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SUMMARY

A procedure that allows preliminary assessment of the effects of component size
changes on the characteristics and performance capability of aircraft has been
developed into a computer program. Applications can be made to subsonic, Super-
sonic, and hypersonic aircraft using JP, liquid-hydrogen, or liquid-methane fuel.
Jet engines as well as propeller systems can be treated. Basically, the program
requires an input baseline aircraft on which component sizing changes are made; new
aerodynamic, propulsion, and weight characteristics are then determined and a
mission profile, including a reserve fue! segment, is computed to find the new
aircraft's range capability. One of the output options provided by the program is
the basis for preparing aircraft sizing “thumbprints® which pinpoint the wing and
engine size for best performance.

INTRODUCTION

A computer program for aircraft sizing is a useful tool for preliminary aircraft
system studies. The method must account for the interactions between aircraft
geometry, aerodynamics, propulsien, and weights while providing rapid, low-cost
evaluations of design options. Important advantages offered by this capability
include the realistic assessment of technological advances and the identification of
promising areas that justify further studies in greater depth.

A program that satisfies these requirements has been developed for use in the
Aeronautical Systems Office at the NASA Langley Research Center. An carlier version
was reported in reference 1. Briefly, the method performs sizing operations on a
baseline aircraft and then a mission analysis to determine the effects of sizing on
range. In the few instanc:s where comparisons are possible, resulls of the method
are in close agreement with similar ones in industry (refs. 2 and 3).

This paper rontains a descrintion of the nrocesses used in the aragrem, some
applications of the program to subsonic, supersonic, and hypersonic aircraft, and
definitions of input and output. For identification purposes, the program is called
ASP, (A)ircraft (S)izing (P)erformance orogram.

SYMBOLS
BF Breguet factor, V(L/D)/SFC/(1 - V2/gR,)
¢ centigrade
Cp drag coefficient

CD,BL engine bleed drag coefficiant
CDO zero-1ift drag coefficient
C, lift coefficient
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drag

maximum diameter of fuselage

fuselage fineness ratio

gravitational acceleration

altitude

lift

lift-drag ratio

maximum lift-drag ratio

length of fuselage

Mach number

shaft horsepower-to-gross weight ratio
range

radius of earth

specific fuel consumption

time

thrust

thrust-to-gross weight ratio

velocity

approach velocity

lift-off velocity

velocity at start of rotation during takeoff
weight

fuel weight

gross weight

wing loading, gross weight/reference area
angle of attack

flight path angle

flap deflection
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Subscripts

AP approach i
BL baseline aircraft or bleed drag é
F fuel ;
Lo Tift off %
MAX maximum é
SL sea level j

A dot over a symbol denotes its time derivative.

PRELIMINARY CONSIDERATIONS
The computer program described herein cannot be used to design an aircraft i
concept. Instead, the program performs operations on a baseline aircraft which has |
already been designed in sufficient detail to provide the required inputs. Within '
the program, this baseline aircraft is sized according to optional input values such
as wing loading, engine thrust, number of passengers, and gross weight. After ,
sizing, the aerodynamic, propulsion, and weight characteristics of the aircraft are !
determined; then a mission profile with reserve fuel segments is computed to find '
the range of the aircraft. '
Some of the output provided by the program include:
1. Range for given gross weight and number of passengers
2. Gross weight for given range and number of passengers
3. Number of passengers for given range and gross weight
4., Par’load - range curve
5. Passenger and fuel offloading
6. Effects of technology advances in aerodynamics, propulsion, and weights
7. Effects of in-flight refueling
8., Mission radius to payload drop
9. Information for preparing an aircraft sizing “thumbprint.” (A “thumbprint" !
is a map of constant value contours, like range or gross weight, plotted as
a function of engine and wing size.)
The program can he applied to subsonic, supersonic, or hypersonic aircraft using

JP, liquid-methane, or liquid-hydrogen fuel. Jet or propeller propulsion systems
can be considered,
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Five baseline aircraft have been chosen to illustrate the capabilities of the
program. Computer drawings of these aircraft are shown in figure 1. All aircraft
are preliminary concepts designed during in-house activities.

METHODS
Component Sizing

Fuselage.- To simplify drag calculations :nd packaging, the fuselage is
approximated by an equivalent body consisting of a constant area midsection with end
caps having a Sears-Haack profile (ref. 4). The constant area midsection contains
the passengers, door-galley-lavatory sections, cargo, and, if required, cryogenic
fuel tanks. Variables that affect the passenger compartment are the number of seats
abreast, seat pitch and width, aisle width, and the length and number of door-
galley-lavatory sections. Although these quantities may be input, their values may
not all be preserved hecause final values are determined from the baseline aircraft
using input values for passenger compartment length and abreast seating arrangement.

The arrangements available for fus‘®:ge packaging are shown in figure 2. The
first arrangement (fig. 2a) applies to aircraft witn one-passenger level and conven-
tional fuel. In addition to the passengers, the airrangement contains the cargo
normally stored beneaih the floor; however, if not enough space is available, the
excess cargo is stored in a section behind the passenger compartment. The cargo is
assumed to be stored in cargo containers which occupy 60 percent of the available
volume.

If the aircraft uses cryogenic fuel, the second arrangement (fig. 2b) places all
the cargo behind the passengar compartment and fuel tanks are located beneath the
floor. If more fuel volume is required, it is located in full-depth sections of the
same length at both ends of the midsection.

The third arrangement (fig. 2c) has two identical passenger levels with aft
cargo storage. If cryogenic fuel is required, it is stored in duplicate tanks fore
and aft of the passenger compartment,

In application, the midsection length and diameter are calculated first for the
requirements of the baseline aircraft. Then, from the length of the baseline
aircraft, the length of the fuselage end caps are found. During sizing, a new
midsection of different length and diameter is determined to satisfy the require-
ments for passengers, cargo, abreast seating, and fuel volume (if the fuel is
cryogenic). The new fuselage length is then obtained by adding the end caps to this
midsection.

Wing and Tail Surfaces.- From the inputs for the baseline wing and tail
surfaces, definitive geometric properties are determined and then normalized by a
representative dimension (such as wing root chord or geometric chord). Baseline
tail volume coefficients are also found for each surface. During sizing, the non-
dimensional properties are used to shape the components in a geometrically similar
manner. Wing size is specified by wing loading or reference area, while the tail
surfaces are sized to keep their volume coefficients equal to baseline values. The
locations of the components are established by keeping mean aerodynamic chord
positions (25-percent subsonic, 50-percent supersonic) at the same percent body-
length station as the baseline aircraft. If overlap occurs between the wing and
tail surfaces, the program will output a warning and continue operation.
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Fuel /olume,- Conventional fuel is assumed to be stored in the wings and in the
fuseTage where wing carry-through structure is located. The maximum wing-fuel
volume, VFN‘ is given by

= oy
VewVu,exe = 2 * %5 Vu,exp

where Vu FXP is the total volume of the expnsed wing, KA a constant determined
oF

from the baseline value of maximum wing-fuel volume, and KB = 7,10 X 10'6, which
was derived from studies of wing-fuel capacity performed by the Kentron
International Inc., Kentron Technical Center, Hampton, Virginia. The maximum
fuselage-fuel volume is sciled from the »raseline value and it {is assumed to vary
directly with root chord, maximum thickness of the wing, and the maximum width of
the fuselage.

Cryogenic fuel is contained only in the fuselage at locations covered previousiy
under fuselage sizing, Fuel tanks are simple constant area tanks having a ienqgth
that provides the required vonlume. The tank cross-sectional shape is the same as
the fuselage after accounting for the wall thickness for cryogenic tankage.

Propulsion System,- The length, , and diametpr, Dys of circular nacelles are
sized by the installed, sea level, stai*c thrust, SL’ in the following manner:

( N
Ly = LuoalTsu/Tst 8L
= Oy o [(Te /T )
N = ON,BL TS/ Tsi, 8L

where the subscript BL refers to the baseline aircraft and TSL varies with input

thrust-to-weight ratio (or power-to-weight ratio for propeller-driven aircraft).
The engine sizina exponent N, which varies with engine concept, is an input.

For two-cimensional inlets, the wetted area is assumed to scale directly with
thrust. Both the length and width of these inlets, therefore, vary directly with

.5
(Tse /s, L)
In a similar manner, the propeller diameter, DP’ is sized by
5
)

Op = Up g (T /s ,mL
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and the RPM of the propeller, RPMP, and engine, RPME, by

_ .5
RPMp = RPMp gy (T g /Tsy)

— .5
RPM = RPM o (Toy me/TsL)

Nacelle positions are established hy keeping their lengthwise locations a constant
percentage of the local wing chord and their spanwise pod-to-pod and pod-to-fuselage
clearances a constant percentage of wing span,

An illustration of the effects of these sizing procedures on the supersonic
transport is shown in figure 3.

AERODYNAMICS

The baseline aerodynamic input includes 1ift and drag polars for both takeoff
and higher speed conditions and zero-1ift drag items. All, except the takeoff data,
are corrected for sizing effects. Corrections are obtained by applying the methods
described below to beth the baseline and the sized aircraft, then adding the
difference in the results to the baseline input value.

Lift-Orag Polars.- For subsonic aircraft, the shape of the lift-drag polars are
functions of wing aspect ratio, thickness, and sweep, and aiso Mach number when
compressibility effects become important, To account for these variables, the
program uses a method based on the drag build-up system given in reference 5. Some
results that the method provides for sizing variations to the subsonic transport are

shown in figure 4,

For nigher speed aircraft, the program treats only wings that are geometrically
similar to the baseline (equal aspect ratio, sweep and thickness ratio), It is
therefore assumed that the shape of the lift-drag poilars for these aircraft is not
affected by changes in component size,

The lift-drag polars at all speeds will shift along the drag axis because of
drag increments that result from sizing effects on zero-lift drag.

lero-Lift rag.- The items that contribute to CDO are the friction drag,

roughness drag, and wave drag. To these, engine bleed and air-conditioning drag
must be added if they are not included in the bhaseline engine data. All drag items
are corrected for sizing effects. The drag coefficients for roughness, Cj RUF» air-
conditioning, CO,AC' and engine bleed, CD,B* vary by i

C

Co.rur = (Cp (Swev/Srer )/ (Swet/Sper JoL

)
RUF ‘BL

- {
Co.ac = (Cn,ac)er (Tsu/Srer)/(TsL/Sker JaL
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¢ = (C

0,8 = Cp,aler (Tsu/Sper)/ (Tsy /Sper Jgu

where S is the aircraft wetted urea, NPAS, the number of passengers, and SREF’
the aircﬁ%*t reference area.

Wave Drag.- To avoid the long computing times required to determine the wave
drag by existing computer codes, a quick, simple, but approximate approach was
adopted. The method treats the aircraft as a collection of isolated components, all
exposed to free-stream conditions. Since the wing and tail surface vary geometri-
cally along with the aircraft reference area, the wave-drag coefficients for these
surfaces are assumed to remain constant as the size of the component changes.
Sizing, however, does affect the fuselage wave-drag coefficient. As mentioned
previously, the fuselage is composed of a cylindrical midsection with identical end
caps. Only the end caps are assumed to contribute to the wave drag and their shape
was chosen to be a Sears-Haack profile which allows the fuselage wave-drag coeffi-
cient to be obtained (see ref. 6) by

3

Cou f = 28V (

OW, Swax/Ser /b

where V, L, and S are the total volume, length, and maximum cross-sectional
area of the fore- mﬂﬁ&ft-end cap combination.

The contribution of the engine nacelles to the wave drag is considered to be
small enough to ignore the effects of sizing.

A comparison of the results of this simple approach with those from the wave-
drag program of reference 7 for the supersonic transport aircraft with JP fuel is
shown in figure 5. Although some differences do occur, the method provides an
improvement over the assumption that wave drag is unaffected by sizing.

Friction-Drag.- For calculating skin-friction drag, the fuselage, tail surfaces,
and engine nacelles are treated as flat plates with corresponding wetted areas and
lengths. The wing, however, is troated as a collection of strips with the strip
mean geometric chord as the characteristic length. A1l surfaces are at zero angle
of attack. Skin-friction drag corrections are made at all Mach number-altitude
combinations required by the mission flight profile.

Two different procedures are used to calculate friction coefficients. One,
which applies to fully turbulent flow, uses the reference temperature method
(ref. 8) along with the constants for turbulent flow given in reference 9, and the
Prandt1-Schlichting formula for incompressible average skin friction (ref. 10). An
input value for emissivity is required for the solution of wall temperature.

The other procedure applies to mixed laminar-turbulent flow and is based on
assumptions of an adiabatic wall temperature, a recovery factor of .88, and a dis-
continuous change from laminar to turbulent flow at the specified location. Since
these assumptions are more appropriate to wind tunnel, rather than flight
conditiors, the results are not used directly. They are used, instead, to increment
the fully turbulent flow results obtained as described above.
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An illustration of the effects of sizing on the zero-lift wave drag and the
maximum lift-drag ratio for the supersonic JP-fueled transport under turbulent flow
conditions is shown in figure 6.

WEIGHTS

The weight input for the baseline aircraft include component structural weights,
propuision system weights, system and equipment weights, and crew, passenger, and
cargo weights. Empirical weight relationships are used to find the effects of
sizing on each item. These emperical weight equations and the method in which they
are used are described in Appendix A.

An example of the weight results obtained from sizina the supersonic JP-fueled
transport is shown in figure 7. )

MISSION ANALYSIS

Aftar the aircraft is sized and its aerodynamic, propulsion, and weight
characteristics are known, a mission analysis is made to determine the range
capability. The mission profile includes taxi, takeoff, climb-to-cruise Mach
number, climb-to-cruise altitude, cruise, descent, apprcach, and reserve segments.
For supersonic cruise missions, a subsonic cruise leg may also be specified for the
outbound and/or inbound flight segment.

Taxi and Takeoff.- During taxi, the engines ae throttled to provide the fuel
flow rate and thrust required to overcome rolling friction. The fuel for taxi is
found from this fuel flow rate and the input taxi time.

The Mach number-altitude profile during takeoff is not input; it results from
influence of the aircraft's aerodynamic and maximum power characteristics on the
equations of motion.

%vt(r cos x - N)/W - sin 9
%6=(Tﬁna+UN-C%0
H=Vsin 8

R=Vcos o

wz-uc

’

During the ground run, these equations can be solved easily because 6 and H
are zero. But after "lift-off," when these simplifications no longer apply, they
are solved by more time-consuming numerical integration using the fourth order
Runge-Kutta formula.

The takeoff segment includes the ground run and climb over the obstacle to an
altitude of 400 feet. Analyses include “all-engines-go" and “one-engine-out"
situations but nu analysis of the balanced takeoff field length (ref. 11) is made.

ﬂ.‘.’:\ y ‘“ﬁ“}%'

L 2F 0



As shown in figure 8, the the ground run begins ot zero velocity, zero flap
deflection, and ground angle of attack using takeoff aerodynamics that include
Tanding gear drag increments and ground effects. At velocity vrotate= the flaps

are deflected and the aircraft begins its rotation to the takeoff angle of attack.
After rotation is complete, the angle of attack and flap deflection are held
constant until "lift-off" occurs. After "lift-off," the aircraft climbs with angle
oFf attack and flap deflection unchanged; however, the aerodynamics are corrected for
landing-gear drag retraction over an input time interval and for the diminishing
influence of ground effect over an input altitude interval. The climb continues at
constant angle of attack until the input climb gradient is reached; then, angle-of-
attack changes are made to maintain this gradient. The end of the takeoff segment
occurs when the aircraft reaches an altitude of 400 feet,

When the aircraft reaches the height of the obstacle (typically 35 feet)
115 percent of the horizontal distance covered is the takeoff field length when all
engines are operating; but, for the "one-engine-out" condition the takeoff field
length is the actual distance.

The minimun takeoff field length, as indicated in reference 1i, onccurs at an
optimum value of the velocity for start of rotation, Vrotate' If more than a few

alrcraft are to be analyzed, however, the computing time required to find the
variation in takeoff field length with Veotate hecomes prohibitive. A shorter

approach was therefcre adopted in which an iterative solution s used during the
ground run to find the value of V. ..+ that allows rotation to be completed and

the takeoff angle of attack to be attained just at "lift-off." The takeoff field
iength that results from this value of Veotate 1S @ close approximation to the
minimum value as shown in figure 9,

Climb,~ After the takeoff phase is complete, the aircraft is at an altitude of
400 Teet. Its Mach number and altitude are then phased into the input H-M profile
and the climb segment begins. This and all remaining segments of the flight profile
use simpiified differential equations of motion (ref. 12). Thete simplifications
are based on the following assumptions: the time derivative of the flight-path
angle 1s zero, the angle of attack and flight-path angle are small, and the
afrcraft's altitude is negligibly small compared to the earth's radius. For climb,
over iaterval points 1 and 2 along the specified flight path, the weight change,
when velocity is increasing, is given by

-SFC Vo= Vi+ g (DH/DV) In (vz/vl)
g (1-9T)

and, where velocity is constant, by

In (Nz/wl) =

Sk HZ - Hl

v 1-0/7

DH/DV 1s the climb-path slope and the barred quantities represent effective values
which are taken to be simple averages of interval point values.

In (wz/wl) B

o e i e Whaean G L xut——mtu‘n(l‘di‘wﬂ%ﬁ-}‘sm‘""‘ -

[

——— .




-

etz T

. -
[ N -

Time and range changes over the interval are:

ty -ty = Dhpm WM
(v, +V,)
Ry = Ry = —— (t,- ty)

where WF is the average fuel flow over the interval.

The aircraft follows the input H-M profile up to the cruise Mach number unless,
for a supersonic cruise mission, an outboard subsonic cruise leg is specified. If
this occurs, the climb stops at the input subsonic cruise Mach number and 2 search
(at constant M) is made for the altitude that provides the best Breguet factor with
engines throttied. The subsonic cruise leg 1is ithen flown at constant 1lift
coefficient for the specified range. Next, the aircraft accelerates at constant
altitude until it intersects the input H-M profile, which it then follows to the
supersonic cruise Mach number. During the climb, the acceleration can be controlled
by input to occur at maximum power or at partial power settings that use least fuel.

After the cruise Mach number is reached, a climb at constant Mach number is made
to the cruise c!titude. Unless specified otherwise, cruise will start at the
altitude which provides the best Breguet factor; however, the altitude at the start
of cruise can be input directly or restricted by inputs for constant angle of
attack, constant throttle setting, or minimun rate of climb, After the cruise
altitude is reached, the climb fuel is known.

Reserves.- Since the fuel available for cruise and descent is the remainder
after taxi, takeoff, climb, and reserve fuel are allotted, the reserve fuel require-
ments must be determined next. Reserves can include a trip fuel allowance, fuel for
a missed approach, a flight to an alternate airport, and a hold at constant Mach
number and altitude. A typical reserve flight profile is shown in figure 10,

The solution for reserve fuel, which is iterative since tne weight of the air-
craft at the end of descent is not known at this time, starts with the trip fuel
allowance. This fuel allowance for subsonic aircraft is obtained from the fuel
burned for an input time interval using the fuel flow rate at the start of cruise.
For other aircraft, the allowance is an input percent of tkha trip fuel, Wp ;, which
at this time may be obtained from ?

W = W

F.T - "

F YR Y TAx

where W_ is the total fuel weight, Wp yay; the taxi fuel weight, and Wp p the

F
total reserve fuel weight (which must be assumed for the first iteration). The fuel
for missed approach is ohtained by either calculating a "wave-off" and acceleration
to an altitude of 700 feet with landing gear retracted and "out-of -ground" aero-
dynamics in effect, or, more simply, by the fuel burred for an input time interval
(typically 2 minutes) at the takeoff fuel-flow rate. For the detailed calculations,
the weight at the start of the missed approach segment is:

10
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where Wg is the gross weight and wF TPA® the trip fuel allcwance.

For the alternate airport requirement, the aircraft climbs a linear H-M profile
from the end of the missed approach to the altitude at the start of cruise, cruises
the required distance, then descends to approach conditions. The total range for
these segments is the required distance to the alternate airport. The analysis is
performed for various climb and cruise throttle settings and cruise Mach number-
altitude combinations to find conditions for least fuel.

During the descent to the alternate airport, the hold segment is performed. The
time for hold is input and the Mach number-altitude combination is again found for
the least fuel requirement. The range covered during hold is not credited to the
aiternate airport distance.

After all reserve segments are completed, the total reserve fuel is updated and
the process repeated until successive values are within .1 percent. An example of
the effects of sizing on the reserve fuel requirements for the supersoni: transport
are shown in figure 11.

Cruise.~ The total fuel available for cruise and descent is now known, and
solutions of these segments are repeated until the required and available fuel are
within .1 percent., The process starts by assuming the fuel weight for descent
(about .5 percent of the aircraft gross weight) then finding the fuel for cruise.
During cruise, tae aircraft flies at the selected cruise option (like constant CL
or others described below) until the cruise fuel is exhausted.

For cruise, the increment in range, R, over interval points 1 and 2 is given by

Ry = Ry = BF In [1/(1 - We/Mp)]

where Wp is the fuel weight used over the interval, and BF is the numerical
average of the Breguet factor, which changes over the interval because of the input
cruise option selected, The computing interval during the main cruise seqment is a
fuel weight increment ohtained from the weight of cruise fuel and an input number of
intervals. For outbound or inbound subsonic cruise legs, the computing interval is
the entire cruise leg.

The main cruise segment is normall, controlled by different input options.
These include: cruise at maximum available Breguet factor, constant 1ift
coefficient (or constant angle of attack), constant altitude, and constant engine
throttle setting. The differenm. types of cruise segments, of course, affect the
cruise altitude variation and cruise range of the aircraft. Some examples of this
behavior Tor the supersonic transport for several wing sizes are shown in figure 12.
For all cruise options, excert maximum power, the start of cruise was selected to
start at the altitude for meximum available Brequet factor.

With the largest wing (W/S = 50 psf), the altitudes for maximum Breguet factor

are above the climb ceiling. Therefore, unless constant altitude is specified,
cruise, with the better range, will occur at maximum power.

11
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With the median wing (W/S = 85 psf), the maximum Breguet factor at start of
cruise occurs at a lower altitude (60,000 ft) and thrust is now sufficient to
provide the altitude variation that meets this condition throughout cruise. For
this wing and engine size ccahinztion, the constant C, (or angle of attack) aption
is equivalent to the maximum Breyuet factor option and any of these gives the best
cruise range.

With the smallest wing (W/S = 110 psf), the altitude for best Breguet factor at
the start of cruise is below the climb path. A constant altitude cruise with
decreasing CL therefore occurs until maximum Breguet conditions can be met and the
best cruise range now occurs only for this option.

From these results, regardless of thrust or altitude limitations, it is evident
that the best cruise range will always be obtained by selecting the option for
maximum available Breguet factor.

Long-Endurance Cruise.- For this type of mission, the cruise segment must use
minimum fuel and the program will €ind the variations in Mach number, altitude, and
1ift coefficient to provide this condition throughout cruise. If the optimum
conditions prove to be unsatisfactcry, ther: are inputs available to specify the
cruise Mach number and/or altitude. An example of the effects of optimum and non-
optimum conditions on endurance for size variations of the lorg-endurance aircreft
are shown in figure 13,

Descent.- Like the climb, the computing interval for the descent is a Mach
number increment. It is dafined by the difference between the Mach number for the
main cruise segment and the Mach number at the end of descent and an input number of
intervals. If velocity is decreasing, the change in time, t, over the interval is:

Wy V- Vi+ g (DH/DV) In (V,/V;)
t2 - tl - o _— s =

9 T-D

and if velocity is constant

) Nl H2 - H1

i3 Sl A

Again, numerical averages of interval point vaiues are used for the barred
quantit1es and the altitude at point 2 is found at the 1ift coefficient for
(L/D) with = w (a reasonable assumption since fuel expenditure during
descent is very 1ow§ is subsequently incremented by

om ¥ = '.JF (ty- ty)

After cruise, the aircraft enters the descent phase by making the transition to
flight at (L/D)yay during the first computing interval. The remainder of the
descent is then performed at (L/D) If the aircraft is supersonic and an intound
subsonic cruise leg is chosen, the ggscent stops at the specified Mach number and a
search is made for the altitude giving the best Breguet factor. A subsonic cruise
at constant 1ift coefficient is then performed over an input range, after which
descent to the start of the approach at M = .4 and H = 4000 feet is calculated.
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Approach.- This portion of the descent extends from M = .4 and H = 4000 feet
down to an altitude of 370 feet. Using the equatio-. given previously for the
descent, an iterative solution is required to find the aircraft weight and velocity
at the end of the approach. The angle of attack and flap deflection for approach
must be input. The takeoff aerudynamics are used without ground effect but the drag
increments for the extended landing gear are included,

Overall Mission Characteristics.- Typical! results from different segments of the
mission analysis are now presented for several wing and engine sizes on the super-
sonic transport with JP fuel. For all size changes, the aircraft gross weight was
held constant and the cruise segment was specified to occur at maximum available
Breguet factor.

Figure 14 shows the flight profile that results from changes in wing size with
T/M™ = .45, Controlled by input, the climb profile is restricted, but the cruise and
descent profiles are different for all cases.

Takeoff results, presented in figure 15, show that changes in the fuel required
due to sizing are small; the spread of values is less than .25 percent of the air-
craft gross weight. On the other hand, changing 1ift (W/S), or acceleration (T/W),
capability has a large effect on takeoff field length. The velocity at "lift-off"
is seen to be primarily a function of wing loading.

Climb results that show excess thrust capability are given in figure 16.
Decreasing with Mach number, the excess thrust reaches its minimum value at the end
of the climp, and this general trend is not affected by sizing. Changes in excess
thrust are, of course, almost directly proportional to changes in engine size, while
those resulting from wing changes are much less proncunced since they reflect oaly
the different drag characteristics encountered during the climb.

The climb time, fuel, and range are shown in figure 17. The effects of engine
size are large and aircraft with low acceleration, naturally, take longer times, use
more fuel, and cover wmore range to reach cruise., Wing size does not seem to be too
important except for the larger wings (W/S = 70 and 50 psf) at lower engine sizes
where time, fuel, and range increase while climbing to the higher cruise altitude.

The fuel available for cruise has a significant effect on cruise range and time
as shown in figure 18. Because of the additive affects of wing and engine size on
total fuel and the fuel required for other flight phases, the aircraft with the
smallest wing (W/S = 110 psf) and medium engine size (T/W = .35) has the maximum
available fuel for cruise. The maximum cruise range, however, occurs at
W/S = 90 psf because the slightly larger wing improves the L/D characleristics
without an appreciable decrease in available fuel. The more efficient larger wings
produce lower ranges because their high weight 1imits the available fuel,

Descent results are given in figure 19. Fuel for descent is less than 1 percent
of the aircraft gross weight for all size variations. Because the descent is
essentialy a glide at (L/D)qu, aircraft with the largest wings give the longest
range. The effect of engine size is primarily due to different nacelle skin-
friction drag increments.

Approach speeds (fig. 20) are primarily a function of wing size, although engine
size also has an effect, but much smaller, because of its influence on approach
weight.
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Total trip time and range are shown in figure 21. Because the longer ranges in
the climb and descent segments (figs. 17 and 19), the lowest engine size provides
the greatest overall range.

APPLICATIONS

To show some of the capabilities of the program, application will now be made to
four different types of aircraft which include: two supersonic transports, one
using JP fuel, the other, liquid-hydrogen fuel; a subsonic propeller-driven
transport; and a hypersonic aircraft using liquid-methane fuel. The baseline air-
craft are shown in figure 1. Nuring the discussion, input variables may be referred
to. For a definition of these variables, see Appendix B,

Sizing Thumbprints

During each computing cycle, selected output from the sizing and mission
analysis are recorded on a file named TAPE14, This data can be used to construct
the sizing "thumbprint"--a diagram that pinpoints the best wing and engiwe size of
the air<-aft., The “thumbprint" contains contours of quantities that are to be
optimized and limit contours of quantities that restrict the choice of wing and
engine size. Examples of optimizing contours are range, gross weight, and seat
miles/gallon, while takeoff field length, fuel limit, maximum rate of climb and
thrust margin are typical limit contours. TAPE14 and an example of all the
information it contains for contouring is described in Appendix C.

A typical "thumbprint" for the supersonic transport, using JP-fuel, with a range
of 4000 nautical miles is shown in fiqure 22(a). To obtain the data for this
"thumbprint," the essential inputs are the required range (RNGDES), wing sizes
(WOSTR), and engine sizes (TOWTB), The contours are for constant gross weight and
they show that a minimum occurs at a wing loading, W/S, of approximately 90 psf and
a thrust-to-weight ratio, T/W, of about .28, The limit contours, however, show that
this combination is unrealistic because the wing is too small to hold the required
fuel, and the takeoff fielqd length is longer than 10,000 feet. If desian require-
ments include a maximum lift-of ¢ speed of 200 K, a maximun approach speed of 160 K,
a maximum takeoff field length of 10,000 feet and a minimum rate of climb during
cruise of 300 ft/min., the choice of wing and engine size are those included within
the boundaries provided by the limit contours for approach speed, takeoff field
length, and rate of climb., Influenced by these restrictions, the conditions for
Towest weight aircraft would change to about W/S = 82 psf and T/W = .32,

Although a low gross weight is an important quantity that decreases the cost of
the afrcraft and its maintenance, it is not the only criteria for selecting wing and
engine size. Quantities that relate to the cost of operating the aircraft may also
be 1important. One of these, which could assume a major role if fuel prices
multiply, 1is a high value of the seat-miles/gallon-of-fuel 1rameter, The
corresponding “"thumbprint" for the supersonic transport with contours of this
parameter is shown in figure 22(b). For this aircraft concept, the conditions for
maximui passenger-miles/gallon are about the same as those for minimum gross weight
with flight restrictions considered.
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"Thumbprints* for the other aircraft are shown in figures 22 to 25. These
include the hydrogen-fueled transport, the subsonic transport, and the methane-
fueled hypersonic aircraft. The “thumbprints" for the transports are at constant
range, whereas the hypersonic “thumbprint® is at constant gross weight. To obtain
this “thumbprint,” inputs for design gross weight (WGDES), wing sizes (WOSTB), and
engine sizes (TOWTB) are required. There are no fuel 1imit Vines on the figures for
the aircraft with cryogenic fuel because these aircraft are sized to hold only the
required fuel. The symbols on the “thumbprints" define the gross weigh* and wing
and engine sizes of the "design-point" aircraft that will be used to show some of
the additional capabilities of the program. Although the capabilities discussed are
divided among the different types of aircraft, applications, in most cases, can be
made to all types.

Supersonic Transport (JP fuel)

Payload - Range "rade.- With design-point inputs for gross weight (WGDES), wing
Toading (WOSDES), thrust-weight ratio (TOWDES), and the payload-range trade
requested (ICALPRC=1), data for the curve shown in figure 26 will be output. The
computing process involves a computing cycle at the design conditions, then
additional cycles with payload off-loaded. Two possibilities can occur when the
payload is off-loaded. The first occurs when the aircraft has ample fuel capacity,
then as payload decreases, fuel is added to keep the gross weight constant. Range
increases because of the increased fuel mass fraction (fuel weight divided by gross
weight). If, however, the aircraft cannot hold the added fuel, the gross weight is
decreased by an amount equal to the weight of the excess fuel. Again the range
increases (fuel-mass fraction has increased) but this time, not as rapidly. These
two conditions are illustrated by the solid and dashed curves in figure 27.

Radius to layload Orop.- A fallout from the payload-range analysis is the
radius-to-payload drop useful for bomber studies. To provide this output, the
program executes two computing cycles--one with full payload and one without
payload. The results are then used to find the point at which the outbound range
with payload equals the inbound range with paylcad out. The program does not
acconunt for the possibility that the altitudes, with and without nayload at the
drop, may not be equal. Typical results for the drop radius compared to radii with
and without payload are shown in figure 27.

Fuel Itt-Loac-ny.- Distances below the design range can be flown with or without
fuel off-loading. Both cases can be treated by the program. Reduced ranges without
fuel off-loading are initiated by inputs in RRTB and solved simply by shortening the
cruise segment the required amount. Reduced ranges with fuel off-loading are
obtained by inputs in OLRTB and complete mission analyses are performed which solve
for the required fuel. From the standpoint of fuel efficiency, fuel off-lvading is
the better of the two bhecause the dead weight of excess fuel is not _arried along.
Figure 28 shows this result as well as the fact that for best fuel efficiency a
redesign of the aircraft for the reduced range capability would be required.

Subsunic uruise cegs.- During a supersonic mission, subsonic cruise may be
required during the outbound and/or inbourd flight segments to avoid sonic boom
problems. If these options are chosen, the range capability of the aircraft is
reduced because of the lower cruise efficiency at subsonic speeds. Typical range
penalties that result from different subsonic nruise ranges are shown in figure 29,
The best subsonic range is, of course, ohtained by all subsonic cruise because of
the extra cruise fuel gained by eliminating the acceleration to crvise Mach number,
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Passenger ioad.- Abreast seating arrangements, to some extent, affect the
atrcraft’s range because changes in fuselage length and fineness ratio alter the
drag and structural weight., This effect is shown in figure 30 where the gross
weight required for a range of 4000 nautical miles with various passenger loads at
different seating arrangenents are shown along with accompanying changes in fuselage
length and fineness ratio. Four or five seats abreast are reasonable choices, but
six-abreast seating is not competitive because of high fuselage drag.

Supersonic Transport (Liquid-Hydrogen Fuel)

In this program, the 1low-density hydrogen fuel is located only in the
fuselage., Since the fuel weight is affected by fuselage size and weight, which, in
turn, changes with fuel weight, aircraft sizing is an iterative process which
continues until the contained fuel equals the required fuel. Because of the large
fuel volume, the maximum equivalent cross-sectional area and length of the fuselage
is not only dependent on passenger load and seating arrangement, as is the case for
noncryogenic fuel, but also on the volume of the fuel tanks., In order to make the
fuselage sizing a tractable problem, the process inay be controlled, through inputs,
to occur at constant fuselage length (KBL), constant maximum equivalent radius
(KBR), or constant fuselage fineness ratio (KBFN). The effects of these choices on
the range capability of several size variations of the aircraft are shown in
figure 31,

An alternative solution to passenger packaging for these large volume aircraft
is the use of two-passenger levels (LEVELS = 2). With this choice, the fuselage
maximum egquivalent cross-sectional area is again dependent on the passenger-abreast
seating arrangement and the fuselage length and fineness ratio cannot be controllea
by input. For comparison, the range for aircraft with two-passenger levels are also
shown in figure 31, For these aircraft, two-level arrangements may be superior and
this inference agrees with industry conclusions in reference 13.

Subsonic Propeller Driven Transport

The performance characteristics of this type of aircraft depend on the design
conditions (altitude, Mach number, and tip speed) of the propeller. These
conditions, which cannot be controlled in the program, must be used to develop the
input characteristics of the baseline engine discussed in Appendix B. The effects
of these propeller design conditions on the baseline aircraft and some of its size
variations, as provided by this program, are discussed in reference 14,

Technology lmprovements.- The effects of technology advances are found by simple
percentage changes in the required areas with interactions in other areas falling
out as a result of the sizing and mission analysis procedures. Areas available for
improvement (or decav) are given in Appendix 8., To illustrate some results, the
sensitivity of gross weight and seat miles/gallon for the subsonic transport to
cha. ,es in ongine weight, propeller weight, specific fuel consumption, drag, and
structural weight are sho-n in figure 32.

Laminar-Turbulent low.- Another tecknical advance that shows considerable
promise, 1f successful, for improving the energy efficiency of the aircraft is
laminar flow control which preserves laminar flow over large areas of the aircruft
components. Potential gains, predicted by the program, are shown {n figure 33 for
various percentages of mixed laminar-turbulent flow,
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Refueling.- The program will compute a refueling segment but it must occur
sometim~ ’;ring cruise. Refuel is initiated by specifying refuel at the start of
cruise (IRFSOC = 1), or at end of cruise (IRFEOC = 1), or at a range (RNGSRF).
During the refuel segment, the fuel taken onboard and the fuel used while cruising
are used to find the net fuel added. Refuel continues until the gross weight of the
afrcraft with net added fuel equals the input weight after refuel (WGARF). Typical
results for various refueling flow rates are shown in figure 34,

CONCLUDING REMARKS

A computer program (ASP) has been developed tc allow preliminary sizing and
performance evaluations for subsonic, supersonic, and hypersonic aircraft that use
either JP, 1liquid-hydrogen, or 1liquid-methane fuel. Both jet and propeller
propulsion systems can be treated. Some of the output the program provides
includes: range for given gross weight and passengers, gross weight for given range
and passengers, passengers for given range and gross weight, payload-range trade,
passenger and fuel off-loading, effects of technology improvements, effects of in-
flight refueling, radius to payload drop, and the basis for preparing aircraft
sfzing “thumbprints” which allow the selection of wing and engine size for best
performance.

The program has been used extensively for in-house studies of subsonic and
supersonic transport aircraft concepts, some of which were developed by industry.
For these, the results obtained by this program agreed very well with those provided
by the companies. For several of the concepts, the progiram has been used to direct
design improvements through changes in wing and engine size. These improvements
were later confirmed by in-depth contractual studies.
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APPENDIX A

WETGHT EQUATIONS

This section contains the empirical relationships used to compute the effects of
sizing on the weight characteristics of the aircraft. The expressions contain only
the essential sizing parameters and, therefore, cannot be used to compute absolute
weights. Instead, weight scaling is done by the following general form.

Wy =W g (F/Fg)

where W; is the weight of the scaled item, wI’BL, the weight of the baseline

item, F, the result of the weight equation(s) applied to the scaled item, and Fgs
the similar result for the baseline item. In this way, the relationships are used
only to account for sizing changes through increments to baseline weights, At
hypersonic speeds, aircraft require "hot-structure" solutions to survive severe
Tocal temperatures, but, as noted, the relationships do not accuunt for this., Even
so, the above approach still seems appropriate, at least from a preliminary
standpoint, because the higher weights for the higher temperatures are introduced
through the baseline aircraft.

The weight relationships are listed below without proof of their validity.

Alsn, since they have bheen obtained from several different industry contractual
studies, a recognition of their source, in most cases, is omitted.

Subsonic Wing Weight

- K W NZtA b (.375 + .7;\)+ s wq'1845 + arp 07
T %s
where
K = 1,427 x 107 (1 - 0,45 N.)(1 + /6.75/b)
Ne number of engines on wing
) wing span
Wg gross weight
N; ultimate load factor
A aspect ratio based on basic trapezoidal planform
A wing tip chord-root chord ratio
S wing reference area
18
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t/c wing thickness-to-chord ratio (weighted average)
KS COS2 A
A sweep angle of the wing quarter chord line

For a wing with multiple panels and varying t/c, the weighted average t/c is
obtained from:

g .2 bp [4 (tre), + (t/c)tJ

t/c =
b/2

Subscripts t and r refer to the tip and root of the panel, bp, the span of the
panel, and N, the number of panels.

Superscnic Wing Weight

(s w153 -1
F, = 0201 — 2 D
W 22
HM
where
y ] Ny (My - Vipy)
M * T Tos R
i WB
My =MW (G + =)
Yo = Wew,p t L Yy (W Mg )
’ nacelles
WB

- ‘
Wew,1 = W w Cr* ) Wy g g Yy Fy

An iterative solution of this cycle of equations is reguired until the initial
estimate and final value of the wing weight, Fy, are about equal. Quantities
that do not change during the iterations are:

Wy = +8803 W

ML L6
C. =Y .;?iﬂi____
R D W w,MAx

if there are no fuel tanks in the wing, Cp = 0.

THM T TA o+ T
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In these equations

S wing reference area

b wing span

‘% weighted average of wing thickness-to-chord ratio

A aspect ratio, bz/S

A wing taper ratio

A sweep angle of wing mid chord

NG gross weight

NE engine weight (one)

Wrp thrust reverser weight (one)

Wy nacelle weight (one)

YN spanwise distance to nacelle-engine combination

wLG landing gear weight

HF’W weight of fuel in wing

HF,W,MAX maximun weight of fuel in wing

NB maximum width of fuselage

The equations for both subsonic and supersoni. wings were provided by Kentron
International, Inc., Kentron Technical Center, Hampton, Virginia.

Canard, Horizontal and Vertical Taiis

The weights of these items are directly proportional to their total wetted areas.

Fuselage

.0
Fe = (N, Wg Sw’c)

where Sw F is the total wetted area of the fuselage
*

Landing Gear

F )025

= (WG L

LG G °F
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where LF = length of fuselage

Nacelles

The weight of the nacelles is directly proportional to their total wetted area.

Engines
Fe = N o
where N = number of engines
T sea-level static thrust of one engine
By engine weight exponent

Thrust Reverser

- .88
Fryp = NET

TR

where NE and T are defined above.

Propeller

wher2 Ep propeller weight exponent.

Gear Box

o 115
Fog = NeT

22
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Miscellaneous Systems

The weight of this item is assumed to be unaffected by sizing.

Fuel Systems for Conventional Fuel

Only the weight of the plumbing is considered for these systems.

For subsonic
design Mach numbers

.825 .38
Fpg = 8.117 (N.) (T)

and for supersnnic design Mach numbers

.565
(e wax)

ps WE W, MAX
(1. + =)

F,MAX

where

wF,MAX maximum fuel load

wF,w,MAX maximum fuel load in wing

Fuel Systems for Cryogenic Fuel

These systems include the weight of the plumhing, fuei tanks and insulation.
Plumbing weight is given by:

F ]075

ps = 01569 (T

+ 25,433 (N_)*8%° (1)+38

T E

where

TT total sea-level static thrust

The weights for the fuel tank and its insulaticn are both directly proportional to
the total wetted area of the fuel tank,
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Surface Controls

If the design Mach number is subsonic

(Lp + »/cosA]S'5
fse T e
TR
where
’ L = length of fuselage
b = wing span
A = sweep angle of quarter chord
S = total wing area
ATR = wing aspect ratio

If design Mach number is supersonic, the weight of the surface controls is directly
proportional to the gross weight of the aircraft.

Auxiliary Power Unit

The weight of this item is assumed to be unaffected by sizing.

. Instruments
i _ oy +354 .5 .68
FIN = NE LF b
Hydraulics
W. .34
' - Gy* .52
where
SCS total area of surface controls
Mp design Mach number
. Avionics
| oy o7
; Fav = g
24
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Flactrical System

ry 10424 .69 . .473
Fep = (M) (Le+ 5)°7 (iyy) |
where ‘
Way weicht of the avionics ]
H

Furnishings and Equiprent

The weight cf this item is directly proporiioral to the number of passengers.

Air Conditiuning

3 1.2 6 [y 1458 j
Fac = (Noag) "7 + 1117 (M) (V)
where
Vp volume of nassenger compartment
NPAS number of passengers
Anti-icing ;
.95 [
Far = " |
Unusable Fuel
1
FUF = 100 NE + ,176 S !
-
Engine 01} _—
i .26 |
Feo = Ye,T

where i

NE,T weight of all engines

Passenger Service

The weight of this item is directly proportional to the number of passengers,
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Cargo Containers

The weight of cargo containers is directly proportional to the maximum cargo
weight,

Crew

Weights for the flight and cabin crew are directly proportional to the number of
crew members.

Passengers and Baggage

Weights for these items are directly proportional to the number of pasiengers.
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APPENDIX B

DEFINITIONS OF INPUT

The program is coded in FUORTRAN Extended Version 4 (ref. 15). Provisions are
made for two input files. One file contains propeller design data and is required
only if propeller output data is to be computed. The data on this file must be
input in the following format.

Colukn Type of Uata
9-10 number ¢f propeller blades, a right justified integer
11-20 Mach number
21-30 propeller advance ratio
31-40 propeller power coefficient
41-50 propeller thrust coefficient

Cata 1s listed by increasing power coefficient at constant advance ratio, then by
increasing advance ratio at constant Mach number, then by increasing Mach number.
During program execution, the file containing this data must be named TAPL3.

The other file contains the input for the baseline aircraft and sizing
options. It is always required and curing execution it must be called TAPES. The
input seyments on TAPES are listecd below in their order of occurrence.

Input segments for sized aircraft

Aircraft ldentification
$PRNTCON

$OESGNVS

STWINFUS

$MISSVB

SRESRV

$TECHCHG

Input segments for baseline aircraft

Wave-Orag Geometry Deck or $SACGE
$AIN

SWTIN

SENIN

Baseline Engine Characteristics

Seoments prefixed by a $ sign are inputs in the NAMELIST format (ref. 15).
Definitions of input variables follow, with default values, if they exist, enclosed
"n parenthesis behind each definition. Variables with parenthesis are arrays and
the included numbers indicate their maximum size.
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INPUT SEGMENTS FOR SIZED AIRCRAFT
The first input is the aircraft identification. It is one free-field line of
8U characters.
SPRNTCON
Inputs in this segment control program output. All inputs are integers with a

value of either 1 or U, Unless noted, a value of 1 activates the option; 0
suppresses it.

IPPRNT =1 prints all output
=0 prints only output for sized aircraft (default)
IPAERU prints aerodynamic data, (V)
IPRPROP prints engine characteristics (U)
[PRWTSH prints weight statement, (0)
IPRMPRT prints mission profile data, (U)
1SCOPE prints output showing progress of execution during interactive

terminal sessions, (0)

$DESGNVS

This input segment contains aircraft design and sizing information. For
clarity, the inputs have been separated into typical groups.

Miscellaneous Nesign Input

ISSAC = 0 for supersonic aircraft (default)
=1 for subsonic aircraft
[SGEUM = { if aircraft geometry is input in wave-drag format (default)
= 1 if aircraft geometry is input in $SACGEM
IJpP =1 for aircraft usirg JP fuel, (0)
[H2 =1 for aircraft using hydrogen fuel, (0)
IMTH =1 for aircraft using methane fuel, (0)
NOFIW =1 for aircraft with no fuel in wing, (U)
IBLAC = { for sizing of baseline aircraft (default)
=1 for no sizing of baseline aircraft
RHOJP density of JP fuel, 1b/gal, (6.75)
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density of liquid hydrogen fuel, 1b/gal, (.592)
density of liquid methane fuel, 1b/gal, (3.54)
density of cargo, lo/ft3, (10.)

reduction in thrust to account for interference effects between
propeller and wing, percent, (0)

The next three variables apply to aircraft using hydrogen or methane fuel.

KBFN
KBL

KBR

OGLW
NPPDGL
STSAB
LEVELS

1
TF

FROES
[PASDES
NENDES
NPDES
RMAXDES
LLBDES
NCARDES
TUWDES
TPEDES
WOSDES

= ] for constant tuselage fineness ratio, (0)
= 1 for constant fuselage length, (1)

=1 for constant fuselage radius, (0)

Passenger Cabin Uesign Input
width of door-galley lavatory, ft, (7.3)
number of passengers per door-galley-lavatory, integer, (75)
number of seats abreast; O provides the baseline value STSABR, (0)

number of passenger levels, 0, 1, or 2; 0 provides the baseiine
value, (0)

wall thickness of passenger cabin, inches, (4)

wall thickness of fuel tanks for liquid hydrogen or methane fuel,

inches (9) )
Specific Design Inputs

design fuselage fineness ratio

number of passengers, integer

number of engines, integer

number of engine nacelles, integer

design radius of fuselage, ft

design length of fuselage, ft

design cargo load, 1b

design th.,ust-to-weight ratio

design single engine thrust, 1b

design wing loading, psf
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REFADES design wing reference area, ft2
WGDES design gross weight, 1b

RNGUES design range, n.mi.

IZMCROES design cruise Mach number

The next six variables apply to subsonic aircraft.

ASPRDES design wing aspect ratio

EDES design endurance, h

POWDES design shaft horsepower-to-weight ratio, hp/ib
SHPDES design shaft horsepower, hp

SQCLES design sweep of winy guarter chord line, deg
WTOCDES design thickress ratic of wing, percent

[f RNGDES is not input, the program solves for the range at input gross weight and
passenger load. If RNGDES is input, the program so!ves for the gross weight that
provides this range at input passenger load.

To find the passenger load for a given range and gross weight, use the following
integer variable,

[GRAWFP =1 (default is 0)
along with inputs for WGDES and RNGDES.

Fach of the above variables, which defaults to its baseline value, is used to
hold that design parameter constant through one or more sizing passes during program
execution, If design parameters are to be changed in each sizing pass during
execution, the following design variable arrays must be used. All arrays are one-
dimensional,

Design Variable Arrays.-

TOWTB(7) an array containing design thrust-to-weight ratios

TPETB(7) an array containing design thrusts for a single engine, 1b
NTOW the number of values in either the TUWTB or TPETB arrays, (0)
WOSTB(7) an array containing design wing loadings, psf

REFATB(7) an array containing design wing reference areas, ft¢

NWOS the number of points in either the WOSTB or REFATB arrays, (0)
ARTH (10) an array containing design wing aspect ratios
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NASPR the number of points in ARTB, (0)
POWTB(7) an array containing shaft horsepowe~-to-weight ratios
NPUOW the number of values in POWTB, (0)

Restrictions on Use of Variables.- Not all of the design variables are
independent parameters. Ihe following restrictions, therefore, are placed on the
use of several of these variables.

1. Since PUWDES, TOWDES, TPEDES, POWTB, TUWTB, and TPETB all control engine
sizing, use only one of these variables.

2. Similarly, WOSDES, REFADES, WOSTB, and REFATB all affect wing sizing,
therefore, use only one.

3. The ARTB array must not be used with any other design variable array.

4, The integer variable IGRAWFP may not be used with any design variable array.

$TWINFUS

This input segment contains input for the geometry of twin-fuselage aircraft.
The only component of this aircraft that can be sized is the propulsion system;
therefore, only the design variables WGDES, TOWDES, TPEDES, and RNGDES are
allowed. If changes in any other design variable, like wing size, passenger load,
etc., are required, a new baseline aircraft (with its aerodynamics weights and
propulsion) must be developed and input.

The only geometry input necessary for twin-fuselage aircraft are the reference
lengths and wetted areas of the components. These are required for skirn-friction
calculations during the mission analysis. To prevent program aborts, however, a
complete geometry input segment in either the wave-drag format or $SACGEM is also
required but any available input segment will suffice because it will 1ot affect
results.

ITWINF =0 for conventional aircraft, (default)
=1 for twin-fuselage aircraft
FURLIN fuselage reference length, ft

FUSWTIN fuselage wetted area, total of both fuselage, ft
TWFREFA wing reference area, ft?
IWSEGIN number of wing segments

WRLIN(2U) a one-dimensional array containing the reference length of each wing
segment, ft

WSWETIN(20) a one-dimenéional array containing the wetted area of each wirg
segment, ft
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CRLIN
CSWETIN
HRLIN
HSWETIN
IFINS

FRLIN(6)

FSWETIN(6)

PRLIN
PSWETIN

B T et B Y

canaru reference length, ft

canard wetted area, ft2

horizontal tail refarence langth, ft
horizontal tail wetted area, ft2
number of vertical fins

a one-dimensional array continuing the reference lengths of the vertical
fins, ft

a one-d%mensional array containing the wetted areas of the vertical
fins, ft

the reference length of one engine pod, ft

the wetted area of one engine pod, ft2

SMISSVR

This segment providés the inputs requir~d for the flight profile analysis. The
inputs, again, have been separated into typical groups.

IENDUR
IRADIUS

OCW

PAYLOAD

PULF

NPASOL

WCAROL

ICALPRC
OLRTB(10)

NOLR

32

Overall liyssion Input

1 mission profile for long enduranc~ air_.aft, integer, (U)

1 provides range to payload drop, integer (0)

operating empty weight, 1b, (if greater than U, this value will replace
the calculated UEW)

total payload weight, 1b, (if greater than 0., this value will replace
the calculated payload)

payload factor, percent (100% gives full payload), (100.)

number of passengers in off-loaded aircraft, integer (-1, the default,
gives no off-loading)

cargo weight in off-loaded aircraft, 1b
(-10, the default, gives no off-loading)

=1 provides data for the range-payload curve, integer, (0)

a one-dimensional array containing the ranges for fuel off-loading,
n.mt,

the number of values in OLRTB, integer, (U)
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RRTB (10)

NRR

IRFSOC
IRFEOC
RNGSRF

RFRIGPM
WGARF

DELTCG
EM
TOFLM

NUTO
FWDTO

ALFOOT
DELTCTO
DTGRUP
T1EQUT
RFF
TXTME
GRALFA
TOALFA
TODELF
TOFLTO

w

a one-dimensional array containing reduced ranges with no fuel
off-loading, n.mi.

the number of values ia RRT8, integer, (0)

1 start refueling at start of cruise, integer, (0)

1 start refueling at end of cruise, integer, (0)

range to start of refuel, n.mi.

(refueling must occur sometime during cruise. If RNGSRF is set too low,
refuel will begin at the start of cruise; if set too high, refuel will
begin at the end of cruise. To activate refueling, the value of RNGSRF
must be greater than 10.), (0)

refuel flow rate, gal/min, (600.)

the aircraft gross weight after refueling, 1b
(-10, the default value, gives the design gross weight)

standard day temperature increment during main mission, deg., C (0.)
surface emissivity, (.8)

thrust deflection during main mission, deg., (0)

Takeoff Input
=1 no takeoff calculations, (0)

fuel weight used during takeoff, 1b
(may also be input as a fraction of gross weight), (0.)

aircraft rotational speed, deg/sec, (3.)

standard day temperature increment during takeoff, deg, C, (0.)
time for landing gear retraction, sec, (10.)

=1 one engine out during takeoff, integer, (0)

rolling friction factor, (.02)

taxi time, min, (10.)

angle of attack bhefore start of rotation, deg (-4)

angle of attack after rotation, deg, (5.5)

flap deflection during takeoff, deg, (30.)

thrust deflection during takeoif, deg, (0.)

33
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TFACT
WEFACT
HOBS
HNOGE

TOCLGR

HASNT (50)

ZMASNT (50)

ICLPR

IMSTTH

ZMMPCL

NCRP
ZMCR
ROCHMIN
CRALT1
CRALT2
18FCR
ICACR
ICLCR

ALFCR

CRTOTH

34

factor for increasing or decreasing net thrust during takeoff, (1.)
corresponding factor for fuel flow, (1.)
obstacle height, ft, (35.)

altitude for disappearance of aerodynamic in-ground effect, ft,
(wing span)

takeoff climb gradient, percent, (6.8)

Climb Input
a one-dimensional array containing the altitudes in the climb profile

a one-dimensional array containing the corresponding Mach numbers in the
climb profile

the number of points in the climb profile

Mach number at which engine throttling may begin to conserve climb fuel,

(.6)

Mach number above which maximum engine thrust is used, (1.)

Cruise Input
the number of points at which cruise calculations are made, (4)
cruise Mach number
the minimum rate of climb during cruise, ft/min
altitude for start of cruise, ft (-10)
altitude for second leq of two-step cruise (-10)
=1 Jives cruise at best available 3reguet factor, integer, (U)
=1 gives cruise at constant altitude, integer, (0)
=1 gives cruise at constant lift coeffficient, integer, (0)
angle of attack for cruise, deg
(Note: this input may be used only if CLAR or ALPHAT are input in
NAMELIST segment 3AIN)
cruise throttling factor (0.)

(if CRTOTM = 1., tull power is applied; if defaulted, CRTOTM is not
used)
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The following input is for subsonic cruise legs on a supersonic mission. Range
or time for cruise may be input, but not both at the same time. Cruise on both legs
may occur.
For subsonic cruise on the outbound leg:
ZMSBCUB cruise Mach number
HSBCUB cruise altitude, ft
SSRNGOB cruise range, n.mi.
TSBCO8 cruise time, min
For subsonic cruise on the inbound leg:
IMSBCIB cruise Mach number
HSBCIB cruise altitude, ft
SSRNGIB cruise range, n.mi, |
TSBCIB cruise time, min |
Input for Long-Endurance Cruise |
CLMAX maximum 1ift coefficient, (2.2) /
NENCR number of engines operating during cruise (-1) :
DCFACT increment in drag coefficient for engines not operating, (0.) 4
VKCR1 velocity at start of cruise, k |
ICONVCR =] for constant cruise velocity, (V) ié
Descent Input ﬁﬁ

ICALDS =1 descent calculations are made
= 0 descent calculations are not made

NUSP the number of points at which descent calculations are made, (4)

DSFF the fraction of fuel flow at maximum power that is used during descent,
(,067)

WFORCF an initial estimate of the fuel used during descent normalized by

aircraft gross weight, (.005)
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APALFA
APDELF
IFXAFLP

VAPIN

Approach Input
angle of attack during approach, deg, (-40)
flap deflection during approach, deg, (30.)
1 uses input flap deflection

0 finds flap deflection for minimum drag, (default)
(used only if VAPIN is input)

no

approach speed, k, (-10)

(if defaulted, approach speed is calculated internally)

Note: VAPIN is used only if aerodynamic data for more than one flap
deflection is input in $AIN.

$RESRV

The input for the reserve fuel legs are placed in this segment.

RFWT

IRCRO

TPFATME

TPFA

ICALMA

RMAFA

AAU

reserve fuel weight, in either pounds or as fraction of gross weight.
(use this input only if reserve fuel calculations are to the bypassed)

0 calculates climb, cruise, and descent segments of reserve
fuel legs
1 calculates only cruise segments of reserve fuel legs, (1)

Trip Fuel Allowance

time at fuel flow at start of cruise, h or min
(use for subsonic aircraft), (0.)

percent of trip fuel
(use for supersonic aircraft), (U.)

Missed Approach

0 uses RMAFA to calculate fuel requirement
1 calculates missed approach to find fuel requirement, (1)

time at takeoff fuel flow, min, (2.0)

Alternate Airport

distance to alternste airport n.mi., (0.)

For this leg, the program normally iterates through Mach number, altitude, and
engine thottling during climb to find the conditions for least fuel. If any of the
following variables are input, iteration on that condition will not be performed.

HALT

36

altitude for cruise to alternate airport
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TOTHMALT factor for engine throttling during climb to cruise, value between U
and 1.
IMALT Mach number for cruise to alternate airport
Hold
THLY time for hold, win
HHLD altitude for hold, ft
ZMHLD Mach number for hold

Again, optimum conditions for least fuel are normally determined but inputs in HHLD
and/or ZMHLD will eliminate the iteration on that condition.
$TECHCHG

This segment contains the inputs for finding the effects of changes in the
technology of the various aircraft systems.

TIML the lowest Mach number at which changes apply, (-1)
TIMH the inghest Mach number at which changes apply, (10.)

TDCLT(15) a one-dimensional array of percentage changes in total drag coefficient,
a function of “ach number; a positive value gives drag reductions

TMDCUT(15) the Mach numbers corresponding to the values in TOCDT
NDCOT the numoer of values in the TUCUT array, (U)

The following input is all in percentages. A positive value gives a technology
improvement. Default values for all inputs are U.

DSFC engine specific fuel consumption
DCOW wave drag
DCORUF roughness drag
DCDAC air-conditioning drag
] DCDBL bleed dray
DCLO zero-lift drag
DCDL drag due to lift
DCOT total drag
37
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DCUFWNG
DCUFCS
DCOFBLY
LCDFPDS
DCUF

DWW ING
DWCHV
DWFUS
DWLG
UWNAC
DWST
DWENG
DWTR
UWTPR
DWTGB
DWMIS
DwPLM
DWFT
DWINS
UWPPS
DWSC
DWAP
DWINST
DWHYD
DWELE

38
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Friction Drag Changes
wing :
canards, horizontal tails, and vertical fins
fuselage

nacelles

tetal friction drag i

Weight Changes v
wing
canard, horizontal tail, vertical fin }
fuselage |
landing gear
nacelles
total structure weight
engines
thrust reversers
propellers
gear box
miscellaneous propulsion system weights
plumbing system
fuel tank for hydrogen or methane fuel : 1
fuel tank insulation for hydrogen or methane fuel
total propulsion system weight
surface controls ¢
auxiliary power

instruments

hydraulics

electrical
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DWAVON
DWFE()
DWACOND
DWANTICE
DWSEQ
DWEMP

DWOEW

i
v

avionics

furnishings and equipment

air conditioning

anti-icing

total systems and equipment weight
empty weight

operating empty weight

Laminar Flow

The following inputs express the percentage of laminar flow on the surface. A
value of 0. gives all turbulent flow; a value of 10U, gives all laminar flow. A1l
default values are 0.

PCLAMW
PCLAMF
FCLAMC
PCLAMH
PCLAMBV
PCLAMWYV
PCLAMP

wing

fuselage

canard

norizontal tail
body vertical fins
wing vertical fins

nacelles

INPUT FOR BASELINE AIRCRAFT GEOMETRY

The geometry for the baseline aircraft can be input by one of two methods. The
first method which applies only to supersonic aircraft uses the zero-lift wave-drag

program format described in raference 7.

This input is very detailed and unless it

is already available from the analysis of wave drag, the effort required to assemble

the information is not justified for this program.

is the use of $SACGEM.

REFA

WXu

$SACGEM

Wing

wing reference area, ft2

The alternate method available

distance from fuselage apex to wing apex at wing centerline, ft

39
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WRC root chord at wing centerline, ft

WTC tip chord, ft

WSPAN wing span, ft

WOXT longitudinal distance from wing apex to leading edge of tip chord, ft
(positive rearward)

YWCRE X spanwise distance from wing centerline to exposed rcot chord, ft

NWBP number of breakpoints in wing leading and trailing edges, an integer. )

Wing apex and tip are not included. If leading edge and trailing edge
break at the same spanwise station, count as one breakpoint.

WDXBP(12) a one-dimensional array of the longitudinal distances from wing apex to
leading edge a* breakpoints, ft (positive rearward)

WYBP(12) a one-dimnensional array of the spanwise distances to the breakpoints ft
WBPC (12) a one-dimensional array of wing chords at the breakpoints, ft

WTOC average maximum wing thickness-chord ratio in percent

Fuselage
FLGTH length, ft
FUPTHMX maximum depth, ft
FWOTHMX maximum width, ft

FRAD maximum radius, ft
(Note: If FRAU is input, FUPTHMX and FWDTHMX inputs are not required)

FWETA total fuselage surface area, ft2

FYULTUT total fuselage volume, ft3

Horizontal Surfaces

The dimersions tor horizontal surfacec are input in the folloiwng one-
dimensional arrays.

NH the number of horizontal surfaces, (¢ maximum)
HDXT(2) the longitudinal distance from the apex of the surface to its leading
edge at the tip, «t
HRC (2) root chord, ft
HTC(2) tip chord, ft
40 '




HSPAN(2 ) span, ft
HTOC (2 ) average thickness-to-chord ratio, percent

HX0(2 ) longitudinal distance from fuselage apex to surface apex, ft

Vertizal Surfaces

The dimensions for the vertical surfaces are input in the following one-
dimensional arrays. A spanwise mounted surface 1is assumed to be located
symmetrically about the fuselage centerline and is counted as one surface.

NV the number of vertical surfaces, (4 maximum)

VDXT (4) the longitudinal distance from the apex of the surface to its leading
edge at the tip, ft

VRC (4) root chord, ft

VTC (4) tip chord, ft

VSPAN(4) span, ft

VTOC (4) average thickness-to-chord ratio, percent
VXo(4) longitudinal distance from fuselage apex to surface apex, ft
VYO (4) spanwise distance from fuselage centerline to surface, ft
Nacelles
A0P(9) a one-dimensional array containing the longitudinal distances from the

fuselage apex to the nacelle, ft

YOP(9) a one-dimensional array containing the spanwise distances from the
fuselage centerline to the nacelle centerline, ft

NP1 the number of nacelles in the above arrays

Spanwise mounted nacelles are counted in the same manner as the vertical
surfaces.

$AIN

The baseline aerodynamic input is located in this segment. Trimmed angle of
attack, lift, and drag data are preferred.

41

T > PR T S ]



g "

B i e e

TALPTOG(15,4)

TrLTOG(15,4)
TCLTUG(15,4)

NTOG

TALPHTO(15,4)
TCLTO(15,4)
TCDTO(15,4)

NTUP

NFD
TFSET(4)
CDGRT(15)

CLGRT(15)
NLGD

OCULG

CLT(15,15)

ALPHAT (15,15)
COPT(15,15)
NAI

42

Takeof f Aerodynamic Input With Ground Effect

a two-timensional array of angle of attack for various flap
deflec.ions, deg

a similar array for the lift co™fficients, CL
a similar array for the drag coefficients, C,
the number of values in each of the above arrays at each flap
deflection, (15 maximum)
(If NTUG = 0, an internal routine is used to calculate values in the
above arrays when the following takeoff input is provided.)
Takeoff Aerodynamic Input Without Ground Effect
angle-of -attack array
lift-coefficient array

drag-coefficient array

the number of values in the above arrays at each flap deflection,
(15 maximum), (U)

the number of flap deflections, (4 maximum) (0)
a one-dimensional array containing the tlap deflections, deg

a one-dimensional array of increments in drag coefficient of the
landing gear as a function of lift coefficient

the corresponding array of 1ift coefficients

the number points in the above arrays, (0)

increment in drag coefficient of landing gear

(independent of lift coefficient, use if HLGD = U
Main Mission Aerodynamic Input

a two-dimensional array of 1lift coefficients for various Mach
numbers

the rorresponding array for angles of attack, deg
the corresponding array for the drag coefficients
the number of values in each of the above arrays at each Mach number

(the value of the first dimension; NAI points must bv input at each
iach number)
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IPBOL =0 aerodynamic input in CLT, ALPHAT, and CDPT will be used for
aerodynamic data (the default value)

= 1 the paravolic polar inputs (COOR, CLAR, OLFR, and CLOR
defined below will be used for aerodynamic data

CDOR(15) a one-dimensional array containing the minimum drag coefficients at
various Mach numbers

CLAR(15) a similar array for the lift-curve slope, per deg

DLFR(15) the array for drag-due-to-l1ift factors

CLOR(15) the array for 1ift coeflicients at minimum drag coefficient

NAJ the number of Mach numbers for the 1ift and drag data (15 maximum)

MAEROT(15) a one-dimensional array containing the Mach numbers for the 1ift and
drag data

THARAD(15) a one-dimensional array containing the altitudes at each Mach number 5

at which the skin friction contributions to drag were calculated !

DELCD(15) a one-dimensional array containing increments in zero-l1ift drag
coefficient for the Mach numbers in MAEROT

CoW{15) a one-dimensional array containing the wave-drag coefficients at
each Mach number in MAEROT

CNRUF (15) 2 similar array of roughness drag coefficients
CDAC(15) a similar array of air-conditioning drag coefficients !

i
CNBL(15) a similar array of engine-bleed drag coefficients g

Note: Input for CDAC and CNBL is required only if values are included in CDPT !
or CNOR,

TWTIN

This segment contains the weights and all other input for the haseline aircraft
but not the engine data. Except where noted default values are 0 and input weights
are in pounds,

Structural Weight Input

WWING wing
WHT horizontal tafl

43
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WvT
WCAN
WFUS

WLG

WFT
WINS
WETINS

TSA

WAP
WINST
WHYD
WELE
WAVON
WFEQ
WACOND
WANTICE

WFCR
IFCR
WCCR
ICCR
WUFUEL
44

verticai tails (sum of all)
canard
fuselage

landing gear

Weight Input for Cryogenic Tanks
(Hydrogen on Methane Fuel)

fuel tank, total

insulation, total

combined weight of fuel tank and insulation

WINS cannot be separated)

total surface area of fuel tank, ft2

System and Equipment Weight Input

surface controls
auxiliary power
instruments

hydraulics

electrical

avionics

furnishings and equipment
air conditioning

anti-icing

Operating Weight Inputs
weight of flight crew
number of flight crew members, integer
weight of cabin crew
number of cabin crew members, integer

unusable fuel

FTTT W ey

(required only if WFT and

!
!
|
!
1
!
1
b
!
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WENO
WPSER
WCCONT

WOPIN

WPAS
IPASR
wPB

WCAR

WGREF
ULF
IMDESBL
STSABR
LVLR
XPASC
VCARMX
BFCILBS
WFCILBS
BFC [GAL
WFCIGAL

engine o0il
passenger service

cargo containers

sum of all operating weights (use only if all individual weights cannot

be supplied)

Payload Weight Input
weight of passengers
number of passengers, integer
passenger baggage

weight of cargo

Miscellaneous Input
gross weignt of baseline aircraft
design load factor, (3.5)
design ilach number for baseline aircraft
number of seats abreast
number of passenger levels, (2 maxirum)
length of passenger compartment, ft
maximum volume for cargo, ft3
maximum fuel capacity in fuselage, 1b
maximum fuel capacity in wing, 1b

fuel capacity in fuselag¢o, gal

fuel capacity in wing, gal

(Note: input for PFCIGAL and WFCIGAL is not required if BFCILBS and

WFCILBS are used)
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$ENIN

Data for the engine and nacelle are input in this segment,

NENR the number of engines, integer

NEW the number of engines mounted on the wing, integer

NEF the number of engines mounted on the fuselage, integer
NPODSR the number of engine nacelles, integer

PDAVG the average diameter of the nacelle, ft

PLGTH the length of the nacelle, ft

ESEXP nacelle length sizing exponent, (.438)

EWEXP engine weight sizing exponent, (1.085)

SLSTHR sea level static thrust for the engine having the following weight, 1b
WENG weight of one engine, 1b

WTR weight of one thrust reverser, 1b

WNAC weight of one engine nacelle, 1b

WMIS total miscellaneous propulsion system weight, 1b

WPLM total propulsion pluimbing system weight, 1b

The following three variables are provided for engine bieed and air-condition
drag. These variables should be used only if the drag items are not included in
gross thrust values or by entries in CDAC and CDBL in JAIN,

DOQINT(15) a one-dimensional array containing the sum of engine bleed and air-
co?dition drags divided by dynamic pressure for e range of Mach numbers,
ft

DUQMT (15)  the corresponding arrav of Mach nuinbers

NBDP the number of Mach nuimbers in the above arrays

Note: These variables cannot be used for engines with two-dimensional inlets.

input for Propeller-tngine Combinations

Propeller-driven aircraft require no additional input if: (1) propeller output
data is not required, (2) the weight of the propeller and gear box are included in
the engine weight, WENG, and (3) the design inputs TUWUES, TPEUDES, TOWTB, or TPETB,
rather than PUWDES, SHPDES, or PUWTB are used to size the propulsion system. This
analysis treats the aircraft as a jet-driven aircraft.
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The propeller wili be treated in more detail, however, if TAPE3, described
previously, is provided and the following data is input.

? ADVRDES design advanced ratio

Qu CPUES design power coefficient

é: CTDES design thrust coefficient

| EPRDES propeller efficiency at design conditioning

EJ . EOVDES overall efficiency of the propeller-engine combination at design

P conditions

?“ ) POU2DBES ;giizzhorsepower-propeller diameter squared ratio at design conditions,

. PTIPS propeller tips speea at design conditons, fps ‘

a DIAMPBL propeller diameter, ft (-10.) i

7 SHPREF shaft horsepower of the engine at sea level static conditions and having

- its weight entered in WENG

j RPMEBL engine RPM

RPMPBL propeller RPM

i PSEXP propeller weight sizing exponent (2.488) -
WTGB weight of one uearbox, 1b (-10.) "
WTPR weight of one propeller, 1b (-10.)

The propeller weight, WIPR, is used to test if a jet analysis the (default case)
. or a propeller analysis is ?to be made. When WTPR 1s input, all of the above
propeller inputs and the P/U° values, described below, are required.

T

Input for Engine with Two-Dimensional Inlets

INL2D = 1 engine nacelles are two-dimensional |
=0 engine nacelles are circular, (default) 3
‘ PWIV2D width of the nacelle, ft :
PHGT2D height of the nacelle, ft
' PLGTH length of the nacelle, ft
3 PSWET2D wetted area of one nacelle, ft¢
P
: 47
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BASELINE ENGINE CHARACTERISTICS

This final input segment contzins four groups of data for the installed
engine., These include the identification of the baseline engine, full-power data as
a function of altitude and Mach number, part-power data, and for engines with two-
dimensional inlets, full-power data as a function of Mach number, angle of attack,
and altitude. The engine identification, the first input of this segment, is one
Tine of free-field input Timited to 80 characters.

The next input provides the full-power characteristics of the engine as a
function of Mach number and altitude. The data format is as follows:

Column Type of Data
1-5 Mach number

6-15 altitude, ft
21-30 gross thrust, 1b
31-40 ram drag, 1b
41-50 ruel flow, 1b/h
51-60 P/02, hp/ft?

Where P/D2 is the shaft horsepower-propeller diameter squared ratio. P/Dz data
is required only if the propeller data described above is input.

The data is arranged by increasing altitude at constant Mach number, then by
increasing Mach number. Up to 15 separate values of altitude and 15 separate values
of Mach number are allowed. On the last line of this data segment, the characters
9. located in columns 2 and 3 are required.

The next group of data pertains only to engines with two-dimensional inlets and
is required only if the effects of angle of attack are to be included in the full-
power data. To indicate the presence of this data group, which is restricted to
supersonic and higher Mach numbers, the first line of input must contain the three
characters -9. in columns 2, 3, and 4. On succeeding lines thereafter, the data is
input in the following format.

Column Type ot ata

1-5 Mach number

6-15 altitude, ft

16-20 angle of attack, deg
21-30 gross thrust, 1b
31-40 ram drag, 1b

41-50 fuel flow, 1b/h

The data is arranged by increasing altitude at constant angle of attack and
constant Mach number, then by increasing angle of attack at constant Mach number,
then by increasing Mach number. Input is restricted to 15 values of Mach number, 3
values of angle of attack at each Mach number, and 3 values of altitude at each
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angle of attack--Mach number combination., Sufficient data must be input to provide
the same number of angles of attack at each Mach number and the same number of
altitudes at each angle of attack--Mach number combination. If this requirement is
not met, the program will abort. To end this data group, the two characters 9. must
be located in columns 2 and 3 on the last line of input.

The last input provides the part-power characteristics of the engine. The
format for this data is:

Column Type of Vata
1-5 Mach number
21-30 gross thrust, 1b
31-40 ram drag, 1b
41-50 fuel flow, 1lb/h

Data is arranged by increasing thrust at constant Mach number, then by increasing
Mach number. The last input of this group must contain the two characters 9.
located in columns 2 and 3.

SAMPLE INPUT LISTING

An input listing that illustrates the content of the previous section is given
in Table Bl, This input is for the design point of the supersonic transport (JP
fuel) shown in figure 22 and the resulting output is discussed in Appendix C.

While the sizing “"thumbprint" (fig. 22) provides fairly accurate values of W/S
and T/W for the design point, the gross weight value is very approximate. To nore
accurately determine this value, the computer must be directed to find the gross
weight that provides the design range at the design point conditions. This is done
in input segment $DESGNVB by inputs for the required range (RNGDES = 4000.), wing
loading (WOSDES = &.), and thrust-weight ratio (TOWDES = ,32), These and the other
inpuis for the sized aircraft are shown in Table B1,
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ENDIX C

VUTPUT

The output from the program is containad on three mass storage files. Unless
changed by the user at execution time, these files are labeled TAPE6, TAPEll, and
TAPE14, TAPE 6 contains a listing of all the results providea by the program,
TAPEL1l contains selected data in a format suitable for input to a plotting program,
and TAPE14 contains the basis for preparing sizing “thumbprints,"

TAPE6

On this file, several types of output are available. These include the
preliminary output, sized aircraft output, a short listing of selected output
quantities, weight statement, and a mission profile output.

Preliminary Jutput.- This printout, which is optional and obtained with
IPPRNT=T 1n SKRNICUE, contains a 1listing of the input values for all input
seqments. Because of its length, an example of this output is not given here.

Siceu Aircraft vutput.- This printout, which cannot be suppressed, contains the
results for each sizing variation requested, A listing of the output that results
from the input for the design-point aircraft given in Table Bl 1is given in
Table Cl. A short summary of this listing is also output and this i3 shown in
Table C2. A listing of the weight statement, if selected by IPRWTSM=1, is given in
Table C3. With IPRMPRF~1, mission profile results are output and these are listed
in Table C4.

TAPEL]

This file, produced for every computer cycle, contains the same parameters as
the short output list (Table C2) located cn TAPE6. The file is formatted to allow
the sizing and performance resulis to be plotted during interactive plotting
sessions where the abscissa and ordinate of the plots are identified by the indices
of the chosen variables. Tne indices are the numbers of the variables on the short
output list in Table C2. An illustration of the listing this file contains is shown
in Tahle C5 and the different sections of data correspond to different computer
cycles in which the sizing parameters are varied. The first section contains the
same results as the short oucput list (Table C2) for the design point aircraft; the
remaining sections contain the results for a systematic variation in thrust-to-
weight ratio at constant wing loading. The integer at the beginning of each section
has a constant value for all sections of data that belong to the same curve (in this
case, a constant value of wing loading).

TAPE14

This file contains the basis for preparing sizing "thumbprints" 1ike that shown
in figure 22. Unlike TAPE6 and TAPEll, this file is produced only when a matrix of
wing and engine size variations are to be computed. To produce the "thumbprint" for
the supersonic transport, (fig. 22), inputs were required for the design range
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(RNGDES = 4000,), an array of values for wing loading (WOSTB = 110., 10U., 90., 80.,
70., 60., 50.), an array of tarust-to-weight ratios (TOWTB = .25, .30, .35, .40,
.45, .50, .55), along with NWGS = 7 and NTOW = 7, The values that resulted from one
computer run are shown in Table C6., The listing contains the abscissa values of
wing loading, the ordinate values of thrust-to-weight ratio, and the values of the
parameters to be contoured that are functions of wing and engine size. The rows
provide the change in data with W/S at constant T/W, whereas the columns give the
data change with T/W at constant W/S., The large negative values (-1000000) are
default values used where n3 snlutions were obtained.

Table C6 identifies all the parameters that are available for contouring. To
obtain the coordinates of the actual contours, the data on this file can be either
cross-plotted by hand or TAPE14 can be used to prepare an input file for a
contouring program.
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APPENDIX D i

JOB CUNTROL CARUDS

The program executes on the Network Operating System (NOS) Version 1.4 currently
in use at the Langley Research Center. The control cards required for execution
are:

GET, ASP/UN = 273347 ,
ASP (FS5, F6, Fll, F14)
where
FS5 is the file containing the baseline aircraft input and sizing
options (TAPES)
F6 is the output file (TAPLG)
F11 is the file containing plot data (TAPE1ll)

F14 is the file contaiaing the data for contour plots (TAPEL4)

Note: Although the file containing the propeller design data (TAPE3) does not i

appear in the execution card ASP, it must be a local file during execution.

The storage requirement for program execution is about 210,000 (octal) words.

L d
e kit A b w
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13.

14,

15.
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Figure 27.- Effect of sizing on mission radius. Supersonic
transport. P fus, WG‘ = 643633 b
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Figure 31.- Effect of fuselage design variables on range.
Supersonic transport liquid hydrogen fusi,

WG = 494,000 .
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