainty. With a siss-

lar analysis to the one on the Cerenkov measurement, we can show that

corrections on the temperature dependence of the AE measurement do not

make a significant contribution to the mass uncertainty.

Another factor in the D.E uncertainty is position variations in detector

responses. For one NaI scintillator, even with a 2% /cm response gradient

and a 0 . 2 cm position resolution, we can get an accuracy of 0.47. for this

measurement. 19ith a minimum of 5 layers used in the total AE measure-

ment, the accuracy for total DE should be better than 0.2%. Thus, by equa-

tion (2.6), this gives a mass uncertainty of about 0 . 1 a.rmu. for iron isotopes.

For lower charge elements, the position resolution will not be as good; and

thus the uncertainty in AE will be larger. However, the requirement on the

AE accuracy will be less stringent. The two effects offset each other to give

roughly the same mass uncertainty. Taking into account saturation in scin-

tillation efficiency, the mass uncertainty due to the AE measurement should

actually be lower for lower charge elements.

In the preceding paragraph, the position variations in detector

responses were assumed to be mapped perfectly. In reality, the snaps will

have finite accuracies and will thus contribute to the uncertainty of the AE
.R measurement. The position variations in detector responses are usually

mapped with high energy charged p«rticles at an accelerator facility. The

accuracy of a. response sap will undoubtly depend on the number of part i

-cles used in the mapping process, the coverage ( or the lack of) on the detec-

tor by these particles, and the computational method used in generating the

v-	 map. Our detectors were mapped with high energy manganese particles at

i

^I
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the Lawrence Berkeley Laboratory Bevalac. The mapping data are still being

analyzed at the present time. Nevertheless, preliminary results show that

the energy resolution of the Nal stack will be sufficient to achieve the

desired mass resolution.

In this chapter, we have discussed the Cerenkov-AE-Cerenkov mass

measurement technique and the mass uncertainty contributions associated

with this method. We have described the design and construction of an

instrument which is based on the Cerenkov-GE-Cerenkov technique. 'Ye

have also presented a method of measuring position using NaI scintillators.

Accelerator calibration data showed that a position resolution of —0.13 em

can be achieved for Mn ions. We have also shown that position variation in,

response will dominate the uncertainty in the 6E measurement. For the

Cerenkov measurements, we have shown that photoelectron statistical
	 A

fluctuations dominate the uncertainties in the Cerenkov measurements. In

figure 2.17, we show the mass resolution as a function of incident Lorentz
	

11

factor for the isotopes 20Na	 and 56Fe. According to this figure, our

instrument, HEIST, should	 Gable of resolving mass to about 0.3 amu or

better for elements rangii E,	 m neon to nickel at energies of about 2

GeV/nucleon.
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1

Mure 2.17

Mass resolution calculated for 20Ne, 28 Si, and S8Fe incident at 301.

The solid curves are for particles which stop in the NaI stack and the

dotted curves are for particles which penetrate the stack. If a parti-

cle penetrates the stack with residual energy below the threshold of

the bottom Cerenkov counter, no mass uncertainty will be calculat-

ed. If a particle penetrates the stack with residual energy above the

pi threshold of Pilot 425 and below the threshold of teflon, only the Pi-
1

lot 425 radiator contribution will be calculatea for the bottom Ceren-
^, P

kov counter.	 In the calculation, we assume that Nrel of equation j

(2.11) is 23 for the aerogel radiator, 15 for the teflon radiator, and k
i 15 for the Pilot 425 radiator. If a :)article penetrates the stack with

residual energy above the thresholds of both teflon and Pilot 425, a

composite index of 1.355 is used. We also assume that the DE meas-

urement contributes 0.1 amu to the mass uncertainty.
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Chapter 3

Fragmentation Studies

Cosmic ray composition studies rely heavily on semi-empirical estimates

of the cross-sections for the nuclear fragmentation reactions which alter

the composition during propagation through the interstellar medium In

many cases the errors in these cross-section estimates result in significant

uncertainties m cosmic ray source abundances or in propagation model

parameters derived from observed abundances. To reduce these unce..k • tain-

ties, direct measurement of a wide range of nuclear fragmentation reactions

would be desirable. In addition to measurements of key cross-sections

which strongly influence the interpretation of particular cosmic ray data,

other cross-section data are useful since they can be used as the basis for

refining the semi-empirical formulae.

Accelerator calibrations of cosmic ray detectors provide a possible

source of data for testing semi-empirical cross-section estimates. We have

analyzed two sets of data obtained during calibrations in which 40Ar and

6eFe were fragmented in CHz targets, and have compared the observed iso-

tope yields with those expected on the basis of the semi-empirical formulae.

In this chapter we report on some of the differences between the measured

and calculated yields.

We will first present a discussion of the importance of fragmentation

cross-sections in section 1 of this chapter. Analysis and results on the 40Ar

and $aFe fragmentation studies are presented in sections 2 and 3. Section 4

gives a summary of the fragmentation studies.

r
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3.1. Importance of Fragmentation Cross-Sections in Cosmic Rays Studies

The cross-sections of high-energy nuclear reactions are of considerable

astrophysical interest. They are necessary for deducing cosmic-ray source

abundances, inferring cosmic-ray propagation and confinement parameters,

and many other area ,. of cosmic rays studies. We will discuss the impor-

tance of fragmentation cross-sections in some of these areas.

A good knowledge of cross-sections is essential for the determination of

the mean path length in interstellar matter and the confinement time of

cosmic rays in galactic magnetic flelds before leaking out from the galaxy

due to random walk of magnetic field lines and/or scattering by magnetic

irregularities. The cosmic-ray path length dis. -ibution function can be

estimated from various secondary/primary ratios a tch as 3He/He,

(Li+Be+B)/(C+N+O), and (Cl through Mn)/Fe. Here the secondaries are
i

assumed :n be the products from fragmentation reactions of the primaries

with the interstellar medium, with negligible source contributions. To 	
f
i

deduce the path length from these ratios, some knowledge of fragmentation

cross-sections is necessary. Uncertainties in the fragmentation cross-

sections will result in an uncertainty in the deduced path length. The path

length distribution is essential for checking the various theories: of cosmic-

ray propagation and leakage from the Galaxy. Many of the secondary nuclei

produced by cosmic ray fragmentation are unstable toward nuclear decay.

Unstable isotopes with short (compared to the confinement time) half-lives

may be treated as if their stable daughter(s) had been produced directly.

On the other hand, isotopes with half-lives comparable to the cosmic ray

confinement time can be used as clocks for measuring the confinement

time. Radioactive isotopes such as 10Be, 26AL 36C1, and 54 Mn are such cosmic

clocks. However, in order to deduce the confinement time from the meas-

5I
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tired abundances, the production cross-sections for these isotopes must be

known.

Fragmentation cross-sections are also necessary for other areas of

cosmic rays studies. For example, they are useful for determining the pro-

duction rates of various isotopes in meteorites or on the lunar surface due

to bombardment by cosmic rays and high-energy solar particles. They are

also useful for explaining the abundances of Iii, Be, and B in the solar sys-

tem.

One of the most important objectives in cosmic rays studies is to obtain
t

the abundances of cosmic rays at their sources. Source abundances have

important implications for the nucleosynthesis process occurring in the

stars that ultimately produce the galectic: corrnic rays.	 In particular, as
r
{

pointed out by Woosley (1976), the isotope composition of iron in primary

cosmic rays carries valuable information about the site (or sites) of its pro-

duction. In addition, because elements such as neon, magliesium, and sili-

con each has more than one relatively abundant isotope and because they

may be produced by several nucleosynthetic processes, the isotopic abun-

dances :)f these elements carry a great deal of information about the

nucleosynthetic history of cosmic rays, 3
^I

The observed cosmic-ray composition is modified frnm the source coin

position by passage thvough —8 gm/ cm2 of interstellar mrater. This gramrrr

age is comparable to the interaction mean-free path of the nuclei involved

so that a considerable fraction of them will interact and produce secondary

nuclei. For the isotopes that are most abundant in the cosmic ray source,

this secondary production will not greatly modify the relative abundances. r

However, for the less abundant isotopes, this secondary production will

dominate over any residual source component at the observation site.
,t
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Therefore, propagation calculations must be performed to obtain the source

abundances from the observed abundances. As pointed out by Hinshaw and

Wiedenbeck (1983), as the resolution and statiztical accuracy of cosmic ray

element and isotope observations continue to improve, the contributions

from the observational errors to the uncertainties of the deduced cosmic

ray source abundances are becoming less significant. Consequently, source

abundance errors are, in many cases, now dominated by uncertainties in the

propagation calculations. The most important uncertainty in most cases is

that due to errors in the partial cross-sections for the production of secon-

dary nuclei by fragmentation reactions in the interstellar medium. In many t

cases, these uncertainties are significant enough that they forbid any mean- !

ingful measurement of source abundances for some of the isotopes. For
,

example, Hinshaw and Wiedenbeck (1983) have found that the propagation

errors do not presently permit a significant determination of a finite source

abundance for the elements F, Cl, or Mn.

A formalism was developed by Stone and Wiedenbeck (1979) fot deriving

A

R

cosmic ray source abundances from observed local abundances using a

essentially secondary nuclide such as 21 Ne, as a tracer of spallation produc-

tion of associated nuclides, such as 20Ne and 22Ne, during propagation.

Using this formalism, a significant reduction in the uncertainty in the calcu-

lated source abundance ratio can be realized if measurements are available

for the ratios of production cross-sections. In other words, this formalism

has reduced the necessity of measuring the partial cross-sections to only
i

measuring the relative partial cross-sections for production of the tracer

and the associated nuclide s,

To properly interpret cosmic ray data, knowledge of a wide range of

fragmentation cross-sections is necessary. 	 Unfortunately, until recently,

u,
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beams of high energy heavy nuclei have not been available and cross-

sections have been deduced from the inverse process where stationary

heavy nuclei have been bombarded by high energy protons. These measure-

ments are tedious, and in spite of great effort by several groups, only t. frac-

tion of the relevent cross-sections have been measured. Using these cross-

sections as a basis , a set of semi-empirical cross-section formulae covering

all of the relevent reactions for the cosmic ray propagation problem, both

elemental and isotopic, have been developed by 5ilberberg and Tsao

(1973a,b and 1977a,b). In general, the uncertainties are about ±30% on

both the elemental and isotopic cross-sections (5ilberberg et al., 1983). This

is inadequate to serve some of the present data on cosmic ray composition

being obtained from balloon and satellita instruments. To reduce these

uncertainties, laboratory measurement of a wide range of nuclear fragmen-

tation reactions would be desirable. Ira addition to measurements of key

cross-sections which strongly influence the interpretation of particular

cosmic ray data, other cross-section data are also useful. Any systematic

difference between the measurements and the serni-empirical estimates can	
(

be used as the basis for refining the semi-empirical formulae.
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III

32. Fragmentation of 40Ar

We have analyzed a set of data obtained during a calibration in which

40Ar was fragmented in a CH2 target. Observed isotope yields are compared

with those expected on the basis of the Monte Carlo calculations. Although

the fragmentation cross-sections of 40Ar do not have great astrophysical

signircance, they do provide information for testing the semi-empirical for-

mulae and parameters. Preliminary results of this work have been reported

at the 18th International Cosmic Ray Conference (Lau, Mewaldt, and Wieden-

beck, 1983). In this section, we will report our work in more detaii and

Improved results for K isotopes will be presented.

32.1. Experimental Setup

The expP;rimental data reported here were obtained at the Lawrence

Berkeley Laboratory Bevalac accelerator in April, 1981 during the calibra-

tion of a set of detectors for a. cosmic ray mass spectrometer. Figure 3.1

shows a schematic diagram of the experimental setup. A 287 MeV/amu 40Ar

beam exited the Bevalac vacuum and impinged on a CH2 target. The thick-

ness of the CH2 target was 1.75 inch (4.10 g/cm2) at the beginning of the

run and was changed to 0.75 inch (1.75 g/ cm2) during the later part of the

run A variable thickness Cu absorber, located — 10m upstream from the

target, was used to "tune" the energy of the beam so as to adjust the 40Ar

stopping point. Because the Cu absorber is located far away fromthe detec-

tor stack, most of the fragmentation products form the interactions in the

Cu will not be analyzed by the detectors. For our data set, the Cu thickness

ranged from 0 to 2.20 g/cm2. Excluding the interactions in the Cu, the

interaction energy ranges from 90 MeV/amu to 40 MeV/amu with an aver-

age interaction energy of 208 MeV/amu. The detector stack was located

-2m downstream of the target behind a thin multiwire proportional counter

,I

i
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Figure 3.1 i

Schematic diagram of the experimental setup (not to scale) showing 	 j'I

an aoAr nucleus breaking up into heavy (H) and light (L) fragments. 	 !^
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(MWPC) used to select for analysis these events within the central 20 cm2 of

the detector stack. Table 3.1 is a list of the detectors which comprise the

detector stack. The first four solid state detectors were thin ( x_0.11 g/cm2

total) and were not used in the present analysis. The CH2 target constituted

the majority of the grammage in front of the D1 detector. Detectors D1 to

D5 were large area Si(U) devices, each 3 mm thick, except for D3, which was

5 mm thick.

Because the experimental setup was designed primarily for detector

calibration purposes, there are some limitations to its use for cross-section

measurements. There was no absolute measure of the number of 4CAr hit-

Ling the target. In addition, because of the target thickness, the energy at

which the interactions occurred is not well defined. Finally, fragments emit-

ted at large angles to the beam were not detected; the data are limited to

those within — 1° of the beam direction. On the other hand, with its excel-

lent mass resolution, these data appear to be appropriate for measuring

relative fragmentation yields. We have therefore adopted an analysis

approach that takes advantage of this capability.

32.2. Analysis and Resalts

The outputs of detectors D1 to D4 were used to determine the charge

(Z) and mass (M) of all heavy fragments stopping in D2 through D4. The

technique for determining mass is similar to the dE/dx-E technique dis-

cussed by Stone (1974). For non-relativistic particles, the range-energy

relationship can be approximated by a power law. The range, R, of a particle

with charge Z, mass M, and total kinetic energy E, can be written as

R =K •
Z2

' E
j
a	 (3.1)

.b
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i Table 3.1

Detector Nominal Dead
Detector Type Thickness La.yera

(µm of Si) (,urn of Si)

M1 sbb 115 11
M2 sb 115 11
M3 sb 115 11
M4 sb 115 11
D1 Li-Dc 3146 23
D2 Li-D 3123 24
D3 Li-D 4821 194
D4 Li-D 3121 25
D5 Li-D 3117 15

a deadlayer includes the air gap for each detector.
b surface-barrier detector
c Lithium-drifted detector

Table 3.1 Detector type, thickness, and dead layer thickness of the detec-
tors which comprise the detector stack.

9t9h

j	
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where K is a proportionality constant and a is the index of the power law

relationship. If the total energy E is measured by more than one detector,

then the total energy can be separated into two parts : 4E, the energy loss

in the first detector, and E', the residual kinetic energy. In this case,

another range-energy equation can be written

Z2 M^il a
where L is the thickness of the DE device.

With only two equations and three unknowns (R, Z, M), the solution will

not be unique. However, knowing that the mass M has to be close to twice

the charge 2•Z, we can determine R, Z, and M from equations (3.1) and (3.2).

Instead of solving for Z and M one at a time, we will solve for another quan-

tity which will give information on both. Rewriting the mass M as

M = 2•Z + AM	 (3.3)

equations (3.1) and (3.2) give

J1	a+1 -
	 1 7

1

Z+2
DM(3.4)Z,--(L2°-1t (Ea-Ea^a+t. 

The left hand side of equation (3.4) is the quantity we are looking for which

gives information on both Z and M. Let's call this quantity Z' so that

1	 1	
".

Z , =	 K Ia+i((Ea—Eall
(34') lfL.2a-1	 J

and Z' can be approximated as follows
Ii

a-1

Z'=Z•(1+Ja+1 aZ•L1 + 
a+1 AM

Mz" 1. a-1 ^14I	 (3.5)
2 a+1

1

j
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For a =1.78,

W kI Z + 0.14•GM.

For isotopes with M=2•Z, Z' is the same as Z; and for isotopes with higher

mass, Z' will. be slightly higher. Wher AM is large ( > 6), Z' will run into the

next charge. However, the yields for the high 9M isotopes are so small that

this does not create a problem for us.

Equations (3.1) and (3.2) can also be used to calculate the range of the

particle (where R is measured from the beginning of the AE detector)

!'^-I	 To use one range scale for particles stopping at different places in the
k=)

detector stack, the range, R, is redefined as the distance from the beginning

r {	 of detector D 1 to where the particle stopped. Thus equation (3.6) becomes

R=Ro+ 
EE°-E'a

Figure 3.2 shows a cross plot of Z' and R for particles stopped in the

detector D2, which demonstrates that Z' carries information on both Z and

M. The normalization of the tracks can be done by adjusting the propor-

tionality constant K (this plot is not perfectly normalized). The flatness

(slopes) of the tracks can be adjusted by adjusting the index a. Here a is

1.78. Notice that Z = 19 events can be seen on this plot. The tracks are not

straight at the beginning of the range. This is caused by the finite dead

layer thickness between D1 and D2. This effect will be worse when the dead

layer is thicker which is the case between D3 and D4.

9

j

t

I	 ^ 1
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s

Figure 3.2

and R as calculated from equations (3.4) and (3.6) for

mo ped in detector D2. The normalization of the tracks

can be done by adjusting the proportionality constant k (this plot is

not perfectly normalized). The flatness (slopes of the tracks) of the

tracks can be adjusted by adjusting the index a. Here a is 1.78. No-

tice that Z = 19 events can be seen on this plot. The tracks are not

straight at the beginning of the range. This is caused by the finite

dead layer thickness between D1 and D2. We have defined R=0 at

the front of D1 detector.

E
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32.2.1.2.1. Dead Layer Correction

In order to maximize the utilization of the detectors, we would like to

make the tracks straight at the beginning of the range. One way to make

j	 this correction is to estimate the amount of undetected energy loss in the

(c

	

	 dead layer AEd. Consider the situation shown in figure 3.3. We can write

down three range-energy relations using equation (3.1). For the residual

r,	 energy detector, we have

R'= K• Zy I M 1 .	 (3.7)

Starting from the beginning of the dead layer, we have

}}a
R'+D =K • Zy • E M dl	 (3.8)

where D is the thickness of the dead layer; and from the beginning of the AE

detector, we have

M E'+AEd+AE
R'+L =K Z2	 M	 1

We would like to eliminate all the unknowns (R', M, Z, etc.) from equations

(3.7) through (3.9) and get an expression with only AEd and other known or

measured quantities. Solving equations (3.7) through (3.9) simultaneously,

we get

D _ (E +AEd) o —E"'	
(3.10)L (E' +AEd+AE)" — E'"

If we let E'+AEd+AE=E, we can rewrite equation (3.10) as

F(E)= D•Ea +I1 —D I E'°—(E—AE)°=0.	 (3.11)

(3.9)

I

We can solve equation (3.11) for E using the Newton-Ralphson method (see
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Figure 3.3

1 Schematic configuraUon for the dead layer correction. The un-

detected energy loss in the dead layer, AEd, is estimated from the

measured energy losses E' and dE using equation (3.11).
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for Example Dahlquist, 1974). This quantity E is the total energy which

includes the energy loss within the dead layer. This quantity is used as E in

both equations (3.4. ') and (3.6') and the quantity (E — GE) is used as E' in

these equations. Figure °',A shows a cross plot of Z' and R for particles

which stopped in det.ectjr D2 with the dead layer correction applied. This

correction is more significant when the thickness of the dead layer is large.

Now we have corrected for the energy deficit in the AE detector. How-

ever, there is another energy deficit if the particle penetrates the active

part of the residual energy detector and yet does not haze enough energy

loss to trigger the next detector. I1 we ignore this energy deficit and calcu-

late R and Z', both calculated values will be smaller than they should be.

The greater the energy deficit, the greater effect it will have on these calcu-

lated values. We can see evidence of these penetrating events ui figure 3.4;

it is particularly obvious at the end of range for the 40Ar track. We call this

effect "foldback". There is no easy way to distinguish these events from the

lower mass events stopping earlier in the detector. To eliminate "foldback"

events, we restrict the range, R, on the R—Z' plot so that no "foldback" event

will be included in our analysis. The cost of doing this is loss of analysis

range in addition to the range which we have already lost due to the dead

layers of the detectors. Nevertheless, this is much better than introducing

misidentified events in our analysis. Table 3.2 gives the analyzable range of

our a.:adiysis. Events which stopped outside of the analyzable range were not

included in our analysis. There were 262Ecm (between D2 and D3) and

996µm (between D3 and D4) of range not analyzed between detectors. The

number of particles, which stopped in each of these non-analyzed ranges,

was estimated for each of the isotopes from the range profile of that partic-

ular isotope.

Y!	 Tom..-i ^	 -
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rigure 3.4

Gross plot of Z' and R for particles stopped in detector D2 with the

dead layer correction applied.
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Table 3.2

Range for Detectors D2 through D4 Cum)

Detector
Available Analyzable

min. Max. min. Max.

D2

D3

D4

3146

6269

11090

6269

11090

14211

3200

6300

11150

6038

10152

13976

S

Table 3.2 Available and analyzable range for detectors D2 through D4.

U
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32.2.2. Range Correction

Notice in figure 3.4 that the range calculation is not perfect (the isotope

tracks do not terminate at the same place) because the range-energy rela-

tionships do not follow Zz/A exactly. We have put in a Z dependent scale

factor in our analysis so that the end of range comes out to where it should

be for all the isotope tracks. The range is scaled so that the isotope tracks

stop at the maximum range (as listed in Table 3.2) less the dead layer (as

listed in Table 3.1), for each of the detectors. This is done to make the

analysis range the same for all the isotopes.

32.2 .3. Mary Consistency Check

For particles stopping in detectors D3 and D4, more than one Z' can be

calculated. For example, if the particle stopped in D3, one Z' can be calcu-

lated using D2 as the AE detector and another Z' can be calculated using D 1

as the AE detector. Similarly, particles stopping in D4 can have two Z's cal-

culated, one using D3 and the other one using D2 as the DE detector. In our

analysis, whenever two Z's can be calculated, we required the two Z's to

agree within 1%. For Z =18 particles, this translates into approximately 0.18

charge unit, or 1.3 amu. This mass consistency requirement rejected about

3% of the events in our analysis. Most of these rejected events were those

which interacted in the detector stack. Note that there is no mass con-

sistency check for events stopping in detector D2.

322.4. Data Set Selection

For our analysis, we have selected subsets of the data where almost all

fragments of interest stopped in the detectors which give good mass

analysis (D2 through D4). When the, data was taken, the thickness of the Cu

absorber was systematically varied with time to obtGin a distribution of
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ranges for the non-interacted 40Ar particles within the detector stack.

Therefore, we can select the data to have the non-interacted 40Ar particles

stopping in a particular range by specifying the time interval which the data

was taken. By selecting the range of the non-interacted 40Ar particles, we

are indirectly specifying the restrictions on the range of the other isotopes.

Before the selection criteria on the 40Ar can be specified, we need to know

the relationships of the range of the different isotopes as a function of the

range of non-interacted 40Ar. Figure 3.5 shows this kind of relationship for
28si, 31si sop 35p 335, 375, 35Cl, 39C1, 3sK, and 40K. In deriving these relation-

ships, we assume that the fragments have the same energy per nucleon as

the primary particle right after the interaction, and that range scales as

Al Z2 . In figure 3.5, each plot shows the possible range of the isotope with

the two lines being the limiting cases. One limiting case has the 40Ar beam

particles interacting upstream at the front the Cu absorber. The other lim

iting case has the 40Ar beam particles interacting just before they entered

detector D1.

In this study, we will compare the observed and calculated yields of the

elements ranging from Mg to K (12 s Z s 19). It is impossible to choose one

subset of the data with all of the fragments of interest stopping in the

detectors D2 through D4. We will select three data subsets: data subset 1

will have all the fragments of Mg through S (12 s Z s 16) stopping in D2

through D4, data subset 2 will have all the fragments of P through Cl (15 s Z

5 17) stopping in D2 through D4, and data subset 3 will have all the frao

ments of S through K (16 s Z s 19) stopping in D2 through D4. To select the

data subsets, we will look at the isotopes with longest and shortest ranges in

each of the data subsets. In data subset 1, the isotope with the longest

range is 28Mg. However, if all of the Mg and Al fragments are required to

'	 11
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Figure 3.5

The range of isotopes (a) 28Si and 31 Si, (b) 30P and 3tIP, (c) 33S and

375, (d) 38C1 and 39C1, and (e) 39K and 40K as a function of the non-

interacted 40Ar particles. Each plot shows the possible range of the

isotope with the two lines representing the limiting cases, One limit-

ing case has the 40Ar beam particles interacting upstream at the

front end of the Cu absorber. The other limiting case has the 40Ar

beam particles interacting just right before they entered detector

D1.
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stop within the analyzable range, the restrictions on the aoAr beam particles

will be very stringent. Instead, 31 Si will be used to rkbtain the restriction on

the aoAr range; and the observed yields of the Mg and Al fragments will be

corrected based on the fractions of . events, which are predicted by the

Monte Carlo calculation to stop beyond the analyzable range of D4. Using

figure 3.5a, the aoAr beam particles must stop with range less than 5200µm

if we want all 31 31 fragments to stop before exiting D4. The isotope -with the

shortest range is 33S (ignoring 32S since it does not have a significant contri-

bution). Using figure 3.5c, the aoAr beam particles must stop with range

greater than 3100µm if we want all 333 fragments to stop after they entered

D2. Using this analysis we have restricted the first data subset to have the
aoAr beam particles to stop with range greater than 3100µm and less than

5200µm. Doing similar analysis (using 35P and 35 C1 for the second data sub-

set and, using 373 and 3eK for the third data subset), the aoAr 'beam particles

were restricted to have, range greater than 3900µm and less than 5600µm

for the second data subset, and range greater than 7100µm and less than

8600µm for the third data subset.

32.2.5. Observed Isotope ..elds

Mass and charge distributions, for particles stopping in a particular

detector, can be obtained from a "mass" (Z') histogram of that detector. with

the dead layer correction and range restriction mentioned above Such his-

tograms can then be used to obtain the relative yields of the different iso-

topes from th o- fragmentation of aoAr. Figure 3.6 shows such a histogram

which gives charge and muss distributions of elements from Ne through K

stopping in detector D3 (this histogram contains all the range 3 data in the

entire data set). Note that up to seven isotopes of er•^ch element can be

identified. The observed mass resolution (rms) is s0.2 €.rru. i

^ TMlt
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Figure 3.6

lass histogram (for events stopped in detector D3) showing charge

and mass distributions of elements from Ne through K resulting from

the breakup of 40Ar. The mass (in amu) of selected isotopes is la-

beled. The observed mass resolution (rms) is s0.2 amu_ The 40Ar

peak extends to >12,000 events/bin. Note the 39K and 40K events to

the right of the 40Ar.
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The number of fragments observed for each isotope is obtained from

"mass histograms similar to the one shown in figure 3.6. "Mass" histograms

were generated for each of the detectors (D2 through D4) and for each of

the data subsets. The number of each of the isotopes is obtained by count-

ing the number of events which fall into the f0.5 amu mass range from the

peak. This method is acceptable for most of the isotopes (with exception of

the Ar isotopes) because of the good mass resolution. For the Ar isotopes,

this is not acceptable, because the number of 40Ar is so high, and an alter-

native method was used in which yields of the Ar isotopes are obtained by a

least-squares fit with gaussian distributions to the "mass" histograms.

From the mass histograms, we can obtain the numbers of isotopes w1hich

stopped in the range where mass analysis is permitted. However, this

excludes 262 µm between D2 and D3, and 998 µm between D3 and D4, due to

dead layers and the "foldback" effect. In order to estimate the number of

events, for each isotope, which stopped in the non-analyzable ranges, we

plot the range distributions of each isotope in all three detectors. The

number of isotopes, which stopped in the range not covered by the three

range distributions, is estimated by drawing smooth curves to connect the

three distributions.

Tables 3.3a-c gives the observed isotope yields for the three data sub-

sets. The tables contain the measured isotope yields along with the esti-

mates for fragments which stopped in the non-analyzed ranges. The uncer-

tainties in the "total" columns contain statistical uncertainties only. Before

comparing the observed yields with the calculated yields, the three observed

yield tables (3.3a-c) should be consolidated into one single observed yield

table. This can be done by normalizing the three data subsets. The second

data subset will be normalized to the first data subset using the total

1
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Table 3.3a

Isotope Analyzable . Non-anal.
a Total Element

Range Range Total

SOS 11 -° 11±3
67S 50 2 52±7
38S 147 10 157±13
35S 241 32 273±18 1249±37
34S 404 45 449±22
33S 223 13 236±16
SOS 71 -- 71±8
35P 18 -- 18±4
34P 58 1 59±8
33P L51 11 162±13 872±2732P 213 16 229±18
31P 159 11 170±13
30P 32 2 34±6

32Si 2a 3 29±6
91 Si Be 11 77±9
90Si 199 18 217±15 561±25
29Si 153 12 165±13
28Si 68 5 73±9

3OAl 9b 1 11±4'
29AI 38 5 43±7
28Al 63 12 75±9 273±18
27A1 99 13 112±11
26Al 28 4 32±6

27mg 12b 2 16±5'
26mg 44b 6 52±8'
25mg 60 9 69±9 170±14

Idg 29 4 33±6

a Estimated number of fragments which stopped in the non-analyzed range (262 aM_

between D2 and D3, and 998 /Am between D3 and D4).
b lower Iimit — some of the fragments stopped beyond the analyzable range of the detec-

tor D4.
c Corrections are applied (to obtain the total yields), based on the fraction of events,

predicted by the Monte Carlo calculation, which stop beyond the analyzable range of
D4. For SOAI, $'&g, and 88Mg, the sums of columns 2 and 3 are divided by factors of 0.93,
0.89, and 0.96 respectively to give the total numbers in column 4.

"nabk 3.3a Observed isotope yields of the first data subset along with the
estimates for fragments which stopped in the non-analyzed ranges.- Uncer-
tainties are statistical only and are based on the square root of the number
of events observed.
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Table 3.3b

Isotope Analyzable Non-anal.
a Total Element

Range Range Total

30C1 198 26 224±16
3eC1 199 23 222±16
97C1 344 16 360±19'
3eC1 253 -- 253±16 1243138
35C1 154 -- 154±12
34Cl 24b -- 30±6c
38S 7 - 7±3
37S 35 1 36±6
36S 90 4 94±10
35S 150 22 172±14 813±30
94S 259 38 297±18
33S 144 12 156±13
32S 51 -- 51±7
35P 10 -- 10±3
94P 37 3 40±7
33P 109 5 114±11 468±2232P 148 15 163±13
31P 108 10 118±11
9OP 21 2 23±5

a Estimated number of fragments which stopped in the non-analyzed range (282 /am
between D2 and D3, and 998,um between D3 and D4).

b lower limit -- some of the 34Cl stopped beyond the analyzable range of detector D4.
c A correction is applied (to obtain the total yields), based on the fraction of events,

predicted by the Monte Carlo calculation, which stop beyond the analyzable range of
D4. The sum of columns 2 and 3 is divided by a factor of 0.80 to give the total number
in column 4.

Table 3.3b Observed isotope yields of the second data subset along wi
estimates for fragments which stopped in the non-analyzed ranges. L
tainties are statistical only and are based on the square root of the ni
of events observed.

J
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Table 3.3c

Isotopep
Analyzable Non-anal.l. Total Element
Range Range Total

40K 16 1 17±4 411739K 22 2 24±5

99Ar 458 53 511±24
36Ar 291 34 325±19 1004±33
37 A 119 7 126±12
36Ar 36 6 42±7

39C1 144 40 184±15
38C1 118 40 158±15
39C1 257 65 322±20

1087±3636C1 238 37 275±18
35C1 116 9 125±12
34C1 22 1 23±5

38S 6 -- 6±2
37S 19 4 23±5
36S 74 15 89±10
35S 121 26 147±13 697±29
34S 218 42 260±18
33S 112 20 132±12
32S 36 4 40±7

a Estimated number of fragments which stopped in the non-analyzed range (262 µm
between D2 and D3, and 998 µm between D3 and D4).

Table 3.3c Observed isotope yields of the third data subset along with the
estimates for fragments which stopped in the non-analyzed ranges. Uncer-
tainties are statistical only and are based on the square root of the number
of events observed.

ai
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number of S and P fragments. There are 1921 and 1281 fragments of S and

P in the first and second data subsets respectively. Therefore, the results of

the second data subset should be scaled by a factor of 1.500 to normalize

them to the first data subset. Similarly, the third data subset will be nor-

malized to the second data subset using the total number of Cl and S frag-

ments. There are 2058 and 1784 fragments of Cl and S in the second and

third data subsets respectively. Therefore, the results of the third data sub-

set should be scaled by a factor of 1.152 to normalize them to the secondI

data subset. In other words, the results of the third data subset can be

It

scaled by a factor of 1.728 to normalize them to the first data subset. These 1
normalized observed yields will be presented later along with the calculated

yields.

32.2.5.1. Comparison with Viy gi et aL
<i

Viyogi et al. (1978) measured the isotope distributions for peripheral

reactions induced by 4OAr at 213 MeV/nucleon. We have corrpal. ed their

observed relative isotope yields (deduced from their measured cross-

sections) of the elements Mg through S with our results. Their observed

yields were normalized to ours using the total number of events in each of

the five cases. Figure 3.7 shows the comparisons. Their measurements were 	 ti

done with a 400 mg/ cm2 thick carbon target. Even though their target is

different from ours (we calculate that >40% of our interactions are with H),

the comparisons show excellent agreement for the relative isotope yields

between the two sets of measurements. This suggests that the relative iso-

tope yields do not depend strongly on the target material
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y .— arrarw.'.^fc^

Figure 3.7

Comparision of our observed isotope yields with the isotope distribu-

tions measured by Viyogi et al. (1978) for the elements (a) S, (b) P,

(c) Si, (d) Al, and (e) Mg. Their measurements were made with 213

MeV/nucleon 4OAr beam bombarded with a carbon target with a

thickness of 400 mg/ cmx. Their observed relative yields are deduced

from their measured cross-sections and are normalized to our ob-

served yields using the total number of events in each case. Even

though their target is different from ours, the comparisions show ex-

cellent agreement for the two sets of measurements.
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'	 32.3. Comparison with Calculation

The measured isotope yields presented in Table 3.3 were observed with a

thick CHy target. The 40Ar beam particles interacted in the target ( or even

outside the target) at various energies. In addition, the detector geometry

is strongly biased against fragments emitted at angles > 1°. As a result, we

did not have a direct measure of the absolute value of the interaction

cross-sections. However, we can still test the semi-empirical cross-sections

of Silberberg and Tsao with our observed isotope yields if we model the

experimental setup and if we assume that the relative yields are not

j	 strongly angular dependent.

The isotope yields expected on the basis of the Silberberg and Tsao

semi-empirical formulae were calculated using a Monte Carlo calculation.

The Monte Carlo propagation program was developed by Dr. Mark Wieden-

beck at the University of Chicago and modified by us to run on a VAX at the

Caltech computing center. Beam particles (40Ar) simulated in the calcula-

tion were followed, taking into account ionization energy loss, as they

traversed the stack of materials. The experimental setup was modelled and

the thickness of the Cu absorber was varied (from 0.18 to 2.20 g. / cmz) in the

calculation. Table 3 .4 gives a list of the materials modelled in the Monte

Carlo simulation. Distances the beam particles traversed before undergoing

a nuclear interaction were generated using the total cross-section formula

by Hagen ( 1978). The heaviest fragment nucleus produced in each interac-

tion was assumed to proceed forward with nearly the velocity of the frag-

menting nucleus, while all lighter fragments were ignored. The relative pro-

I

i

1	 ^

s

bilities of producing the various possible fragments were calculated from

e Silberberg and Tsao cross -section formulae ( 1973a ,li and 1977a,b).

A large number (> 106) of 40Ar nuclei simulated in this calculation were

a.

^i
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Table 3.4

Slab Description Thickness Material Assumed.
(g/ cm') (and mass fractions)

Variable Absorber 0.00-2.20 Cu (1.000)
Air 0.13 N (.745), 0 (.229), Ar (.028)
CHx Target 1.75-4 . 10 H (.143), C (.857)
Beam Spreadera 0.22-1 .08 Al (1.000)
Air 0.32 N (.745) ; 0 (.229), Ar (.028)
MWPCs 0.013 H (.0 13), C (.192), 0 (.103), Ar (.892)
Telescope Window 0 . 0034 Al (1.000)
M1-M4 0.107 Si (1.000)
DI 0.733 Si (1.000)
D2 0.728 Si (1.000)
D3 1.123 Si (1.000)
D4 0.727 Si ( 1.000)
D5 0.728 Si ( 1.000)

a The beam spreader was used so that a monoenergetic beam which goes
through it will have a distribution of energy for the exiting particles. It
consists of aluminum rods glued on a piece of aluminum plate and the
distribution of aluminum thickness is modelled in the Monte Carlo cal-
culation. The beam spreader was not used when data subsets 1 and 2
were taken.

Table 3 .4 The list of materials modelled in the Monte Carlo calculation. ,^ al

X
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followed. The Monte Carlo calculatiar, was done so that the non-interacting

40 Ar range distribution resembles the observed. one. Since our experiment

did not provide absolute measure of the number of 40Ar hitting the target, it

is . not possible for us to cornpare the absolute yields. Instead, the calcu-
lated yields will be normalized to the observed yields using the total number

of fragments of the elements P, S, and Cl. The differences between observed

and calculated yields reflect inaccuracies in the Silberberg and Tsao formu-

lae. According to our calculations, most of the observed fragments are pro-

duced in a single interaction (the contributions from multiple interactions

range from —5% for Cl to 25% for Mg), and -92% of the interactions occur

in the CH2 target. Of the interactions in the CH2, 46% involve collisions with
H nuclei. Furthermore, cross-sections for collisions with C are thought to

scale from the cross-sections on H as mentioned in Chapter 1. Thus oar

comparison of observed and calculated yields should provide a rather direct

test of the accuracy of the Silberberg and Tsao cross-sections for predicting

relative yields for the inclusive reactions 40Ar + 1H -6 (Z,A) + X.

Table 3.5 lists the calculated relative yields along with the observed

yields. The calculated yieldb for the three data subsets are listed in

columns 3 through 5. These three columns of calculated yields are consoli-

dated into one set of calculated yields. The method used for normalizing

the three dalA subsets is the same as the one used for normalizing the three

sets of observed yields. The third set of calculated yields is normalized to

the second set using the total number of Cl and S fragments. There are

45997 and 13567 fragments of Cl and S in the second and third sets of cal-

culated yields respectively. Therefore, the results of the third set should be

scaled by a factor of 3.390 to normalize them to the second set. Simiarly,

the second set of calculated yields is normalized t o the flirst set using the

A;4^^-' f ^_



Table 3.5
III

Observed CalculaledYields Norm. Observed
isotope

Yields
Calr_, to Colo.

Set 1 Set 2 Set 3 Normb Yleldc Ratlod

40K 29.417 -- -- 136 2357 31.4 0.941.24
39K 41.519 -- -- 142 2461 32.8 1.271.30
38K <1186 69 1196 15.9 <0.13

Ktotal 70.9112 347 6014 90.1 0.89±.16

39A, 883.1141 -- •- 3589 62208 828.4 1.07±.05
38A, 561.7±33 - - 2692 48880 621.3 0.901.06
37 A 217.8121 - !075 18633 248.1 0.68±.09
38Ar 72.6112 -- - 172 2981 39.7 1.83±.33	 1

` rtotal 1735.2±57 7528 130482 1737.5 1.00±.03

39C1 318.0±28 2929 1004 17402 231.7 1.37±.12
38C1 273.1128 -- 5943 1681 29137 388.0 0.70.+.07
37Ci 556.6:635 8876 1925 33366 444.3 1.25±.08
3801 475.3131 -- I	 7454 2119 36729 489.1 0.97±.07
3501 216.0121 3067 869 15062 200.6 1.08±.11
34 Cl 39.719 -- 532 r	 152 2635 35.1 1.13±.27

Cltotal 1878.e182 -- 26801 7150 13433Y 1788.8 1.05±.04

38S 1113 298 52 18 298 4.0 2.75±.77
37S 5217 2615 434 lie 2615 34.8 1.491.20
36S 157113 14739 2896 854 14739 196.3 0.801.07
35S 273118 26942 5317 1561 26942 358.8 0.76±.05
34S 449±72 37049 7228 2308 37049 493.3 0.91.+.04
33S 236+.18 12835 2516 724 12835 170.9 1.38±.09
32S 71±B 3825 753 234 3825 50.9 1.39±.16

Sty 1249137 98303 1	 19196 5817 98303 1	 1309.0 0.95.+A3 J
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5.	 I

l

i
a The observed yields of the elements big through 5 are from data subset 1. The observed

yields of the elements Cl through K are from data subset 3 and are normalised to data
subset 1 as explained in the text. The normalization factor is 1.728.

b The three sets of calculated yields are normalized with respect to each other in the
same way the three sets of observed yields are normalized. The yields of the elements
Mg through S are from set 1. The yields of the elements Cl through K are from set 3
and are normalized to set 1. The yields of set 3 are first normalized to set 2 using the
total number of Cl and S fragmet-ts (a normalization factor of 3.:90) and then from set
2 to set 1 using the total number of S and P fragments (a normalization factor of
5.112). The overall normalization factor is 17.333.

c,d see next page

Table 3.5 The calculated isotope yields as predicted by the Monte Carlo
simulations.
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Table 3 .5 (continued)	
I

Observed Calculated Yields Norm. Observed
isotope ^a Calc. to Colo.

Set 1 Set 2 Set 3 Norm.b Yieldc Ratlod

35P 1814 999 198 -- 999 13.3 1.351.30

94P 5918 4617 904 4617 61.5 0.961.13
33P 162113 15825 3106 -- 15825 210.7 0.771.06

92P 229±18 17316 3399 17316 230.6 0.991.07
31P 170113 11099 2168 11099 147.8 1.151.09
30P 34±6 2852 567 2852 38.0 0.891.16

Ptotal 672±27 52708 10342 52708 701.9 0.96±.04

30Si 29±6 3626 -- 3628 46.3 0.60±.12
3151 7719 8346 8346 111.1 0.891.08

90Si 217±15 18746 16746 223.0 0.97±.07

2951 165±13 8456 - 8456 112.6 1.471.12
28Si 73±9 3918 - 3916 52.1 1.401,17

Sitotal 581±25 41091 41091 547.1 1.031.05

"Al 11±4 1351 - 1351 18.0 0.61±.22

29A1 43±7 5875 - 5875 78.2 0.55±.09
28AI 751:9 8147 8147 108.5 0.691.08
27A1 I 12.t11 7884 7884 105.0 1.07±.11
26A1 32±6 2801 - 2801 37.3 0.881.16

Altotal 273±18 26058 - 26056 347.0 0.79±.05

27MR 16±5 3333 3333 44.4 0.36±.11
26mg 52±8 6889 - 8889 118.4 0.44±.07
25mg 69±9 6545 6545 87.2 0.79±.10
24mg 33±6 4174 4174 55.6 0.59±.11

Mgtotal 170±14 22941 22941 305.6 0.56±.05

a,b see previous page
c The calculated yields (column 6) are normalized to the observed yields (column 2)

using the total number of P, S, and Cl fragments.
d The ratio of the observed yield (column 2) to the normalized calculated yield (colunm

7) for each of the isotopes.

Table 3.5 (continued) The calculated isotope yields as predicted by the
Monte Carlo simulations.

^I
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t

total number of S and P fragments. There are 151011 and 29538 fragments

of Cl and S in the first and second sets of calculated yields respectively.

Therefore, the results of the second set should be scaled by a factor of 5.112

to normalize them to the first set. In other words, the results of the third

set can be normalized to the first set by scaling them with a factor of 17.33

Column 6 of Table 3.5 lists the consolidated set of calculated yields. The 	 i

yields of the elements Mg through S are from data set 1; whereas the yields

of the elements Cl through K are from data set 3 and are normalized to data

set 1. The calculated yields of column 6 are then normalized to the!i

observed yields using the total number of P, S, and Cl fragments. Finally,

the last column of Table 3.5 gives the ratios of the observed yields (column

2) to the calculated yields (column 7).

Figure 3.8 shows the observed isotope yields (column 2 of Table 3.5)

along with the calculated isotope yields (column 7). Notice that the

observed yield of 39CI is higher than that of 38C1 by more than 15%. On the

other hand, the calculated yield of 39C1 is lower than that of 38CI by more

than 40%. This suggests that the semi-empirical formulae underestimates

the effects of the peripheral reaction for the production of 3901.

The observed yields of 40K and 39K are consistent with those expected;, {

from the Monte Carlo calculation. However, we observed no 3BK at all

whereas the Monte Carlo calculation predicted about 16. The 84% a,tpper

limit for observing no event is only 1.86 and thus the observation is a sta-

tistically significant one. Note that 38K has 19 neutrons, one less than the

magic number 20; this implies thrt the production of 38K involves the remo-

val of a neutron from a complete nuclear shell. The Silberberg and Tsao for-

mulae do not take into account nuclear shell structure, This might be the

explanation for the discrepancy between the observed and calculated yields

N't
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Figure 3.8

A comparison of measured and calculated fragmentation yields, nor-

malized to the same total yield of 15sZs17 fragments. The experi-

mental uncertainties are statistical only.
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i

of 3BK.

Another noticeable difference between the observed and calculated

yields is that of the element yieW3 of Al and Mg. With our normalization

between the calculated and observed yields, the observed element yields of

Al and Mg are significantly lower than the calculated ones; whereas the

observed yields are consistent with the calculated ones for the other ele-

ments. This could be due to some of the limitations of our experimental

setup. Our analysis only includes events within the central 20 co of the
detector stack. As a result, fragments emitted at large angles (> 1 0) were

not analyzed by the solid state detector stack. We have studied the angle

distributions of the fragments using the MWPC (shown in figure 3.1) which

extends (in angle) beyond the detector stack. Comparison of angle distribu-

tions of two data subsets, one subset contains mostly Cl, S and some P frag-

ments and the other contains mostly Al, Mg and some lower charge frag-

ments, shows that the fraction of events accepted by our analysis is reduced

by -50% for the lower charge group compared to the higher charge group

(note that this —50% reduction is averaged over the fragments of Al, Mg and

some other lower charge elements, which means that this reduction is prob-

ably not as great for Al). However, the MWPC does not have good enough

charge resolution to give us angle distributions of the individual elements;

and it is also difficult to estimate, to good accuracy, the number of frag-

ments not detected by the stack of solid state detectors. Due to these rea-

sons, we cannot make quantitative corrections to our observed yields of Al

and Mg, and compare the isotope yields individually.

If the fraction of yields observed for Na, Mg, and Al is indeed —50% lower

than that for P, S, and Cl, this might result from a Z-dependent effect which

did not affect the yield of isotopes in an element. However, another possibil-

I
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ity is that there is a smooth mass dependent bias of —57 per amu in our

data sample. This would affect the yield of isotopes within an element such

' ; that the yield of the heaviest isotope of an element might be overestimated

by —109x, while that of the lightest isotope is underestimated by -10%. In

most cases, the magnitude of this possible effect is smaller than the statisti-

cal uncertainties of the measurement, but it does represent a possible sys-

tematic error in our data sample that should be kept in mind. The magni-

tude of this possible mass dependent effect can also be estimated by study-

ing the observed to calculated element ratios in Table 3.5. We have fitted

the observed to calculated ratios (R) in Table 3.5 as a linear function of the

element mean mass (m.) and found that R=0.127+0.024•ma. This implies a

2.4% per amu effect.

The isotope yields in Table 3.5 are presented in Table 3.6 as fractional

yield of the individual ele;—nont. The isotope fractions for the isotopes of Mg

through Ci are plotted (in. Gaussian probability scale) in figure 3.9. For the

elements Mg through P, both the observed and calculated, yields fit very well

to straight lines; in other words, the mass distributions are Gaussian -- in

agreement with the semi-empirical model (see Chapter 1). For the element

S, the calculated mass distribution fits very well to a Gaussian distribution

whereas the observed mass distribution seems to deviate from a Gaussian

distribution. For the elernent Cl, both the observed and calculated mass dis-

tributions seem to deviate. from Gaussian distributions. The deviations of

the higher mass isotopes from the Gaussian distributions of the lower mass

isotopes are the result of increases in cross-sections due to peripheral reac-

tions (as discussed in Chapter 1). In both the cases of S and Cl, the semi-

empirical formulae seem to underestimate the yield from peripheral reac-

tions. If we ignore the isotopes affected by peripheral reactions, the slopes

.t u	 ,,;
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Table 3.6

Fraction of Element
Isotope

Observed Calculated

40K 0.415±.080 0.392±.026
39K 0.585±.080 0.409±.026
38K -- 0.199±.021

39Ar 0.509±.017 0.477±.006
36Ar 0.324±.016 0.357±.006
97Ar 0.125±.011 0.143±.004
36Ar 0.042±.007 0.023±.002

39C1 0.169±.013 0.130±.004
36C1 0.146±.012 0.217±.005
971.1 0.296±.015 0.248±.005
38Ci 0.253±.015 0.273±.005
35C1 0.115±.011 0.112±.004
34C1 0.021±.005 0.020±.002

WS 0.009±.003 0.003=.000
395 0.042±.006 0.027±.001
36S 0.126±.010 0.150±.001
35S 0.218±.012 0.274±.001
34S 0.359±.014 0.377±.002
33S 0.189±.012 0.130±.001
385 0.057±.007 0.039±.001

Table 3.6 Observed and calculated isotope fractions.
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Table 3 .6 (continued)

Fraction of Element
Isotope

Observed Calculated

38p 0.027±.006 0.019.001
34P 0.068±.011 0.0881.001
33p 0.241±.017 0.300±.002
32P 0.341±.019 0.328±.002
31P 0.253±.017 0.211±.002
30P 0.050±.009 0.054±.001

32Si 0 .052±.010 0.088±.001
31Si 0.137±.015 0.203±.002
305i 0.387±.022 0.408±.002
29Si 0.294±.020 0.206±.002
26Si 0.130±.015 0.095±.001

30A1 0.040±.013 0.052±.001
29A1 0.158±.024 0.225±.003
ZeA1 0.275±.029 0.313±.003
27A1 0.410±.032 0.303±.003
26A1 0.117±.021 0.107±.002

27mg 0.094±.024 0.145±.002
28Mg 0.308±.038 0.388±.003
25mg 0.406±.041 0.285±.003
24Mg 0.194±.033 0.182±.003

Table 3.6 (continued) Observed and calculated isotope fractions.

^i
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Figure 3.9

Observed and calculated mass distributions for the elements Mg

through Cl. The mass distributions are shown in Gaussian probability

scale for the fraction of isotopes within an element with mass

greater than that indicated by the horizontal axis. For example, for

the observed Mg distribution, the fraction shown at 24 amu is the

fraction of observed Mg isotopes which have mass greater than 24

amu.
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of the fitted lines suggest that the width (standard deviation) of the

observed mass distribution is narrower than the calculated for Mg and gra-

dually becomes wider than the calculated for Cl as the charge of the ele-

ment increases. The medians of the observed distributions are lower than

those of the calculated ones by 0.2 amu to 0.3 amu for the elements Mg, Al,

Si, and S (however, note that the median of S is influenced by the high mass

tail). Note that this effect is in the opposite direction to that expected if

there were indeed a mass dependent systematic effect in our efficiency for

detecting light fragments.

We have also studied the ratio between. the observed and calculated iso-

tope fractions of individual nuclides with 12.-A Z:9 for which at least 40

events were collected in the experiment. Figure 3.10 shows the distribution

of this ratio for 26 nuclides. The distribution has an rms spread of 25%.

Notice that this rms spread is comparable to the claimed accuracy of the

Silberberg and Tsao formulae. However, one should also note that the Sil-

berberg and Tsao claimed accuracy is for absolute cross-sections and our

comparison is done with isotope fractions.

We summarize the findings on the 40Ar fragmentation study as follows.

We have compared our measured isotope yields of the elements Mg through

S with those measured by Viyogi et al. and found that the two sets of meas-

urements are consistent with each other. This suggests that the relative

isotope yields within an element do not depend strongly on the material of

the target. We have compared the observed and calculated yields for the

elements Si through K. We found the observed relative elemental yields con-

sistent with the calculation although perhaps some of this agreement is for-

tuitous, since the observed yields of Mg and Al are significantly lower than

expected. The observed relative isotope fractions agree with the calculated

j
S
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fture 3.10

Distribution of the ratio of calculated to .measured isotope fractions

for isotopes of Mg through Ar. This distribution only includes iso-

topes which have at least 40 events collected in the experiment.
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ones with a mean accuracy of 25%. Noticeable differences were observed for

the cases of 39C1 and 38K. For the elements Mg and Al, the observed yields

are significantly lower than the calculated ones. This is likely the result of

some of the limitations of our experimental setup. Comparisons of the

observed and calculated mass-yield distributions show that, for the ele-

ments Mg, Al, Si, and S, the medians of the observed mass-yield distributions

are lower than expected from the calculation. In addition, the observed

mass distributions of S and C1 show a greater yield from peripheral reac-

tions than expected from the calculation. Although the widths of the

observed distributions are consistent with the calculation, a systematic

trend can be seen.



{

3.3. Fragmentation of ^sFe

Fragmentation cross-sections of "Fe are important for cosmic ray stu-

dies because gsFe is :he most abundant isotope with Z> 14. We have

analyzed a set of data obtained during a calibration in which 56Fe was frag-

mented in a CH2 target. Observed isotope yields are cot:npared with those

expected on the basis of the Monte Carlo calculations. In this section, we

report the findings of the comparison between observed and calculated

yields. In the next section, we will compare the findings of this study with

the findings of the 40Ar fragmentation study.

3.3.1. Experimental Setup

This set of data was obtained at tde Lawrence Berkeley Laboratory

Bevalac accelerator in April, 1978 during the pre-flight calibration of the

Heavy Isotope Spectrometer Telescope (HIST). HIST was carried into space

on ISEE-3 in August of 1978 and provided high-resolution measurements of

both solar energetic particles and galactic cosmic rays. A beam of 5:93

MeV/amu "Fe was used during the calibration. The experimental setup was

very similar to the one shown in figure 3.1. The HIST detector stack was in

the position of the solid state detector stack shown in figure 3.1. Figure

3.11 shows a schematic diagram of the HIST detector stack. it consists of

eleven silicon solid-state particle detectors arranged to forma particle tele-

scope. Table 3.7 is a list of the detectors that comprise HIST. Detectors Ml

through D3 are silicon surface-barrier solid-state detectors. Detectors D4

through D9 are Li-drifted detectors with a central detection area and an

annular guard ring (shaded in figure 3.11), which is used as an active anti-

coincidence shield. The nominal detection areas for the detectors are 470

mm2 for M1 and M2, 580 mm2 for D1, 830 mm2 for D2 and D3, and 910 mm2

for detectors D4 through D9. A description of HIST can be found in Althouse

i

i
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Figure 3.11

Schematic diagram (to scale) of the Heavy Isotope Spectrometer

Telescope (HIST). The shaded areas of detectors D4 to D9 are annu-

lar guard rings used as an active anti-coincidence shield.

^I
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Table 3.7

Detector Nominal Dead
Detector Type Thickness Layer

(µm of Si) (Eam of Si)

Mi sb-Mdeta 50 --
M2 sb- 14Tbdet 50 --
DL sb 90 --
D2 sb 150 --
D3 sb 500 --
D4 Li-Dc 1700 45
D5 Li-D 3000 56
D6 Li-D 3000 57

D7a LA-D 3000 65
D7b Li-D 3000 75
DBa Li-D 3000 55
D6b Li-D 3000 64
D9 Li-D 3000 66

a surface-barrier detector--"matrix detector"
b surface-barrier detector
c Lithium-drifted detector

`i

Table 3.7 Detector type, thickness, and dead layer thickness of HIST detec-
tors.

#
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et al. (1978). Ml and M2 are position-sensitive matrix detectors which allow

the determination of particle trajectories. Two multiwire proportional

counters were also employed in this experimental setup. However, they

were not used in the analysis because trajectory measurements were

already provided by M1 and M2. A 563 MeV/amu 56Fe beam exited the

Bevalac vacuum and impinged on a 2.25 inch (5.28 g/ cm 2) thick CH2 target.

As in the case of the 40Ar fragmentation run, a variable thickness Cu

absorber was utilized to "tune" the energy c the beam and most of the

interactions which occurred in the Cu were not analyzed by the detectors.

Since the experimental setup was similar to the one described in section

3.3.1, the limitations discussed in that section are also applicable here.

Nevertheless, with the good mass resolution, this data provides measure-

ment of the relative fragmentation yields.

3.3.2. Analysis and Results

The outputs of detectors D3 to D8 were used to determine the mass of

fragments stopping in D5 through D8. The mass determination algorithm

has been described by Spalding 1983. The technique is similar to the one

used in the 40Ar analysis (i.e., the AE-E' technique). Instead of using the

power law approximation for the range-energy relationship, the proton

range table of Janni (1966) was used in the computation with A/ Z2 scaling.

With Spalding's algorithm, we have two equations and three unknowns (Z, M,

and E), as in the Ar fragmentation analysis. In this case, however, we solve

for the mass M, instead of the effective charge (Z'), described by equation

(3.5). In the calculation, an integer charge Z was assumed and only events

with calculated masses near those of stable isotopes were considered as

solutions. Events with calculated masses which are not near any stable iso-

tope were considered as isotopes of other charges. Throughout the entire

}
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operating range of HIST, unique solutions for mass and charge are always

possible.

In our analysis, two masses were calculated for each event. In general,
r

for a particle stopping in detector N, the first mass, mass!, was calculated
s

using detector (N-1) as the AE detector and detector N as the E' detector.

The second mass, mass2, was calculated using detector (N-2) as the AE

detector, and detector N and detector (N-1) combined as the E' detector.

3.3.2.1. Corrections to Calculated Mass

As pointed out by Spalding, in order to calculate the mass using the AE-

E' technique, the range energy relation must be known to sufficient accu-

racy. Unfortunately, published tables of the range energy relations are

insufficiently accurate for our purposes and have systematic errors of the

order of a few percent. As a result, the calculated mass has typical errors of

the order of 5 amu fv.• Fe events. Thus a correction scheme was developed

by Spalding to correct each calculated mass, separately. This is the correc-

tion scheme we adopted in our mass calculations and we will describe it

here.

In each range the preliminary calculated mass was plotted vs. E1, the

energy in the stopping detector. Figure 3.12 shows an example of this type

of plot, for massl of iron in Range 7 (i.e., iron particles stopping in D7). The

approximate form of massl vs. E1 for the principle isotope of an element

was then fitted by hand to the plot by a series of line segments. This

approximate form of the preliminary calculated mass, g(E1), was then used

to correct the calculated mass of each particle with the equation

M(corrected) = M(preliminary) • MO	 (3.12)g(El)

where MO is the mass in emu of the principal isotope. A separate g(E1) was
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Figure 3.12

A scatter plot of massl vs. E1, the energy in the stopping detector,

for iron particles stopping in D7. The calculated mass, massl, was

computed using DB as the AE detector and D7 as the E' detector. The

approximate formof massl vs. E1 for the principle isotope (seFe) was

then fitted by hand by a series of line segments. This approximate

form of the preliminary calculated mass, g(EL), was then used to

correct the calculated mass of each particle with equation (3.12).
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1

used for each of the calculated masses (massl and rnass2) of each of the

elements we analyzed. This same correction factor was then assumed to

apply to all isotopes of that element.

With the correction described by equation (3.12), we have achieved mass

resolutions of 0.44 amu and 0.34 amu for massl and mass2 respectively for

iron events in Range 7. With these two independent mass measurements, we

expected to achieve a combined mass resolution of 0.27 amu for the

weighted sum of the two masses. However, when the weighted sum was cal-

culated, it only gave a mass resolution of 0.32 amu. It was discovered that

the calculated masses depended on the distance of the particle from the

center of the detector. Figure 3.13 shows such a dependence for massl in

Range 7. This is believed to be the result of deficiencies in the detector

thickness maps that were used to "correct" the detector's nominal

thicknesses in calculating the mass of each event. The thickness maps were

obtained by mapping the energy loss profile of 1.9 GeV/nucleon Ar passing

through a stack of several detectors. There were more delta-rays generated

by these high energy Ar than by the lower energy particles in this analysis.

These delta-rays also had higher energy and longer range. For edge events

(i.e., far from the center), about half of the delta-rays made in the immedi-

ate upstream material were not detected. As a result, the deduced detector

thickness would be smaller as compared to the center events where nearly

all the delta-rays made in upstream matter were detected. When these

thickness maps were used in the mass calculation, the calculated mass

would be higher for events near the edge than for events near the center of

the detectors. This problem was resolved by applying correction functions

to the calculated masses similar to the ones described in the previous para-

graph; however, the correction this time was a function of the distance from

i

i
i

e

t

t
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FSgure 3.13

A scatter plot of mass 1 vs. the distance of the particle from the

center of the detector.
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the center of the detector, instead of the energy E1. The same corrections

were applied to all events, After these corrections were applied, the mass

resolutions for Range 7 were improved to 0.36 amu and 0.34 amu for massl

and mass2 respectively (the radial correction was small for mass2 and did

not improve the mass resolution significantly). Figure 3.14 shows the mass

distribution of the weighted sum of the two calculated masses, mass 1 and

mass2, for iron particles stopping in D7. A mass resolution slightly greater

than 0.25 amu was achieved which was consistent with the value expected

based on the 0.36 amu and 0.34 amu mass resolutions for massl and mass2.

Using the weighted sum of the two calculated masses, with the above

corrections applied, we have achieved mass resolution of 0.21, 0.25, 0.23,

and 0.34 amu for iron particles stopping in D8, D7, D6, and D5 respectively.

Y'i

s
6

3.3.2.2. Background and "Foldback' Events Rejections

To reject background events, we required consistency between the two

calculated masses. For each of the ranges (from 5 through 8), we plotted

the distribution of the ratio of the two calculated masses for each of the

elements. For Mn events stopped in D7, the mass ratio distribution has a

standard deviation of about 0.012, which translates into 0.6 amu. Based on

the 0.36 amu and 0.34 amu mass resolutions for massl and mass2, one

would expect the standard deviation for this ratio distribution to be about

0.010. The degradation of the standard deviation is due to contribution

from the tails of the ratio distribution. The events in the tails of the ratio

distribution are mostly events which interacted in D5 or D6. The standard

deviations are 0.010, 0.012, 0.010, and 0.017, for the ratio distribution of

events stopping in D8, D7, D6, and D5 respectively. Events with calculated

mass ratios more than 3 standard deviations away from the mean of the

mass ratio distribution were rejected in our analysis. 'Less than 47 of the

i

i



- 158-

Figure 3.14

Mass distribution of the weighted sum of massl and mass2 for iron

particles stopping in D7. A mass resolution slightly greater than 0.25

amu was achieved which was very close to the value expected (slight-

ly less than 0.25 amu) based on the 0.38 amu and 0.34 amu mass

resolutions for massl and mass2.
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events were rejected by this consistency test.

The range (in .ni of Si) of each of the particles was also calculated so

that we could eliminate the "foldback" events, as discussed in the 40Ar frad

mentation study (section 3.2.2.1). The range of a particle was deflneL as the

distance from the top of detector D3 to where the particle stopped in the

detector stack and was measured in units of µm of Si. Figure 3.15 shows a

plot of the calculated mass vs. the calculated range for iron particles stop-

ping in detector D6. "Foldback" events can be observed and the "foldback"

in this case extends back for 300µm. This means that in order to eliminate

the "foldback" events, we must also throw away the good events which

stopped in the last 300µm of the active layer of the detector. Nevertheless,

this is better than accepting events with incorrect calculated masses.

One can also notice in figure 3.15 that the mass resolution ;y slightly

degraded for events which stopped near the top of D6. In general, events

stoF:ped near the top of the E' detector have slightly worse ;:pass resolution

ae compared to events which stopped further in the E' detector. As a result,

events which stopped in the first 100 Am of the E' detector are not included

in our analysis.

Table 3.8 gives the analyzable range of our analysis. Events which

stopned outside of the analyzable range were not included in our analysis.

There were 100µm (between. D5 and D6), 5001sm (between D6 and D7), and

800µm (between D7 and D8) of range not analyzed between detectors. The

number of particles which stopped in f ach of these non-analyzed ranges was

estimated using measurements made in 500µm segments of detectors before

and after the non-analyzed range. This estimate of missing particles was

9
f	

i

^	 z

r

i

done for each of the isotopes.
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FSgure 3.15

t^a.

F^*

tL_

A scatter plot of the calculated mass vs. calculated range for iron

particles stopping in detector D6. The range of a particle was

defined as the distance from the top of detector D3 to where the par-

ticle stopped in the detector stack and was measured in microns of

Si. "Foldback" events can be observed and the "foldback" extends

back —300 micron. The tracks at the bottom portion of the plot are

Mn events, in this case analyzed with an assumed Z of 26.
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Table 3.8

Range for Detectors D5 through D8 (µm)

Available Analyzable
Detector

min. max. min. max.

D5 2200 5200 2300 5200

D6 5200 8200 5300 7800

D7 8200 14200 8300 13500

D8 14200 20200 14300 19500

Table 3.8 Available and analyzable range for detectors D5 through D8 of
MST. Range is measured from the top of detector D3.
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3.3.2.3. Data Set Selection

When the HIST calibration data was taken, the thickness of the Cu

absorber was systematically varied with time to obtain a distrioution of

ranges for the non-interacted 58Fe beam particles within the HIST detector

stack. Therefore, we can select the data to have the non-interacted 58Fe
i

particles stopping in a particular range by specifying the time interval

which the data was taken. Before we can obtain the observed relative yields

for comparison with the Monte Carlo calculation, we have to select a subset

or subsets of the data so that the isotopes of interest stopped in detectors

D5 through D8. By selecting the range of the non-interacted 58Fe particles,

we are indirectly specifying the restrictions on the range of the other iso-

topes. Before putting any limits on the 58Fe range, we studied the relation-

ships of the range of the different isotopes as a function of the range of

non-interacted 58Fe. In deriving these relationships, we assume that the

fragments have the same energy per nucleon as the primary particle right

after the interaction, and that range scales as A/Z Z. Figure 3.16 shows this

kind of relationship for 49Cr, 54Cr, 51Mn, 55Mn 53Fe, and 58Fe. Each plot

shows the possible range of the isotope with the two lines being the limiting

cases. One limiting case has the 58Fe beam particles interacting upstream

at the front end of the Cu absorber. The other limiting case has the 58Fe

beam particles interacting just before they entered detector D3.

In this study, we will compare the observed and calculated yields of the

Cr, Mn, and Fe fragments. It is possible to choose a subset of the data with

all of the fragments of interest stopping in detectors D5 through D8. How-

ever, this would put quite a restriction on our data selection (since the

range of the F ,i fragments is quite different from the range of the Cr frag-

ments) and would yield a very small data subset. Instead we will select two
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Figure 3. 16

The range of isotopes (a) 41Cr and S4Cr, (b) 51 Mn and 55Mn, and (c)

"Fe and 55Fe as a function of the non-interacted 56Fe particles.

Each plot shows the possible range of the isotope with the two lines

being the limiting cases. One limiting case has the 58Fe beam parti-

cles interacting upstream at the front end of the Cu absorber. The

other limiting case has the 60Fe beam particles interacting just be-

fore they entered detector D3.
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data subsets. One subset will have all the Cr and Mn fragments stopping in

D5 through D8 and the other subset will have all the Mn and Fe fragments

stopping in D5 through D8. The two subsets will be normalized using the

total number of Mn fragments in each of the subsets. To select the data

subsets, we will look at the isotopes with the longest and shortest ranges in

each subset. In the first subset the isotope with the longest range is 54 Cr.

Using figure 3.16a, the SeFe beam particles should stop with range less than

11800µm if we want all S4Cr fragments to stop before exiting D8. The isotope

with the shortest range is "Mn (ignoring ' oMn since it does not have a

significant contribution). Using figure 3.16b, the GeFe beam particles should

stop with range greater than 3250µm if we want all 61 Mn fragments to reach

D5. Using this analysis we have restricted our first data subset to have the

69Fe beam particles stop with range greater than 3250µm and less than

11800µm Doing similar analysis for the second data subset (with S3Fe and
65Mn) the 56Fe beam particles were restricted to have range greater than

5800µm and less than 18000µm Figure 3.17 shows the range distributions

of the 56Fe beam particles for the two data subsets. In each case we were

trying to maximize the number of events we could use in our analysis

without allowing a significant number of interesting events to stop outside

D5 through D8.

3.3.2.4. Observed Isotope Yields

Now we are ready to obtain the observed isotope yields. For each of the

data subsets, we calculated two masses for each of the events with the

corrections (as discussed in section 3.4.2.1) applied. Background and "fold-

back" event -ii rrere rejected as described in section 3.4.2.2. Now for each of

the 4 ranges (Range 5 through 8), we obtained a mass histogram, of the

weighted sum of the two calculated masses, for each of the elements of

'`rl'
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fture 3.17

Range distributions of the BBFe beam particles for (a) data subset 1

with all Cr and Mn fragments stopping in D5 through D8, and (b) data

subset 2 with all Mn and Fe fragments stopping in D5 through D8.

The peaks are due to the discrete steps in thickness of the Cu ab-

sorbers.
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interest in the data subset. Gaussian distributions were then fitted to each

of the mass histograms using the least-squares fit method described in

Chapter it of Hevington (1969). In each fit, the gaussian distributions were

assumed to have the same widths; and the separation of one distribution

from the next was also assumed to be the same. The whole group of gaus-

sian. distributions was allowed to shift on the mass scale to optimize the fit.

The free parameters in the least-squares fit were the individual heights, the

width, the separation, and the overall location of the gaussian distributions.

Figure 3.18 shows such fits to mass histograms, for Cr, Mn, and Fe fragments

stopping in detector D6, as well as for Mn fragments stopping detectors D8,

D7, and D5. From these least-squares fits, the mess resolutions for Mn are

0.22, 0.26, 0.22, and 0.32 amu for particles sto pped in detector D8, D7, DE,

and D5 respectively.

Using the least-squares fit calculations, we obtained the number of each

isotope stopping in the analyzable range of each detector. The least-

squares fit also calculated the uncertainties in the number of each isotope.

To get the total observed abundances, the results from each of the 4 ranges

were added together and their respective uncertainties were added in qua-

drature. To estimate the number of each isotopes stopped in the non-

analyzed ranges, we analyzed the mass histograms for the 500 µm segments

before and after the non-analyzed ranges. Least-squares fits were per-

formed on each of these mass histog ams to get the number of each iso-

topes in these 500 Am detector segments and the uncertainties. These

numbers were then used to estimate the number of fragments stopped in

the 100 Am, 500 Am, and 800 µm of non-analyzed ranges between detectors.

Uncertainties in these estimates were also calculated. The statistical uncer-

tainty in the estimate was then added to the respective estimation uncer-

,i
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e
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Figure 3.18

Least-squares fits to mass histograms for (a) Fe fragments, (b) NIn

	

„a	 fragments, and (c) Cr fragments which stopped in detector D8. Fig-

	

,	 ures 3.18(d) through 3.18(f) are least-squares fits to mass histo-

grams for Mn fragments stopped in detectors D8, D7, and D5 respec-

tively. The mass histograms were fitted with gaussian distributions

each representing an isotope. In each fit, the gaussian distributions

were assumed to have the same width; and the separation of one dis-

? tribution from the next was also assumed to be the same (approxi-

mately, but not necessarily 1 amu). The whole group of gaussian dis-

tributions was allowed to shift on the mass scale to optimize the fit.

The free parameters in the least-squares fit were the individual

heights, the width, she separation, and the overall location of the

gaussian distributions.
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tainty in quadrature. Table 3.9 shows the results of the least-squares fits.

'	 The table contains the measured isotope yields for the two data subsets

- along with the estimates for fragments stopped in the non-analyzed ranges.

These results will be normalized and compared to the Monte Carlo calcula-

tions in the next section.

We have also analyzed the Co events for the second data subset because
^y

the Monte Carlo calculations suggest that there might be observable yields

of 56 Co and 55C o. Figure 3.19 shows the individual mass histograms for each

of the 4 ranges as well as the combined mass histogram The large peak to

the left is due to Fe events, in this case analyzed with an assumed Z of 27.

The Fe events do not seem to contaminate the Co events except possibly in

Range 5. Even in Range 5, it does not appear that the Fe distribution

extends out beyond 53 amu. Because of the limited number of events, no Co
N.

, t . track was seen on the mass vs. range plots. As a result, the g(E1) correction

(as described by eon.ation 3.12) could not be obtained directly. Instead, we

used the Fe co-	 functions to approximate the g(E1)s for Co. The

energy scale o. We correction functions was scaled properly using the

range energy rei4 iship. This approximation was shown to be reasonably

good when Mn corrections were scaled for Fe events, giving a typical mass

resolution about 50% worse than if the actual corrections were used.

Because of the limited number of events in each range, we did not perform a

least-squares fit on the histograms. As a result, the mass scale was not

optimized both relatively and absolutely (this was done in the least-squares

fit); and when the individual histograms were summed to form the combined

histogram, it is possible that the mass resolution was further degraded.

There is no evidence for individual isotope peaks for Co, possibly because of

the degraded mass resolution and limited statistics. In any case, the isotope
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Table 3.9

Data Set 1 Data Set 2
Isotope Analyzable Non-anal. Analyzable Non-anal.

Range Range a Range Range a

56Co -- -- 8.6±6.0 --
55Co -- -- 11.9±6.5 --
55Fe -- -- 1460.9±50.4 178.1±20.4
54Fe -- -- 598.5±29.5 69.0±12.4
53Fe -- -- 126.5±16.6 14.4± 8.1
52Fe -- -- <37.0 b --
55Mn 645.7±26.4 80.7±12.8 751.5±24.6 86.6±14.5
54 Mn 884.8±33.1 81.2±12.4 896.6±35.7 123.8±17.0
B3Mn 950.7±35.3 77.3±11.8 983.3±37.7

I
127.2±17.1

52Mn 459.6±25.7 32.4± 8.1 473.2±27.0 49.8±12.2
51Mn 125.3±14.5 2.9± 3.2 135.0±17.4 8.6± 7.1
50Mn 34.7± 9.9 -- 37.4±11.3
54 Cr 64.0±11.5 7.1± 7.2 -- --
53Cr 223.0±19.5 19.6± 9.5 --
52 Cr 721.0±30.8 186.6±14.5 --
51 Cr 779.9±33.3 84.0±14.3 -- --
5OCr 545.4±28.4 56.0±11.3 -- --
49Cr 144.5±17.8 14.8± 7.1 -- --

a Estimated number of fragments which stopped in the non-analyzed
range (100 /.km between D5 and D6, 500 Am between D6 and D7, and 800
µm between D7 and D8). The estimates are based on analysis of the
mass histograms for the 500 µm detector segments before and after the
non-analyzed ranges.

b 52Fe was not fitted in the least-squares fits. The number of events is
counted from the mass histograms between 51.5 amu and 52.5 emu.
This will include background events and events from the tail of the 53Fe
distribution.

Table 3.9 Measured isotope yields for the two data subsets along with the
estimates for fragments which stopped in the non-analyzed ranges. The

sured yields are the results of the least-squares fits.

1.

1

i
i
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Figure 3.19

Individual mass histograms for each of the 4 ranges, and combined

mass histograms (sum of individual mass histograms) for Co events.

The large peak to the left is due to Fe events, in this case analyzed

with an assumed Z of 27. The Fe events do not seem to contaminate

the Co events except possibly in range 5.
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yields were estimated by counting the number of events which fell in the

intervals between 54.2 amu and 55.5 amu for 55 Co and between 55.5 amu

and 56.8 amu for "Co. Using this counting scheme, we counted 11 "Co and

8 58Co. We estimated the corrections for the non-analyzed ranges for the Cc

events to be -5%, somewhat less than for the other elements. Note that the

800 Am of non-analyzed range between detectors D7 and D8 constituted,

more than half of the thickness of the non analyzed ranges; and the number

of Cc events stopped in this 800 µm segment would be insignificant because

Co events had shorter ranges than the other fragments. The number of Cc

events that stopped before reaching detector D5 was estimated to be 3±2%

for 55Co and 2±17 for 58Co by tha Monte Carlo calculations. Based on the

Monte Carlo calculation, rc 54 Co was ex}. cLed; whereas there were 4 possi-

ble candidates for 54Co. Tbese might be backgrou-id events or they could be

Fe events. Since there were no possible candidates for 58Co, even if these 4
e^'(.'o candidates were due to background, one cannot use this as an indica-

tion of the background level for either 55Co or "Co, In fact, these 4 events

could be 55Co and some of the identified 55Co events could be 58Co due to the

poor resolution and possible shift of the mass scale. Therefore, we average

the 4 possible 54Co and 0 58Co, and add 2 to the uncertanties to include this

possible systematic uncertainty. When these corrections are applied, the

best estimates are 11.9±6.5 for 55Co and 8.6±6.0 for "Co.

Perron (1976) measured the decayed cross-sections for Cr and 'dn iso-

topes from fragmentation of 58Fe by bombarding a "Fe target with 600 MeV

protons. We have decayed our observed isotope yields and compared them

with the decayed cross-sections measured by Perron. The comparison

shows that our relative isotope yields are consistent with their cross-

sections.
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When selecting the data subsets, we were trying to maximize the number

of events we could analyze without allowing a significant number of interest-

ing events to stop outside D5 through D8. To make sure this objective is

met, the range profile was plotted for each of the isotopes with the excep-

tion (because of limited statistics) of sOMn, "Co, and "Co. Figure 3.20 shows

the range profiles. Each data point represents the number of events which

stopped in a 500 µm segment of detector range. Extrapolating from the

range profiles, there does not appear to be significant number of interesting

events which stopped outside D5 through D8 (2300µ.m < range < 19500%cm).

i

e,

10
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Figure 3.20

Range profiles (measured) for each of the isotopes with the excep-

tion of 5OMn, 55Co, and "Co, Each data point represents the number

of events which stopped in a 500 µm segment of detector range.
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3.3.3. Comparison with Calculations

The measured isotope yields presented in Tab le 3.9 were observed for a

thick CHz target. The ueFe beam particles interacted in the target (or even

outside the target) at various energies. In addition, fragments that were

emitted at angles > V were generally not detected. As a result, we did not

have a direct measure of the interaction cross-sections. However, as for the

case of the 40Ar fragmentation study, we can still test the semi-empirical

cross-sections by comparing the observed relative yields with thoaz

expected from a Monte Carlo calculation based on the semi -empirical

cross-sections of Silberberg and Tsao. The experimental setup was modeled

in the Monte Carlo simulation. Table 3 . 10 gives a list of the materials

modeled in the Monte Carlo calculation. The thickness of the Cu absorber

was varied (from 0 .52 g/ cmz to 3 . 59 g/ cmz). The relative number of events

we ran at each of the Cu thicknesses was deduced using the range distribu-

tions of figure 3.17. Interactions in the Cu absorber a 10 m upstream are

not included in our analysis because our efficiency is very low for detecting

these fragments if they are emitted at an angle a 0.2°. According to the cal-

culation, less than 5% of the interactions occurred in the Cu and their inclu-

sion or exclusion does not affect the relative yields of the isotopes. We ran

enough events in the calculation so that the statistical uncertainties of the

calculated yields were small compared to the uncertainties of the observed

yields.

The results of the Monte Carlo calculations are presented in Table 3.11.

The calculated isotope yields are tabulated along with the observed yields

for the two data sets. The observed yields were obtained from Table 3.9 by

adding the contributions from both the analyzable range and the non-

analyzable range. The uncertainties were added in quadrature.

^I
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Table 3.10

Slab Descriptionp
Thickness Material Assumed
(g/ cmz) (and mass fractiuns)

Variable Absorber 0.52-3.59 Cu (1.000)
Air 0.13 N (.745), 0 (.229), Ar (.026)
CHs Target 5.258 H (.143), C (.857)
Beam Spreadera 3.586 Al (1.000)
Air 0.32 N (.745), 0 (.229), Ar (.026)
MWPCs 0.025 H (.0 13), C (.192), 0 (.103), Ar (.892)
Telescope Window 0.0034 Al (1.000)
Ml-D2 0.079 Si (1.000)
D3-D4 0.513 Si (1.000)
D5 0.700 Si (1.000)
D6 0.700 Si (1.000)
D7 1.400 Si (1.000)
D8 1.400 Si (1.000)
IN 0.700 Si (1.000)

a The beam spreader is a slab of Al with lmm grooves cut in one section of
the surface so that a monoenergetic beam which goes through the
grooved section will have a distribution of energy for the exiting parti-
cles. However, when the data was taken, the beam spreader was not
aligned correctly; and the beam did not go through the grooved section.
As a result, the beam spreader is just a piece of Al absorber in this case.

Table 3.10 The list of materials modelled in the Monte Carlo Calculation.

J

k
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Table 3.11

Data Set 1	 IData Set 2
Isotope	 Observed	 Calculated	 Observed	 Calculated

Yield	 I	 Yield	 I	 Yield	 I	 Yield

55Co -- -- 8.6±6.0 206
55Co -- -- 11.9±6.5 100
55Fe -- -- 1639.0±54.3 16056
34Fe - -- 667.5±32.0 866053 Fe -- -- 140.9±18.4 7643
52 Fe -- -- <37.0 a 419

Fewtelb -- -- 2447.4±65.7 32359
55Mn 726.4±29.3 7889 838.1±28.6 8175
54 Mn 966.0±35.4 11215 1020.4±39.5 11495
53 Mn 1028.0±37.2 6928 1110.5±41.4 7420
52Mn 492.0±27.0 3954 523.0±29,6 4061
GIMn 128.2±14.9 1263 143.6±18.8 1423
8OMn 34.7± 9.9 265 37.4±11.3 290

Mn total 3375.3±67.4 31512 3673.0±73.8 32864
S4Cr 71.1±13.6 886 -- --
53Cr 242.6±21.7 4962 --
52 Cr 807.6±34.0 14376 --
51 Cr 863.9±36.2 10764 -- --
8OCr 601.4±30.6 6009 -- --
49Cr 159.3±19.2 1367 -- --

Crtotal 2745.9±66.5 38364 -- --

a 62Fe was not fitted in the least-squares fits. The number of events is
counted from the mass histograms between 51.5 amu and 52.5 amu.
This will include background events and events from the tail of the 53Fe
distribution.

b Not including 52Fe.

Table 3.11 Isotope yields (not normalized) for the two data sets.
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The twa data sets were then normalized using the total number of Mn 	
i

fragments in each of the data sets. This normalization was done indepen-

dently for the calculated and observed yields. For the observed yields, the

second data set was scaled down by a factor of 0,92; and for the calculated

yields, the second data set was scaled down by a factor of 0.98. These com-

bined results are tabulated in columns 2 and 3 in Table 3.12. For com-

parison purposes, we normalized the calculated yields to the observed yields

using the total number of Cr and Mn fragments. Column 4 gives the normal-

ized calculated yields which were obtained by scaling column 3 by a factor

of 11.42. These normalized cal: ulated yields are plotted along with the

observed yields (column 2) in figure 3.21. Column 5 gives the ratios of the

observed yields to the calculated yields.

One noticeable difference between the observed and calculated yields is

in the comparison of total elemental yields of Cr and Mn. The Monte Carlo

	

calculation predicted 'nigher total elemental yield for Cr than for Mn (a Mn 	 a
to Cr ratio of 0.82). On the other hand, we observed more total elemental

yield for Mn than for Cr (an observed Mn to Cr ratio of 1.23±.04). Webber et

al. (1982) studied the fragmentation of SeFe in CH2 targets and found a simi-

	

lar discrepancy when their results were compared with the Siberberg and 	 ` a'

Tsao cross-sections. Their studies were done at 710, 950, and 1050 MeV per
r

nucleon. The Mn to Cr cross-section ratio was found to be 1.19±.03 and

1.28±.02 at average interaction energy of 880 and 980 MeV per nucleon

respectively. Westfall et al. (1979) did a similar study with an H target at

higher energy (1.88 GeV per nucleon) and found a similar discrepancy (an

observed cross-section ratio of 1.59±.40). Poferl-Kertzman et. al. (1983) also

	

studied the fragmentation of 56Fe in CH2 at 980 MeV per nucleon and found 	 j

	

similar discrepancy (an observed cross-section ratio of 1.43±.08). Our study 	 t

'I

`iI
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Ttlble 3.12

Observed Calculated Normalized Ratio
Isotope Yield Yield Calc. Yield a (Obs./Cale.)

66Co 7.9±5.5 197.5 17.3 0.46-.32
08Co 10.9±6.0 95.9 8.4 1.30±.71

65Fe 1506.2±49.9 153x:5.5 1348.7 1.12±.04
64Fe 613.4±29.4 8303.7 727.4 0.84±.04
53Fe 129.5±16.9 7328.6 642.0 0.20±.03
62Fe <34.0 401.8 35.2 <0.97

56Mn 726.4±29.3 7889 691.1 1.05±.04
64Mn 966.0±35.4 11215 982.4 0.98±.04
83Mn 1028.0±37.2 6926 606.7 1.691.06
S2Mn 492.0±27.0 3954 346.4 1.42±.08
61 Mn 128.2±14.9 1263 110.6 1.16±.13
8OMn 34.7± 9.9 265 23.2 1.50±.43

Mnt.W 3375.3±67.4 31512 2760.4 1.22±.02

S4Cr 71.1±13.6 886 77.6 0.92±.18
63Cr 242.6±21.7 4962 434.7 0.56±.05
62Cr 807.6±34.0 14376 1259.4 0.64±.03
51 Cr 863.9±36.2 10764 942.9 0.92±.04
S0Cr 601.4±30.6 6009 526.4 1.14±,06
49 Cr 159.3±19.2 1367 119.8 1.33±.16

Crtotal 1 2745.9±66.5 38364 3360.8 0.82±.02

a Calculated yields are normalized to observed yields using the total
number of Cr and Mn fragments.

b Ratio of observed to calculated yields. Uncertainties only include
uncertainties in the observed yields.

Table 3.12 Combined results from data sets i and 2.



- 198-

fture 3.21

A comparison of measured and calculated fragmentation yields, nor-

malized to the same total yield of Cr and Mn fragments, The Co

yields are magnified by a factor of 10.
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E •' was done with a thick target, with an average interaction energy of -377 MeV

per nucleon (interaction energy ranges from 100 to 570 MeV per nucleon).

It is ,interesting to note that our observed Mn to Cr elemental yield ratio with

a value of 1.23, is quite similar to the Mn to Cr cross-section ratio measured

at higher energies.

Another noticeable difference between the observed and calculated

yields is the case of 83Fe. The observed yield is about one fifth of the calcu-

lated yield, while the observed yields of "Fe and "Fe are comparable to the

calculated yields. Note that the number of neutrons in S3Fe is one less than

the magic number 20; this implies that the production of S3Fe involves the

removal of a neutron from a complete nuclear shell. Once again, as was in

the case for 38K, it appears that the Siiberberg and Tsao cross-section for-

mula or-restimates the production because it fails to take into account

nuclear shell structure.

For the elements Cr through Fe, the isotope yields in Table 3.12 are

presented in Table 3.13 in terms of isotope fractions. The isotope fractions

for the isotopes of Cr and Mn are plotted (in Gaussian probability scale) in

figure 3.22. For the both elements, the observed and calculated yields fit

very well to straight lines; in other words, the mass distributions are Gaus-

sian. It appears that peripheral reactions do not alter the Gaussian nature

of the mass distribution. The width (standard deviation) of the observed

mass distribution is slightly wider than the calculated for Cr and is slightly

narrower than the calculated for Mn. The medians of the observed mass dis-

tributions are systematicly lower than those of the calculated distributions

by more than 0.1 amu.

We have also studied the ratio between the observed and calculated iso-

tope fractions. Figure 3.23 shows the distribution of the ratio of calculated
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Table 3.13

Fraction of Element
Isotope

Observed Calculated

BBFe 0.889±.010 0.496±.003
54Fe 0.273±.009 0.288±.902
"Fe 0.058±.005 0.238±.002

BBMn 0 .215±.007 0.250±.002
E4Mn 0.288±.008 0.356±.003
53Mn 0 .305±.008 0.220±.002
82Mn 0.148±.008 0.128±.002
51 Mn 0 .038±.003 0.040±.001
Bohn 0.010}.002 0.008±.001

54Cr 0.026±.003 0.;123±.001
53Cr 0.088±.005 0.129±.002
52Cr 0.294±.009 0.375±.002
81 Cr 0.315±.009 0 ?80±.002
BBCr 0.219±.008 0.157±.002
49Cr 0.058±.004 0.036±.001

aI

i
^l

I

Table 3.13 Observed and calculated isotope fractions.
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FSgure 3.22

Observed and calculated mass distributions for Cr and Mn. The mass

distributions are shown fn Gaussian probability scale for the fraction

of isotopes within an element with mass greater than that indicated

by the horizontal axis.
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FU=-e 3.23

Distribution of the ratio of calculated to measured isotope fractions

for Cr, Mn, and Fe (with the exception of S3Fe).
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to measured isotope fractions for the isotopes of Cr, Mn, and Fe (with the

exception' of 53Fe which has a ratio of 4.07). Excluding 5"Fe, this distribu-

tion has an rms spread of 25%.

We summarize the findings of the 68Fe fragmentation study as follows.

The observed Mn to Cr elemental yield ratio is higher than the calculated

ratio. The Monte Carlo calculation also over-estimates the production of
asFe which involves the removal of a neutron from a complete nuclear shell.

This suggests that the nuclear shell structure should not be ignored in the

semi-empirical formulae. For the elements Cr and Mn, the medians of the

observed mass yield distributions are lower than expected from the calcula-

tion.
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Cosmic ray composition studies rely heavily on semi-empirical estimates

of the cross-sections for the nuclear fragmentation reactions which alter

the composition during propagation through the intersteLar medium. In

many cases the errors in these cross-section estimates result in significant

uncertainties in cosmic ray source abmdances or in propagation model

parameters derived from observed abundances. To reduce these uncertain-

ties, direct measurements of nuclear fragmentation cross-sections would be

desirable. However, measurements of cross-sections are tedious and time

consuming and the number of possible nuclear interactions is enormous.

In this chapter, we have presented a method which provides a mechan-

ism for testing the semi-empirical formulae without directly measuring

nuclear fragmentation cross-sections. This method involves the comparison

of experimentally measured fragmentation yields with those expected from

a Monte Carlo simulation calculation based on the semi-empirical cross-

section formulae. Even though this method does not provide an absolute

measurement of the truss-sections and their energy dependence, any sys-

tematic difference between the measurements and calculations can be used

as a basis for refining the semi-empirical formulae.

We have presented experimentally measured isotope yields, resulting

from the fragmentation of 4OAr and'6Fe in CH2 targets, with good mass reso-

lutions and statistics. Comparison of our experimentally measured isotope

yields with calculated yields shows some significant differences. Some of our

measured yields have also been compared with previous York by others

which appeared in the literature. Our results are summarized as follows:

I

,I
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• Comparison of our measured relative isotope yields for Ar on CHa, for

the elements Mg through S, with relative cross-sections teasured by

Viyogi et al. (1978) for Ar on C shows good agreement, suggesting that

relative isotope yields do not depend strongly on the target material.

• The medians of the observed mass-yield curves are systematically

shifted to lower masses than expected from the calculation. This sug-

gests that adjustments to some of the parameters (which affect the iso-

tope distributions) in the semi-empirical formulae are necessary.

• The observed isotope distributions of S and Cl suggest that the semi-

empirical formulae underestimate the yield from peripheral reactions
for 40Ar.

• The observed yields of 36K and 53Fe suggest that the semi-empirical for-

mulae overestimate the production of fragments from interactions

which involve the removal of a nucleon from a complete nuclear shell.

• In both the Ar and Fe fragmentation cases, when the observed relative

isotope fractions (within an individual element) are compared to those

of the calculations, the distributions of the ratio have rms spreads of

about 25%.

Based on our observed differences between the measured and calcu-

lated yields, we conclude that the semi-empirical cross-section formulae

could be refined. In particular, the following areas should be examined:

• Nuclear shell. structure should be incorporated into the semi-empirical

formulae.

• The parameters R, S, and T, which affect the isotope distribution within

an element should be examined and re-adjusted. Although the observed

distributions are generally Gaussian, systematic differences are evident

E.
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when bc:i.h the median and width of the distributions are compared to

the calculations.

• The parameters which affect the fragmentation yields resulting from

peripheral reactions from Ar particles should be examined and

corrected.

7
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