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A PANEL METHIOD STUDY OF VORTLX SHEITTS
WITH SPECIAL EMPIIASIS ON SUEETS
OF AXISYMMETRIC GEOMETRY?

by
Ichiro Sugioka and Sheila E. Widnall

FDRL Report No. 85-3 August, 1985
NASA/Ames Research Center contract NAG2-251

Fluid Dynamics Research Laboratory
Department of Aeronautics and Astronautics
Massachusetts lustitute of Technology
Cambridge, MA 02139

The sclf-induced evolution of a vortex sheet was simulated by modelling
the sheet using an iotegration of discrete elements of vorticity.
Replacing small sections of a vortex sheet by flat panels of constant
vorticity is found to reproduce more accurately the imitial conditions for
the Lagrangian simulation technique than replacement by point vortices.
TLe flat penel method for the vortex sheet was then extended to mxlel
axisyrmame -2 vortex sheets. The local and far field velocities induced
by the ax.  mmetric panels were obtained using matched asymptotic
analysis, and some of the uncertainties involved in other models of the
axisymmetric vortex sheet have been eliminated. One important result
of this analysis is the determination of the proper choice of core size
for a circular vortex filament which may replace a section of an
axisymmetric vortex sheet. Roll-up of both two-dimensional and
axisymmetric vortex sheets was computed using the panel methods
developed in the report.

e S

‘adapted from the S.M. Theais by Ichiro Sugioka, “"The
Study of Vortex Sheets Using & Panel Method", M.1.7T.,
Auguct, 1985,
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b Semi-Span of the Wing or Kedius of the Rotor
(ab,)  Position of Two-Dimensional Roll_up Core
L, Elliptic Integral of the Second Kind
F, Elliptic Integral of the First Kind
Q, Panel-Position Polynomials; see Equations (2.14) - (2.18)
R Radius of the Axisymmetric Vortex Element
(Roe,)  Position of Axisymmetric Roll-Up Core
Y Distance Between Points or to the Symmetry Axis
T, Radius of Circular Vorticity Distribution
T Shortest Distance to the Vortex
. T, Longest Distance to the Vortex
(r,2) Coordinates for an Axisymmetric Cylindrical System
5 Line Integral Path Vector
8 Distance Along the Vortex Sheet or Panel
T Elapsed Time
(u,v) Velocity Components for a Cartesian System .
% v Velocity Vector l
; w Width of the Panel :
i Xo Distance from the Edge of the Sheet
x Position Vector 3
G(x,y) Coordinates for a Cartesian System on the Vortex

Greeck Lctters

Circulation

Reference Circulntion; Total Circulation

Curvature; Small Quantity Parameter

Inclination of a Fanel

"Gradient of Circulation™; Local Strength of the Vortex Sheet
Elliptic Integral Parameter; see liquation (2.24)

Vorticity Vector

Stream Function
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Chapter 1
Introduction

1.1. Foundation of Vortex Sheet Studies

A common feature of flows at high Reynolds number is the formation of thin
regions of sharp changes in velocity knmown as shear layers. Jn the limit of infinite
Reynolds Number, the diffusive effect of viscosity is eliminated, and the regions of
velocity gradients are reduced to surfaces of step changes in velocity. Such surfaces
are known as vortex sheets,  Although the formation of shear layer is a viscous
process, shear layers are commonly approximated by wvortex shests in the study of
invicid, irrotutional "prtential” flow.

A wvortex sheet can be represented as an integration over infinitesmal vortex lines.
The dynamics of vortex lines, and thus the dynamics of the sheet, are given by
Helmholtz's vortex theorem. The theorem shows that vortex lines are material lines of
the fluid and are convected by the local flow. In flows without sources or sinks, the
distribution of vorticity determines the flow. If the flow is irrotational, the vorticity
js concentrated in small regions of the fluid. Thus, an unsteady potential flow can be
determined by tracking the vortex sheet as it is moved and deformed by the flow
field.

A rigorous approuch to tracking & vortex sheet wili involve solving singular integro-
differential equations. The time integration canm be simplified by wusing a numerical
scherme involving finite increments in time. However even with this simplification, a
rigorous representation of the vortex sheet will make the contour integral intractable.
Thus, a further numerical approximation must be used to represent the continuouws

vortex sheet using finite, discrete elements of circulation.

The linear instability of a vortex sheet can be shown analytically, but its subsquent




5

development v difficuls to describe,  Taboratory experiments with thin sheny layers,
which are expected 1o e similar to vortex sheets, show spontancous generation  and
growth of spatislly pecdodle yollup,  This instabllity of the shenr layer, known a8 the
Kelvin Iletmholtz Instability, was the subjet of the flmt numerical study of vortex
sheets by Roseonhiead [1] In this study, a contlunouy two dimensional vortex sheet “wan
replaced by a collection of discrete points of finite cirenfution, or polnt vortices,  The
jnitial flat geometry of the vortex sheet was xeprescnted by a straight sow of point
vortices, Rosenhead then adopted a Lagrangian approach of following each point vortex
over time. The motions of the vortices are the result of the flow induced by the
particular arrangement of vortices for each step in time. Rosenhead's ealculations
showed that the vortices form looss spirals within a small number of time steps if
the initial arrangement of vortices were given a small periodic dispalcement. Because
of the tedious marual computations involved, Rosenhead proceeded no further than the
carly stages of rollup. As a result, the problems associated with this Lagrangian
method were not kaown until many years later.

The Lagrangian approach to the initial value problem involving vortex sheets is not &
universally mccepted concept. A pioneering effort by Birkhoff and Fisher [2] questioved
the foundation of vortex sheet studies for invicid fluids. ‘Yhey were skeptical of the
well posedness of applying invicid analysis to the dynamics of a viscously generated
phenomenon. A recent veview of the work in this arca can be found in the article
by Saffman and Baker [3]

Undaunted Ly guestions regarding the well-posedness of the method, for the lust
fifteen ycars there has been an increasing interest in refining Rosenhead's techniygue,
There are two reasons for the revival of interest in this aren of study. Fiist, the
increase in  availablity of powerful computers encouraged the development of
computational fluid dynamics. Second, the desite to extend the invicid analysis for
high speed acrodynamics to free vortex wakes has encouraged the development of the
numerical approaches.

o



7
1.2, Instabiiities In Numeical Vortex Sheet Models

The Yagrangiin approach to simulating a vortex sheet s often plagued hy dnstandlties
caused by the numerlcal approach, the mnauer in which vortex aheets are sxlelled,
and the inherent Instabllity of an actusl vortex wheet. The first is usunlly due o the
fnnccuracien Inherent in numesicnd time Intgpration technlynes and in approximating the
varying geometry of the vorter sheet.  The second canw: of instabllty is due to lusy
of swuracy dictated by the mmount of computation available for the problem, In
order to satisfy the practicel Jimitations in computing, the number and the complexity
of vortex elements must be reduccd., Since the Tagrangian technique uses the result of
cach time step es the jnput for the next time step, inaccuracies in the techmigue
compound over time.  Mowever, indiscriminate elimination of instability is wndesirable
since the phy:ical instability of a vortex sheet is indistinguishable from the artficial
instability. "The inherent inmstability of the vortex sheet is the most important source
of difficulty in the calculation of vortex sheet behavior.

Vortex sheets can be modelled in mmeny ways but whether these models cau
realistically represent en infinitesmally thin shear layer is often not clear. Maore [4]
hes demonstrated that point-vortex methods will always be unstable. e found that
the numerical instability mimics the Kelvin-Ilelmholtz instability in which the smallest
wavelength resolvable, using points equal to iwice the spacing, was found to be the
most unstable. However, this instability causes the vortex sheet being sepresented Ly
the point-vortices to cross itself, which is inconsistent with the allowed behavior of
materinl surfaces. In the most successful point-vortex methods, the vortices are
repeatedly redistributed along the sheet which unintentionally acts as a low pass filter,
damping out the instability to delay the onsct of chaos.

Baker [8] *nd Murman [6] have tackled the vortex sheet problems wsing a mixed
Lagrangian-Liulerian approach, commonly refered to as the "cloud-in-cell” approach. In
this scheme, the Euler Equation for the flow is solved for each ¢ell formed by a
spatial grid metwork. The use of the Eunler Liynation sllowa the use of a Fast Poisson
Solver to significantly increases the efficiency of the numerical method.  Murman
confines the circulation to +vortices which are conveeted independently.  Otherwise
vorticity diffuses nuraerically, end structures with grid related length scales appear.

Whethar these structures represents physically realistic features which are too small to

e
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be resolved Dy the giid i not clens,  (n the ather hand, although the mmall scale
atructures found by Moore are suppnessed, Mupnan's method can not reproduce the
smonth apitalling sodl-up expected dn a wostex shegt.

Spectral  methods  have been applied t0 & small number of cases  whth aimple
geometcles ty stedy vortex sheet atability,  The pmoblon addressed by Rosenhend hay
been atudied using the spectral merhod by Moore [7] and by Melron, Maker, and ¢ hhsag
[l The former addressed intinitesmul pertustations, while the latter addvessed finie
amplitnde distusbances,  They both arrlved at consistent result.  Singularities in the
form of infinite curvature of the vortex sheet were detected within a finlte amount
of evolution time. Although the method resulis appear to be extremely relinble, they
are to0 Jlimited to be useful for practical problems such as the one discussed below.
They do however illustiate the futitlity of rigorously following the evolution of &
vortex sheet at infinitesmal spatial scales,

1.3. Application to wake of a lifting surface

Any lifting surface of a finite span trails a shear layer .n oo V.uke, ~ommonly
referred t a3 the wake vortex sheet. This shear layer can be prduced by separation
nt the leading edge of a highly swept delta wing at high angles of attack or by the
loss of vorticity from the vortex "bound” by the aerofoil. In the eorly 1920%s, Yrandtl
hypothesized that the eyes of wake vortex sheets roll-up into exponentic! spirals,
Kaden [9) using dimensionsl arguments, derived the behavior near the edges of the
vortex sheet trailed by 8 wing with an elliptic lift distribution. This distribution is
important in efficient sairplane design since it induces a comstant dowuwash which
minimizes the induced drag for a given aspect ratio.  Using dimensional argusuents,
Kaden found that the rollup produced a spiral of 2/3 power and from this the center
of the spiral can be approximated. Betz [10] attempted to calculated the distribution
vorticity in the spiral by conserving cirenlation and jmpulse. However, Ietz’s constant
which determines the exact shape and the distibution of vorticity with the spiral was
later shown to be incorrect by Pullin [11}

Rosenhead's methot was first applied to “Kaden’s Froblem” by Westwater {12]  In
order to atudy the threedimensional geometry of the trailing vortex sheet, Westwater
replaced the streamwise coordinate by a timelike coordinate to form an unsteady, two-




dimensional pracess.  This is equivalent to having the sheet cross-section being swept
away from the wing which genevated it.  This procedure, known as the Trefftz plune
method, I8 now universally uwsed o study wake vortex sheets where the deformation
in the atrenmwise direction s assumed to be smoll, Westwater discretized the trailing
vortex sheet by xeplacing 20 segments of the sheet with point vortices of the same
circulation. The wvortices are convected for each timestep by welocities they induce on
each other. Although the vortices rolled up more or Jess amoothly, the spiral did not
quite match  Kaden's result. The insccuracy of Westwater's result ‘was  initially
attributed to the insufficient number of wvortices dictated by lack of computational
devices.

Attempts to improve Westwater’s results by using more point vortices have not been
successtul.  Increasing the number of point-vortices was found to hasten the tendancy
toward chaotic displacement of vortices. Such failures in achieving higher resolution
by increasing the number of point wvortices are attributed to the singular nature of
point vortices. The wvelocity singularity at the Jocation of the point vortex can be
removed by replacing an individual or a group of vortices with a nonsingular
distribution of wvorticity. However this method has been found to only delay the onset
of numerical instability while introducing an ad hoc length parameter for the size of
the distribution. The failure of the discrete vortex approach may be due to the
impossibility of reproducing the sheet-like nature by a finite number of positions. On
a sheet, each position posses its own unigue orientation, which is the result of the
sheet’s continuous nature.

The method of equal-spaced rediscretization introduced by Fink and Soh [13, 14] is
notable for its simplicity and for its success in delaying or eliminating instability.
Fink and Soh found that replacing a vortex sheet segment with a point vortex at the
middle of the segment will significantly reduce the discretization error. This in fact
trancates the formula for the velocity associated with a vortex panel, a small scgment
of the vortex sheet. By placing point vortices at cqual distances along the sheet, it is
possible 10 replace equal length segments of vortex sheet by point vortices at the
centers of the segments.  Since this procedure is repeated after each time step, Fink
and Soh can decrease the distances between points as desired to resolve the rollup of a
finite vortex sheet. In addition to maintaining the spatial resolution, the method
reduces the singular behavior induced by a vortex on ncighboring points alorg the
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sheet.  However, singular hehavior will appear when two paria of the vortex sheet

approach each other close'y as in the turns of a spiral.

Daker {15] questioned Fink end Soh’s practice of amelgamating the inner region of
the rollup into a single "core vortex™. “"Core dumping” ia a simple approximation of
the singularity at the elge of a finite vortex sheet. In order to analyze its effects,
Baker vsed Vink and Soh's method for describing the wake tiailed by a ring wing, a
cireular vortex sheet with sinusoidal vorticity distribution, Upon cobserving the failure
of Fink and Soh's method in dealing with the double-branched rollup associated with
the ring wing, Baker concluded that the strong core vortex must be responsible for the
smooth rollup observed,

Hoeijmakers and Vuatstra [16] improved Fink and Soh's technique in several ways.
First, they introduced the use of & sophisticated splining technique for dividing the
sheet into panels with small curvature and polynomial vorticity distribution,
charcterized as & sccond-order panel method.  Second, Pullin’s generalized similarity
solution for rollup [11) is invoked to make core dumping ecceptable. Since Pullin’s
analysis also applics to the double-branched rollup, the vortex sheet trailed by a ring

wing can be made to rollup just as smoothly as that for a finite wing.

Higdon and Pozrikidis [17) introduced two-dimentional panels which are circular arcs
with a polynomial circulation distribution. Since vortex dumping was not used, only
closed and infinite vortex sheets were onalyzed.  Because the panels provide &
continuous representation of the sheet, there is no restriction in width of the panels.
By using smaller panels to increase local resolution, double-branched rollup can be
described without the use of core dumping. The existence of a panel size dependent

instability was mentioned, but the nature of the instability was pot described.

1.4. The Motivation for this Study

The aim of this thesis is to provide a foundation for a vortex sheet technigque which
offers a more accurate simulation of a thin, axisymmetric shear layer. The numerical
technigues similar to those developed for point-vortex methods will be adopted for flat
mctions of axisymmetric vortex sheet, giving us a simple panel method for
axisymmetric geometries. A careful, systematic study of vortex sheets fepresented by

flat panels has been performed to explore the strengths and weaknesses of this
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approach. Unlike some studies of vortex sheet models, the accuracy of the maode) will
be atressed more than the efficiency of the computational technique. It is hoped that
much of the ertificial behavior, such as that introduced by a rigld wake analysis, can
be removed from the simulation of vortex sheet.

The sxisymmetric panel method is obtained through the extension of the two-
dimensional pancl method to axisymmetric geometries, The axisymmetric geometry is
unique for being the only three-dimentional geometry with only two-coordinates.
Thus, unlike the general three-dimensional flow, an axisymmetric flow can be described
by a stream function. Fortunately, many interesting fluid dynamics phenomena exhibit
axisymmetry. The circular jt and the buoyant plume are two examples of
axisymmetric flows which can be studied eusily in the laboratory. A problem of
special engineering interest is the axisymmetric equivalent of Westwater's work, the
roll-up of the wake-sheets generated by a helicopter in hover. The roll-up of rotor
wake is extremely important to helicopter performance because, unlike the wake trailed
by nirplane wing, the wake remains close to the rotor, significantly affecting the rotor

performance and acoustics.
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Chapter 2
Mathematical Formulation of Vortex Flements

2.1. A Review of Concepts Regarding Vorticity

Vorticity, &, is a local property of the fluid, defined as the curl of the local
velocity, v,

Xx) = V x v(z) (2.1)

This vector quantity describes the rotation of an infinitesmal element of fluid,. A
vortex line is a curve which is everywhere tangent to the local vorticity vector. To
be consistent with the rotational aspect of vorticity, a vortex line must end at the
boundaries of the fluid or form a closed curve and may never intersect itself or
another vortex line,

In real flows, vorticity is produced as a sheet of parallel vortex lines known as &
vortex sheet. In invicid flow, the vortex sheet remains infinitesmally thin and defines
a stepwise jump in velocity tangent to the sheet. The difference in velocity across the
sheet defines the "strength” at a point on the sheet. The vortex sheet usually rolls-up
to form what can be described as a vortex filament. In a real fluid, the vorticity
within the vortex filament will become smoothly distributed by viscous diffusion
within a finite time span. The structure of an evolved vortex filament is similar to
the asymptotic limit for an invicid vortex filament with an infinite number of layers
of vortex sheet rotled up into a region of finite cross-section. In invicid analyses, a
vortex filament with a smooth distribution of vorticity is commonly used as a model
for a tightly wound section of a vortex sheet.

In potential flows, the circulation

'mg v.ds (2.2

e
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is n conserved guantity. This allows the flow sswwiated with a complex vortex
aystem to be determined by summing the contributions from a finite number of vortex
elements which make up the system. The amount of circulation in each element muat
equal the circulation in the section of the vortex system the element replaces. By
replacing & vortex system Wwith a st of known voriex elements with a similar
distribution of vorticity, the flow of material points in a complex vOrtex systoin chn
be deduced.

2.2 Two-Dimensional Vortex Elements

2.2.1. The Point Vortex

The two-dimensional form of the line vortex is the point Vvortex. The wvelocity
induced by & point vortex can be derived from the conservation of circulation, (22),
around a point:

(2.3)

_ -T

V tiontnal = ;;;
Vrudlal =0 (24)

where r is the distance from the point vortex. The wvelocity induced by a point
vortex is singular when the distance from the voriex, T, equals zero. From the

velocity expression, the stream function of a point vortex is

yr) = — Inr (2.5)
an

or in Cartesian coordinates centered on the vortex,

Hx.y) = ,_F In(x2+y?) (26)
4n

The two-dimensional form of a vortex filament js a vortex with finite core. If the
cross-section of the core is circular, the flow outside the core i8 equivalent to the flow
induced by a point vortex of equal strength at the core’s center. However, unlike the
point vortex, the velocity induced by a vortex core is non-singular since the vorticity
is distributed over a fiuite arca. A Rankine vortex, an example of a vortex core,

consists of a cylinder of fluid in solid body rotation surrounded by an irrotational
flow.
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2.2.2. The Vortex Panel

A vortex pane) is a segment of a two-dimensional vortex shest. It is equivalent in
three-dimensions t0 a strip of vortex sheet composed of parallel, straight vortex lines.
Since invicid vortex systems would be made up of vortex sheets, accurate medelling of
invicid vortical flow ahould be possible using vortex pancls. '

The strength of a vortex panel will depend on the amount and distribution of
circulation in the panel. For this study, a penel with wunifom distribution of
circulation is considered. Then the gross translation of the panel can be defined at its
mid-point, its centrold of vorticity. The strength of the panel can be determined by
its width and the "gradient of circulation”, &, defined mathematically as

or
K = e
as
The discrete form of Kk is obtained by the central difference scheme

r»‘/z-rs-’/z
Suya ™Sy,
where Ty is the circulation of the i*® position on the vortex sheet and S is the arc

K =

length taken along the vortex sheet. Then the strength of the ith panel of width w

is given by

ru’/z = ri—’fz
= = ) (2.7)

Thus, a panel is equivalent to a point vortex with the same circulation "smeared” into

the shape of a panel.

The flow induced by the vortex panel can be obtained by representing the vortex
lines making up the panel as point vortices of ipfinitesmal strengths. The velocity
induced by the panel can then be nbtained by integrating the contributions by the
point vortices. This is can be accomplished by integrating along the panel, the effects
of point vortices with the strength

d I = Kds (2-8)

where & is given by Q7).

&

e
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In order to simplify the mathemnatics involved, we shall limit oursclves to flat
vortex panels, In s two-dimensional representation, the pane} will be represented by a
line segment having the Cartesian ecoordinates

2(s) = x, + 8 cosO (2.9)
y8) = y, + & siné (2.10)

where the panel at (xy.) is inclined at an angle 6.

In a previous work on panel methods Morky {18), using flat panels, carried out the
direct integration of infinitesmal velocities to obtain the velocity field induced by
panel.  Since the wvelocity integrand is singular, this involves evaluating a Cauchy
principal value integral. However, the logarithmically singular stream function of a
point vortex is integrable.  Using Lquations (2.6X2.8X2.9) and (2.10), the stream
function is given by integrating along the vortex panel:

Yx,y) = :4‘—"- I2, Inl(x — s cos6F + (y — s sin8)}] ds (2.11)
T
= 5 o lQ, ~ 25 @, + 2] ds (2.12)
4%
= Ef lla - Q) InQ, + (a + Q) inQ, (213)
a2, atQ,
+ 20, arctg ) + 20, arctg 5 4a]
0, = x* + ¥ ' ) (2.24)
Q, = ycos§ — xsinf (2.15)
Q, = xcos@ + ysind (2.16)
Q = Q= 20, + & (2.17)
Q =0, t 2, + a° (2.18)

where a is the half-width of the panel (a = Yaw).

There are two methods for evaluating the velocities from the stream functions. One
methad, most suitable for Eulerian analyses with its coordinate-mgsh, is to take finite
differences over the control-volumes. ‘The alternate method is to evaluate the velocitics,

which are derivatives of the stream functions, explicitly at the points of interest.
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wx,y) = 1,!’ (2.19)
dy
K Qg a"‘QJ a+Qg
= % [ % 4 2cos8 -3 - :
o [—stn@ th' 2cos (arctgr?‘ + arctg o, Vi (2.20)
d
wx.y) = d (2.21)
ax
+
= f; [~cos@ Ing% -~ 25in@ (arc:,g:‘:‘:‘-z-?—i + arctga Q?J)] (2.22)

The velwcity field produced by the equations are shown in Figure 2-1, In these
formulas, the arc-tangent, being multiple valued on the panel, models the jump in
tangential velocity as the panel is crossed. Mathematically, the panel is a brauch cut
in the coordinate space connecting the two logarithmic singularities at the edges of the
panels.

2.3. Extension to Axisymmetric Geometries

2.3.1. The Axisymmetric Problem

An axisymmetric vortex sheet is composed of coaxial, circular vortex lines. Thus, a
simple-minded extension ¢ the Rosenhead approach to sheet discretization i8 to replace
point wvortices by circular line vortices. However this straight-forward approach is
unworkable because a curved line vortex is influenced by its own velocity singularity.
As 8 result, a circular line vortex will translate through the fluid at infinite velocities

[19) One way of avoiding the infinite translation velocity involves using circular
vortex filaments, or vortex rings, in place of the singular line wvortices.  This
introduces a finite vorticity distribution which induces a finite translation wvelocity.
Another approach is to use polygons made of straight segemnts of line vortices in place
of the vortex rings. A network formed by vortex polygons is known as a vortex
lattice. Unlike the strictly axisymmetric models, the voriex polygons should be able to
display non-axisymmetric deformations of the vortex sheet. Azimuthal deformations are
known to hasten the deeay of vortex rings [20], and should have an important
consequences for the behavior of three-dimensional vortex sheets.

However, both of the above models of axisymmetric vortex sheet require the selection
of a length perameter:  the radius of the vortez core or the length of a polygon
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element, Thus hefore any of thess models can be used ncenrately, it i necessary to
goin o better understanding of the behavior of vortex sheet these models are desipned
to reproduce.

The axisymmetric equivalent of the vortex panel is a "vortex band”, a section of an
axisymmetric vortex sheet. It represents a finite piece of the vortex aheet which, in
some models of the axisymmetric vortex sheet, is replaced by vortex rings and vortex
polygons.  Although a band does not posess any volume, by defining the band'y
position at the mid-point of the pand as was done for the two-dimentional panels, the
self-induced velocity of the band is shown to be finite.

The stream function for circular line vortices, expressed using complete clliptic
integrals E;(A) and F;(}), is given by Lamb [21}

r (2.23)
¥(x.y) = P (ry + r) { F(N) = E(N) }
T2 = T,
A S (2.29)
r, = Least distance between (x,y) and the vortex
r, = Greatest distance between (x,y) and the vortex

To obtain the flow for s vortex panel, this stream function must be integrated across
~he panel, resulting in a difficult double-integration of singular elliptic functions.

2.3.2. The Method of Matched Asymptotic Expansion

¥ the width of the vortex Sa:’ is small relative to its radius, an esymptotic
expansion for the stream function can be obtained. The approach used here for the
vortex panel, known as the method of motched asymptotic expansion, was also used in
a study of curved vortex filaments [22}  This method derives an uniformly valid
solution which asymptotically approaches known behavior of the actual stream
function. Thus, it is importent to heusistically deduce what is expected from the
atream function. We can expect the character of the stream Ffunction away from the
band to approach that of the atream function for a circular line vortex. Thus, the
circular line vortex stream function will be used as the outer-solution. Near the band,
the stream function should resemble the two-dimensional solution for a vortex panel,
However, the inner-solution must include effects due to curvature in the axisymmetric
geometry.

— Wy .
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The eoordinate systems used in the following analysin nre shown in ligure 2-2,

2.3.2.1. The Outer-Sotution

The veloclty away fxom the band s dexlved from (2.23) which glves

Ka

L Salrver a{ (ry + ) L F (W)~ EN ]} (2.2%)
- 1{{ (ry, + ) [ BN~ E(M) ]} (2.26)

v
M m(ktx) dx
where R i85 the radius of the vortex band.

2.3.2.2. The Inner-Sclution

The axisymmetric velocity ficld, for a given axisymmetric stream function , is
defined to bLe

1 dw
wr.z) = (2.27)
r 0z
o
) vr.2) = -f: 5!- (2.28)
r
The irrotationality of the potential flow gives
du Oy
_— = e— & () (2.29)
oz or

Which is the same as that for two-dimensional flow, @ = 0. Combining Eguations |
(2.27X2.28) and (229) gives the governing equation for the axisymmetric stream
functions: B
aw IV 1o = (), (2.30)
Or? 332 T ar
This equation i3 the axisymmetric equivalent of the two-dimensional stream function
equation

2 92
P + Y 0. (231)

ax? oy?
It is now necessary to switch to a panel-centered coordinate system (x,y), originating at
the center of the vortex band of radius R.




L

L

P

1R

a g 1 0
'l/ + - ‘b e \l’ = ), (232)
Mt Oy Ritxog, :

Non dimensionalizing wiwh respect 1o the onter lenpth-acale, radius R, pives

a2 ¢ 19
'——w + ___!’/ - — '("—\E = 0 (2.33)
ax%  dyr  1vx gx
The courdinates can now be vescaled by a small parameter, the curvature, which is
€ = 2 where a in the half-width of the band, Reseating (2.33) by e gives
a? a0 e 0
J-f—»«f-——-—mlao. (2.34)
Ox?  dy?  lex Ox
with the understanding that (x,y) are non-dimensional, stretched coordinates.

The expanded inner stream function,
Vo= + ey + ey, ... (2.35)

is wscd to express the effects of curvature, e, duc to the perturbation of the two-
dimensional stream function, Ve In the above series, terms O(e™ Ine) have been
included wiih terms O(e™~1 ), Using this expansion, the governing equation(2.34)
can be broken up into cquations for each order in the expansion:

62% 8?% _

1) '3‘*;;- _5;:; = 0 (2.36)
52 9?

oo PN, 0w,

- — i — (2.37)
Ox? Oy? da

The zeroth-order equation is the governing equation for the two-dimensional stream
function(2.31). The subsquent equations for the higher-order terms of the inper stream
function are all Poisson's Equations, with the ne-homopeneous  terms involving the
solutions of lower-order equations.  Thus, repetitive evaluation of the Moisson's Egquation
can be wsed to obtain the desired degree of accuracy.

By assuming the effect of curvature to be small, we will only need to evaluate the

fist term in the expansion. The particular solution for the first-order Poisson's
Equation is

Vo & é X ¥, (2.38)

-
= a
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Then, using (213) for the zerothorder term of the expanslon, the inner stseam
function iy

Vo = (1 + écx) Vo * Vi (2.99)

where W, o I8 some stream function satsfying the homogeneons egvation, which is
determined by matching the inner snd outer solutionn es shown in the following
section,

Using notations defined by (2.24X2,15X2.16X2.17) and (2.18), The inncr solution for
the velocity ficld i

~K 1 2, a— at()

= (1+Sex)[—sin® =" + 2c0s (arctg—— + arctg-—— 2.40
K 1 Q. a—) atQ
Vo=~ (1+3ex)[~cosOIn =4 25in6 (arctg—— + arctg——)] (2.41)
4 2 Q'l Q-t Q‘

+-%e [la—Q)inQ, +(a+Q, )luQ —d4a

a~{),
+2Q, (arceg-- R +mc2g o _(4))]

2.3.2.3. The Inner/Outer Matching Solution

The vortex band inner stream function solution (2.39) must be matched to the outer-
solution, which is approximated by the circular line vortex solution (2.23). Tirst, the
circulations of the perturbed vortex panel and the clrcular line must be equal. 'Then
it is necessary to equate the outer-limit of the inner-solution to the inner-limit of the
outer-solution using a mawhing criteria.  The “matching solution”, the intermediate
limit solution obtained using the matching criteria, will subsgyuently be subtracted from
the sum of the inner and outer solutions to produce the uniformly valid asymptotic

solution. A discussion of the method of matched asymptotic analysis can be found in

Reference [23].

The inner-limit of the outer molution 5 found by expanding the elliptic integrals in
(223) for small complementary modulus, 1 - A* (2.24), as shown by Jahnke and
Emde [24]

Al

|
o PlC .ﬁ + mm (7 + v—m)} + ((e¥ne) (242)
T

This result was also obtained by Tung and Ting [25).

l-ﬁ-!
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The outerMmit of the jnner solution v found at the limiy, ry»e8, wheie the panel

width and inclination Decome unimportant,  Therefore, using the approximations

P TR 2
Q‘r;r'#yml,

Q, ~ 2+ y =1
Q

I oo @)
Q,
a—Q, . «:HQ. 2a(), "
arelg--- arcty - B oarelg oo o

5
we can get the outer-limit of the innex-solution,

o ol [
Y : ln (1 + - 2R (2.43)
ncglecting the higher order terms.
Since the pancls span the width 2a, the definition for x(2.7)

is substituted into (2.42). The complete intermediate stream function for a vortex band
is produced the matching criteria, \Ilhomo. which equates the two intermediate limits
(2.42) and (2.43). Neglecting the higher-order terms, the matching criteria is added to
the inner-limit of the outer solution (2.42)

~Ka

x
— {2 + ?e"i + mBR (1 + b+ ¥y (2.45)

Vio

The matching criteria, whomo is obtained by equating the inner-limit of the outer
solution (2.45) to the outer-limit of the inner solution (2.43)

—Ka
bo = (n (1 + 7)) (2.46)
—Ka
BT{Z"}J +ln= (J"l"zk)}'iﬂ\bhm

Then the matching criteria is found t be

X

Vi = -; {2 + EE + !n8 (1 + -ﬁ)}. (247)

and the intermediate stream function is established, as shown by Eguation (2.46), to be
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— Kt x r,
Vo= . (1 4 '.i’R) ln-a. (2.48)

2.3.2.4. The Composite, Unlfoymly Valid Solution

The complete, wnituxmly-valid stream {vnetion for the axivymmetrle vortex band n a
compiwite of the dnner solution, "‘m the outer solutinn, \bm. and the intermediate
(muu:hiug) polation, w;n' The complete sotutlon ean be formulated tw be

W(x°y) = 'pm + wgm - wm (2-49)
where,
Vi 1 Inner Solutlon. (2.29)
x
= R (1 + Ejé) Yo
Voo it Two—IDimensional Panel Solutlon (2.13)

]

—K
— (@ — Q) ing, + (a + Q) D,

a—Q, atQ),
+ 20, arctg——> t 20, arctg—-— — du
d V.. & Outer Sokution (2.23)
-Ka
® — (rtr) { F(A) ~ K (N}
[ 1
v, & Inner/Owter Matching Solution (2.45).
~Ka r, x
ETR[l'E(J'P'é"E)]
using notations  introduced  earlier. Notice that wiu and \bm have been

redimensionalized with respect to the outer-dimension, R.

The above stream function is axisymmetric, thus its velocity field is defined to be

~1 Y

Wxy) = v P
1 Y

M) = w5

However, the inner-solution, \bm. and the intermediate-solution, \Dw. are valid only for

the inner-region, X << R, Thus, the inner-region velocity field, using R+x =~ R, becomes

i m i e i L he o e e m vl P Wty L



I
Y T Ve R G ¥, = %)

! —1 ﬂwout
Wx.y) ® oo "By
1 awoul
vxy) = o e
Thus, the velocity field is given by a composite solution of the form
u(x'y) + uaui My
"{x b4 ) + vor.-' - vh
where,
Q, a1, atQ,
", m;—; “+2R) [-.slnalna-bx’cosﬁ(arc:g-b-w+arcrg-n6-)]
Q, aQ, at+
¥in -; (1+ .R) [-=¢:a.h9Ir:a~|---~-2.1'i:r:9(¢:u~ct,s o) >+ arctg o) )]
1
t55 (@ Q)inQ, +(atQ)inQ, —4a
aQ, a+Q,
+ 20, arctg—m—+ 20, arctg-——]
Q. Q,
HK—~E)
= e 1(—~ —-)(x—f.) + (rtr) ]
out ﬂ(R +x) ay
-ka x x"| 2R AK—E
Vou ™ [(- + JK=E) + (r tr) )]
u{R-!-x) ry
-Ka x. 9
uhsT (1 +§-§) -
=~ [ 1+ — 1
Yo ( 2!!!) : R’ e

The relationship between parts of the comaplete solution is shown by Figure 2-3,
showing the coniributions to the velocity profile taken radially from the cylindrical
coordinate exis, denoted by the center-line, through a vortex band (8 = Q).

uniformty-valid, composite solution for the velocity induced hy the vortex panel,

Yeomp! is denoted by crosses. lromivent features in the plot are,

(2.50)
(2.51)

The

o
i

I

e T
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1) the 1/r type singularity of the outer-solution at the center of the
panel (x = 0, r; = 0) matched by the intermediate-splution,

2) the logarithmic singularities of the inner-solution at the panel edges,

The composite solution retaing the outer solution’s (Xe Ine) portion on the aexis of
symmetry while amoothly blending in the two-dimensional inner-solution jin place of
the singularity at r, = O before decaying off {-ster than the two-dimensional solution.
Notice that the inner-solution is displaced, representing the speed of the self-induced
translation of the vortex panel. |

2.3.3. The Sclf-Induced Velocity

An important result of the preceding analysis is the self-induced velocity of a vortex
band. The motion of the vortex band is defined at the mid-point of the band. Thus,
using Equation (2.51), the axial speed of the panel ceater is found to be

o
Vourds = 5: V(x=0,y=0) (2.52)

Ka 8R 1

27R a 2
The radial velocity at the panel center is zero for any orientation. Thus, for the
present order of accuracy, O(e), the self-induced translation of a vortex band, defined

at the center of the band, is purely axial and independent of the panel orientation.

By applying (2.44) 10 equate the circulations, this result can be compared to the self-
induced velocity of a uniform vorticity vortex ring, ‘where - s constan:, [21, 22}

[LE2] 4
%
™
| Ka 8R 1
E Vpy = e {lne = =, (2.53)
5 2R ro 4

’
Y . e
ria ? (2.54)

a
o 04724 R

in order to translate at the same velocity as a vortex panel of the same circulation
and radius.  Since the self-induced velocity reflects the energy of the vortex element.
the ratio pursued by equating the known energy of a vortex disk with the energy

numerically integrated for a set of equally spaced vortex rings, 'The core diameter of

T T AT T e z R ST N i
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the vortex xings giving the same amount of energy is obtained numerically and the
ratio is the guotient of this value over the ring spacing. By increasing the number of
vartex rings, the ratio was found to eonverge to about 050 [26).
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Chapter 3
Numerical Behavior of Vortex Elements

The FORTRAN subroutines for calculating the wvelocities induced by different vortex
elements are presented in Appendix A. In this section, the differences between vortex
elements will be explored.

3.1. The Velocity Profiles of Two~Dimensional Elements

Figures 3-1 and 3-2 show wvelocity profiles for wvortex panels. The wvelccities are
perpendicular to the panel-centered coordinate axes because of the panel's uniform
circulation distribution. The most important feature is the lack of a strong sigularity
in the panel wvelocity profile.  However, the normal wvelocity has a logarithmic
sigularity at the edges of the panel znd no singularity in the tangential velocity, the
latter being double-valued but finite on the panel itself. Away from the panel, the
velocity profile quickly approaches the point wortex profile. The difference in the
effect on the adjacent vortex elements is not obvious in this representation.

3.2. The Velocity Profiles of Axisymmetric Elements

Figures 3-3,3-4,3-5, and 3-6 show the velocity profiles along the pancl axes of vortex
bands with inclinations of O and 90 degrees. The centerline to the right denotes the
location of the axis of symmetry with respect to the width of the panels. The self-

induced translation wvelocity of the vortex band appears as the noa-zero axial welocity

at the midpaint of the panel.

=
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3.3, Integration of Vortices in the Form of a Vortex Panel

As a simple test of integrating vortex elements to simulate a vortex sheet, vortex
clements were arranged to form a vortex panel. The flow produced by a vortex pancl
of uniform circulation i described completely by Equation (2.13) and provides a
baseline for the flow induced by the integration of vortex elements. Figure 3-7 shows
the velocity vectors of flow around the baseline pancl. The figures 3-8 and 3-9
shows the flow induced by four and ten point vortices, respectively, arranged to
gimulate a vortex panel. The accuracy in reproducing the baseline flow demonstrates
the gein in accuracy achieved by integrating more point vortices. Of special
importauce is the velocity induced on the penel represented by the point vortices, The
velocities induced on the point vortices are shown along the dashed line representing
the vortex panel the point vortices replaces. For four point vortices, the singular
nature dominates the velocity near the panel. For ten point vortices, the velocity field
has a closer rescmblence to the baseline flow. In comparison, Figures 3-10 and 3-11
show the flow field induced by two and ten vortex panels respectively. Unlike the
previous plots, the wvelocity along the integrated panel is determined along the
coordinate grid, they do not necessarily represent the velocities at the centers of the
panels. The uniform distribution of velocity along the integrated panel shows the
effective cancellation of the logarithmic singular behavior at the panel edges. ‘The
overall velocity fields are identical, indicating the validity of replacing a vortex sheet
with an integration of vortex panels.
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Figure 3-3: The radial velocity profile of a 0 deg vortex band
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Figure 3-4: The axial velocity profile of a O deg vortex band
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Figure 3-6:

The axial veloity profile of a 90 deg vortex band
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Chapter 4
Discrete Numerical Approximation of a Vortex Shect

4.1. The Uniforin Downwash Solution for Discratized Vortex Sheets

The simulation of the vortex sheet trailed by a wing with an eMiptic loading has
been the most popular application for nmmerical vortex sheet methuds.  This popularicy
is not only due to the practical significance of the clliptic loading but also becsuse the
loading is predicted to gencrate only one pair of rolt-up spirals,

An eclliptically loaded lifting line, with seui-span b, posesses the circulation
distribution of the form

Nx) =T, [ 1~ zm; ], (4.2)

A straight lifting line with this distritution will generate a uniform downwash and a
flat vortex sheet into which the bound vorticity is lost as one proceeds outward from
mid-spun. Thus the strength of the sheet is given by

ar
K(x) = o
dx
x x?
=Ty (1o 1% (4.2)

Becouse of the singularities at the tips, the sheet will immediately rolltup into
exponential spirals. The rolling-up of the shect relicves the discontinuities in the
vertical velocily profile.

Numerical simulations of the wake sheet dynamics usually ignore the fluid dynamics
of the vortex sheet formation. Yor purposes of numerical analysis, it is important t
know the initial geometry of the sheet and the flow essoclated with it.  In many

Lagrangian approaches to roll-up, an initial distribution of diserete vortices is melecred

A
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without checking its acouracy in modelling the intdal state of the voriex sheat, and

the ments of the enslysis are judged by the quetity of the xesulting roll-up,

A flug voriex sheet which ratwees n vetocity ficdd which §s constant slong the sheet
end sinpular At the tip i not adequate as the dnitie) condition for a roll-up
calenlation,  Yor a restistic model, the £lat vortex sheet model can only be selied for
en "outer-nolution”, valid away from the singular discoatinuity at the edge of the
sncet  Then an "mnersolution” at the edge in needed to give the effict of he sheet
rolt-up which Ir expected to forr. immediately upon she formation: of the vortex sheet,
Thus, a realistic simulation of the wing wake must begin with some sort of rcl-np to
replace the tip singularicy. The same conclusicn appears 10 have been reached
empirically by Uoeijmakers and Vaastra [16]

4.1.1. Point Vortex Representations of the Vortsx Sheot

For Lagrangian simulatiou of vortex sieats, the initial downwash preiile is
represented by the velocities induced on each vortex element.  Surpuisingly, past
investigators did not evaluate or cominent upon the accuracy of the vortex shest model
to duplicate the initial condition. Tbe only published result which gives the initial
downwash profile is Westwater's pionecring work. In Westwater’s initial vortivity
distribution, an error in the pusition of three point vortices produced a "kink" in the
initial downwash profile as shown by Figure 42, The total circulation contained by
the sheet is 1.0, resulting in the uniform downwash result of 0.5 for a continuous,
flat wuke vortex sheet. Although the Kink is npperent at the beginning of the
tabulated results [12), Westwater procesded with the tedious menual calculations
without correcting the error.  Unfortunately, even though the initial downwash profile
can indicate the nccuracy of the vortex sheet model and the velidity of the subsquent
roll-up, such results have not been published with the results of other mob-up

calculations.

There are two apptoaches to fepresenting & vortsx sheet using  poinc  vortices.
Westwater introduced the method of dividing the sheet into strips of equal circulation
and replacing them by a point vortex at the centroid of vorticity of the strip. The
other method, used successfully by Fink and Soh, replaces strips of equal width with
s point vortex of equivalent circulation at the center of the strip. Westwater's method
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) ‘Was popular for a long time since it concentrates the vortices, and alsc scrves as tracer
. e particles, where moat action i oxpecicd,  Fink and Soh, on the other hend, desigried
. their method to approximute an integration of flrt pancls.  The downwash  profile
!‘ ‘ calculated wsing thess two metheds are shown in Figuses 4-3 and 4-4, Both methods
' shave the smooth, yet large, deviation from she uniform downwash wvalue of 0.5,

which is lmproved by Increasing the nwmber of vortices used,

L

The exaggerated
srncothing of the veloclty discontinnity appeers to be recponsibie for the extremely

seooth roll-up obtained wsing polnt vortices. Figure 4 4 disptays a secondary deviation !

by the wvelocity of the inuer-most point wortex of the distribution.
caused by the proximity to the mirror iraage of ths vortex w

This error is
bich, having opposite

4
circulation, adds a significant contiibutes on the dewnward welocity of the inner-miost :

! point vortex. In Figure 4-3, where there is Imore separation Letween the inuer-most
!
_i vortex and i adjmcent vortices, thus no devistion is observed. Uverall, the devistions
B
1
Al

VLR R TR

from the predicted value of the uniform downwash are surprizingly large.  Point

{
&,

vortex correction derived by Van der Vooren?!, as presented bty Moore [4), is not
appiicable for the equal space discretization. Appiication of Van der Vooren's correction

—
-
— i,
L me

— e

to the equal strengtn discretization did pot improve the calculated downwash profile,

Instead of using the vslocities induced on the peint vortices to calculate the motion '
e of the vortex sheet, the downwash car be defined to be the velocities obtained at |
points half-way between equally spaced vortices.  This s the two-dimensional
i equivalent of the quadrilateral vortex-lattice (or "dipole”) method which is often used ?
for three-dimensional flow simulations. Figure 4-5 shows the velocities at points half-
way between point vortices Tepresenting an  elliptically loaded wing wake.  The i
vortices are equaliy sgaced as in Figure 4-4. The downwash profile obtained by this
¥ method differs substantially from the uniform lifting line downwash (0.5) and displays
& character different from Figures 4-3 and 4-4. The "dip” in the downwash at the

and of the profile is the result of the large step increase in the vortex gtrength at the
tip,

4
A

"Vnn der Vooren‘’s correction involver the
dlstribution, resulting in an additional pCin
to the veloclty induced on each vortex,

gradient of the vorticity
t vortex-like contribution
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4.1.2. Vortea Panci Representation of the Vortex Sheet

The downwash profilee correaponding to Figures 4-3 and 44 for integrationn of
vortex puncls are shown in Figurea 4-6 and 47 reapectively. The figures shovw that
en integration of panels will produce much betier approximation of the downwash
profile expected for a flat vortex sheet than possible naing the wome numinr of point
vortices.  Near the tip, the daviations from the uniform downwash yesuit refiects the
Jarge step incrense in the discretized distxibution of tha vortex sheet strength.  The
equal circulation panel distiibution, Figure 4-6, produces less pancis where the shect is
weak, 1esulting in the inaccurate velocity on the left-most panel. Since the velocity
of a vortex pauel is obtained at thc ccater of the pancl, which are half-way botween
the logerithraic singularities at the panel odges, featurss found in the velocities obtained
between puint vortices are expected. The only observed comanon featurc is the “kink”
in the profile at the next-to-the-lust panel elso found in Figure 4-7. However, the
kink in the wvelocity induced hy panels j8 less occvere thar that for the wvelocities
midway between polat vortices. This reflects the difference in degree of singularity
possessed by the two vortex elements.

The downwush profile for the integration of equal width vortex pansls clesely
resembles the uniform downwash produced by an elliptically loaded lifting line except
at the tip. The discontinuous nature of tke downwash inhibits the smooth roll-up of
a sheet modelled using only vortex panels. If the downwash induced on the panels
(disregarding the last panel at the tip) is taken to represeni the outer-solution, ther an
inner-solution must be supsrposed to represent the roll-up at the tip. The tip roll-up
can be represented by replacing the last panel on the shest with a vortex core of the
same strength, positioned in accordance to the Kaden's similarity solution (See Appendiz
B for details). Figure 4-8 shows the resulting smooth downwash profile. The right-
mesi point in the profile is the downwash on the last panel and its "relief” in the
downwash profile is sigaificant; the velocity of the tip roll-up core is positive and lies
ovtside of the plot.

The downwash profile for the integiation of equal strength vortex pancls appears to
show the effect of a point vortex mnear the tip, the virtual core. The effect of such a
core can be demonstrated plotting the downwash profile calculated with a point vertex
of the opposite sign at the tip to cancel out the virtual core ¢ ot (Figure 4-9). The
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shape of the downwash profile near the tip is noc mensitive to the number cf parsls,
augpesting some sort of similarity solution at the tip. The velocities induced on the
Jost three panels by the integration of 5 to 100 panels were used to detenming the
strength and position of the point vortex needed to cancel out the deviation from the
uniform downwash velue, The results, pletwed in Figures 4-10 and 4-11, shows that
tie vortex must be positioned 0.204 timcs the half-width of the last panei from the
edge of the lost pancl and contain atout 0.0547 times the circulation contained in one
pancl.

4.1.3. Vortex Band Representacion of the Vortex Sheet

The axisymmetric equivalent of the wake voreex sheet of an elliptically leaded
lifting line is the disk of axisymumetric vortex sheet w. 11 represents the translation of
a disk in a fluid at rest. The first theoretical study of this flow was made by Gl
Taylor {27} The vorticity distribution necessary to obtain s uniform velocity profite
¢n the disk of vorticity is equivalent to Fquation (42). The only difference is the
tactor of ; greater downawash induced by the same amount of total circulation. This
means that using the same vorticity didtribution as before, we expect the uniform
velocity to have the wvaluc of ; = 0,7854.

The straightforward discretizatior. of the axisymmetric vortex sheet into circular line
vortices will not bLe meaningful dve to the infinite self-induced velgcities of the
vortices. However, if the circular line vortices are iepleced by vortex rings with a
finite core dimension r, then the self-induced veloity of the vortices will be O(oinm,
where @ is the ratio between the core dimension and the ring’s radivs. In addition,
since the core Tepresents a section of the sheet of approximately the same size, the self-
induced velosity is expected to be (o®lno) when compared to the O(1) velocity
induced by the total disk of wvorticity. ‘Thus, if @ is smal), the effert of the self-
induced velocity is expected to become negligible.  if we hypothetically sllow the
infinite self-induced velocities of the circular line vostices to be neglected, then the
discretized disk of vorticity will induce the downwesh profile shown by Figure 4-12.
The downwash profile for a set equally spaced circular line vortives in surprisingly
uniform and neer the correct value, thus demonstrating the insignificarce of the melf-
induced weloeity.
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If the moving disk 4 discretized by voriex bands, the scif-induced velocities of the
banda may be included.  The resulting downwash profile is shown in Figure 4-13,
Lxccpt for the magnitude of the velicities, the profite displays the same features found
in the wing wake profile. However, it should bz nowed that the scruracy of the
velocitics does mot  eniformly improve with the dncreass in the aumber of vortex
beads.  Figure «4-14 shows tie use of e tipcore to approximate the ioner-solution
sepresenting the soll-up of the tip (Sec Appendix B for dewnils). The shape of the
resulting downwash profile meer the tip does not sgree with the two-diriensional
equivalent produced by Kaden's similarity solution (Figure 4-8). This m.y be an
jndication th:t the core is positioned toco far away from the rest of the sheet in the
approximation vsed to model the tip region of an axisymmetric vortex sheet. Since the
spproximatior. is nov a similarity solution for the geometiy of the tip roll-up, the
geometrical error will be reflected in the distance between the cdge of the last panel
and the tip-core,

4.2. Summuary

The calculated velocities of the vortex elements can be used to test the accuracy of
the vortex sheet mode! if the wvelocities of the actual vortex sheet are knoww. For
elliptical loading cases discussed above, the velocities for each section of the vortex
sheet can be predicted. These cases also represent the initiel conditions for interesting
problems in vortex sheet dynamics. The ubove results show the accuracy of equal
width panels in ieproducing the flow field eway from the singufar tip of the vortex
sheet. A near-field sclution for the fiow axound the tip of the vortex sheet can then
be approximated using a core of vorticity. The importance of the tip core is also
suggested by the virtual cocre effect in the downwash calculated for the equal
circulation segmentation of the same vortex sheet. The imcorporation of a tip core in
the equal width panel method represents a etraightforward modelling of the vortex
sheet with results which are more realisiic than the results obtained using point
vortices alone,
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Chapter O
Numerical Simulation of Vortex Shest Dynamies

5.1, The Numerlcal Roll-Up of Vortex Sheats

The roll-up of two-dimensional and axisymmetric vortex sheets were nimulated using
vortex panels. The changing shape of the vortex sheet is determined in a Lagrangiun
fashion by following the vortex panels thxoughout cycles of numerical time integration.
Accuracy of the mcthod is maintained by reconstructing end rediscretizing the sheet
time integration cycle in the manner prescribed by Fink and Sob [13) A fimst-order
Runge-Kutta scheme i3 used for each time integration cycle. The muin difference
between the panel method and the point vortex method is the amount of data which
must be handled to deacribe the shect. Since the orientation and the width for each
panel must be recorded, the amount of geometricai data is effectively doubled. The
numerical scheme for following the dynamics of the vortex sheet is summarized by
the fiow chart in Figure 5-1.

5.1.1. The Time-Intcgration Scheme

The centers of the vortex panels are transleted using the Runge-Kutta scheme during
cach cyele of time integration. A vortical flow system is characterized by gradients in
velocity vesulting in curved trajctorics of the convecied vortices. The Runge-Kutta
scheme is generally more efficient i deseribing curved trajectories than the simpler
Euler scheme [28)  FEuler scheme translates the control points for an short increment
in time along A atraight trajctory based on the velocity at the beginning of cach
c¢ycle.  Runge-Kutta acheme, on the other hand, uses more than one met of velocity
data to approximate a curved trajectory during each time integration cycle. If only
one additional velocity input is used, the Runge-Kutta scheme is refered to as being of
the first order. The panel method, unlike the point vortex methods, requires the size

and the orientation for cach panel in order to enlenlate meaningful velocities.  Since
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imly the centerr of the paneis are faueked by the time Integration, the entive shear
must be xeconstrncted dnoorder v obtain the wlze and the orlemtailon of the panels,
However, a rigovms  veconstraction of the aheet in highly  computatlon  incensive,
Probably for thin reawm, Joeijmnkers and Ventatra [16] wsed vhe Jmder scheme with
thelr panel methed, while Yink and 8ol [14] were shle 1o use a Runge Kuirn scheme
with their improved polnt vortex schong,

in the fhwtorder Runge Kutta schema used in this study, o slmple  approximage
reconstruction of the inteunedinte vortex cheet peomctiy s umed to provide addiviona)
velocity data. At the beginning of the integration cycls, the wvortex pancls are
arranged by the rudiscretization seheme to form a continuous vortex sheet and the
Initial set of welocitien are obtained. Then the intermediate pesitions of the panel
centers are derived using the Luler scheme. To obtwin the intermedinte velovity, the
changes in the orientaion and size of the panel due to the initial deformation of the
sheet must be derived. The intermediate panels are oxicnted parallel to the line
apanning the pusitions of the twe adjacent pancls centers (Figure 5-2). ‘The width of
the intermediate panel is taken w be half the distance botween the adjacent  panel
centers.  The mew positions of the panel centers are obtained by averaging the initial
and intermediate velocitics end by translating the poncls by the correcied velocity for
twice the time increment used to obtain the intermedinte solution.

3.1.2. The Reconstruction and Rediscretization of the Vortex Shoet

The reconstruction and rediscretization of the vortex sheet are performed after cach
cycle of time integration. The rediscretization procedure allows the vortea sheet to be
reproduced by vortex pancls of equal widths. This scheme also helps to maintain the
accuracy of the panel representation of the vortex sheet and helps dampen short
wavelength jinstabilities. The damping of the vortex sheet is achisved by reconstructed
the vortex shect using only the positions of the panel centers. A parabolic spline,
selected in ovder to rule out non-physical wiggles between the control pointe, s fitted
to represent the vortex sheet (Figure §-3). At the same time, o lincar interpolation is
used to tepresent the distribution of citculation in the sheet, The new vortex panels,
having cqual widths, are made to span scgments of the vortex sheet (Vigure 5-4). The
circulation contained in the segments of the vortex sheet is transfered to the panels

spanning them. Although this procedure reduces the effective radius of curvature of

'Y rF
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the vortex sheet by shifting the panels inside a curved mpline representing the vortex
sheet, the effect can be minimized by decreasing the size of the panels. In any cas,
becanar mtraight segments are being used to represent a curve, small panel width iy
necessary o maintain the geometrical acunracy of the panel representation. The size of
the scgmonts ave 2iso adjusted to maintain a certain relative distance botween the
outer-most panel and the vortex xepresenting the inner region of the rxoll-up apiral,

5.1.3. The Troatment of tho Inner Roll-Up Region

As shown previously, the vortex pancls slone can at most reproduce the outer
solution for the flow induced by a vortex sheet. This is inadequate as an iuitial
condition without o model to represent the initially infinitesmal roll-up at the end of
the sheet.  Thus, the simulation of vortex sheet rollup bepins by replacing the
singulaxity at the edge of the sheet with a core representing the initial roll-up of the
sheet edge (Figure 5-5). The placement of the tip roll-up core for the two-dimensionat
wing wake follows the result presented by von Karman of Kaden's analysis for roll-
up by a parabolically loaded vortex sheet. For the roll-up of axisymmetric wvortex
sheets, due teo the lack of a similarity solution, the a much simpler tip core is used.
The details of the initial conditions are described in Appendix B. Such models for the
initial condition of the vortex sheet i8 necessary for a renlistic mumerical approximation
of the flow when using vortex pantls to model the vortex sheet.

The core is a model for a tightly rolled-up section of wvortex sheet, the core center
representing the center of the spiral. By knowing the position of the center of rollup,
the inner-most resolvable section of the vortex sheet in the spiral can be handled more
accurately. The spline representing the vortex sheet is derived from the panel centers,
the location of the edge of the last panel, corresponding to the end of the sheet and
ths inner-most resolvable section of the spiral, is uncertain. (See Figure 5-6.)  Since
the roll-up should be in the form of an exponential apiral with the core at its center,
the orientation of the Jast panel may be used w blend the resolved mection of the
spiral with the core. It also possible to truncate inner-most section of the resolvable
vortex sheet and dump the circulation, momentum, and energy of the *runcated section
into the core. (Although both methods may be used concurrently, core Jumping was
not wsed in any of the results presented below.) Core dumping is attractive for

numerical reasons since the size of the panels can bte kept relatively smell even as the
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sheet stretches without being limited by compniar  memory mize. As vorticity s |
dumped into the core, the conservavion of eireulation, momentum and kinetic energy

E determines the strength, position, and size of the core reapectively.

5.2, Resulis of the Roll-Up Calculations

=

E““ The numerical scheme described above has been applied to simulate the roll-up of

Z two-dimensional and axisymmetric vortex sheets, All roll-up simulations were initiated 17
= with © model representing a small emount of roll-up slreedy in place st the edge of

E;-' the vortex sheet.

3§

ZS 5.2.1. Two-Dimensional Roll-Up 5
= The roll-up of a two-dimensional vortex sheet trailed by a flat, elliptically loaded

i wing is the classical test cese for numerical vortex sheet methods. In order to ,
i simulate the geometry of the sheet, the Trefftz planc method, originally introduced to |

roll-up studies by Westwater (12], is used. Each cross-section of the wake vortex sheet :
is treated as an unsteady two-dimensional vortex shect. Thus, as described above, the

sheet is replaced by a series of equal width flat panel of constant vorticity. Unlike -
the axisymmetric flow gystem, this two-dimensional roll-up requires the program to !

account for the mirror-image contribution across the plane of symmetry. The time '
integration cycle is begun with a flat sheet at y = 0 and a tip core position:d at the
center of Kaden's spiral for roll-up of the outer 5% of the vortex sheet. There are 76 .
panels describing the sheet initially, the number increasing as the sheet stretches; the
gsize of the panel is kept constant. In this simulation, roll-up of the sheet has been 3

allowed to take place without ccre dumping to demonstrate the robustness of the

model. The panel widths have been kept constant.

A

Figure 5-7 ehows the geometry of the sheet after every ten time integration cyles,
cach cycle rtepresenting a nondimensional elapsed time®of the the of 0005 . The
initial location of the roll-up core is given by a small circle, partly bidden by the
inner segions of the spirals, at about x = 097 . Although the inner region of the

spiral is obscured by the overlapping, smooth tollup of the outer tegion can be scen.

20he time 1s nondimensionalized by ithe time scale, t' = rc,/h‘a

\-
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The core representing  the inner region of the spiral initially moves inward and
upward to conserve impulre. Aa the core approaches the centroid of wvorticity for the
complete  vortex myatem, x o = 07854, the upperward movement ceases and bepin
moving downward while asympiotically approaching L 9

Figure 5-8 shows the smount of circulation contained by the shect outbnard of a
given pancl. The horizoutal axis gives the panel index, and since the pancls ave
constant in width, this is equivalent to the arc length along the sheet. Values of
circulation are negative since the panels’ i ‘were defined 1o be positive, The y-
intercept shows the total circulation of the system which bhas been defined to be 1.0 .
The first curve, the start-up distribution, is elliptical and the strength of the tip cors
appears as the jump from the end of the curve to I' = 0.  The lessening of the
gradient indicates the stretching of a section of the shect. Stretching is extreme in the
inner-most region of the spiral as indicated by the nearly horizontal imclination of the
curve while the outer portion is still relatively uraffected by the rolup,  Slight

bumps in the curves therefore shows regions of differential stretching associated with
the rollup,

The roll-up of a vortex sheet must conserve circulation and momentumn. The total
circulation computed for the numerical model of the vortex sheet as it deformr with
time shows a negligible fluctuation of about .01% per time wtep from the txpected
value of 100 . The program maintained this value to better than 0.001% accuracy,
tepresenting only .ne fluctuations due to numerical ound-off errors.  Calculated
centroid of wverticity for a smcoth elliptical distribution is 0.7854 . For the numerical
model of the initial condition used, the centroid of vorticity was found to be 0.7925 .
During the subsquent steps in time, the centroid value was found to decrense by less
than 0.05% per time integration cycle, or time step. The ateady decresse in centroid

appears to be connected with the additional panels used to represent the stretching of
the vortex sheet.

Betz [10] has shown that the circulation Wwithin the spiral, measured from the center
of the spiral, ahould approach a constant distribution.  Figure 59 shows the
distribution of circulation versus the distance from the position of the roll-up core for
each time step plotted in Figures 5-7 and 5.8 along with a plot of the approximate
molution found by Betz. FEach curve represents the sheet for increments of 0.100 in

&)
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nondimesionat  time, Since each cycle of time integration  covers 0,005 in
nondimentional time, each curve represents the result of 20 time stepr.  Some of the
deviation from MBetz's result can he explained by the fact that Betz did not use Kaden's
similarity molution but placed his hypothetical roll-up at the end of the sheet. Figure
10 shows the blow-up of the region covered by the apiral. Jn both figures, the ares
over which the circulation is integrated increases to the right of the plot; thus ecach
curve will converges on the total circulation of the sheet, which in this case ia unity,
toward the right of the plot. Although Betz's solution shows the general trends, the

numerical solution exhibits a tendency toward higher roncentration of circulation inside
the roll-up spiral.

Figure 5-i1 shows the geometry of the sheet at elapsed time of 1.00 . The spiral
planform generc'ly egrees with those generated by other investigators, the weakness in
the flat pane! method is apparent in iae tightly wound spiral. As the spiral tightens
pear the center, the number of panels become insufficient to adequately resolve the
spiral. In this case, there are approximately 11 panels describing the inner-most turn
of the spiral. Due to the ambiguity in the radial position caused by spanning flat
panels across a tight curve, the end of the sheet has crossed over several turns of the
spiral (Figure 5-12). When this happens, the closed section of the vortex sheei stops
stretching and becomes roughly equivalent to a core of vorticity.

While sheet crossing represents a violation of the physical nature of vortex sheet, the
sinilation can become wnrealistic much earlier. When the pancls forming one turn of
the spiral roughly overlap with the penels forming an adjacent turn, the geometry of
the section have been found to stabilize in this configuration. Since the phenomenon is
produced by the flat geometry of the panels, this behavior is uncharacteristic of a
smooth vortex sheet. For this reason, the width of the pancls must be reduced in
order to arcuiately resolve the inner regions of the spiral.

5.2.2. Roll-Up Produced by an Impulsive Movement by a Disk

The problem studied by Taylor [27) is demonstarted by performing the elliptically
loaded wing wake with axisymmetric vortex bands. The motion of the disk is
madelled by a flat axisymmetric vortex sheet. A rough approximation of the initial
roll-up of the tip i8 used (see Appendix B). ‘The axisymmetric tip core, unlike the
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two-dimensional core, has a self-induced velocity which must be determined using the
conservation of energy. The subsquent rollup of the vortex sheet into A voreex rxing
proceeds amoothly as shown in the figures, As with the wing wake, the simulation
beging with 80 pancls with the outer 1.25% of the vortex sheet transformed into the
initial roll-up core with no subsgquent core dumpiny.

Figure 5-13 shows the roll-up of a vortex sheet produced by an impulsive motion of
a flat disk., There are 10 plots, each reprcsenting elapsed time of .08, and the initial
configuration, with the tip core shown as a small circle, shown in this plot. The
roltup is similar to the wing wake 10ll-up with one important difference, the spiral
translation is augmented by the self-induced welocity. The spival is behaving
essentially a8 a ring vortex. rigure §-14 shows the circulation distribution
corresponding to the geometries above. The gap between the first curve, showing the
initial circulation distribution, and the rest of the curves is due to the decrease in
panel size and a proportional increase in the number of panels imposed by the program
in the first few time steps. This is performed when the distance between the core
and the end of the sheet is reduced below defined limits.  Othewise, all of the
features of the wing wake case can be obtwerved.

Centroid of vorticty for an axisymmetric vortex sheet is the radius of a vortex ring
with the same impulse. The calculated value for the centroid of a continuous vortex
sheet is x, = 0.8165; the total circulation should be 1. The panel-method introduces a
error in the centroid to give the computed value of 0.882 for the imitial vortex sheet.
However, the important criteria for the accuracy of the numerical simulation is the
invariance of these values as the ro.l-up proceeds. The total circulation was found to
fluctuate by less than 0.001% while the ceatroid of vorticity was maintained to about
0.05% change per time step where ecach time step is equal to elapsed time of 0.005 .
In addition, if the roll-up simulation is perfectly accurate, Detz hypothesized that the
circulation integrated away from the center of rollup should epproach s final
distribution. A test of the hypothesis is shown by Figure 5-15. The circulation
distribution in the spiral, which is the region toward the left, appears to converge on
a relatively steep slope which refelects a high concentration of vorticity., This feature
is more apparent here than in the two-dimensional case because of the faster rate of

roll-up.  Figure 516 shows the blow-up of the circulation distributions in the region
covered by the apiral. )

o
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Figure 517 shows in detsil ihe sheet geometry ar elapsed time of 0550 , Aas
compared to the wing wake sall-up at the same stagn of roll-up, the mpirala are looser
bt more turns of the apirals are present, The invarient tip roll-up core is shown
with ita calculated cross-sectional radius which, as can be observed, is very amall; it
represents the tip 1.25% of the initial vortex sheet. Due ty the higher zate of inward
motion in the apiral, the inner-most turn has already reached the point where the
pancls are inadequate to resolve the curvuicre and a sheet cromsing hes taken place.

5.2.3. Roll-Up of a Hclicopter Wake

The evoiution of the wake produced by a single rotation of a helicopter rotor wes
simulated by imposing an approximate rotor loading

Mx) =T, 2 {1 ~ :‘7':-1% (5.0)

on the initially flat axisymmetric vortex sheet. This locad distribution is shown
graphically in Figure 5-19. The downwash profile induced by vortex bands, without a
tip roll-up model, for this distribution is shown in Figure 5-20. The aumerical result
for the velocity at the center of the disk agrees well with the theory, which comes
out to be 0.3927 if the contributions of all of the infinitesmal circular line vortices
are integrated analytically.

Figure $-21 shows the roll-up simulating the evolution of a wake due to one
rotation of the helicopter rotor at increments of 0.05 in nondimensional time. The tip
core contains the circulation of the outer 1.25% of the flat vortex shect and each time
Btep represents nondimensional elapsed time of 0005 . A prominent feature of the
vortex sheet geometry is the stationary point near the midpoint on the sheet. This
feature was also found in a wsimilar investigation by John Kantelis [26] using »a
collection of wvortex rings to represent the vortex shest. It is noticed that the
steepening of the circulation curve, indicating & concentration of vorticity which should
eventually lead to another roll-up of the vortex sheet, only develops at the center of
the axisymmetric vortex sheet. Thus, although the vortex sheet contains regions with
vorticity of opposite signs, the sheet docs not appear to roll-up inte two separate
vortex rings. The circulation plot (Figure 5-22) shows a significant decay of the
trough in the circulation curve during the first ten or mo time steps, This is a
numerical error due the inaccuracy introduced by the linear interpolation of circulation
uscd in the reconstruction of the vortex sheet after each time step.

!‘
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The velidity of the simulation in indicored by the invariance of total circulation,
equal to zaro, and the impulse of the vortex sheet,  Total clrculation and total impuise
are found to be conserved to within 0.001% and 0025% Tespectively during each time
integration cycle, In mdditlon, the cirenlatign distritmtion away from the roll-up center
s exepected to converge on a final curve, Figure 523 shows the distrlbution of
circulation integrated away from the center of the roll-up for each time step in
Figures 5-21 and 522 overlapped to show the comparative deviations, The blow-up of
the region covered by the spiral is shown in Figure 5-24,

The geome.ry of the vortex sheet at elapsed time of 0.50 is shown in Fignre §-25,
The panel which Tepresents the minimum in the circulation distribution curve (Figure
5-22) hes been circled to show the extent of the negative vorticity in the roll-up, Tip
oll-up is much faster than the two previous cases since there is more circulation
vtoncentrated in the tip region. The blow-up, Figure 5-26, shoes extensive sheet crossing
for the inner-most turns of the spiral. Tip core, which appears a8 a dot in the
middle of the spiral, is shown with its cross-sectional radius in acale,

5.2.4. Kelvin-Helmholtz Instability

The instability, which is the discretized from of the vnderlying Ketvin-Helmholtz
Instability, becomes evident under special conditions. A wake vortex sheet which is
very finely discretized reached the geometry shown in Figure 527 after ten time steps,
During each time step, the panels were allowed to move the maximum of 0. times
the panel width. The circle on the right represents the location of Kaden's core model.
If the sheet is magnified in the wvertical direction, the development of Kelvin-
Helmholtz-type instability becomes visible (Figure 5-28). Further maginification shows

the waves to have a period of 11 panels and the scales to be within the § digit
accuracy of the computer.

The damping of Kelvin-Helmholtz Instability in the numerical simulation is in the
form of low-pass filtering the waviness in the vortex sheet.  Thin filtering occurs as
the panels span across crests and troughs of short wovelength waves. Due to the
stretching of the sheet, the panels which describe the geometry of the vortex sheet
following a time integration cycle will be slightly displaced from the previous penets,
The amount of this displacement determines the amount of filtering which takea place.
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This is because waviness in the displacement of a sheet formed by panels can not be
resolved unless the the next met of pancls overlap the displaced panels, For thiy
reason, the instability appears when the amount of displacement, limited by the
amount of time elapsed in one cycle, is kept small, This Is what happened in Figure
5-28.

The filtering effect can also be suppressed by continuously increasing the spatial
resolution of the panel-method. An example of this numerical behavior is shown in
Figure 5-29. The initial conditions on the sheet and the time integration cycles are
jdentical to the disk wake roll-up case presented carlier. To i'lustrate the filtering
effect, the size of the panels were constantly reduced to about one half that of the
panel used for Figure 5-13. ‘This is accomplished by specifying GFAC =~ 2 instead of
GFAC = 1; ste Appendix C. This effectively suppressed the filtering and the small
instabilities are able to grow more freely. As the roll-up proceeds, the secondary roll-
up spirals are amalgameted into the tip roll-up spiral and the secondary spirals arc
alsc stretched as they spiral into the tip roll-up spiral. This bebavior can be observed
directly above the main spiral where stretching hes deformed the secondary spiral.
FPlot of the circulation distribution, Figure 5-30, shows jumps in circulation which
corresponding to each secondary roll-up. The circulation distribution in this plot was
initially elliptical like those in Figure 5-14. Except for the existence of the secondary
roll-up, the simulation proceeded no differently tham the previous case. The computer
program maintained the invariance of circulation and momentum with the same degree
of accuracy as before. Distributions of circulation taken from the center of the main
roll-up spiral is shown in Figure 5-31. Figure 5-32 shows the blow-up of the region
covered by the main roll-up spira) They are no different from the previous results

except for the effects of secondary roll-up in the circulation distribution.
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Chapter 6

Conclusions

The behavior of vortex sheets with axisymmetric geometry presents the next fruntiex
in the study of vortical flows, Axisymmetric flow les between the relatively well
understood two-dimensional flows and the complex three-dimensional flows. For this
reason, understanding of axisymmetric vortex sheets is useful before compleiely three-
dimensional vortex sheets can be modelled. Due to the complexity imposed by the
increase in number of variable as the number cf dimensions are increased, three-
dimensional models using discrete vortices or dipoles are more desirable than panel
methods. However, the use of simpler models would be meaningless unless the
accuracy of the models can be determined. For this reason, the azisymmetric panel
method was developed as a higher-oder model to test the accuracy of simpler

axisymmetric vortex models.

To accurately formulate the behavior of an axisymmetric vortex panel, a flat strip of
a uniform two-dimensional vortex sheet, called the vortex panel, was first studied.
Thes calculations of the velocity field show that an assemblage of panels will mutually
induce motions which are more representative of a vortex sheet than an assemblage of
point vortices. FEven when reprducing a vortex sheet with non-uniform vorticity and
curved geometry, the panel method performs no worse than the discrete vortex method.
The simple geometry of the vortex panel allows a straightforward derivation of a
matched asymptotic solution for the flow induced by an axisvmmetric equivalent of
the vortex panel, the vortex band,  Vortex bands can be asserubled to accurately
represent an  axisymmetric vortex sheet, limited by the geometric inaccuracy in
. - Tesenting & smooth curve using straight line segments and, at least for this study,
the non-smoothness of the vorticity distribution. Both of these weakness are problems
of spatial resolution which can be alleviated by increosing the number of elements.
Thus, panel-method can b wie  to  accurately fimulate the evolution of an

axisymmetric vortex sheet,

- .
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The vartex sheet dynamics calenlation I8 an Initial comdition prablem,  One bportane
result linn been the accuracy of the panel-methil o reprodlucing the {low indnced by
A flat vortex sheet which ix the Initn) stare of the vortex mheet in many problemw of
intevest,  Iu the present Mudy, the singnlarity ug¢ the tdge of the vorrer sheet wan
modeled wsing a mimple disrete vortex,  While the introductics of a tip vortex wore
WHS necessary for the acourate reproduction of the Rlobal flow fleld, e lu alwy pmeful
for the numerical simulation of the sl Induced deformntion of the vortex sheet,

The aclf induced velicity of curved vortices have inhibited the study of the dynsmicn
of axisymmetric vortex sheets. By using the method of metched asymptotic expansion,
the self-induced velocity of an axisymmetric vortex panel consistent with the kinetic
energy of a section of an axisymmetric vortex sheet was tound,  “The axisymmetric
panel-method wos used to simulate the soll-up caused by the impulslve motion of a
circulur disk and the roll-up of a vortex sheet With a louding which approximates that
of a helicopter rotor. In hoth cases, amooth soll-up was observed snd both tota)
circulation and impulse were conserved. By rclaxing the lyw-pars filtering inherent in
the numerical method, fecondary  roll-up due to Kelvin-delmholiz Instubility can be
observed. This feature for an axisymmetric vortex sheet was simulated numerically
using the pancl-method described above.
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Appendix

The following pages are divided into three mections,

1) The listings of the FORTRAN routines for comy-iting the velocity induced
by various vortex elements,

2) The description of the numerical model of the initial state of the vortex
sheet prior to the numcrical roll-up simulation and the FORTRAN listing.

3) The listing of the FORTRAN program for the numerical simulation of vortex
sb2et dynamirs.

4) The inputs for the vortex sheet dynamics simulation program used to
generate the figures within the text.

All of the following program listings have been written in FORTRAN 77
Version 3.0 for the Digitul Equipment Corporation VAX-750 computer.

T R e g L T TR R P T T B T e e e s e e e

e R e L L i iy A s S i v e e 3 e



Appendix A
The Vortex-Veloecity Routines

The wvelocity in"wced by a vortex element is calculated w.ing a Cartesian coordinate
system, (X,Y), centerc? on the vortev inducing the flow. The panel's inclination
Tespect to the coordinate system is expressed by (DX,DY), where DY/DX equals the
tangent of the angle between the panel panel and the x-axis. (W) is the half-width
of the panel and (G) is the wvorticity along the panel. The velocity is obtained as
orthogonal components, (u,v).

The names of the two~limensional velocity routines:
VEL2D : The Vortex Panel Routine
VEL2DF: The Point Vortex Routine

The axisymmetric vortex routines differ from the two-dimensional vortex routines due

to the inclusion of the radius of the vortex element, R. The composite solution, V
for the wvelocity induced by a vortex band is

comp*

Vcomp = Vin * Vour - Vio

whers the routine

VELIN computes the inner-solution, Vin
VELOUT computes the outer-solution, Vout
VELIO cemputes the intermediate-solution, V

R
-

io’

(Note: The V,,,, alone gives the velocity induced by o simple vortex ring.)
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SUBROUTINE VEL2D (UIN, VIN)

.l'll...n‘.l'l.ll!.l“...‘.!.f‘..l..l.lﬂ.!.‘lﬂ‘l.‘.l.#"!l-ll!!t‘.“.ﬂ!.‘#i.‘l.

) . THIS SUBROUTINE CALGULATES THE VELOCITY FIELD INDUCED .
. BY A FLAT VORTEX STRIP OF .
- WIDTH 2w »
" STRENGTH ;6 .
. INGLINATION : (DX, DY } .
. AT POSITION (X, Y) RELATIVE TO THE STRIP MIDPOINT .
. (DUWMY VARTABLE: RADIUS : R) .
...W.l.'ﬂl‘."....'.l!..“‘llll'ﬁ.‘l.Q!Q.ﬂﬂl..‘l..ﬂ.tt..l.'...‘."l.ll.."..’.' |
¢ RELATIVE COORDINATES AND QUADRATIC-POSITION VARIABLES !
¢

COMMON /VELO/ R, X, Y, DX, DY, W, G
Pl = 2eASIN(¢.)
COST m DX / SQRT(DXee24DYne2)
SINT = DY / SORT(LXee24DYss2) ,
Q5 m {(Xee2 & You2)/Wes2 .
Q4 = {YeCOST = XeSINT)/W
Q3 = (XeCOST + YoSINT)/W
02 ®» Q5 ~ 203 + 1,
Q1 = Q5 + 2003 4 4,
.Oillittt‘.nl-litittocltitt.!.‘!0...0‘.‘.Oil...tt.1‘tU....t!l!"l‘..!...l!!.t‘.
CHECK FOR SINGULAR CONDITION
IF (Q4.EQ.0) THEN
ATN = @.@
GO TO 740 |
END IF ?
l.!tll!l.!.lt‘.btm!llll‘..i.l.IO!‘.Q.‘.......tOt‘t.!..!.i“i‘.llll.t“.&&.l..ll
ATN = ATAN((1.=G3)/04)+ATAN((1.403)/Q4)
748  CONTINUE
: 1F ((Q1.€Q.2).0R.(02.EQ.9)) THEN !
- UIN = @
VIN = 9
GO TO 750
END IF
Qi!'.OOl....tti‘.ll.‘.ttt....ll!tti..l....tl.!.‘!ﬂWo....ODQO‘0!‘00.‘!!.!.0".0.
C PERTURBED VORTEX STRIP FORMULA
Ut ==-SINTeLOG(Q2/Q1)42, #COSTATN
V1 ==COSTeLOC(Q2/Q1)=~2., #SINTSATN
UINm =G / 4./ P1 o U E '
VIN® G/ 4./P] s vt
750 RETURN
END

o
.
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SUBROUTINE VE!' 2DF (UIN, VIN)

L L e T L T LR Y TR LI P P P T P PYTYTY Y
THIS SUBROUTINE CALCULATES THE YELOCITY FIELD INDUCED v

BY A FLAT VORTEX STRIP OF .

WIDTH : 2W .

STRENGIH : G .

INCLINATION : (OX, DY) .

AT POSITION (X. ¥) RELATIVE TO THE STYRIP MIDFOINT »

{DUwY ‘ARTABLE: RADIUS : R) .

BARR ARSI RN UTRN NSRRI BNAS ISR ASEN N ARIRRERN RS NONERSSseNNENN

RELATIVE COORDINATES AND QUADRATIG-POSITION VARIABLES

fr R+ B B B 2N B B W

COMMON AVELO/ R, X, Y, DX, DY, W, G
Pl = 3.1415892654
QY m SQRT(Xee2. + Y#42,)
IF (Q5.EQ.9) GO TO 750
COST = X / Q5
SINT = Y / QS
VOSAARANAAESOER RN NANSOE NSRRI IOOIS NN BRI CINROR OO ORRORORRIPORERREGRRREPAGRREES
U1 = SINT/QS
V1 = COST/Q5
UIN =G/2./P1 o U
VIN = G/2./P1 o V1
750 RETURN
END

T A g o e
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SUBRDUTINE VELIN (MIN, VIN)

‘Q-l!!'!lﬂl.!l.l.il.llllﬂ.l-'ﬂ.'ﬁ."‘.'lIIC...'QD!.I.l...!.ﬂ.!llllﬂlll...ﬁllﬂﬂl

THIS SUBRQUTINE CALCULATES THE INNER SOLUTION
OF THE VELOCITY FIELD INDUGEY BY AXISYMMETRICALLY
PERTURBING A FLAT VORTEX STRIP OF

WIDTH Poaw

STRENGTH ¢

INCLINATION : (DX, DY )

RADIUS : R

AT POSITION (X, Y) RELATIVE TO THE STRIP MIDPOINT

THE DERIVATIVES OF THE STREAM-FUNGTION HAS BEEN
PIVIDED INTO TWO PARTS:
1 = RECTILINEAR SOLUTION
2 = FIRST OWDER PARTICULAR SOLUTION
AL L R L L L T T Y Y Y L L A L Rt T r I

RELATIVE COORDINATES AND QUADRATIS-POSITION VARIABLES

4 & &8 Z & & % PR P

DO T & 88 F 8 3585 3 & & 826

' COMMON /VELO/ R, X, Y, DX, DY, W, G
. PI = 3.141582654

COST = DX / SORT(DXe+2.4DYee2,)
; SINT m DY / SQRT(DXee2.4D¥es2.)

Q5 = (Xeo2, + Yon2, ) /MWee2,

Q4 = (YaCOST = XeSINT)/W

Q3 = (XeCOST + YeSINT)/M

Q2w Q5 ~ 2,403 4 1,

Ql = Q5 + 2.00Q3 4+ 1.
l!l!.l..t..!tt...tllI.l“‘..“‘l.lll.t“t.‘Q"t..l.l...ittttttlﬁittllllll.‘i.it f
CHECK FOR SINGULAR CONDITION :

IF (Q4.EQ.@) THEN :

ATN » 9.0
GO TO 740

END IF
...l.t“-.‘.-!l...!!"‘l.'!!.....‘.l.‘.O..‘.‘tl"..ttl‘-‘n!‘li‘...i..““!..‘..

ATN = ATAN((1.-Q3)/Q4)+ATAN((1.4Q3)/Q4)

740  CONTINUE
.."OOQ-...0.!0‘..‘0‘0‘...Q.‘.Ii.t!!".t.“...ll.t!l...‘D...Bl.lt“‘..t!.l....l H
¢ PERTURBED VORTEX STRIP FORMULA !

U1 e=SINTeLOG(G2/Q1)42, sCOSTSATN .

V1 =—COSTeLOG(Q2/Q1)-2.»SINTATN "

U2 = {X/2./R) o U1 ’

V2 = (X/2./R) « VY

. + 5eW/R o LOG(Q2e(1)
. ~Q3+1.0G(02,/01)
. +2.9Q49ATN
* —4.)
UIN =G / 4, /Pl o (W11 4 U2)
VIN® G / 4. /Pl o (V1 4+ V2)
750 RETURN
END

I
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b ELLIFTIC INTEGRALS

.Diﬁll.llll.Qllltl!!‘lﬂ'!!.!.-.'QlHlt-.-.".Q"!OQI!.000-0-00H’Oilﬁllﬁﬂl&l!&li‘

THIS SUBROUTINE CALCULATES THE VELOGCITY FXELD
INDUCED BY A VORTEX RING WHICH 45 USED AS THE

QUTER VELOCITY SOLUTION FOR A VORTEX PAND OF

AT POSITION (X, Y) RELATiVE TO THE BAND MIDPOINT
SRS RAASRRAEENEER RN RAR RN ORA AN ANNAARA NN ERANROEERRNREARANS

WIDTH : 2N
STRE HTH ¢ n
TNCLINATION ¢ {Px, DY)
RADIUS ' R

COMMON /VELO/ R, X, Y, DX, DY, W, &
REAL MY, LAM, KD, K1, K2, KLO, KL1, KL2, K, KP
o = ¢.8
VO = 8.0
Pl = 3.141592654
!lll.tl!!t!l..l..llllill‘.!!t..0O‘.t...i!ut.l‘..!!tlt‘ttt.ill!...l.tt'ltﬂ.t..‘t
R1 = SORT{Xee2.4Yes2,)
R2 m SORT({X42.9R)se2.4+Ye+2.)
LAM m (R2=R1)/(R14R2)
M1 w1, ~ LAM#2,
IF (R1.EQ.@) GO TO 730
— IF (LAM.EQ.9) GO TO 730
: DXR1 = X/R1

DYR1 = Y/R1
DXRZ = (X+2.R)/R2
DYRZ m Y/R2
DXL = (DXR2-DXR1)/(R24R1) = LAM/(R24R1)e{DXR14DXR2)
DYL = (DYR2-DYR1)/(R24R1) ~ LAM/{R24R1)s(DYRI4DYR2)

K@ = 1.3862344

: Tt KY = .1118723 »
- EY = .4630151 »
: K2 = 0725296 »
€2 = 1077812 »
KL » .5
KLY » 1213478 »
ELY = 2452727 »
‘ KL2 » .@:BB729 »
' EL2 = 2412456 »
K= Ko + K! + K2
E=1. + Et + E2

M
M1
Mise2,
Miee2,

M1

Mt

Mine2,

Mine2

= (KLD + KL1 4+ KL2)2LOG(M1)
~ (EL1 + EL2)oLOG(M1)

KP = E / LAM / Mt = K / LAM
EP =(E « K) / LAM
DXR = DXR1 + DXR2

‘ RR = R1 + R2
'l....““‘..“.R...t.ll....'.t.ll.‘.&...I..‘...I..Q...............““t..ﬁ‘..'

VO m GeW/PI/(R4X) » (DYRe(K~E)+RRe (KH=EP)eDYL)

VO =-GeW/P1/(R+X) o (DXRe(K~E)+RRe (KP~EP)eDXL)

730 RETURN

END

{

DYR = DYR1 + DYR2

> 8 3 " #3283
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Ry

SUBROUTIRE VELIO (Ui0, VI1O)

LI R L LIS T LR N S R Y LR E LRI LR TR EN TR NN SR LLLEE L))

THIS SUBROUTINE CALCULATES THE QUTFR LIMIT
APPHOXIMATION 7.7 THE INNLR VELOCITY SOLUTION
GIVEN BY ROUTINL VELIN IN OR ER TO MATCH THE
OUTER VELOGLTY SOLUTION GIVEN BY ROUTINE VELOUT

L]
L
L]
.

COMMON /VELO/ R, X, Y, DX, DY, W, G
PY = 2a ASIN(1.)

COST m DX / SORT{DX#e24DYnn2)
SINT = DY / SORT(DXee24DYna2)
Q% = (Ree2 & Yan2)/Wer2

Q4 (YsCOST + ReSINT)/W

Q2 = (~ReCOST + YaSINT)/MW

Q2 = Q5 ~ 2:Q3 + 1,

Ql = Q5 + 2+Q3 + 1,

Vio = 0.9

Vo = 9.0

R1 m SORT{Xee2 4Yue2,)
IF (R1.EQ.9.0) GO TO 720

SROBINRRNBARNGROBR NG I NANEUR NN EN NN NN RAGERHA R RPN RN RO RN ARG R PR RN

720

VIO =-GeW/PI  » (1. + X/R/2.) & Y/R\/R}

VIO = GeW/PI o (( 1. + X/R/2.) » X/R1/R1 + .5/ReLOG{R1/8/R))
VIO = GeW/PL  «  LOG( BeR/W ) /2 /R
+ VIO
RETURN
END
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Appendix B
The Initial Conditions for Roll-Up Simulations

The velocity field induced by a distribution of pancls alone precludes a amooth 1oll-
up unless ths singularity et the edge of the vortex sheet is correctly modelled. The
vorticity singularity et the cdge of a vortex sheet is expected to produce an
infinitesmal roll-up in an infinitesmal amount of time. Such a rolb-up xelieves the
singular velocity discontinuity which would otherwise exist at the edge of the vortex
sheet.

The roll-up simulations uses an init.  configuration which sepresents a vortex sheet
with a model for an arbitrary amount of roll-up at the edge of the sheet. The
initially rolled-up section of the vortex sheet is replaced by a circular core of vorticity.
For the roll-up of the wake vortex sheet shed by an elliptically loaded wing, Kuden's
similarity solution for roll-up of parabolic loading is used to approximate the position
of the center of the roll-up spiral. The position of the center of the roll-up spiral is
given in Reference [9) Figure B-1 shows Kaden's solution for the roll-up of the outer
Xo segment of the vortex sheet.

o, = 0.587 Xo
- b, = 0.88 X,

A significant feature of Kaden's solution is the stretching of the remainder of the
sheet up to the point directly under the center of the spiral, os noted by the
displacement of point A on the sheet to point A’ This displacement conserves the
overall centroid of vorticity since the center of the spiral is less tuan the centroid for
the outer X, mcction of the flat vortex sheet. The numerical model replaces the
rolled-up X, section with a core at the center and Jinearly stretches the remaining flat
vortex sheet so0 ita edge would come directly under the core. ‘Ihe resulting model
reproduces the centroid of vorticity for the eitiptic loading, X, - %/4, to within 1%

ACCUTACY.
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While Kaden's methix! in available to approximate the location of a tip core for two-
dimenelonnl  roll-up, i application 1o an atisyninetrie  rollup Wil not  conserve
impulie,  Therefore, & vortex ring with the same impulse aud energy as the outer X0
pection of the axisymmersic vortex sheet iv used an 8 eore, Dowever, the vertical
locatkin of the soll-up core ean not be obtained by the conscrvation eguations,  Since
no theory exlsts for obtalning the wvertleul locotion, the xatlo of distunces for Kaoden's
solution was wsed o approximate the Jocatlon. In addition, since the core conserves the
centrold of vortlelty, the remaini. g sheei was not stretched for this case. Figure B2

shows the numerical mudel of the initial mll-ap for exisymmetric vortex sheet which
represents a translating disk,

2, X
= ' — ewrmmr _° a
Romkl 1~ ogn 4 !
a8
¢, = 57 [ R~ R, ]
-mR 7
ry = 8R, exp[o—m - Z]

4(2RX ~X2)2
where, R : the radius of the original axisymmetric vortex sheet,
Ty 1 the radius of the rollup core.

The initinlization of the simulation of vortex sheet dynamics is performed by the
routine INITIA.

— e =

S
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Figure B-1:  Kaden's Similarity Solution and its Numerical Model

Figure B-2. Initial Roll-Up Mudel for Axisymmetric Vortex Sheet
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SUHROUTINE INITIA (NCORIED)

IRITIAL VORTER SHELY GUOMETRY FOR PROGRAM TULLCALL
modiflad for complate Kodan's molution and asxlaymnetric tip aores,

Conmon block "PANEL" qives the poaltions (X,¥), the Iucilnation {HBX,0Y),
the width (W) and the grodlent of alreu'ation {PG),
Common black "TIME"  glvem nuabar of panain At eauh tima step and the
times mtap data.
Cunmon block "CURE"  glver the Informution ragurding the tip roll-up core, _
Commonr biock "GAMMA" glvea the ponition of sach panal on the elliptical .
clreulation plot (GS,6). :
Gommen block "20T"  epacifian the type of roll-up: @ = 20 elilptic wing
1 = unlform dink wche
2 = mode! rotor wake

— e - — S M . - —

COMMON /PANEL/ X(0:585), Y(0:505), PX(:585), DY(0:505), ;
[ w(e:5eL), DG(0:505) .

COMMON /TIME/ NPANEL, NSTEP, NTIME, TIME, TSTEP

COMMON /CORE/ XC, YC, GC, RC, UC, VC

COMMON /GAMMA/ G(2:505), GS(@:505)

COMMON /70T/ 201

Sk N AR

P1 o 2.eASIN(1.)

X{e) ~ P

Y() = ©

G(e) = ~1.

IF (207.67.1) G(o) = 0.0
GSi(e) m @

I Gque!l width segentatien routine.
| RO and R1 ora the positions In spon of the Inner and the outcr edges of
I the panel reespectively.

caled | adl st Ao Aibh A AL L SL

DO 1@ I = 1, NPANEL
X(I) = (FLOAT(I) = .5) / NPANEL

B Y(1) = 0.0
3 R1 @ FLOAT(1) / NPANEL
=i RO = (FLOAT(I) - 1,) / NPANEL
=} IF (ZOT.NE.2.AND.ZOT.NE.1) THEN o
§ iF (RQ,EQ.0) THEN 3

-t DG(I) = —(R1s820T) o SORT(1.=Rtew2)eNAPNEL

ELSE

DG(1) m «(R10eZOTeSART(1.~R1ee2) — RO+eZOTSART(1.~RO#»2))sNAPNEL
END IF
G(I) = ~P1esZ0TeSART(1.~R19n2)
ELSE

DG(1) m ~(SQRT(1.~R1##2) — SQRT(1.-RO»+2))sNPANEL
G(1) = ~SQRT( 1.~ Ries2)
END IF
GS(1) = X(1)
W(1) = .3/NPANEL
DXCI) = 1./NPANEL
10 oY(l) = 0.0

F_Tlp t.oro ﬁeutlnei R T T ' b

| - — S —— S —

2D elliptically loaded wing wake.

IF (ZUT.EW.8) THEN

el 2 e o B e T e e rry=mrety
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¥Oom . - B e [ FLOAT(MGORE) / NPANE) )
YO om BB e { FLOAT(NCOKLS / NPANEL )
GC m -GNPANEL-NCORL)

PXC m XC - X{NPANLL-NCORE) = WINPANEL: NCOR)

DO S 1 mo 1, NPANEL-NeGHE

X(I) = DXC » LOATCX-1) /(NPANEL NCORE) 4 DXC/2,(NPANLIL-NCORE) + (1)
WIL) = DXC /2 /(NPANEL-HLORE) 4 W(T)

BG(XY = 4G(X) ~ G(L-1Y) /2 /W(1}

CONTINUE

ELSE [F (ZOT.GE.Y) THLN

WC = FLOAT(NCORE) / NPANEL,

XC m SORT( 1.~ 2,9WC/3. + (Wee2)/3.) i
YO w .08/ .57 a (1. -~ X)) t This e v guens: wea Kaden, :
GC m —G(NPANEL-NCORL)

RC = 8. ¢ XC / EXP( Plos2 /4 oXC /SURT(2. 000 ~ WCee2) 4 7./4.)

Mode! of a hoilcop!m' rotur wake

LTLE NS

ELSE IF (Z0T.EQ.2) THEN

#C m FLOAT(NCORE) / NPANLL

XC m SORT( 1. = 2,0WC/3. 4 WCes2/3.) / (1. WC)

Yo« 08/ .57 » (1. = XC) | Thim In oniy a guess.

GG m ~G(NPANEL-NCORE)

RC = B. oXC /EXP( Ples2 /4 oR /(1.-WC)au2 /SART(2 . oW: WCes2) +7./4.)

EnD IF

3o

Inltial Condi tion Record

WRITE(R,#) “INITIAL SHEET: 1, X(I), ¥(I), W(1), DG(I1)"
DO 30 I = @, NPANEL

GS(1) = SORT(1., - G{I)es2)

WRITE(B.#) I, X(1), Y(I), ¥1), DG(K)

WRITE(B,#) 'CORE: NCORE, XC, YC, GC, RC', NCORE, XC, YC, GG, RC !‘
WRITE(D,») * * !

NPANEL » NPANEL — NGORE

RETURN
FND
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Appendix C
The Vortex Sheet Dynamics Program

The program TOLLCALL combines the subroutines listed below to simulate the self-
induced motions of a vortex sheet. Ioput file for the program is stored as device #7.
The input file is in the form: (RN, NPANEL, NSTEP, TFAC, GFAC, NCORE, ZOT); RN
is the run's identification number, NPANEL is the number of panels initinlly used to
describe the vortex sheet, and NSTEP is the number of time integration cycles for the
run. TFAC defines the length of time used in the time integration, TFAC =~ 1 is
cquivalent to the nondimensional time span of 005, GFAC defines the size of the
ponel relative to the distance between the sheet and the center of the roll-up spiral.
It is used to insure the accur.cy of the tip region as the distance between the sheet
and the roll-up core is diminished during the roll-up. NCORE specifies the number of
panels describing the initial vortex sheet to be amalgamated into a tip roll-up core.
The type of roll-up, as determined by the selected initial condition, is controlled by the
parameter ZOT,

ZOT = O: Two-dimensional roll-up of wake vortex sheet shed by an
clliptically loaded wing.

ZOT = 1: The roll-up of a vortex sheet simulating the formation of
a vortex ring by the impulsive motion of a circular disk.

20T = 2: Axisymmetric roll-up of a circular vertex sheet mixel
of the vrake vortex sheet shed by a helicoptur rotor.

The program version presented here outputs two files describing the configuration of
the vortex sheet after cvery ten time integration cylees. The file containing the
geometrical data of the sheet is in device #9 and the file containing the distribution of
vorticity is 1n device #10. Device #8 holds a utility file describing the exccution of

the rrygram.

md



923

PROGRAM TOLLCALL
| EXECGUTIVE ROUTINE FOR ROLLUP PROGRAM

COMMON /PANEL/ X(@:505), Y{®:50%), PX(0:305), DY(9:505),
| W\ 0:505), DG(®:565)
COMMON /CONV/ U(®:505), V(0:505)
COMMON /TIME/ WPANEL, NSTEP, NTIME, TIME, TSTEP
COMMON /GAMMA/ G(©:505), 65(@:8C3) | G5 ia ¢ not usad
COMMON /CORE/ XC, YC, GC, RC, UC. VC | In this varslon.
COMMON /TFAC/ TFAC, GFAC
COMMON 20T/ 20T

I Input dotu read: o. Reference Number { IRUN)

i b. Number of panels inltially In the ahest (NPANEL)
l ¢. Manimum number of tiwe ateps in the run {NSTEP)
| d. (.@e5/TFAC) 's the slxe of each time siep
i
I
l

e. ({ohest edge to tip core}/GFAC) 1s the ponel width
f. Number of coresa Initiolly dumped into the tip core
9. Type of loading (ZOT)

READ(7,¢) TRUN, NPANEL, NSTEP, TFAC, GFAC, NCORE, 207
NINIT = NPANEL

t Inltiallze output file
WRITE(8,+) °ROLL UP PROGRAM FOR VORTEX SHEET, ICHIRC SUGIOKA 37-481°
WRITE(B,¢) "RUN NUMBER: °, IRUN
WRITE(B,s) *SPLINING BY ROUTINE REDISK®
WRITE(S,e) *INTEGRATING TIWE FACTOR : *, TFAC
WRITE(B,s) *GEOMETRIC WINDTH FACTOR : *, GFAC
WRITE(B,e) *INPUTS: (NPANEL, NSTEP) *, NPANEL, NSTEP
WRITE(B,) *Z0T FACTOR: LOADING TERM, AXISYMMETRIC IF >1 *, 20T
WRITE(B,») * '

t Compute Initial Conditlon
CALL INITIA (NCORE)

I Time Integration Loop

DO 10 NTIME = ©, NSTEP

CALL WRITER ! Weite cutput data flle

L CALL RUNGEY | Ringe-Kutto time Intgration scheme

| CALL EULER i Eulsr time Integration schems option
DELTAL = 2, « W(2) I Pone! width paromater (DELTAL)

I set to o defoult ponsl width

CALL REDISK (x.Y.G.NPANEL.NPANEL.GMA!.SUML.DELTAL)
I Splines ond divides the sheet

CALL PANELER(X.Y.DX.DY.H.DG.G.NPANEL)
{ Forms the pansie

1¢e CONTINUE
| — e End of Loop

CALL WRITER | Record ths end reaults

END
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SUBROUTINE WRITER

progrom recocds the resulte of tollcall ep flian
FORDOL.DAT {General accounting Information)
FORBGY.DAT (Geometrical graprica dota)
FORD10.DAT {iroulation graphlea data)

COMMON /PANEL/ X(0:50%),Y(0:505) ,DX(9:505) ,0Y(0:505),
w(0:505), PG(0:58%)
COMMON /TIME/ LPANEL, NSTEP, NTIME, TIME, TSTEP
COMMON /GAMMA/ (0:505), GS(9:505)
COMMON /CONV/ UrD:505), v(0:505) ¢
COMMON /CORE/ XC, YC, GC, RC, UC, VC )

WRITE(B,+) 'RESULTS FOR NTIME, TIME, NPANEL:®, NTIME, TIME, NPANEL
1F (FLOAT(NTIME/10)»NE.FLOAT(NTIME)/!O.) GO YO 8ed

WRITE(9,s) NYIME, MPANEL )
WRITE{18,9) NTIME, NPANEL ‘

! Write geomstrical data for later grophics.

i@

I Write clreculation dota for later graphlcs.

22

aee

DO 12 1 = ©, NPANEL
WRITE(9.9) X(1), Y(1), DX(1), DY(1). W(I) :
CUNTINUE

WRITE(9,+) XC, YC, RC

DO 20 I = @, NPANEL

WRITE(10.9) 1, GS(I), G(1), DG(1)
CONTINUE

WRITE(1@,%) GC, RC ;

B T T Ly

REYURN
END

S




"m, SUBROUTINE RUNGE?
? I This program ie o modifiad Runge—Kutta Integration achame
i
} COMMON /PANEL/ X(P:505), Y(0:505), DX(0:585), Dv(e:805),
- / W(0:503), DG{Q:508%)

S COMMON /TIME/ NPANEL, NSTEP, NTIME, TIME, TSTEP

s COMMON /CONV,” U{®:505), V(0:50%)

COMMON /CORE/ XC, YG, 6C, RC, UG, VO

COMMON /TFAC/ TFAG, GFAC I TFAC m FACVYOR FOR SIZE OF TIME STEP
COMMON /20T/ 20T

| Temporary Buffers
DIMENSION X@(9:505), Yo(e:505), Dxe(e:505), Dye(od:5es5),
ua(e:5e5), ve(e:505)

Xo(I) = X(I)

Ye(I) = v(1)

Dxo(1) = Dx(I)

DY8(i) = DY(1)

ve(1) = u(1)

ve(l) = v(I)

X(1) = X(I) + U(I) « TSTEP
Y(1) = Y(I) + V(1) » TSTEP

20 CONTINUE

XCe = XC
YCO = YC
UCeé = UuC
VCo = VC
XC = XC 4 UC o TSTEP
YC = ¥YC + VC o TSTEP

DO 25 1 » 1, NPANEL-Y | Entimate intermediate ponsis.
OX(1} m X(I+1) ~ X(I-1)
OY(1) = Y(I+1) ~ Y(I~1)
W(1) = SQRT ((X(I+1)} ~ X(I-1))ee2 4+ (Y(I#1) - Y(1=1))»e2)/4,

25 CONTINUE
1 = NPANEL | Extrapolate at the tip.
Aw ((v(1=2) -~ Y(1-1) ) e ( X(I=1)0e2 ~ X(I)we2 )
. - ( Y(1=1) -~ ¥(1) ) o ( X{I~2)ee2 = X(1-1)ee2 )
. + { Y(I-2) ~ ¥Y(I-1) ) « ( Y(1=1)292 = Y(1)ee2 )
. = (Y(I=1) = YD) ) o ( Y(I-2)#e2 « Y(I-1)ee2 ))
. /(0 X(1-2) ~ X(1-1) } » ( Y(I~1) - Y(1) )
. = ( X(1-1) ~ X(1) Yo ( Y(1-2) - Y(I-1) )) / 4.
Beo ([ X(I-t)ee2 ~ X(1)ee2 ) + { Y(I-1)ee2 ~ ¥Y(I)ee2 )
. =2 A (X(1-1) - X(1} )) / 2/ ( Y(I-1) - (1) )
3 PX(I) » « ( ¥Y(1) ~B )
5 PY(I) m  ( X(1) -~ A )
5 W(I) = SQRT ((X(1) — X(1-1))es2 & (Y(I) - Y(I-1))se2)/2.
é CALL VELOCT t The mid-course correction
i DO 35 I = 1, NPANEL | Average In the mid-courae correction

Ur) = (ue(1) + w1y ) /2,

CALL VELOCT t Velocities to get to the Intarmediate points.
TSTEP = ,0025/TFAC | The intermedinte points are ot half~way.
DO 20 1 = &, NPANEL | Get to the intermediate points.
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V(1) = ( vall) + V(1) ) / 2.
a5 CONTINUE

Wem(HCO+IC) /2,
VG m { VCR + VC ) / 2,

TSTEP = .B€5/TFAC

DO 50 I = 1, NPANEL i Final trannlation.
X{1) = %0:1) + U(I) o TSTEP
Y() = Yo(1) + V(i) » TSTEP
se CONT INUE 1

XC = XCO 4 UC » TSTEP
YC = YCO 4+ VC » TSTEP

| Stratching of tip core: consarve volume of the vortex ring.
RC = RC » XCO/XC

X(g) m @

Y(@) = v{1)

vie) = v(1)

TIME = TIME + TSTEP

RETURN
END :
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BUBROUTINE EULER

Thia pragram in a Runga—Xutta Integration schems bamad o limiting
the largest convection of paneis to aome fraction of thelr widthne,

COMMON /PANEL/ X(@:505), Y(@:585), DX(R:505), DY(e:805),
w(e:505), DG(@:505)

COMMON /TIME/ NPANEL, NSTEP, NTIME, VIME, TSTEP

COMMON /CONV/ U(R:505), V(@:505)

COMMON /TFAC/ TFAC, GFAC

COMMON /CORE/ XC, YC, 6C, RC, UC, VC

CALL VELOCT
TSTEP = .005 / TFAC

Panel width based time step option

TSTEP = .1
DO 10 1 = 1, NPANEL
TPAN = W(I) / SQRT( U(1)es2 + V(I)es2) / TFAC

19 IF (TPAN .LT. TSTER) TSTERP = TPAN
DO 20 1 = @, NPANEL
X(I) = X(I} + U(I) « TSTEP
Y{1) = ¥{1} + V(1) » TSTEP
29 CONTINVE
XCe = XC

XC @ XC + UC » TSTEP
YC = YC 4 VC o TSTEP

RC = RC » XCO / XC
X(0) = @

r(0) = Y(1)

V(@) = V(1)

TIME » TIME + TSTEP

RETURN
END

m—r o oo m
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SUBROUTINE VELOCT

I This pragram catculates the valocity fleld
I Induced by the panals for the progrom TOLLCALL.FOR

COMMON /PANEL/ X(0:505), Y(@:5e5), DX(0:505), OY(e:305),
! w(e:505), DG(0:%05)

COMMON /CONV/ U(0:505), V(@:588)

COMMON /TIME/ NPANEL, NSTEP, NTIME, TIME, TSTEP

COMMON /VELO/ R, XX, YY, DXT, DYT, WW, G

COMMON /20T/ 20T

COMMON /CORE/ XC, YC, GC, RC, UC, VC

P1 = ASIN(1.) o 2.

PEBIIARERRLEELLLLIINLIE1Y Loop over the tronstated ponels THLIREELIAISRREININNDI
DO 10 J = 1, NPANEL
W=0.9
V=00
t Loop over the inducing ponals l
DO 20 1 = 1, NPANEL
R = X(I)
G = DG(1)
wo= W(I)
DXT = BX(1)
PYT = DY(1)

XX = X(J) ~ X(1)
YY = Y(J) - Y(I)

| sev The Axisymmetric case »»»
IF (ZOT.GE.1) THEN
! Interpolate the self-induced veloccity

IF ((XX.EQ.9).AND.(YY.EQ.0}) THEN
XX ==, 1 o WH
CALL VELIN ( UINA, VINA)
CALL VELIO ( UIOA, VIOA)
CALL VELOUT{ UOUTA, VOUTA)
XX = .1 o WY
CALL VELIN ( UINB, VINB)
CALL VELIO ( vioB, VIOB)
CALL VELOUT( UOUTB, VOUTB)
UIN = (UINA + UINR) / 2.
VIN = (VINA + VINB) / 2.
U10 = {UIOA + UIOB) / 2.
VIO = (VIOA + VIOB) / 2.

- UOUT = (UOUTA + UOUTB) / 2.

VOUT & (VOUTA + VOUTB) / 2.

ELSE
CALL VELIN { VIN, VIN)
CALL VELIDO ( UIO, V]O)
CALL VELOUT( LOUT, VOuT)

END IF

U = UJ + UIN ¢+ UOUT ~ U110

Vi = VJ + YIN + VOUT -~ V10

| see 2D Cose: includes the mirror imoge component sse
ELSE
CALL VEL2D (V1,V1)
Xx = X(J) + X(I)
YY = Y{J) + ¥Y(I)
G =~ DG(1)
oYT = ~ DY(1)
CALL VEL2D (V2,v2)




19 CONTINUE
CEENRRIRLRRRRRER R R LIV LIE End of Loop DRRLUEILLINELIIAARRLIRRUTRNEsdLINNLb]

5 99

i W Uk U4 U2

= : Vi = V4 VT4 V2

S END IF

20 CONT INUE

: : | End of Loop |
: U(J) = W

; V(d) = WV

g | Calulate the velocity Induced by the tip-core

V2 =@
VZmo
R = XC

RO 160 4 = 1, NPANEL
R = XC

XX = X(J) = XC

YY » Y(J) = YC
C=GC

IF {(20T.GE.1) THEN ! Axieymmetric Case
We 5
CALL VELOUT (U1, V1)
GO TO 99
END IF

CALL VEL20F (U1, V1) ! 20 case with mirror image
: XX = X(J) + XC

G = ~GC

CALL VEL2DF (U2, V2)

g_ 99 UCY) = UQY) + U1 + U2
- V() = V(d) + VI 4 V2
i 100 CONTINUE

5 I Calculate the velucity induced on the tip cors by the panels

U me
VCm=o

00 110 I = 1, NPANEL

XX m XC - X(1)

o YY = YC ~ ¥(I)

DXT = DX(1)

DY = DY(I)

f wWoe w(l)

- G = DG(1)

= R = X(I)

1IF (ZOT.GE.1) THEN I Axisymmetric Case
CALL VELIN JUIN, VIN)
CALL VELIO (U10, VIO)

CALL VELOUT{LOUT,VOUT)

Ul = UIN 4+ UOUT ~ UI0

Vi = VIN + VOUT ~ V10

U2 m 8

Yam @

GO TO 185

L
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END IF

CALL VELZ2D {(11,V1) L 2D camm with mirror Image
XX = XC + X(1)

DYT = pY{1)

W = - W(1)

G =~ -DG(1)

CALL VEL2D (u2,v2)

105 UC = UG + U+ U2
VO m VC + V1 + V2
110 CONTINUE

| 2D Cose Only: Velocity Induced by the mirror Image of the tlp cora
If (20T.EQ.0) THEN
AX = 2e%C
YY » 0.9
G = ~GC
CALL VEL2DF (u®,ve)
UG = UC + L0
VC = VC 4 VR
END IF

| Axlaymnetric Ccee Only: The Self-induced Velocity of the Cors
IF (20T.GE.1) VC = V& = GC/4/P1/XCe( LOG(BsXC/RC) ~ .25)

v{e) = 0.9

RETURN
END

[

i Tl

WL
RINE

L LLERE IS

i
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SUBROUTINE REDIGK(R,Z,G,NIN, NOUT ,GMAK , SUML.  DELTAL)

C—THIS DOES CURVLE FYTTEING USING BLENDED PARADOLAS ON K, 2, DGAM
I Modified from SPIRAL.FOR by John Kantella for use with pansls

CMJN /T!Ml:/ Npp NSI NT. Tp TS
COMMON JCORE/ XG, YC, GC
COMMON /TFAC/ TFAG, GFAG
COMMON /20T, ZOT

RIMENSION R(0:5056),2(0:505),6(0:508),5(0:508) ,GR(Q:585),
QZ(0:508) ,A0(0:805) ,A1{0:505) ,A2{0:505) ,A3(r 1105},
B0(0:505),81(0:505) ,02(0:505),03(0:505),C0(0:505),
C1{0:505),02(0:505),C3(0:%05) ,6MIR{8:505) ,5MID(0:505),
Q(2:505) ,RS(0:5050) ,25(0: 5000) ,AL(Q:5050),65(0:5050)

DATA NSUB/S/

Lt X % 2

C—GET STRAIGHT LINE DISTANCES BETWLEN POINTS, S(I) IS THE TOTAL
C  DISTANCE ALONG THE STRAIGHT LINES TO NODE 1

S(0)=0.0
DO 20 I=1,NIN
20 S(I)=S(I-1)+SQRT((Z(1)~Z(I~1)}ee24(R(1)~R(1~1))0e2)

C—Get valua of 8 for the trallling extended asgment, this value
C of S Is out at the presumed snd of the sheet.

S(NIN®1ymS{NIN)4+0.5# (S/NIN)-S(NIN-1))
C—GET SLOPES AT EACH INTERIOR NODE, QR(I)mD(R)/DS AT NODE 1

0O 30 lai,NIN-t

Sta(S(141)=8(1))/(S(1-1)-8(1))

52e1,8/51

S3m1.9/(S(141)-S(1- 1))

QR(I)m((RCI~1)~R(1) ) eS1=(R(I4+1 }R(1))52)+S3
38 QZ(1)m((Z(1=1)~2(1))*S1-(2(14+1)-2(1))+52)S3

C—COEF'S FOR INTERIOR SEGMENTS

DO 40 Jmi,NIN-2
Stm1.0/(S(1+1)=58(1))
Ae(1)=R(1)
At(1)=QR(I)

. A2(I)=S1e (~QR(I4+1)~20QR(1)+3518 (R{1+1)-R(1)
A3(1)mS1e518{QRC 141 )4HQR(T )~2eS 10 (R( 141 }-R(1)
Bo(I)=2Z(1)

B1(1)~02(1)
B2{1)=S1e (~QZ(1+1)=~2¢QZ(1}+3e51 e (Z(K+1)-2(1)

40 B3{1)mS1eS10(QZ(L+1)+0Z(1)~2+81(2(3+1)-2(1)

))
)

N
))
C—COEF*S FOR FIRST SEGMENT

51»5(1)~5(@)

$2a5(2)~5(Q)

$3=1.0/(5(2)~5(1))

AB(Q)=R (D)
A1{@)m((R(1)~R(@))*52/51~(R(2)~R(0))#51/52) 253
A2(@)=((R(2)-R(0))/S2~(R(1)-R(0))/S1)eS2
A3(0)mD .0

bo(e)=2(e)

81(0)m( (Z(1)-2(0))#S2/51-(2(2)~2(0))+S1/52) 83

e
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B2(0)m( (2(2)-2(8))/52-(2(1)-2(®))/51)#53
B3{0)~8.8

C—COEF'S FOR LAST SEGMENT

N=NIN

S1mG{N)-S(N-1)

§2=5(N-2)-5(N-1)

53=1.0/(5(N-2)-8(N))

AD(N-1)=R(N-1)

AT(N-1)m( (R(N)R(N-1) I052/51-(RIN-2)-R(N-1) ) o51/52) 05D
AZ(N-1)=( (R(N-2)—R(N-1)) /52-(R(N)-R{N-1) ) /51) 083
AJ(N-1)=D.0

BO(N-1)=Z{N-1)

BT (N-1)m{ (Z(N)-~Z(N=1) ) o52/31~(Z{N-2)-2{N-1) ) #51/52) 52
B2(N-1)m( (Z(N-2)-Z(N-1))/52~(Z{N)-Z(N-1))/51)+53
BI(N-1)=D.0

C—CGst the ongle of tho ring with Index NSMALL wrt the tip core
CALL PULANG{NIN, THNIN)
C-—Get the "A" coetficlent for the Kadln apiral

RNU=XNU(THNIN)
IF (ABS{SIN(THNIN)) .GE. ©.3) THEN
A={YC-Z(NIN})/( THNIN» « {~RNU) »SIN{THNIN))
ELSE

A=(XG~R(NIN) )/ (THNIN® ¢ (~RNU) sCOS(THNIN) )
ENDIF

C—GET ARRAY OF R AND 2 AT THE SUBINTERVAL LOCATIONS, AND COMPUTE
G THE TOTAL LENGTH OF THE CURVE

C—Firat do the blended parabotc segmante

RS(0)mAR(0)
Z5(0)=80(0)
AL(0)=D.0
0O 50 I=0,NIN-1
DO 50 KSUB=1,NSUB
Jr] #NSUB+KSUB
T=(S{1+1)~5(1 ) }sFLOAT(KSUB) /FLOAT (NSUB)
RS(J)mAO(I)+Te (A1 1)+ Te(A2(1)4ToAS(1)))
75(J)=BR(1)4+Te(B1(F)4+Te(B2(1)+T#B3(1)))
50 AL(J)mAL(J~1)+SQRT((RS(J)-RS(J=1))#e24(25(J)~25(J=1))e42)

C—The next few sectlions find the value of theta ot ths end of the
C tralling extended segment, i.s., gets the theto corrosponding
C to arclength S(NIN+1)

C—Flrat, before doing the numerical Integrution. need to gat ¢
C value to uns for delta theto

1 TERS=D
DSGW-(S(NING1)-5(NIN))/20.0
B76=0.01

62 TTEMPmTHNINADTG/2.0
RNUWXNU( TTEMP)
LTERSITERSH
IF (ITERS .GT. 180) STOP 'ITERS .GT. 100 IN LOOP €1
DSGmASTTEMPe s (~RNU-1.08) sSORT (RNU» 62+ TTEMPe02) eDTG

i

Dy
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DTGN={DSGW/DNLG) oDTG
IF (ABS(PTGN-DTG) LAY, 8.601) GO TO 63
RTG=NTEN
G0 70 62
61 DTG-DTGN

C—HNuw have dalta theta {1.e,, DIC) which whould yield approx, 20
C ateps In the numarlical Intagrotion from S{NIN) to S(NIN+1).

C—Nuw do the numarical Integration and masorch for theta(NIN+1)

I TERS™0
SEND=S(NINt1)-S(NIN)
5Ti=0.0
TH=THNIN
64 RNL-XNU(TH)
ITERS=1TERS+1
IF (XTERS .GT. 100@) STOP *ITERS .GT. 100 LOOP G}’
ARGtwA e THs e (~RNU-1,0) aSORT (ANUw ¢ 24 THee2)
RNU=XNU( THHDTG)
ARGZrA® (THADTG) 08 (~RNU-1,0) #SORT (RNUs 824 (THIDTG ) 0 e2)
DSm{ARGI1HARG2) sDTG/2.0
IF (STH+DS .GE. SEND) GO YO &)
STH=5TH+DS
TH=THDTG |
GO TO G4
63 FRAC=(SEND-STH)/DS
THNIN1=TH4FRACeDTG

C—Now can get the sub-intarval locotions over the extended mplrol
C  wagment,

DTH={ THNIN1-THNIN)/NSUB i

DO 65 KSUBm1,NSUB

THETA=THNIN+XSUBeDTH

JNINeNSUB-HKSUD

RNUwXNU( THETA)

RS (J)=XC-As THETAs # (=RNU) +COS ( THETA)

25(J)mYC~ASTHETAss (=RNU) s SIN(THETA)

AL(Y)=AL(J~1)+SORT( (RS{J )RS (J1) ) #024(ZS(J)~ZS(J-1))we2)
65 CONTINUE

| Redietribute the Circulaotion over the Sub-Segments ’ ke “

DO 751 1 = @, NIN
DO 751 J = 1, NSUB
Km [ o NSUB ¢ ¢
IF (1.6Q.0) THEN
IF (ZOT.LE.1) THEN
GS(K) = FLOAT(J)}/NSUB o (1.46(1))/2. ~ 1.
65(0) = 1.
ELSE
GS(K) = FLOAT(J)/NSUB » G(1)/2.
GS(0) = @
END IF
ELSE IF (I.EQ.NIN) THEN
DGN = (G(NIN) ~ G(NIN-1))/2
: GS{K) = FLOAT{J)/NSUB » DGM 4+ G(NIN-1) + DGN
. ELSE
: RGE = (G(I+1) - G(1-1))/2
DGIMI = (G(I) ~ G(1-1))/2
GS(K) = (FLOAT(J)/NSUB & DGT) + G(1-1} + DGIMI
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- EMNp O IF
751 CONT NI

C-—TOTAL LENGTH OF CURVE IS SUM.
SUML=AL( (NINH1) sNSUB)

IlllllIlllllllllllllllIlllllllIlIIHIIIIIHlIhIIIIIIIIIIIIHHIIllllllllllllll
i Panel Dlscretization Criterion

TEND = (NIN#1) » NSUB 1 Limlta Relative Dintonce End/fore
XLSEG = SQRT( (XC-RS(TEND))#02+(YC-Z5(KEND))#a2)/GFAC
IF (XL5EG.GY.DELTAL)

E XLSEG m DELTAL 1 Always Shriaking Critaria
i PELTAL = XLSEG
T ST T T N R N RN RE AN NN RN RN ARRRRR NN
-1 C—GET NEW R AND Z POINTS

W

i Mo 1=

%
T DO 6@ Jw1,NSUBS(NINH1)

% 1. @ Galculote the Distonce to the positions of the subvpunels ____!}
o no WIMY =~ SORT(( RS(4~1)-R(I~1) Jes2 & ( ZS(J-1)~2(1-1) )ee2 )

& WiMe = SORT(( RS(J) ~ R(i~1) )ee2 4 ( 25(4) = 2(I=1) )ee2 )
i IF (XLSEG .LT. WUMI .OR. XLSEG .GT. WM@) GO T0 €0 1 1f nat snough.
- FRAC=( NLSEG — WJM1 )/( WNO = WoM1 ) | Calculate where th. naw
~ R(1)=FRAGe (RS(J)-RS(J—1))4RE(d~1) 1 pansl edge will & b ap.
= 2( 1 )mFRACS (25 )-25(J-1) )+25{J-1)

. ) G{1)=FRACS (GS()~GS{J-1))46S(d~1)

, ImI41
o 1IF (1.67.500) GO TO 300 t Too m-ny panelsl

T 60 CONTINUE

c 70 CONTINUE
R(1) m RS(NSUBe(NIN+1))
2(1) = I (NSUBe(NENH1))
G(1) = GS(NSUBe(NIN+1))

NOUY m
=F RETURN
— U
BAg I | If the shest Is too stretched to the poneled by 500 panels, then
) I stretch the pansls by 18N,
HEN|
| 300 XLSEG = XLSEG e1.1
~5. WRITE(B,») 'esevess OVER 300 PANELS wesssewe TSTEP, DLSEG:®, NT, XLSEG
- GOTO 310
ﬁ-g i |
= END
'
BN
b
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SUBRQUTINE PULANG(NIN, THNIN)

Speclal Subroutine for routine REDISK which extrapolatens
the sheot sdge uning Koden's axponential aplrot mode)

100

COMMON /CORE/ XC, YC, GG

COMMON /PANEL/ R(©:305),Z(8:505) ,DX(9:505) ,DY(e:405),
$ W(0:505), GAMMA{D:505)

RIMENSION BETA(®:505)
REALs4 MAG

RT=XC
2T=YC

Am—1.0

B=2.0

C=R(0)-RT

D=2(0)-27

ROTwASCHB»D

CROGS=AsReC
MAG=SORT({A»A+BeB ) (CoC+DeD))

ARG=DOT /MAG

IF (ABS{ARG) ,GT. 1.8) ARGmSIGN(1.,ARG)
BETA(@)=SIGN(1.0,CROSS) sACOS (ARG)

DO 102 I=1,NIN

AmR(1~1)~RT

B=2(1-1)-27

C=R(I)=RT

D=2{1)=2T

DOTmARC+BeD

CROSSaA«D-BsC

MAGmSQRT{ (AsA+BeB) s (Col4DeD))

ARG=DOT /MAG

IF (ABS(ARG) .GT. 1.9) ARG=IGN(1.9,ARG)
BETA(])!BETA(X-1)+SIGN(1.0.CROSS)CACOS(ARG)

THNIN=BETA(NIN)

RETURN

END

FUNCTION XNU(THETA)

DATA P1/3.141592854/

XNU=2.,0/3.9

IF (THETA .LT. 2.0«PI) THEN

XNU-(i.O/(2.0¢Pl=1.0))-(1.0/(THETA~1.0))%2.0/5.0

ENCIF

RETURN

END

—
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SUBROUTINE PANELER (X,Y,DX,DY,W,DG,Q, MPANEL)
pragrom takes the remults from routine REDISK ard crsates paneta

DIMENSION X(0:505), Y(0:505), DX(0:505), DY(®:005),
w(D:%03), DR(:503),
G(6:585), G5(9:505)

DIMENSION R(Q:305), Z(@:505)

DO 19 T = 1, NPANEL

R(1) = ( %(1) + %X(1~1) ) / 2.

2(1) = ( ¥Y(1) + Y(11) ) 7 2.

DX(1) = X{1) ~ X(I~1)

DY(1) = ¥{1) ~ Y(I~1)

W(I) = SORY( DX{1)ee2 & DY(1)}we2)/2.
BG(I) = ( G{I) ~ G(1-1)) / W(1} / 2.
CONTINUE

DO 20 7 = 1, WPANEL
X(1) = R(1)
Y(1) = 2(1)

RETURN
END

R R T

Y

S
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Appendix D
Inputs Used to Generate the Figures in the Text

Figure 5-7: Elliptically Loaded Wing Wake Case
NPANEL = 80
TFAC =1
GFAC =1
NCORE = 4
Z0T -0

Figure 5-13: Formulation of Vortex Ring by a Disk
NPANEL = 80
TFAC =1
GFAC =1
NCORE =1
Z0T - 1
Figure 5-21: Modelled Heticopter Rotor Wake Case
NPANEL « 80
TFAC =1
GFAC =1
NCORE = 1
ZOoT -2

Figure 5-28: Demonstration of Kelvin-Helmholtz-type Instability
This experiment was performed using an carly version
of the simulation program with different set of inputs.
Figure 5-29: Instability in the Roll-Up of Disk Wake
NPANEL =~ 80
TFAC =1
GFAC =~ 2
NCORE =~ 1
zorT -1
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