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FOREWORD

This report has been prepared to expedite early domestic dissemination

of the information generated under the contract. The data and conclusions

must be considered preliminary and subject to change as further progress is

made on this program. This is a progress report covering the work done during

the second 12 months of the contract, and it is not a final report. The NASA

Program Manager is Dr. M.S. Hirschbein.

ABSTRACT

Accomplishments are described for the 'second year effort of a 3-year pro-

gram to develop methodology for component specific modeling of aircraft engine

hot section components (turbine blades, turbine vanes, and burner liners).

These accomplishments include: (1) engine thermodynamic and mission models,

(2) geometry model generators, (3) remeshing, (4) specialty 3-D inelastic

structural analysis, (5) computationally efficient solvers, (6) adaptive

solution strategies, (7) engine performance parameters/component response

variables decomposition and synthesis, (8) integrated software architecture

and development, and (9) validation cases for software developed.
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NOMENCLATURE

C = Bound on creep strain gradient

C = Bound on plastic strain gradient

(L, = Maximum allowable sum of R.
X\ 1

C-.., = Lower bound for R. for possible remeshing
Kill i

C_,. = Maximum allowable upper bound for R.Kiu x

C = Bound separating remeshing from re-solvings

E = Absolute error in vector norms

T>

E = Relative error in vector norms

{F} = Vector of external forces in FEM analysis

h = Convection heat transfer coefficient
C Btu

hr-ft2-°F

h = Equivalent heat transfer coefficient for radiation
to casing Btu

hr-ftz-°F

K = Metal conductivity, Btu
ft2-hr-°F

[K] = Stiffness matrix for FEM analysis

P3 = Compressor discharge total pressure, psia

Q/A = Heat flux through material, Btu
hr-ftz

{R} = Vector of residual forces in FEM analysis

R. = i residual force

ix



THTD = General Electric proprietary 3D transient heat
transfer analysis computer program

TOL = Tolerance on local integration error

T— = Hot side metal temperature, °Fn

T = Cold side metal temperature, °F

= Bulk liner temperature, °F

13 = Compressor discharge temperature, °F

T4 = HP turbine rotor inlet temperature, °F

T4l = HP turbine inlet gas temperature, °F

T. . = Temperature at position i j , °F

T . . = Combustor metal temperature at position
ij , °F

t = Material thickness, Pt

At. = Current time subincrement
i

At. = Next time subincrement

W41 = Turbine airflow, ///sec

11X11 = Vector norm

YC = Cooling effectiveness, dimensionless

k, n, m, q, r = Temperature dependent material
creep parameters

{S} = Vector of displacements in FEM analysis

(AS ) ,. ,, = Maximum allowable stress changev e allowable s



(AS ) = .Maximum change in stress occurring in
the current time step.

E = Creep strain, m/m

E = Plastic strain, in/in
P '

E. = Total strain at point i, in/in

E. = Creep strain at point i, in/in

E. = Elastic strain at point i, in/in

p
E. = Plastic strain at point i, in/in

E. = Thermal strain at point i, in/in

"IE = Second derivative of the inelastic
strain rate

(AE ) ,, , , = Maximum allowable inelastic
e allowable . .strain increment.

(AE ) - Maximum inelastic strain increment
occurring in the current time step

N = Nominal cooling effectiveness, dimen-
sionless

N = Cooling effectiveness at specified span,
dimensionless

N = Cooling effectiveness at raidspan, dimen-
sionless

xi



1.0 INTRODUCTION

Modern jet engine design imposes extremely high loadings and temperatures

on hot section components. Fuel costs dictate that minimum weight components

be used wherever possible. In order to satisfy these two criteria, designers

are turning toward improved materials and innovative designs. Along with

these approaches, they also must have more accurate, more economical, and more

comprehensive analytical methods.

Numerous analytical methods are available that can, in principle, handle

any problem that might arise. However, the time and expense required to pro-

duce acceptable solutions is often excessive. This program addresses this

problem by setting out a plan to create specialized software packages which

will provide the necessary answers in an efficient, user-oriented, stream-

lined fashion. Separate component-specific models will be created for burner

liners, turbine blades, and turbine vanes using fundamental data from many

technical areas. The methods developed will be simple to execute, but they

will not be simple in concept. The problem is extremely complex and only by a

thorough understanding of the details can the important technical approaches

be extracted. The packaging of these interdisciplinary approaches into a

total system must conform to the modular requirements for useful computer pro-

grams .

The overall objective of this program is to develop and verify a series

of interdisciplinary modeling and analysis techniques that have been special-

ized to address three specific hot section components. These techniques will

incorporate data as well as theoretical methods from many diverse areas

including cycle and performance analysis, heat transfer analysis, linear and

nonlinear stress analysis, and mission analysis. Building on the proven tech-

niques already available in these fields, the new methods developed through

this contract will be integrated to provide an accurate, efficient, and uni-

fied approach to analyzing combustor burner liners, hollow air-cooled turbine

blades, and air-cooled turbine vanes. For these components, the methods

developed will predict temperature, deformation, stress, and strain histories

throughout a complete flight mission.



This program, to a great extent, draws on prior experience. This base of

experience is invaluable for understanding the highly complex intersctions

among all the different technical disciplines as well as for estimating the

importance of different engine parameters. In particular, there are four spe-

cific areas in which experience is especially beneficial.

First, with the recent increases in fuel costs, greater emphasis has been

placed on'more accurate solutions for stresses and strains in order to under-

stand and improve the durability and life of hot section components; Conven-

tional linear elastic analyses are no longer sufficient instead, they now

provide the boundary values for more refined creep and plasticity calculations.

These nonlinear analyses are now performed routinely as part of the design

process at General Electric." This extensive experience with these plasticity

arid creep methods contributes directly to developing component specific models.

Second, advances in 3-D modeling capability are being achieved by the

concepts developed under the NASA-supported ESMOSS program. ESMOSS concepts

provide the basis to develop an efficient modeling system for geometric and

discretized models of engine components.

Third, the NASA-funded Burner Liner Thermal/Structural Load Modeling Pro-

gram contributes strong support to this program. The specific area addressed,

transfer of data from a"3-D heat transfer analysis model to a 3-D stress analy-

sis model, will provide the background and framework for the data interpolation

required for all thermomechanical models in this contract.

Fourth, over the past 10 years General Electric has developed internally

a family of computer programs: LASTS, OPSEV, and HOTSAM; These programs all

have the common thread of using selected points from cycle data, heat transfer,

and stress analyses and a decomposition/synthesis approach to produce accurate

values of temperature, stress, and strain throughout a mission. These programs

are totally consistent with the overall objectives of this program, and repre-

sent a proven technology base upon which the component specific models are

being developed. Significant advances being made are the inclusion of non-

linear effects and the introduction of improved modeling and data transfer

techniques.



The program is organized into nine tasks which can logically be separated

into two broadly parallel activities (Figure 1). On the right of Figure 1 we

have the Component Specific Thermomechanical Load Mission Modeling path.

Along this path a Decomposition/Synthesis approach is being taken. In broad

terms, methods are being developed to generate approximate numerical models

for the engine cycle and the aerodynamic and heat transfer analyses needed to

provide the input conditions for hot parts stress and life analysis.

The left path, Component Specific Structural Modeling provides the tools

to develop and analyze finite element nonlinear stress analysis models of com-

bustor liners and turbine blades and vanes. These two -paths are shown in more

detail in Figures 2 and 3.

Software Development, Task IV, consists of planning and writing the com-

puter programs for both paths, with the necessary interconnections, using a

structured, top down approach.

In the Thermomechanical Load Mission Modeling portion of the program

(Figure 2), we are developing in Task III a Thermodynamic Engine Model which

generates the engine internal flow variables for any point on the operating

mission. The method for doing this is described below. Task V is developing

techniques to decompose flight missions into characteristic mission segments.

In Task VII a Thermomechanical Mission Model is being developed. This uses

the flow variables from the Thermodynamic Model to determine metal temperature

and pressure distributions for a representative combustor liner and turbine

blade and vane.

Individual tasks for the Structural Modeling activity are shown in Figure

3. The requirements of Software Design, Task II, have been factored into Task

VI, the evaluation of the structural analysis methods which were selected for

evaluation in Task I. Task VIII provides the capability for structurally

modeling current state-of-the-art combustor liners and hollow turbine blades

and vanes, given the defining dimensional parameters. These parameters will

be chosen to facilitate parametric studies.

The component specific models are being developed in two steps. In the

first a geometric modell is defined. In the application of the Component
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Specific Modeling Program these data are then transferred to the Thermomechan-

ical Load Mission Model to provide the geometry for determining component

pressures and temperatures. Thus, a data transfer link is being developed to

do this in Task IV, Software Development. The capability for generating from

the geometric model a discretized, finite element model is also a part of Task

VIII. At this point another link between the two paths is needed to transfer

the component temperatures and pressures from the Thermomechanical Load Model

to the finite element model, interpolating the data as needed to define nodal

temperatures and pressures. This also is being completed in Task IV.

1.1 EXECUTIVE SUMMARY

The objective of this program is to develop and verify a system of inter-

disciplinary modeling and analysis techniques specific to three hot section

components of gas turbine engines. These techniques will incorporate data

and theoretical methods from cycle and performance analysis, heat transfer

analysis, linear and nonlinear stress analysis, and mission analysis. Comb-

ining and expanding on proven techniques, this program will provide an inte-

grated system for accurate and efficient prediction of temperature, deformation,

stress and strain histories throughout a complete flight mission. The system

will be specialized for combustor liners, hollow, air-cooled turbine vanes

and turbine blades.

Performance of the program will be accomplished in two parallel work

efforts as depicted in Figure 1. A Structural Modeling effort includes eval-

uation of existing analysis methods, design of software to implement the

chosen methods, and development of geometric modeling and structural analysis

capabilities. The survey and design of this part of the system is complete

and the geometric modeling capability has been demonstrated. Some finite

element mesh refinement and self-adaptive solution techniques have been

developed and are being implemented.

The second work effort involved development of a thermodynamic engine

model, a thermomechanical load mission model, and a mission model decomp-

osition and synthesis capability. The thermodynamic engine model is complete.

The thermomechanical load model is being implemented, and development of

decomposition and synthesis techniques is well along. No technical barriers

have been encountered and the program is expected to be completed as planned.



2.0 TECHNICAL PROGRESS

2.1 TASK I - LITERATURE SURVEY

The first task of this program was to perform a literature survey of

available methods, techniques, and solution strategies that can be used to

geometrically model, display, and structurally analyze burner liner, turbine

blades and vanes. NTIS, NASA, DTIC, and internal General Electric Company

documents were searched. As a result of this survey, 85 papers and 8 books

and procedures were discovered with pertinent information. As a result of

evaluating this information, recommendations were made on the technology to be

incorporated into the base and advanced portions of this program to the NASA

Program Manager. The NASA Program Manager approved the following program

content:

GEOMETRIC SHAPE GEOMETRIES

Base Program

• ESMOSS - considered commercial and university codes

Advanced Program

• ESMOSS

LINEAR AND NONLINEAR FINITE ELEMENT METHODS

Base Program

• 8-, 16-, and 20-noded isoparametric elements - considered beams,
plates, and shells

Advanced Program

• Supplements from 3D inelastic program

• Decomposition and synthesis methods



SPECIALTY ELEMENTS

Base Program

• None - considered slave, large FEM, hybrid, embedded hole

Advanced Program

• Supplements from 3D inelastic program

• Decomposition and synthesis methods

NON-FINITE ELEMENT METHODS

Base Program

• None - considered finite difference, boundary integral

Advanced Program

• Supplements from 3D inelastic program

• Decomposition and synthesis methods

STIFFNESS AND MASS MATRIX ASSEMBLY TECHNIQUES

Base Program

• Element level algorithm

Advanced Program

• Frontal solution methods

• Supplements from 3D inelastic program

MATERIAL BEHAVIOR CHARACTERISTICS

Base Program Elastic Inelastic

• Isotropic X X

• Orthotropic X

• Temperature-dependent X X

• Cyclic Plasticity X

• Creep X



Advanced Program Elastic Inelastic

• Viscoplasticity X

• Anisotropic X X

SOLUTION TECHNIQUE

Base Program

• SESOL (sparse matrix solver, skyline storage scheme)

Advanced Program

• Vectorized COLSOL (active column solver, compacted storage)

• Frontal solution methods

LINEAR AND NONLINEAR SUBSTRUCTURES

Base Program

• Superelements

• Conventional finite element

Advanced Program

•• Multilevel substructuring

SOLUTION STRATEGIES

Base Program

• Dynamic time incrementation

• Dynamic load incrementation

• Solution acceleration schemes - Aitkens extrapolation, Over-

relaxation scheme

Advanced Program

• Supplements from 3D inelastic program

• Padovan's techniques



CENTRIFUGAL STIFFNESS MATRIX FORMULATION

Base Program

• Two-step method

Advanced Program

• Large deformation method (updated Lagrangian)

EIGENVALUE AND EIGENVECTOR EXTRACTION

Base Program

• Subspace iteration

• Master nodes

Advanced Program

• Lanczos method

AUTOMATIC DISCRETIZATION PROCEDURE

Base Program

• ESMOSS

• Master regions - considered commercial and university codes

Advanced Program

• ESMOSS

REMESHING AND GRID OPTIMIZATION

Base Program

• Progressive subdivision

• Constraint equations

Advanced Program

• Total realignment

• Element upgrade

10



DATA DISPLAY

Base Program

• ESMOSS

Advanced Program

• NASA in-house

PROVEN DATA SETS

Stress-Strain Decomposition and Synthesis Techniques .

• Turbine blade nonlinear structural life analysis

• Multiaxial cyclic thermoplasticity analysis with Besseling's sub-

volume method

Component Temperature and Pressure Synthesis Techniques

• Rolled ring combustor

• High pressure sector test

• Single shank turbine blade

• Turbine vanes .

• Thermodynamic engine model

• Thermomechanical loads model - build on in-house expertise: OPSEV,

OPSEV-A, LASTS, HOTSAM

Survey of 3-D Heat Transfer Codes

• Used survey results from "burner liner thermal structural load

modeling"

• Use internal THT-D program for development work

• Thermal loads transfer module uses MARC or SINDA available to NASA

11



2.2 TASK II - DESIGN OF STRUCTURAL ANALYSIS SOFTWARE ARCHITECTURE

The software architecture was designed using the methodology developed on

the ESMOSS program. This development was carried out by a team whose members

provided expertise in all of the pertinent areas. The architecture approved

by the NASA Program Manager is contained in Appendix A. In addition to the

program architecture, the preprocessor and postprocessor attributes are

defined.

2.3 TASK III - THERMODYNAMIC ENGINE MODEL

The Thermodynamic Engine Model (TDE) was completed and approved by the

NASA Program Manager in 1983 .
•

2.4 TASK IV - SOFTWARE DEVELOPMENT

This task consists of planning and writing the computer codes for both

paths of this program with the necessary interconnectors. As such, it is a

continuous and ongoing effort with the substance being covered under the other

task headings.

2.5 TASK V - MISSION MODEL DEVELOPMENT

2.5.1 Component -Temperature and Pressure Decomposition and Synthesis

Based on our efforts in 1983 and the developments described below, a

Component Temperature and Pressure Decomposition and Synthesis Plan was

approved by the NASA Program Manager. This plan is outlined in Appendix B.

2.5.1.1 Combustor Liner Temperature and Pressure Decomposition
and Synthesis

An expression for the temperature gradient through the material thickness

can be derived from the cooling effectiveness, the compressor discharge

temperature, and the combustor exit temperature. The temperature gradient

through the material can be calculated from

*R.L. McKnight, "Component - Specific Modeling," Annual Status Report, NAS3-

23687, 1983.

12



- T = (1)
C K k J

where

!„ = Hot side metal temperature, ° Fn
T- = Cold side metal temperature, ° F
C

Q/A = Heat flux through material

t = Material thickness, ft

BtuK = Metal conductivity —r-
ft -hr-° F/ft

The heat flux can be calculated from

Q/A = (hc H- hr)(Tc - T3) (2)

or it is proportional to (TT. - To).Liner -̂

Q/A= (*c+hr)(TL.ner-T3) (3)

where
2

h = Convection heat transfer coefficient Btu/hr-ft -° F

hr = Equivalent heat transfer coefficient for radiation to casing

Btu/hr-ft2-0 F

T,. = Bulk liner temperature, ° F

Substituting the heat flux expression into the gradient equation (1)

gives

T - Tc (h + hr)t

CT . T ) .
CTLiner T3J K

using the equation for cooling effectiveness,

T - T4 Liner ,->.
yc = T, - T, (5)

13



An. equation for (TT . - T«) can be written as follows;
.Liner j

- ' c 4 c 3

Substituting Equation 6 into the expression (4) gives

(6)

T - T
* ot

(hc + hr)t

K
(7)

The convection term, h , varies with pressure and thus the gradient through

the material thickness should be correlated with pressure.

A THTD analysis was done at several pressure conditions and the calcu-

lated temperature gradients were plotted vs P3 for several axial locations and

the results are shown in Figure 4. The locations and coordinates are shown in

Figure 5. As shown in the figure, the gradient data are correlated with

pressure. The constants m and b in the equation

T - T
* X T - T

T - TxLiner X -ye> (h -

are tabulated in Table I.

(8)

Table I. Linear Fit Constants for Equation (8)

Location

1

2

3

4

5

X, inches

0.094

0.438

0.654

0.854

1.114

m

12.3 x ID'5

14.1 x 10-5

9.0 x 10-5

10.7 x 10-5

28.1 x 10~5

b

0.100

0.061

0.061

0.092

0.168

14
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Given the combustor exit temperature, T , the compressor discharge pres-

sure, PO, and the compressor discharge temperature, T», the temperature gra-

dient through material thickness can be calculated from Equation 8 using the

cooling effectiveness and the constants from Table I.

2.5.1.2 Turbine Blade and Vane Temperature and Pressure
Decomposition and Synthesis

The spanwise distribution of overall local cooling effectiveness has been

completed for two different Stage 1 HP turbine blades. The results are

compared in the attached Figure 6 which is based on Transient Heat Transfer

Analysis runs for 15, 50, and 77 % of blade span. The ratio of

c 50% *s unity by definition at the 50% span location. At the other

two spans, the h ratio is identified for each of the sixteen points around

the airfoil. The curves have been terminated at the locus or the average h

ratio for each span.

For the first blade, this procedure defined a single curve for the press-

ure and suction surfaces. However, the other blade is better represented by a

two-branch curve at the 77% percent span (Figure 7) . We have reviewed the two

blade designs for possible explanations of this characteristic. There is no

obvious single cause. It is undoubtedly the combined result of configuration,

coolant circuitry, the application of film cooling and variations in gas-side

heat-transfer coefficients.

It appears best to allow for incorporating separate curves for the pres-

sure and suction surfaces, with freedom to input these curves for different

blade designs. This is probably the thing to do for the second blade defining

a separate curve for the pressure surface between Points 2 and 6 (Fig. 7).

Points 7 and 8 appear to be represented quite well by the curve for the

suction surface. Using the suction surface curve for Points 2 through 6 could

overpredict the temperatures by about 135° F at the 77% span.

2.5.2 Stress-Strain Decomposition and Synthesis

The decomposition and synthesis of stresses, strains, and deformations is

technically the most challenging portion of this program. It requires
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innovative methods to produce usable results for burner liners, turbine blades,

and vanes. Thus, our goal under this task has been to compile a library of

possible decomposition and synthesis techniques and to assess their validity.

Among the techniques being considered are the following:

• Assume that the structure remains totally elastic at all stress
levels and do the decomposition and synthesis based on an elastic
"pseudostress."

• Assume that the structure is deformation-controlled (strain range
invariance). The first level of decomposition and synthesis would
be based on deformations (total strains). A second level of
synthesis could then introduce the effects of plasticity and creep
by using the material response characteristics to partition the
total strain into elastic, plastic, and creep components.

• Assume that the structure is load-controlled (stress invariance).
Decomposition and a first level of synthesis would be based on load
terms reflecting the centrifugal loadings and the temperature and
pressure distributions. A second level of synthesis could then
introduce the effects of plasticity and creep by using the material
response characteristics to determine the elastic, plastic, and
creep strains that would be caused by the total load.

• Use simplified nonlinear finite element modeling to decompose and
synthesize the stresses, strains, and deformations in terms of the
set of analyzed mission components. These simplified models could
be either one 2D or 3D element or a nonlinear substructure. These
models could use boundary conditons from the detailed analysis or
they could be run as an intimate part of the detailed analysis.

• Apply the method of superposition for the decomposition and
sysnthesis of stresses, strains, and deformations. This method
would be investigated based on the following hierarchy of calculated
parameters:

deformations
strains
stresses

We will determine to what degree these parameters can be decomposed
and synthesized by superposing the results from the individual load-
ing functions (temperature, pressure, rpm).

• Use linear and nonlinear interpolation of the results of a detailed
analysis for decomposing and synthesizing stresses, strains, and
deformations. The interpolating parameters would be second-level
predicted temperatures, pressures, and rpm's.

• Form look-up tables of deformations, stresses, and strains as
functions of temperatures, pressures, and rpm's. These tables would
then be used to decompose and synthesize the mission cycles.

20



• Finally, generate from test data an empirical model relating
stresses, strains, and deformations to temperatures, pressures, and
rpm's. With this model, mission cycles could be decomposed and new
ones synthesized.

We have developed the following general methodology:

A. Know the component in question.

B. Know the thennomechanical load cycle.

C. Know the total response of the generic component through a detailed
finite element analysis .

1. The detailed analysis will encompass total thermomechanical
loading conditions.

2. From the detailed analysis:

a. Can locate and categorize the critical location(s) in a
specific component

• User defined
• Automated procedure

b. Categorize the stress/strain response at the critical
location

• Uniaxial
• Biaxial
• Triaxial

c. Identify the generic mode of load application

Tension
Compression
Thermal
Pressure
RPM (Inertia)
Strain (Displacement) Control
Load Control

- Consider the effect of load split and the super-
position of loads

Material Behavior

Elastic
Elastic/Plastic
Elastic/Creep
Elastic/Plastic/Creep
Flow Rule and Yield Criteria Used
Creep Formulation Used

- Rank and/or prioritize the ability to synthesize
desired material response
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Decomposition Techniques:

A. Assess the methodology used to-date in our attempt to decompose the
thermomechanical response history of baseline models.

B. Serving as baseline data sets are two models previously validated
under other NASA programs.

1. "Turbine Blade Tip Model" NASA CR-165268

• Uniaxial strain cycling conditions

• Simulation of complex strain/temperature cycling
conditions

2. "Inelastic Shingled Combustor Hot Spot" NASA CR-2278

• Biaxial strain cycling conditions
• Simulation of a very complex thermal cycle

C. Have used CYANIDE, our in-house nonlinear finite element code to
analyze such models under select conditions

1. Have economically and efficiently created a preliminary data
base.

2. Have resorted to use of the code because we have little or no
relevant experimental data having direct application to our
specific needs.

3. Have yet to determine if the content of the data base encom-
passes all the information we may require in the synthesis of
stress, strains and deformations.

D. Are presently evaluating the concept of degenerating thermomechani-
cal response into component parts.

1. For our situation, is the superposition of thermomechanical
response a valid technique and does it suit our needs?

• Can the total response be characterized as a sum, a
function of the sum, or some function of the individual
response?

• To date we have concerned ourselves only with elemental
results - strains in particular. Can the concept be
extended to include displacements and/or stresses?

Synthesis Techniques:

A. For each specific component, construct an algorithm to compute fixed
point mission-time profiles of "local" stresses, strains, and
displacements. Essential to this effort is the assumption that we
need only synthesize the response on the local level.
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B. Will base the synthesis techniques on a defined set mission-segment
component-station characteristics.

• This may include the TML matrix and the characterization
procedure noted in general methodology.

C. Once the response at the critical location has been characterized,
the synthesis of local response can proceed along assorted paths.

• Generate empirical relations between loads and deformation
states.

• Generate closed form solutions.

• Perform a parallel path solution utilizing another analysis
code.

D. Assemble the parameters defining local response and make them
available to the user.

This year's effort in the stress/strain decomposition and synthesis tech-

niques has focused on the development of methods to predict structural

behavior in response to a defined set of loads. These methods are based on

the premise that the structural response to an arbitrary set of loads can be

accurately predicted, provided that the current loads are perceived as being

small pertubations of the loads used in a previous analysis. We are examining

the use of linear and nonlinear interpolation routines to use the information

obtained from a prior analysis to synthesize current nonlinear strain response.

To circumvent the complex behavior, exhibited in a two or three-dimensional

analysis, it was decided to first limit ourselves to simple uniaxial condi-

tions . For our work we would examine a uniaxial specimen under the following .

conditions:

1. No time-dependent material behavior

• Total strain can be separated into elastic and plastic
components

2. Consider only small inelastic and plastic components

• Range from 0.4% to 0.6%

3. Consider a limited temperature range

• Range from 600° F to 1200° F

4. Will examine only simple load cycles
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Our in-house nonlinear finite element code was used to analyze a uniaxial

model under various loading conditions; The results from the analyses that

constitute our data base are tabulated and presented in Table II. Equations

that express the plastic strain as a function of load and temperature were

defined and are presented in Table III. These equations and linear interpola-

tion were used to predict plastic strain response for various load cycles.

Table II. Data Base.

T/P

Total Str

110
120
130
140

Plastic S

110
120
130
140

600

ains

4381
4995
5630
6314

trains

430
685
961
1296

700

4480
5101
5735
6442

468
724
993
1336

800

4580
5207
5839
6572

505
761
1023
1385

900

4683
5312
5943
6705

542
795
1049
1435

1000

4787
5417
6057
6840

579
827
1084
1485

1100

4892
5521
6187
6979

615
855
1132
1534

1200

5000
5625
6320
7158

650
880
1180
1622

Having the data base in place and the relationship for plastic strain

defined, assorted load cycles could be defined to test the quality (accuracy)

of the strain prediction techniques. Four load cycles are presented in Figure

8. Table IV illustrates the results obtained when the plastic strains are

defined as being a function of stress. In Table V, predicted strains are

those determined via our synthesis techniques and the computed strains are

those strains obtained directly from our finite element code. Table VI illu-

strates the results obtained for cycle No. 4 when four separate methods of

strain prediction are compared.

In our investigation of stress-strain decomposition and synthesis tech-

niques we continued to use the combustor liner shingle segment model presented

in Footnote 1. Noting that the thermal stress-strain response of the model is

biaxial, our efforts are directed toward examining the nonlinear stress-strain

behavior (or the history) of a defined critical location.



Table III. Plastic Strain as a Function of Temperature and Pressure.

Plastic Strain = f (Temperature)

£p = AT>B

Pressure (ksi)

110

120

130

140

Plastic

Temperature (° F)

600

700

800

900

1000

1100

1200

Plastic Strain

e

where,

A

9.33347E-6

6.66123E-5

1.515E-4

1.633E-4

Strain = (Pressure)

Ep = APB

A .

2.59397E-13

7.35291E-13

1.18710E-12

4.07319E-12

7.94597E-12

1.29902E-11

1.27499E-11

= f (Temperature &

p = A + BT + CP

A = 03

B = 3.

C = 2.

B

0.5977902

0.3643609

0.2868058

0.3208346

B

4.522953

4.317914

4.140312

3.982063

3.85249

3.772658

3.772658

Pressure)

.1091E-3

96503E-7

96807E-3
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Table IV. Details for the Four Load Cycles.

Load Cases

Cycle 1

1
1
3
4

Cycle 2

:
2
3
4

Cycle 3

1
2
3
4

Cycle 4

1
2
3
4

Pressure, ksi

110
110
110
110

110
120
130
110

no
. 130

140
110

115
125
135
140

Temperature, ° F

600
800
1100
600

900
900
900
900

700
1100
1000
600

'

650
850
1150
750

Table V. Predicted Plastic Strain Response for the Fan
Load Cycles. . ..---.—-. —

Load Case
Cycle 1

1
2 '
3
4

Cycle 2

1
2
3
4

Cycle 3

1
2
3
4

Cycle 4

1
2
3
4

Synthesized

427
507
614
614

548
775
1066
1066

480
1150
1472
1472

561
892
1356
1377

Computed

430
505
615
615

542
795
1049
1049

468
1132
1485
1485 •

576
908
1358
1360

Percent
Error

-0.7
+0.4
-0.2
-0.2

+1.1
-2.5
+1.6
+1.6

+2.6
+1.6
-0.9
-0.9

-2.6
-2.8
-0.1
+1.2
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Table VI. Comparison of the Plastic Strain Prediction Methods.

Load Cases

• Example A - Nonlii

1
2
3
4

• Example B - Nonlii

1
2
3
4

Synthesized

lear Response Comput

561
892
1356
1377

Computed

ed as a Function c

576
908
1358
1360

Percent
Error

>f Stress

-2.6
-1.8
-0.1
+1.2

lear Response Computed as a Function of Temperature

576
914
1354
1366

576
908
1358
1360

• Example C - Nonlinear Response Computed Directly From E
Straight Linear Interpolation

1
2
3
4

576
907
1367
1366

• Example C - Nonlinear Response Comput
Pressure

1
2
3
4

562
938
1354
1343

576
908
1358
1360

ed as a Function c

576
908
1358
1360

0
+0.6
-0.3
+0.4

)ata Base Using

0
-0.1
+0.7
0

>f Temperature/

-2.4
+3.3
-0.3
-1.2
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The shingle combustor segment model was generated having a thermal dis-

continuity, and this hot spot is our critical location. In our current work,

we have chosen to impose elastic constraints on the region of local inelas-

ticity. The inelastic region is surrounded on all sides by purely elastic

material, and it is our intention to examine overall structural and material

behavior as the size of this critical location is altered.

In our analysis, incremental cyclic plasticiity is performed using the

Besseling subvolume method and employing the Von Mises yield criteria and the

Prandtle Ruess flow rule. A strain-hardening creep law equation of the

following form is used to describe the creep response of the material.

e = kantm + qart

where the constants m, n, k, q and r are material and temperature dependent

creep coefficients.

It is our desire to determine if the size of the nonlinear region has

significant effect on our stress-strain decomposition and synthesis tech-

niques. Reduction in the number of nonlinear elements in the model can pro-

duce significant savings in computational costs associated with a nonlinear

analysis. For such an investigation the combustor shingle model was run for

two separate analysis conditions. One being that the inelastic region is

defined by eight elements and the other being that the inelastic region is

defined by a single element. These two test conditions were each run three

separate times to separate the effects of creep and plasticity.

The shingle segment is shown in Figure 9 and modeled as illustrated in

Figure 10. The thermal condition of the combustor shingle at peak temperature

is shown in Figure 11(a) and the thermal cycle at the center of the hot spot

is presented in Figure ll(b). The hot spot encompasses 12 elements with 1

element (No. 99) exhibiting the maximum nonlinear material behavior (or total

strain response).

The baseline condition for the current model was contained in NASA

CP-2271. The baseline case represents the condition when all elements in the

model are capable of nonlinear material behavior. Noting that we treated the
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Figure 9. Shingle Segment.

Figure 10. CYANIDE Model,
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inelastic region as being one of eight elements in size and that the defined

critical element denotes behavior of the model, we can observe the effects of

material nonlinearity. Tables VII through XII give the results at the criti-

cal element (Element 99) for the associated test conditions.

Case 1: Baseline - All elements may be inelastic.

Case 2: Inelastic region is eight elements in size: Elements 75-78,

97-100 (See Figure 12).

Case 3: Inelastic region is one element in size: Element 99 (See

Figure 12).

It can be observed that when compared to the baseline case, original model

behavior is best approximated when the inelastic region is eight elements in

size.

In support of the functional decomposition techniques, we investigated

the influence of mechanical loads on our baseline models. The .baseline models

are those presented in NASA CR-165268 and NASA CR-2278. Tables XIII and XIV

give pertinent data pertaining to the -superposition of the mechanical loads.

Simple pressure loads were used for such purposes.

In reference to Table XIII, the turbine blade tip model:

D = Original model with imposed displacement boundary conditions.

P = Original model with simple pressure load (8000 psi).

DP = Original model with imposed displacement boundary conditions
and simple pressure load.

In reference to Table XIV, the shingle combustor model:

E = Elastic only

EP = Elastic/Plastic

EPC = Elastic/Plastic/Creep

EPCP = Elastic/plastic/Creep With 1500 psi Pressure Load

In support of the functional decomposition and synthesis techniques, we

have investigated the influence of creep time on our baseline models. Six

cases were examined and are presented here. The model used was the shingle

combustor model and creep times were increased from 0.05 hour to 1.0 hour.
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Figure 12. Nonlinear Patch in Elastic Matrix.
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Table XIII. Turbine Blade Tip Model.

Temperature, ° F

.

D
P
DP

1

R-Total

0
0
0

2

Strain

-2850
0

-2850

3

-2550
0

-2550

4

-2925
0

-2925

5

-2800
0

-2800

6

250
0

250

7

-600
0

-600

8

0
0
0

• R-Plastic Strain

D
P
DP

•

D
P
DP

• •

D
P
DP

0
0
0

R-Creep

0
0
0

Z-Total

0
0
0

-1222
-47

-1551

Strain

-51
-2
-57

Strain

1201
1460
3370

-1222
-47

-1551

-52
-2
-57

1085
1368
3164

-1262
-59

-1734

-265
-16
-258

1279
1842
3932

-1262
-59

-1734

-611-
-50
-617

1279
2156
4332

-1129
-59

-1298

-611
-50
-617

226
1755
2071

-1129
-59

-1298

-611
-50
-617

483
1846
3218

-1129
-59

-1223

-611
-50
-617

306
980
2147

• Z-Plastic Strain

D
P
DP

•

D
P
DP

0
0
0

Z-Creep

0
0
0

611
. 365
1765

Strain

26
17
65

611
365
1765

26
17
66

631
480
2007

132
153
342

631
480
2007

305
535
985

555
480
1802

305
535
985

555
480
1802

305
535
985

555
480
1750

305
535
985
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1. All elements in the model are capable of nonlinear material
behavior.

2. An isolated patch of elements is capable of nonlinear material
behavior.

3. A single element is capable of nonlinear material behavior.

Shown in Tables XV and XVI are the results of the study.

Case 1 - Elastic/Plastic/Creep Behavior

Case 2 - Elastic/Creep Behavior Only

We also examined the following two conditions:

1. All elements in the model are capable of nonlinear material
behavior.

2. An isolated patch of eight elements are capable of nonlinear
material behavior. The nonlinear region is sur.rounded by purely
elastic material.

For the above conditions the analysis was performed using creep times of

0.05, 0.1, 0.5, and 1.0 hours. The results are summarized in Tables XVII

through XX.

The following outline summarizes our thoughts on the direction of the

decompositon and sysnthesis methods.

II. DECOMPOSITION TECHNIQUES

A. Component Identification

1. Will concern only the following components:

• Combustor Liner
• Turbine Blade
• Turbine Vane

2. No mesh generation or mesh refinement will be permitted once
decomposition procedures have begun.

B. Thermomechanical Loads

1. Operating Conditions are identified by temperatures, pressures, and
rotational speed.
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Table XVII. Total Strain.

• Effective-Strain

EPC
• . . EC

• R-Strain

EPC
EC

• Z-Strain

EPC
EC

• T-Strain

EPC
EC

• R-Z Strain

EPC
EC

Time, hour

0.05

6568
4446

-2736
-1963

-4388
-3301

6181
3931

-385
-270

0.1

6956
5134

-2852
-2164

-4600
-3644

6591
4684

-412
-313

0.5

8484
7303

-3340
-2849

-5431
-4788

8203
7001

-515
-424

1.0

9327
8334

-3636
-3215

-5885
-5341

9084
8079

-596
-521

All strains Xio"6

Table XVIII. Creep Strain.

• Effective-Strain

EPC
EC

• R-Strain

EPC
EC

• Z-Strain

EPC
EC

• T-Strain

EPC
EC

• R-Z Strain

EPC
EC

Time , hour

0.05

779
2193

-301
-735

-472
-1420

772
2155

-36
-137

0.1

1306
3239

-502
-1105

-793
-2082

1294
3187

-64
-201

0.5

3327
6233

-1268
-2226

-2028
-3926

3296
6152

-178
-355

1.0

4388
7535

-1683
-2739

-2666
-4706

4349
7445

-259
-448
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Table XIX. Eight-Element Patch Total Strain.

• Effective-Strain

EPC
EC

• R-Strain

EPC
EC

• Z-Straia

EPC
EC

• T-Straia

EPC
EC

• R-Z Strain

EPC
EC

Time, hour

0.05

6966
4863

-3086
-2221

-4491
-3547

f

6588
4319

-223
-163

0.1

7419
5794

-3272
-2564

-4706
-3994

7069
5323

-187
-129

0.5

9160
8543

-4028
-3698

-5489
-5255

8923
8267

-26
55

1.0

10024
9650

-4429
-4205

-5857
-5732

9842
9445

68
160

• Table XX. Eight-Element Patch Creep Strain.

• Effective-Strain

EPC
EC

• R-Strain

EPC
EC

• Z-Strain

EPC
EC

• T-Strain

EPC
EC

• R-Z Strain

EPC
EC

Time, hour

0.05

821
2427

-347
839

-471
-1552

817
2391

-5.9
-104

0.1

1408
3725

-601
-1336

-802
-2344

1404
3679

4.1
-121

0.5

3684
7502

-1649
-2932

-2027
-4420

3677
-7352

127
-13

1.0

4801
8835

-2203
-3632

-2591
-5159

4794
-8791

227
92
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c.

1.

D.

1.

E.

1.

F.

1.

These operating conditions define the individual mission points for
each component and are intended to encompass the expected range of
engine operation.

Component Analysis

Total structural response of the generic component will be" obtained
through detailed finite element anlaysis procedures.

A detailed analysis will be performed for each set of operating
conditions (mission points) and critical locations can be identified
for the component under study. This procedure can be user-defined or
automated. Default case will be provided.

Critical Locations - Once the critical locations are identified,
procedures will be implemented to store information on (a) nodal
displacements, and (b) elemental stresses and strains for the nodes
and elements defining the region. This information will form the
data base on which the synthesis techniques will be based.

Structural Response and Load Application

The structural response at the critical location can fall into these
categories:

• Uniaxial
• Biaxial
• Triaxial

The generic mode of load application can be identified'and a
hierarchy defining the overall influence and effect on overall
structural response can be formed.

The following

Material Response

Material response can be modeled in a number of ways
limitations can be imposed on the material behavior:

Elastic only
Elastic/plastic
Elastic/creep
Elastic/plastic/creep
Flow rule and yield criteria
Creep formulation

Decomposition Procedures and Models

Serving as baseline data sets are models previously validated under
other NASA programs.
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• Turbine blade tip durability
•• Inelastic

2. These models will be used to create a preliminary data base from
which we will evaluate our stress/strain decomposiiton techniques.

3. These models represent actual engine conditions and are intended to
economically and efficiently evaluate the stress/strain
decomposition and synthesis techniques.

II. SYNTHESIS TECHNIQUES

A. Component-Specific Synthesis Techniques

1. The synthesis techniques will be based on a defined set of mission-
segment/component station characteristics.

•

• The comnponent station characteristics are defined in the
thermomechanical load (TML) matrix.

• The structural data base will supply the necessary mission
segment response upon which the synthesis alrogithms will
operate.

B. Synthesis Algorithms

1. Algorithms used to compute fixed point mission-time profiles of
"local" (critical point location) stresses, strains, and
displacements. These algorithms will be limited to local level
response. These algorithms may be based on empirical relations
between loads and deformation states.

III. COMPONENT DATA BASE STRUCTURE

A. Component Dependent

1. Three distinct data bases will arise from the component specific
modeling effort:

• Turbine blade data base (TBDB)
• Turbine vane data base (TVDB)
• Combustor data base (CBDB)

2. The component data bases will be identical in structure but
dissimilar in content.

3. A simple set of access routines will be used to construct and access
the three data bases.
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Component Specific
Modeling Effort

T

Turbine Blade
Data Base

Turbine Vane
Data Base

Combustor
Data Base

B. Component Data Base Attributes

1. Random access

2. Self-contained sizing

3. Simple structure

4. Three consitutent parts

• Control includes

- Overall problem sizing
Critical region 'and mission point specifications
Assorted pointers and counters
Descriptions and titles

• Critical Region Specification Includes

Location and number of critical points are defined

Assorted pointers and counters for the mission points
are defined.

• Mission Point Specification Includes

Local control information
- Node and element information and data
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The following sketch shows how three constituent parts interact.

Overall
Control

Critical Region (CR)
Specification

Mission Point (MP)
Specification

General Data Base
Structure.

CR1 —

CR2 —

CR3 —

-»-MP(l)
MP(2)
MP(3)

MP(n)

-*-MPCD
MP(2)

MP(n)

-*-MP(l)
MP(2)

MP(n)

1

Detail: Mission Point
Specification

2.6 TASK II - STRUCTURAL ANALYSIS METHODS EVALUATION

This task was completed during 1983. The selections outlined in 2.1 are

the result of this effort.
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2.7 TASK VII - THERMODYNAMIC LOADS MODEL

The general form of the input, output, and calculations for blades, vanes,

and combustor thermodynamic loads was defined during 1983, and work was initi-

ated on the software coding. The final software specification is shown in the

following paragraphs.

Thermodynamic Loads Features for IDE Model:

I. BLADES AND VANES

A. Input will be:

1. A series of midspan station temperatures at a specified SS ref-
erence case condition, and for each station a percent cord
envelope dimension

2. A set of output percent cord envelope dimensions

3. A table of percent radial span versus cooling effectiveness
factors. RF, where:

v-lT*'cms

r| . .= cooling effectiveness at specified span dim.

n = cooling effectiveness at midspan'csm & r

The point density in this table will be such that spanwise
linear interpolation will suffice.

B. Calculations

1. For each temperature a nominal cooling effectiveness will be
calculated from:

_ T4l-Tm
C T41-T3
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2. At each new condition, all station i"| values will be modified
by a factor, CF, as follows:

= ((T3*T4lREF)/(T3REF*T4l))a, where a is input

or default value.

3. Output q values will be linearly interpolated based on percent

cord envelope at adjacent input stations

4. For each output radial distance (specified in the input) all
station temperatures will be calculated as follows:

Tij = T3 + (1 - n )*CF(T41-T3)*RF
CR

Where i = station index

j = radial station index

II : COMBUSTOR

A. Inputs will be:

1. -Metal bulk node temperatures at axial stations on inner and
outer liners, and for each station, x and y dimensions of node
centers at a specified reference case condition. Both hot
streak and average metal temperature values will be input.

2. It is assumed that output node dimensions will match the input
nodes. If cross-meshing is to be required, it will be done
before the input is defined.

3. A set of linear equation constants will be input for a sparse
set of axial locations, identified by "AT station" numbers.
Output AT locations will be same as input locations.

4. A set of AP scaling constants will be input at a sparse set of
locations, identified by AP station numbers. Output AP stations
will be same as input.

B. Calculations

1. A nominal cooling effectiveness will be calculated for each
input combustor average and hot streak temperature.

2. At each flight condition, each metal temperature will be recal-
culated from:

53



Tm. . = T3. + (1 - H XT41.-T3.)
ij J c

± J J

where i = station index and j = flight phase index

3. At each flight condition, each AT will be recalculated from:

AT^ = [T3.+ (1 - nc )(T4l-T3)][bi+mi*P3.]

4. At each flight condition, each AP will be recalculated from:

AP.. = P3.*K.* (^) * T3.
iJ J i \P3 /j j

The accuracy of the thermodynamic engine model has been evaluated, rela-

tive to the engine steady-state performance computer model (cycle deck). In a

model based on interpolation methods, the maximum error must occur in regions

where the "distance" from known data points is greatest. Figure„13 shows the

altitude versus Mach No. map of stored data points used in the thermodynamic

engine model (TEM). The X symbols on this map indicate the worst-case points

selected for the error evaluation.

The interpolation logic varies from quadrant to quadrant within a

rectangle bounded by stored data points. The nearest point is always used as

the base from which the interpolation process is started, for example. Figure

14 shows a typical set of four stored data points. The shaded area is a

quadrant. The evaluation test point is at the center. The hypothetical error

magnitude curves drawn from two corners to the center illustrate two facts:

• In any quadrant, the error surface is approximately parabolic in
shape and maximum at the center of the stored data.

• The four quadrants have different error surfaces, and a discontinuity
occurs where they meet.

Since there can be four different maximum error values at each test point,

the error analysis was performed four times at each point. The results were

summarized by a computer program. The right-hand four columns of Table XXI
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in the TEM.
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show the error values that exceed the target value which is listed in the

center of the heading. The left-hand five columns identify the test points.

The middle four columns show the accuracy level available before the

improvements developed in this program were incorporated. The average of the

absolute errors, the max error, and the number of "Exceedances" are given at

the bottom of each column. Note that speed, pressure, and horsepower errors

are expressed as percent of the rated standard day, sea level value. It seemed

more meaningful to express temperature errors in degrees.

Table XXII shows a brief summary of the accuracy level achieved. Column 2

shows the average of all test point errors. Columns 3, 4, and 5 show the value

that is exceeded 2, 4, and 11 times (1%, 2%, and 5% of the 220 error values).

Note that all data in this figure refers to the worst-case test points. Since

the error surfaces are approximately parabolic in shape, the average error in

each quadrant is approximately half of the maximum error, and the overall error

is approximately half of the average error listed.

Table XXII. Validation Case .
Error Analysis.

P2
P3
FNIN1

XN25

T2
T3
T
41

Error Exceeded N Times

Average

0.03%

0.23%

0.49%

0.17%

0 . 08%

2.1°

11°

N = 2

<1%

1.3%

1.8%

0.7%

<5°

<10°

47°

N = 4

<1%

1.2%

1.8%

0.6%

<5°

<10°

47°

N = 11

<1%

1.0%

1.8%

0.5%

<5°

<10°

35°

The maximum error of 47° F listed for T41 may seem large. This was one

of the most difficult parameters to fit. However, note that 47° is only 2% of
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the rated T41 value (expressed in ° F) and the true average error is only

approximately Q.23%.

Work is continuing toward the completion of the thermodynamic loads

features to be incorporated in the thermodynamic engine model.
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2.8 TASK VIII - COMPONENT SPECIFIC MODEL DEVELOPMENT

2.8.1 Geometric Modeling

A recipe for a segment of a combustor liner has been completed. Figure .

15 shows the typical nugget of a combustor liner. The recipe describes the

geometry of a nugget as a function of a prescribed set of physical parameters.

These parameters include the thicknesses of the liner skin, the radii of the

internal and external surfaces of the nugget, the height and length of the

nugget, and the overall length of 'the panel. Generic master regions are then

constructed using these key points. The coordinates of these key points and

the connectivity of the master regions are then used as input into a 20-noded

mesh generator to obtain the final mesh. In addition, the key information is
0

written into an ESMOSS recipe format. This recipe is then used in conjunction

with the ESMOSS mesh-generating logic to obtain a dlscretized mesh. Figure 16

shows a typical, nugget, some of the physical input parameters, and the master

region definition based on these parameters. Figure 17 shows representative

2D-and 3D models generated from the master region.

We came to the decision that we could not use exactly the same procedure

for the turbine blade model. This is because of the significant differences

in the two geometries. A typical turbine blade geometry is shown in Figure

18. The outside of this airfoil is a complex curve defined by aero require-

ments. There are no reasonable number of physical parameters which could be

used to describe this geometry. We evaluated many options and believe that

the best course is to use a data file of coordinates which define this closed

curve. The capability to work with a file of points is present in ESMOSS.

The interior of the cross section (wall thicknesses, location and number of

spars, etc.) will be specified as physical parameters. The interior cross

section can be defined using a data file or by specifying a constant wall

thickness as a physical parameter. Figure 19 shows a plot of the exterior and

interior points for a typical airfoil.

Once the basic cross section is defined, the location and size of the

interior spars can be controlled by the user through selection of paired

points on the interior surface. The generator will then automatically insert

the spars at the desired locations. The user can vary the number of spars
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Figure 18. Cooled Turbine Blade Cross Section.
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and the geometry of each spar. Figure 20 shows the pointer selected for a

spar configuration. Figures 21 and 22 show coarse meshes for a blade with

and without cavities. This software is complete and integrated with ESMOSS.

2.8.2 Remeshing and Mesh Refinement

This area and the next, Self-Adaptive Solution Strategies, touch on each

other synergistically. What is sought in this program is the best combination

of both. This involves two major areas of investigation: (1) the method to

be'used to refine, upgrade, and rearrange the mesh, and (2) the,criteria to be

used to activate this process.

There are a number of ways to refine a mesh to get a better answer:

(1) one way is to progressively subdivide a coarse mesh, always retaining all

.previous meshes within the finer mesh; (2) a- second family of techniques

totally realigns the mesh based on some criteria such as strain energy density;

(3) a third method is to leave the mesh unchanged but upgrade the order of the

elements.

The first method, progressive subdivision, has certain theoretical and

computational advantages. If the finite element interpolating functions used •

meet the requirements for completeness and continuity, convergence is mathe-

matically guaranteed when we refine the mesh by progressive subdivision. 'The

computational process of remeshing by progressive subdivision is straightfor-

ward; however, it guarantees a larger problem to solve.

For a solution of the finite element system of equations:

[K] {6} = {F}

suppose there is a numerical solution for the displacement, {6*}. Then the

equilibrium or residual force vector is generated:

{R} = {F} - [K] {«*}

A perfect solution would result in this vector containing all zeros.

Given the finite numerical accuracy of the computer, this is impossible.

Therefore, a measure of the numerical "goodness" of the solution is to be

found in how much this vector deviates from zero. Decisions on whether to
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re-solve or redefine the problem can be based on the total and local devia-

tions from zero. . If a few local degrees of freedom are out of equilibrium,

this might suggest a local remeshing. If the total equilibrium is deficient,

this will require remeshing and/or re-solving with greater numerical accuracy.

The decision tree for this is as follows

1. If-a. <i < C R

and all R. < CL.,i RiL

the solution is good

2. If IR. > CL
1 K

and [Number of nodes with CR.T < R. < CL ~ ] > C
. , T llj 1 K . J Jthen re-solve lu

3. If ZRt > CR
• and [Number of nodes with Ri > CL ] < C
then remesh and re-solve iu

4. if a. > CR
but some Ri > CL

Riu
then remesh and re-solve

where:

th
R. = i residual-free vector

CL = Maximum allowable sum of R.

CL = Lower bound for R. for possible remeshingK . T iiL

CL = Maximum allowable upper bound for R.
K . 1.
IU

CL = Bound separating remeshing from resolving

Once an acceptable displacement solution has been reached, proceed to the

element level. If, at the elastic level, stresses and strains are linearly

connected, only one of these two needs to be evaluated. Strain will be

checked. The total strain at each calculation point in an element is made up

of an elastic strain and a thermal strain:

e. = ee + e11 1 1
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One aspect of this program is the establishment of acceptable strain

gradients for different element types. Between adjacent strain calculation

points in one element, and probably over the entire element, a strain gradient

would not be chosen that could encompass an elastic-plastic-elastic or a plas-

tic-elastic-plastic variation. Therefore,

•if

ee - &e > | 2£ . , . |,i j - yield

remesh this element.

Additionally, there will be a change in sign. Therefore,

if

eT

?<0

remesh this element.

Once the nonlinear solution has been entered, the element level checks

become more complex and more, important. The total strain is now made up of

the elastic strain, thermal strain, plastic strain, and creep strain:

£. = £6 + ̂  + £P + £C
1 1 1 1 1

Now stress and strain are no longer linearly connected; stress is a

function of elastic strain only. Once again, between any two adjacent calcu-

lation points within one element, an elastic strain gradient greater than the

allowable material elastic gradient is not desirable. Thus,

if

ee - ee > | 2& . . . I,i j - ' yield '

remesh this element. The limit on the thermal strain would still be retained.
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If

—- < 0, remesh this element.
e.
J

The next check is on the computed plastic and creep strain. No sign

changes in either of these are allowed. In addition, a maximum gradient is

set.

^ !i < o

or

or

or

>C C,

remesh this element, where: Cp = Bound on plastic gradient
CQ - Bound on creep gradient

Next, proceed to the interelement level check. These are of the same

nature as the above, but now involve adjacent calculation points in adjacent

elements .

Our strategy for proceeding in this area consists of the following:

• Select an analytical model with known solutions.

• Use the "recipe procedure" to generate several meshes of different
density.

• Use the 20-noded finite element to evaluate remeshing criteria.
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For our first model, we selected a semi-infinite plate with a circular hole

near the edge. The stress concentration solutions for this problem for vari-

ous loadings is known. Figure 23 shows the recipe parameters and master

region definition for this problem. Figure 24 is a master region generated

for a particular case. Figures 25 and 26 show a coarse discretized model

based on this master region breakdown. Figures 27 and 28 show a refined dis-

cretized model. With these models we.will evaluate such correlative parame-

ters as:

• Strain energy density

• Elemental stress/strain gradients

• Interelement stress/strain comparison

• Nodal stress comparison.

In order to evaluate these criteria, three models were created for the

problem of a hole with an edge effect'in a semi-infinite plate. These three

models represent three different mesh densities. The first load case run was

a constant membrane stress condition applied to the right-hand edge of the .

model with symmetric conditions on the left-hand edge. This case has been

run for all-three mesh densities using 2D plane stress elements. Figures 29,

30, and 31 are plots of the three models.

The objective of this evaluation is to determine if the interelement

stress distribution can be used to "monitor" the adequacy of the mesh density.

An additional objective is to compare various methods of approximating the

surface stresses based on the stress output at the centroid of the elements.

These two efforts are synergistic since a good measure of the mesh adequacy is

the correct surface stress and the surface stress is certainly a function of

the element stress distribution. There are two approaches to approximating

the surface stress from 2D elements. The first extrapolates the elemental

stresses to the surface. The second method uses the nodal displacement at

the surface to compute the surface strain. This surface stress is then com-

puted based on this strain and the appropriate material properties. Figure

32 shows the extrapolated stresses for each mesh density and the calculated

stress based on strain. The vertical axis is stress and the horizontal axis

is "wall thickness" which is the distance from the surface.
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Master Region Model

S3

13

12

59

58

37

10

Parameters

T
r+

i
Input:

Note:

A = Height
B = Relative Placement of Center

of Hole Relative to A
D = Diameter of Hole

D as a Percentage of the Height
B as a. Percentage of the Height

The Hole Cannot be Placed Beyond the
Limits of the Beam

(Ex) Input - 20%, 23.334%
Set a 0.2A Hole

0.2334 A Center

Figure 23. Recipe Parameters and Master Region Model for Plate
With Hole.
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Figure 26. Magnification of Hole Region for Coarse Model,
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Figure 28. Magnification of Hole Region of Refined Model.
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The correct value obtained from Petersen is K = 3.9. Note that the two

coarse meshes underestimate the surface stress using both the extrapolation

method and the surface strain method. The fine mesh model underestimates very

slightly, but gets almost the same answer by both techniques.

A fourth model was created and run for the tensile loading conditions.

The basic geometrical model with the applied boundary conditions is shown in

Figure 33. Also shown in Figure 33 are blow-ups of the mesh around the bottom

of the hole for all fan mesh densities.„

The interelement stress distribution has been evaluated for these four

models by approximating the stresses at the nodal points. These nodal point

stresses were computed by weighted averaging of the elemental centroid

stresses. The weighting coefficient is inversely proportional to the distance

between the centroid and the node point. The maximum difference of the stress

at any node was computed as the maximum difference of any of the centroid

stresses of elements adjacent to the node. The percent difference is a meas-

ure of the mismatch of nodal stress normalized by the local average stress.

Figure 34 is a tabulation that represents the maximum difference and percent

difference 'of nodal stress for seven points that are common in all four '

models. Notice that for all the points, the maximum stress difference and

the percent difference decreases as the mesh density gets finer. This

indicates that the percent difference could be used as a mesh refinement

criteria. Further work is needed to determine if this criteria holds for

other loadings and different models and to select the acceptable levels of the

percent difference at which no further refinement is required.

Different loading conditions are being generated for these models. In

addition, an 8-noded and 20-noded 3D model are also being created.

2.8.3 Self-Adaptive Solution Strategies

We have successfully developed and incorporated a dynamic time increment-

ing scheme into a version of the two-dimensional nonlinear structural analysis

program. The dynamic time incrementing technique is intended to provide for
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convergence and promote stability in the nonlinear iteration schemes currently

being used.

In the analysis code, the constitutive model prepared by Bodner is being

utilized to model time dependent inelastic flow. Bodner' s model requires that

constitutive equations be numerically integrated over finite time intervals.

This procedure is iterative as is the method of solution we use to solve the

finite element equations. The dynamic time incrementing scheme developed is

specific to these methods .

In the implementation of the dynamic time incrementation scheme, the

determination of an appropriate time increment can be computed three separate

ways when the following simplified assumptions are made.

1. Inelastic strain varies linearly with time - This allows the time
increment to be computed by limiting the maximum change in the
inelastic strain that can occur during the time interval.

allowable.
1+1 " (As1 )

e max

where,

At = next time subincrement

At. = current time subincrement
i

(Ae ) = maximum inelastic strain increment occurring in the
e max . °

current txme step

(As ) ,, , , = maximum allowable inelastic strain increment,
e allowable ,. . . . , - n nUser input or set to default value.

2. Stress varies linearly with time - This allows the time increment to

be computed by limiting the maximum change in stress that can occur

during the time interval.

At. = At. CA6e)allowable
'i+1 i (A6 )

e max
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where

(A6 ) = maximum change in stress occurring in the current
6 IDdX . .

time step

(A6 ) ,, ,, = maximum allowable stress change. User input or set toe allowable , - ,. ,default value.

3. Control integration error - This allows for the control of the local

integration error when computing the inelastic strain during the

time increment. The local integration error is not allowed to

exceed a predefined tolerance.

12*TOL -i- (Ae )allowable
1/3

where,

TOL = user input

•••I
& = second derivative of the inelastic -strain rate.

The results in Table XXIII help illustrate the utility and stability of

the dynamic time incrementing technique. In the generation of Table XXIII we

illustrate the effect on creep response of Inco. 1.00 when we control the maxi-

mum allowable inelastic strain (Ae ) and the maximum allowable stress (Aa)

that can occur during any time increment.

We have included in our nonlinear analysis code an alternate method for

determining convergence of the numerical solution. A global Euclidian norm

was defined as follows:

N 1 7

? (9j}
-

N - ( 1 9

?=i(9j '
N . ,,

E^eJ)2
£ Tolerance

N = No. of structural DOF

i = Iteration No.
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Table XXIII. Stability of Dynamic Time Incrementing.

(a) . Strain

: a
ft

9 Iteration
Aa
AEl

CPU/ SNUB

t

10 sec.
5 min.
10
15
20
25
30
35
40
45
50
55
60
65
70

(b). Stress

a
//t

# Iteration
Aa
AEl

CPU/ SNUB

t

10 sec.
5 min.
10
15
20
25
30
35
40
45
50
55
60
65
70

Control.

130
126
252
4000
.001

14.37/4U38

ET E1

6136 33
12059 5956
16034 9931
19958 13855
23880 17777
27802 21699
31724 25621
35646 29543
39568 33465
43490 37386
47412 41308
51333 45230
55255 49152 •
59177 53074
63099 56966

Control..

130
117
234 '
6000 -
.001

13.76/4U464

ET E1

6138 35
12059 5956
16034 9931
19959 13855
23881 17777
27803 21699
31724 25621
35646 29543
39568 33465
43490 37387
47412 41309
51334 45230
55256 49152
59177 53074
63099 56966

130
628
1256
4000
.0001

58.44/4U040

ET E1

6136 33
12060 5956 -
16039 9936
19964 13861
23886 17782
27808 21704
31730 25626
35651 29548
39573 33470
43495 37392
47417 41314
51339 45235
55261 49157
59182 53079
63104 57001

130
126
252
4000
.001

14.37/4U938

ET E1

6136 33
12059 5956
16034 9931
19958 13855
23880 17777
27802 21699
31724 25621
35646 29543
39568 33465
43490 37386
47412 41308
51333 45230
55255 49152
49177 53074
63099 56966

Material Constants

E = 21.3E6 psi
D = 104 Sec-1
N = .7
Zo = 915 ksi

130 Zi = 1015 ksi
5751 Z2 - 600 ksi
11502 A „ o.0019 Sec'1
2000 r = 2.66

.00001
504.6/4U260

ET Ei
6136 33
12060 5957
16039 9936
19964 13861
23886 17783
27808 21705
31730 25627
35652 29548
39574 33470
43496 37392
47417 41314
51339 45236
55261 49158
59183 53080
63105 57001

130
152
304
2000
.001

16.96/4U406

ET E1

6135 32
12059 5956
16034 9931
19958 13855
23880 17777
27802 21699
31724 25621
35646 29543
39568 33464
43490 37386
47411 41308
51333 45230
55255 49152
59177 53074
63099 56996
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Convergence is assumed when the difference in the norm of the unknowns

(displacements in this instance) is less than or equal to some predefined

tolerance. This concept represents a global test of convergence rather than

a local or point-by-point method as we currently use.

The model presented for illustration of such a technique is presented in

Figure 35. Linear springs are used to connect nodes along the crack face and

theoretically should carry no load when the crack has opened. The displace-

ments of several nodes on this face are followed and presented in the follow-

ing tables. The true elastic solution for such a model is located in the first

column of each table and represents the "solution attained when an infinitesimal

tolerance is prescribed for convergence. For this model all stresses remain

in the elastic region .and no time-dependent material behavior is assumed.

For the model shown, a study was conducted to determine the quality of

solution obtained when either a global or'a local convergence criteria was

used. Tables XXIV and XXVI are the results of utilizing local criteria and

Table XXV when the global-criteria is used. Attention should be directed to

the number of iterations for solution as well as the quality of the solution.

• We are continuing the effort to incorporate such concepts into our finite

element code and evaluate their applicability to self-adaptive solution strate-

gies currently under development. Our current work has focused upon vector

norms due to their direct applicability and the ease with which they can be

computed. The definition of the vector norm is essential to the development

of techniques in error analysis for the vector norm provides the means by

which quantitative and comparative statements of size and distance can be made

between associated vectors. The theory and development of vector and matrix

norms can be found in most texts on numerical methods and only the necessary

concepts are presented here.

The norm of an "N" dimensional vector is written as ||x||, and represents

a single number. The norm is a function of all the elements in X and should

not be confused with the definition of the vector (Euclidian) length |X|.

The norm of X satisfies the following conditions:

88



Figure 35. Cycle Crack Growth Model.

Table XXIV. Displacement Tolerance Criteria.

Node No . Elastic 10

50

61

71

80

90

100

No
to

0.

1.

2.

2.

3.

3.

9224

575

1557

7001

219

719

0

1

2

2

3

3

of Iterations
Convercence

All

.8905

.518

.075

.595

.091

.566

(13)

io-5 io-6

0

1

2

2

3

3

.919

.569

.147

.689

.205

.703

(22)

0

1

2

2

3

3

.922

.575

.155

.70

.217

.718

(31)

Displacements (X10~ )
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Table XXV. Global Euclidian Criteria.

Node #

50

61

71

80

90

100

Elastic

0.9224

1.5750

2.1557

2.7001

3.2190

3.7190

10%

0.8362

1.4211

1.9366

2.4172

2.8723

3.3061

5%

0.8815

1.5021

2.0571

2.5658

3.0544

3.5233

1%

0.9152

1.5624

2.1374

2.6766

3.1901

3.6851

No. of Iterations ( } ( 2) (

to Convergence *• ' ^ } Uy;

All Displacements (X10~ )

Table XXVI. Percentage. Change Criteria-

Node //

50

61

71

80

90

100

Elastic

0.9224

1.575

2.1557

2.7001

3.219

3.719

10%

0.9193

1.5685

2.1429

2.6778

3.1868

3.6768

5%

0.9193'

1.5685

2.1429

2.6778

3.1868

3.6768

1%

0.9174

1.5661

2.142

2.6814

3.1951

3.6901

No. of Iterations ' (R. ,R, . .
to Convergence (8) (8) (9)

_3
All displacements (X10 )
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1. ||X||>0 and ||X|| = 0 if and only if X = N

where N is the null vector

2. ||aX|| = |a| ||X|| for all scales a and
vectors X

||X+Y~|| _> ||X|| + ||Y|| for all vectors "x and Y

There can be defined infinitely many norms but the three most common

norms are the £ norms II* IIP for P = 1, 2, and <*>.

+ |x2| + |x3| + ..... |XN|

I I ' I L = ^{|Xi|, |X 2 | , |X 3 | , . . . . . . |X N | j

The above norms are special cases of the vector norm:

To utilize the norms defined above the concept of relative and absolute

error can be defined (1) for any two vectors, the absolute error can be

written as:

And the relative error written as

£R

The expression for relative error tends to be far more applicable to our needs

and its structure lends itself conveniently to the formulation of convergence
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criteria in iterative methods. When compared to a predefined tolerance, the

relative error reflects the percentage change that has occurred.

To simplify the task of evaluating new convergence criteria, we have

chosen to limit the present study to a class of problems that exhibit only

geometric nonlinearity. We will use the nodal displacement as the control

vector for which we compute the assorted vector norms, assemble the error

expressions, and hopefully determine convergence. Noting that our solution

scheme is an iterative technique, we are looking for the convergence of a

series of vectors. For our application it is necessary to determine when a

solution has been obtained as well as to determine the quality of the computed

solution.

Convergence of the numerical solution can be determined on either the'

local or global level. Currently within our code we use a local or point- by-

point method and the present work represents an effort to see if a global

scheme has applicability. Six separate convergence criteria were generated

from the error expressions mentioned above and represent those most commonly

used in the literature.

,

||x.||2- HX..JI,
~ ~

5 .
- i-ilL

In the above expressions, the subscripts are indicative of the iteration

used.

The model presented for the illustration of global convergence criteria

is presented in Figure 35. This model is that presented in the March and

April narratives. Linear springs are used to connect the nodes along the

crack face and theoretically should carry no load when the crack has opened.

We have limited ourselves to small strain/small displacements to reduce our

test matrix.
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The results of our work are presented in Tables XXVII, XXVIII, and XXIX.

During each iteration the assorted vector norms are computed and the necessary

error terms are formed. In all instances the solution has terminated when a

local convergence criteria had been satisfied. The local criteria states that

convergence can be assumed when during any iteration less than 0.5% change has

occurred in the local displacement. As can be noted in the tables, the mea-

sure of relative error is in excellent agreement with the measure of local

convergence and thus the expression of relative error has potential applica-

tion in our work as a measure of convergence when small displacement/small

strain problems are encountered.
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Table XXVII. Utilization of L/-JS Vector Norms.

Iterations

4
5
6
7
8
9
10
11
12
13
14
15
16

Absolute Error

Pi || - llVi ||

.318589 E-02

.249554 E-02

.195128 E-02

.152432 E-02

.119019 E-02

.929007 E-03

.725017 E-03

.565730 E-03

.441403 E-03

.344368 E-03

.268678 E-03

.209589 E-03

.163509 E-03

Relative

II Vi II - Pi.i ||

llvi-l II

.166441 E-00

.111846 E-00

.784610 E-00

.569722 E-01

.422854 E-01

.316458 E-01

.239719 E-01

.182803 E-01

.140689 E-01

.107724 E-01

.831401 E-02

.643137 E-02

.438473 E-02

Error

Pi II '- Pt-l II
II v± II

.341290 E-00

.267336 E-00

.209031 E-00

.163294 E-00

.127900 E-00

.995202 E-01
' .776677 E-01
.606040 E-01
.472855 E-01
.368906 E-01

! .287822 E-01
.224523 E-01
.175159 E-01

Table XXVIII. Utilization of L(2) Vector Norms,

Iterations

3
4
5
6
7
8
9
10
11
12
13
14
15
16

Absolute Error

• 11̂  || - P̂  |f

.391900 E-01

.315477 E-01

.247218 E-01

.192872 E-01

.151037 E-01

.118487 E-01

.924242 E-02

.722271 E-02

.564007 E-02

.439950 E-02

.343170 E-02

.267706 E-02

.208808 E-02

.162887 E-02

Relative Error

II ̂  || - p̂  ||

Pi-1 II

.280964 E-00

.172524 E-00
• .115255 E-00
.808054 E-01
.584052 E-01
.430863 E-01
.322419 E-01
.243764 E-01
.185682 E-01
.142235 E-01
.109411 E-01
.844391 E-02
.653173 E-02
.506253 E-02

HvJI - ||v1=]J|
llvi ||

.382371 E-00

.387744 E-00

.241220 E-00

.188144 E-00

.147334 E-00

.115583 E-00

.901509 E-01

.704566 E-01

.550182 E-01

.429165 E-01

.334750 E-01

.261144 E-01

.203690 E-01

.158894 E-01
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Table XXIX. Utilization of L(3) Vector Norms

Iterations

3
4
5
6
7
8
9
10
11
12
13
14
15
16

Absolute Error

Pi II - HVi II

.710577 E-03

.554693 E-03

.432763 E-03

.337589 E-03

.263337 E-03

.205415 E-03

.160228 E-03

.124988 E-03

.974963 E-03

.760492 E-04

.593200 E-04

.462757 E-04

.360952 E-04

.281566 E-04

Relative

llVi |l - ||V1=1 ||

llvi-l II

.277706 EOO

.169667 EOO

.113170 EOO

.793064 EOO

.573-175 E01

.422866 E01

.316462 E01

.239288 E01

.18.2293 E01

.139647 E01

.107427 E01

.829138 E02

.641412 E02

.497154 E02

Error

||VjJ| - HVi-LlI

II Vi ||

.400510 EOO

.336071 EOO

.262198 EOO

.204534 EOO

.159548 EOO

.124455 EOO

.970770 E01

.757264 E01

.590699 E01

.460758 E01

.359401 E01

.280370 E01

.218689 E01

.170592 E01
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3.0 CONCLUSIONS

The thermodynamic engine model was completed and approved by the NASA

Program Manager in 1983. The code itself is currently being installed at

NASA, Lewis and is being modified to run on the Lewis systems. The accuracy

of the thermodynamic engine model was evaluated in comparison to theoretical

cycles during steady state operating conditions. An error analysis performed

using "worst case" conditions demonstrated extremely good correlation for all

test parameters (?2> PS, T2, T3, T4, etc.). The analysis shows less than 2%

error for most test parameters under such conditions.

The geometric modeling of the defined components is entering into the

latter stages of development. The geometric models and techniques used to

construct component .geometries is well defined and complete for the combustor

burner liner and the turbine blade. In the generation of the discreted mesh;

a recipe is used for the burner liner and a geometric interpolation scheme .is

used for the turbine blade. Both techniques can be coupled with the capabil-

ities of ESMOSS. The geometry for the turbine vane will most likely be

derived in accordance to the methods used for the turbine blade.

Much work has been devoted to the task of developing the techniques and

methods associated with remeshing, mesh refinement, and the incorporation of

such techniques into a self adaptive environment. The decision to remesh or

refine an existing mesh can be based on criteria such as the norm of the resid-

ual solution vector, elemental stress/strain state, stress/strain gradients,

nonlinear strain components, and others. For actual implementation we found

that progressive subdivision of defined "master" regions offers significant

theoretical and computational advantages.

We have successfully developed and incorporated a dynamic time incre-

menting scheme into our finite element code. The dynamic time incrementing

technique is intended to provide for 'convergence and promote stability in

non-linear iteration schemes. Also included in the code are alternate methods

for defining convergence of the computed solution. Cutoff values and toler-

ances for non-linear strains and vector norms provide reliability and consis-

tency of solutions. Convergence can be restricted to either a local

level or expanded to the global level.
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APPENDIX A

TASK II - DESIGN OF STRUCTURAL ANALYSIS

SOFTWARE ARCHITECTURE
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PREPROCESSOR ATTRIBUTES:

A. SOFTWARE

• Modular in Structure

• Machine Independent

• Low Core Requirement

• Extensive Documentation

B. FEATURES/OPERATION

• User Friendly

• Extensive Diagnostics

• Complete Data Summary

• Interactive Graphics

- Model Geometry

- Material Physical Properties
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POSTPROCESSOR ATTRIBUTES:

A. SOFTWARE

• Modular in Structure

• Machine Independent

• Low Core Requirement

• Extensive Documentation

B. FEATURES/OPERATION

• User Friendly

• Will Function in Batch or Time-Share Environment

• Will Have Extensive Graphics Capabilities

- X-Y Graph Plots

- Contour and Deflected Shape Plots at Defined Planes

• Will Have Built-in Data Manipulation Routines (User Controlled)

- User Friendly Data Base
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APPENDIX B

COMPONENT TEMPERATURE AND PRESSURE DECOMPOSITION

AND SYNTHESIS PLAN

I. Blades and Vanes

A. Input will be:

1. A series of mid-span station temperatures at a specified SS
reference case condition, and for each station a percent cord
envelope dimension.

2. A set of output percent cord envelope dimensions.

3. A table of percent radial span (or radii) versus temperature
factors, RF, where:

RF = Tms-T2

Ts = temperature at specified span dim.

Tms = temperature at midspan.

The point density in this table will be such that spanwise linear interpo-
lation will suffice.

B. Calculations

1. For each temperature a nominal cooling effectiveness will be
calculated from:

_ T4l-Tm
nc ~ T41-T3

2. At each new condition, all station r\ values will be modified
by a factor, CF, as follows:

(1-nc) a aCF = 7= r^r = (T3*T41) /(T3*T4l)" where a is input
(1 - fl ) KhJ Kr< x
V 'c/

3. Output Nc values will be linearly interpolated based on percent
cord envelope at adjacent input stations.

4. For each output radial distance (specified in the input) all
station temperatures will be calculated as follows:
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Tij - T3 + (l-r)CR)*CF(T41-T3)*RF

Where i = station index
j = radial station index

II. Combustor

A. Inputs will be:

1. Metal bulk made temperatures at axial stations on inner and
outer liners, and for each station, x and y dimensions of
node centers at a specified reference case condition. Both
hot streak and average metal temperature values will be input.

2. It is assumed that output node dimensions will match the input
nodes. If cross-meshing is to be required, it will be done
before the input is defined.

3. A set of linear equation constants will be input for a sparse
set of axial locations, identified by AT station: numbers.
Output AT locations will be same as input locations.

4. A set of AP scaling constants will be input at a sparse set of
locations, identified by AP station numbers. Output AP sta-
tions will be same as input.

B. Calculations

1. A nominal cooling effectiveness will be calculated for each input
combustor average and hot streak temperature.

2. At each flight condition, each metal temperature will be recalcu-
lated from:

Tin.. = T3. + (l-n ) (T41.-T3.)
ij J V lc± '

 v j j'

Where i = station index

j = flight phase index

3. At each flight condition, each AT will be recalculated from:

nc ) *T41.. + (nc -1)*T3..] [b.+m̂ PS..]

4. At each flight condition, each AP will be recalculated from:

W41 2
AP. . = P3.*K.* — * T3.

iJ J i P3 j j
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