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Abstract. The long-period perturbations in the orbit of the Lageos satellite due to the earth’s
albedo have been found using a new analytical formalism. The earth is assumed to be a sphere
whose surface diffusely reflects sunlight according to Lambert’s law. Specular reflection is not
considered. The formalism is based on spherical harmonics; it produces equations which hold
regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a
realistic zonal albedo shows that Lageos’ orbital semimajor axis changes periodically by only a few
millimeters and the eccentricity by one part in 105. The longitude of the node increases secularly
by about 3 x 10~ arc sec yr'l.
of 1.1 mm c'wy‘l in the semimajor axis nor the observed along-track variations in acceleration of
order 2 x 10~ 12 ms™2.

The effect considered here can explain neither the secular decay



1. Introduction

This paper is concerned with an analytical treatment of what is commonly called *“‘the albedo prob-
lem”, and how it relates to the orbit of the Lagcos satellite.

The basic idea behind the albedo problem is this: sunlight is diffusely reflected by the earth up
to an orbiting satellite. The radiation pressure of the incident light exerts a force on the satellite.
The task is to find this force and its effect on the satellite’s orbit. For an early review of the albedo
problem, see Smith (1970). For some specific previous papers see Lochry (1966), and those cited
in the next few paragraphs, as well as the ones cited by Smith (1970).

The albedo problem is important because reflected suxlight significantly perturbs the orbits of
satellites with high surface-to-mass ratios, such as the ball-vi: satellite Pagcos (Prior, 1970; Laut-
man, 1977a, 1977b; and Zerbini (1980).

It is also important to know how reflected sunlight affects the Lageos satellite, even though it is
small and dense. A high-precision orbit is necessary for Lageos’ mission oi” accurately measuring
tectonic plate motion, polar motion, and length-of-day (Smith and Dunn, 198V). Smith (1983) has
even speculated that the unexplained variations in along-track acceleration which have magnitude
~2 x 10712 ms—2 (e.g., Rubincam and Weiss, 1985) are due to reflected sunlight. Anselmo et al.
(1983) support this view, while Walch (1982) finds this mechanism to be about an order-of-magni-
tude too small. Given this state of affairs, it is worthwhile to look further at the albedo problem
and Lageos.

Solving the albedo problem analytically is not easy. Even though irradiance falls off with the
inverse square of the distance, like gravity, the albedo problem has a number of complications not
found in the gravitational problem: (a) The irradiance on the satellite depends on the orientation
of the surface element doing the reflecting as well as the distance; an example is Lambert’s law
(e.g., Brown, 1965, p. 225); (b) The irradiance also depends on the solar zenith angle; (c) Cnly sur-
face elements illuminated by the sun and visible from the satellite contribute to the force; (d) The
earth’s albedo varies with time, as well as latitude and longitude; (e¢) The atmosphere reflects and
scatters light, so that one is not dealing with just reflection off the earth’s surface; (f) The force
depends on the properties and orientation of the satellite; generallv a flat mirror will feel a dif-
ferent force from a mottled ellipsoid, for example.

Given these complications, it is not surprising that Zerbini (1980) and Walch (1982) forsake the
analytical approach of the other papers mentioned abcove for a numerical one. However, there are
two good reasons for pursuing an analytical treatment: (i) equations give more insight into the
problem than numerical methods, and (ii) equations can often lead to significant savings in com-
puter time compared to numerical methods when integrating satellite orbits over time. Thus the

rationale for the present work.



The complications (a) — (f) mentioned above are dealt with here as follows. The earth is as-
sumed to be a sphere whose surface diffusely reflects light according to Lambert’s law. The al-
bedo variation on this surface is assumed to have a general spherical harmonic expansion whose co-
efficients may be functions of time. Spherical harmonics are also used to deal with solar illumina-
tion and the spherical cap seen by the satellite. The satellite itself is assumed to be a sphere of uni-
form albedo.

These assumptions lead to a vector equation for the albedo acceleration of the satellite. Then
expressions for the orthogonal accelerations R, S, and W are found after specializing to the case of
a zonal albedo variation (i.e., the earth albedo depends only on latitude). These accelerations are
to be used in the Gaussian form of Lagrange’s planetary equations; the acceleration equations have
the virtue that they hold regardless of whether the satellite sees the termiinator or not. Specializing
still further to the case of Lageos and a realistic zonal albedo model based on Stephens et al. (1981)
yields the following long-period results. The semimajor axis changes periodically with an amplitude
of ~5 mm. The eccentricity changes periodically by about one part in 105, The longitude of the

1

node increases secularly at the rate of about 3 x 16~ arc sec yr~ % periodic changes have amplitude

~3x 1074 arc sec, as do the changes in inclination. All of these effects are quite sma!l. Lambert-

1 in the semimajor axis or the

._2.

ian reflection cannot account for the secular decrease of 1.1mm day ™
observed variations in along-track acceleration which have amplitude ~2 x 10—12 ms
Some notation is given in Tables I and II; other quantitities are defined in the text. A photo-

graph of Lageos is shown in Figure 1.

2. Derivation of equations

In the case of the gravitational field, the usual method of obtaining the change in the Keplerian
elements of the orbit with time is to first find the disturbing function and then use it in Lagrange’s
planetary equations (e.g., Kaula, 1966, pp. 25 - 37; Caputo, 1967, pp. 140 - 158). Unfortunately
this approach cannot be used in the present problem where the reflected sunlight follows Lambert’s
law. The reason: the force cannot be written as the gradient of a potential, as it can for the case of
the gravitational field. This is proved in Appendix 1. Hence no disturbing function exists. Instead
tiic force must be dealt with directly. Once the force is found, it can be used in the Gaussian form
of Lagrange’s planetary equations, as is outlined below.

The derivation of the magnitude and direction of the force on a satellite due to diffusely reflect-
ed sunlight will now be given, Consider the inertial reference frame as shown in Figure 2. The
origin is at the center of the earth. The frame does not rotate around with the earth. Suppose the

—
sun shines on a surface element dS as shown in the figure. The sun is at position rqg while dS is



- - —
at rp. The surface element diffusely reflects some of the sunlight up to a satellite along rj —rp,

where ‘L is the satellite position. This light exerts an infinitesimal force dF on the satellite due to

all of the sunlit surface elements visible to the satellite. This net force will be called the albedo
force for short. Likewise the albedo force divided by the satellite mass will be called the albedo
acceleration.

The albedo force depends on the shape, reflectivity and orientation of the satellite as well as on
the characteristics of sunlight and the albedo of the earth. However, if the satellite is a perfect
sphere with uniform reﬂectmty, the force dF will always act along the surface elemeat-satellite line,
in the direction away from dS in other words, along n — Py A as shown in Figure 2. Such a case
obviously greatly simplifies the treatment of the albedo force. Fortunately, Lageos satisfies these
conditions to a very high degree of approximation (see Figure 1). Hence in the following the
infinitesimal force 3F will always be assumed in the dirction of ?L - ?A'

Now that the direction of a’F has been established, its magnitude will be computed. Since the
sunlight is assumed to be diffusely reflected according to Lambert’s law, the radiance of dS, mea-
sured in watts per steradian per meter squared, is Ngpcos g (e.g., Brown, 1965, pp. 220-225), where
B is the colatitude in the local reference frame (x|, y, ;) of dS (see Figure 3) and Np, is a constant
to be found next.

The radiant flux incident on dS is Fg cos y g dS, where Fg is the “‘solar constant™ and y g is the
colatitude of the sun in the local frame of Figure 3. The amount of flux reflected by dS is A(6,A)
Fg cos yg dS, where A(§,1) is the albedo of dS, and (6,1) are the colatitude and longitude, respec-
tively, in the inertial frame of Figure 2. This flux must be equal to Np cos g dS, integrated over the
hemisphere into which dS diffusely reflects sunlight, assuming the power into the surface element

equals the power out. Therefore

2n w/2
de f NRcosB sing df da = A(G,)\)FS cosy g dsS,
(6] (0]

where a is the longitude in the local frame of Figure 3, so that
NR = A(ON) FS cos ws/fr

The power E incident on the satellite due to dS is

E = Ngcosyy dSda = A(B\)Fgcos ygcos vy dSda/m,

where ¥ is the angle between r_;_ — ?A and ?A (see Figure 2) and dA is the solid angle subtended by
the satellite from dS. The magnitude of (“: can be found from E in the following manner. The inci-
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dent momentum p of the light is related to its energy E by L = pc, where c is the speed of light (e.g.,
Aloniso and Finn, 1968, p. 14). The incidert momentum per unit time is thus I'E/c. The force on
the satellite is the change in its momentum per unit time, and is given by Cp E/c (e.g., Rubincam
and Weiss, 1985), where Cp is the radiation coefficient. (If the satellite absorbs all of the incident
light and re-radiates it isotropically, then Cp = 1. If the satellite is a flat, perfect mirror reflecting
the incid_snt light straight back, then Cg = 2. So 1 <Cg < 2. For Lageos, Cp = 1.13). The magni-
tude of dF is che-2fore

Cr F
It?FI= RIS

A(O,)\)coswscos deSdA. (1)

- - - 5>
The vector force dF can be found by multiplying (1) by the unit vector (rf —rp)/Irp — ral. Also,
for a spherical satellite of radius RL, dA =~ 7 RLZ/ I?L - —r;‘lz to an incredible degree of accuracy,

- -
since R <<|rp —rplalways. Further,

- -

- - =
cos ¥g = (1g —TA) * TAL(Iig — ral " IaD =~ g * ra/(irg] * IFaD

because |‘-:;s| << Ir_gl, since the sun is so far away from the ~aith. Likewise, Fg kFg (as/|r_§|)2,
o
where ag is the semimajor axis of the earth’s orbit ubout the sun and FS is a constant, equal to
about 1376 W m—2 (Hickey et al., 1980). No such approximation can be used for cos ¥ , so it is
— s - - — —
(rp —r1p) *rp/llrp — rpl*Irpl) exactly.
_*
The albedo force F can be found by substituting the formulae above into (1) and integrating over

area yielding

(2)

90 b) -> 5> o5 o - > -
5 CRRLFg fag A@ ) [rg tal i(rp — 1) * Al [rp — 1Al
i‘l = ML g = _’ e o ds
3 412
c Irs| z i — 1pl% Irpl

in vector notation where r—f_ is the albedo acceleration in the reference frame of Figure 2, My is the

satellite mass, and = is the sunlit portion of the earth visible to the satellite. The albedo accelera-

tion can be written



= CRRL%Fg (as - - /[A(O,A) cos yg (cosn —p)
p=— [— p2 -
M r = (1-2pcosn +p2)2
* [(sin@ | cos A — p siné cosA )X
3)

+(sin 6 sinA| —p sinf sini) 9

+(cosf] —p cosf ) z] sind d6 dx

after reverting back to trigonometric notation. Heren is the angle betwen r—i and r_‘; (see Figure
2), 50 that cos 0= * fa /(|| * IFAD.Rp = Tpl, r = IF[ |, rg = Irgl, and p = Rp/rl. Also,
aS=R A2 sia 6 dé dx, and (0, Ap) are the colatitude and longitude of the satellite resp=ctively in
the frame of Figure 2, whereas (X, ¥, Z) are the unit vectors along the appropriate axes in the frame
of Figure 2. A spherical earth of radius R 4 is assumed in (3); R is the distance from the center of
the earth to the “‘top of the atmosphere”. The “‘top of the atmosphere” is taken to be 10 km
above the surface (the height of the troposphere) so that R, = 6371 km + 10 km = 6381 km, where
6371 km is the radius of a sphere with the same volume as the earth.(A more common choice for the
top of the atmosphere is 30 km; e.g., Bess and Smith, 1981.)

The task akead is to make the integral in (3) tractable. Spherical harmonics form a viable ap-
proach, as shown below.

Suppose a function D is defined so that
m

cos yg O<“‘S<2

0 -;—< ygs
then D can be written as an infinite sum of Legendre polynomials
0o
D = z dy Py (cos vg)
L=0
where PL (cos ws) is the Legendre polynomial of degree L and the d| are the appropriate coeffici-
ents. (The subscript should not be confused with that used for the satellite.) The addition theorem

for spherical harmonics



+L

4n T ]
Py(cosyg) = —— 2 Yr (8eAQ) Yi @\
L S % e o L Ut YL

(e.g., Merzbacher, 1970, p. 189) can be used in .he above equation to write

@ +L
= d
D@0, 6 gAg)=4n 2, 2 (ZLI';I)YL 6gAg) YL o) 4)
1=0 J=—L

where the

1+ 3]
~T [(2L+l)(L—IJ|)! i

J
L= (1) 4"(“““,} L, 1

are the spherical harmonics used in quantum mechanics (Merzbacher, 1970, p. 185), and (6 S Ag)
are the respective colatitude and longitude of the sun in the frame of Figure 2. Here PL, | _”(cos 0)
is the associated Legendre polynomial of degree L and order |J| and i =\/—_-l-. The asterisk (*)
denotes the complex conjugate and -L < J <+ L. The quantum-mechanical spnrerical harmonics

have normalization

2n o1
J* J .
YL (G,R)YLu (B,X)sma de dan = 6]!'61_[.'
0 0

(Merzbacher, 1970, p. 186) where & jj- is the Kronecker delta. The relation between the quantum-

mechanical spherical harmonics and those commonly used in geophysics is given in Appendix 2.
Likewise a function B defined so that

cosn—p
[ —2pcosn + pzl2 0<n <Arccos(p)
B =
0 Arccos(p) <n <
can also be written
00
B = 2 bgoPg (cosn)
=0



so that

< b m*
B(8.M0pAp) = 4n %(2—53;1)\!9 L) Y (o) (5)

where the bg depend on p. Arc cos (p) is the angular radius of the cap visible fo the satellite. Find-
ing the dj and the bg will be postponed until after a general expression for the albedo acceleration
is derived.

Now D(8, \, 8g, Ag) is zero over the night hemisphere of the earth. Also, B(8, X, 6, )\ ) is
zero outside the spherical cap visible to the satellite. Hence by substituting D(6, A, 6g, Ag) for
cos y¢ and B, 1, O, AL for (cosn —p)/[1 — 2p cosn + p2] 2 in (3) allows .... area of integra-
tion to be changed from Z  to the entire spherc, since now the integrand is zero oufside the
region = . This enlargement in the area of integration greatly simplifies the evaluation of the
integral, as will be seen shortly.

The albedo A(@, A) is also assumed to have a spherical harmonic expansion:

&2 * A * *
AN = 2 f AN YR 60, (6)
N=0 K=-N

where the cocfficients ANK‘ refer to the inertial reference frame of Figure 2. The albedo is de-
fined over the entire earth, regardless of day or night. This should cause no conceptual diffi-
culties; the values associated with the night side may be thought of as those the albedo would take
if the sun could somehow be made to shine on the sunless hemisphere. Further, 0 < A(6,)) < |.

Now realizing that

eHid e—l)\

COSIA'E s
2

. etA _ o—IA
sin A = -
2i

and using the properties



m (2—=m+1)(2+m+1) _m (2-m)®+m) _.m
~ + / Y o\
cosd X g \/ (2041)(2043) Y+ OA) (22-1)(28+1) An] 4P

(L+m+1)(e+m+2) _ ni+l
A
YV  (20+41)(2943) YQM fekh

sind e"'”‘ ng(o,)«) = -

(&-m-1)(2-—m) Yg{njll 0.0
Q-1 2%+ 1)

i M 2 (Em+1)R-m+2) vyl o
singe " Yo (0,)) f(29+l)(29+3) g+ (00

(f+m—-1)(¢+m) m-]
"\/(29-1)(29”) Yo1 (0N

(e.g. Merzbacher, 1970, p. 187) aliows one to write from (5)

+£

K L]
B(8,\60 A ) (sinf| cosf —psindcosh)= 2 ng m=2—9 " (0. Ap)

( b ¢ /
Q- b f+m— Q =
(2 ] - g (f+m-1) (2+m) Ym | 0.0
! |V oee-neerny el

bg_ | be \|  feem-D@-m _m+l
+ — — P —— Y (0.))
\2¢-1 w+l)| V @Dy )




Do+ bg

+ =p
20+3 R+
b b : =

B (M _P<;_3 \/(Qv-m'+l)(9+m+2) ol
2043 2+1 (2041) (29043) 2+

after gathering coefficients of Y';“ (6, ). (Interestingly, there is no danger of the superscripts

or subscripts of the Y';‘:ll (0,2.) exceeding their proper limits in the above equation; the radical in

front of such terms is zero.)

fﬁ—m+l)(9—m+2) Yrr—l .
(20+41) (2043) R+

Using the equation above, similar equations for B(6 A0 A1) (sin oL sinAp - p sin 6 sin A\) and

B A8 LA L) (ccs 0 - pcos @), as well as (4) and \6) in (3) and integrating over the whole sphere
vields

rL-

. 32 0
5, 4w’/2CgREFg (as>2 ,
.

CML

oo +N oo +L ) +£ IN+] " AKE ] e
. ~DK| ———["d;An ¥ (6gAg)Yg (B A{)
QernaLsn ‘LAN 1TSS TLTL
=0 K=—N L=0 J=—L ¢=0 m=-®
- - N L 21 N L o1
(bn-! . bg - (
- S —_— = prast— _l +
| \2¢-1 2Q+|_\/(Q*"‘ }(km) R "o o
' . N L €1 N L -1
bo_ b
" < L l) B p<_i>\'ﬁ—m-l)(9—m)
28-1 21/ ~K )] m+l 00 0
Yirs) by \ N L 2+ N L £+
= - p|— /Q m+l) (£-m+2)
2043 20+1
- K J m-l 0 0 0



by
~p< ) Jﬂfm+')(ﬁ+m+2)
2041

I by be ]
=4+ [ —) = \/(Hm 1) (¢+m)

by

-0 NN /(8=m-—1; (€-m)
20+]
bo+ by

= ( l) - p< ) (¢ m+1)(2 m+2)
243 24+

bg\
o (-—/\/(Q+m+l)(11+m+2)

X +]

bQ
p \/(0 m+1) (¢+m+1)
’&+1

for the albedo acceleration, where
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2w

‘K J
YN @) YL (6) Yo' @) sing df dA

K [ @N+D)(2L+1)(2¢+1) 1%
= ¢-1) ]
4n
K J m/ \o oo

(e.g., Rotenberg, et al., 1959, p. 5) is the simplification of the integration mentioned earlier. The

two-row arrays are the 3-j symbols of quantum mechanics (e.g., Rotenberg et al., 1959, p. 2)

iy gy g o
=(n1727™
my, Wy W3
%

<0,+j, it Gy — iy *ip! (i) +iy *ig! Gy +mPLGy —mp! Gy * my)! Gy=my)! 3+ my)! Gy - m3)!>
X

Gy +ip+ig* D!

-nk

)

K k!(jl<bj2--j3—k)!(jl —ml—k)! (jz+m2—k)! (j3—j2+m]*k)! (j3 -jl —m2+k)!

The sum in this equation is over all values of k so as to make the right side meaningful. The 34
symbol is automatically zero unless the triangle inequalities
j|—iptiz 2 0
~jj + j2 +i3 =0
are satisfied (Rotenberg et al., 1959, p. 3). The 3-j symbols also have the following properties:
iy b 33

=0 formj + m, + mj 0 (8)
m; my mg



so that

1 dp 33 hh 1 33
(-nm1Tm2m3 =(-1) ©)
mp; my m3—l m; mp m3—l
for example, and
PR DY i1 +intis iy i 33
=(-1) (10)
=Hy =my =ih3 m) Wy Mg

(Rotenberg et al., 1959, pp. 2-3). These properties will be used shortly.

The albedo acceleration r't of the satellite will next be expressed in terms of the orbit parame-
ters.

First assume that the albedo variations are =ttached to the earih, i.e., the light and dark ruarkings
rotate around with it. In this case the coefficients of (6) can be written

AK = A,ff e—iK (1)
where the Arlx( are now the earth-fixed coefficients and © is Greenwich sidereal time. The
right-handed earth-fixed frame has its x-axis intersecting the equator at the Greenwich meridian
and its z-axis piercing the north pole.
t can easily be shown from the standard development of the gravitational potential (e.g., Caputo,

1967, pp. 140-145; beware of typographical errors) that

m+|m|
(-1 2
Vs
2ln(2—60m)] s

7

m -
YQ (6,A) =

ei(25m|m| —1) [(R-2p)w+f) + |m|Q] f—m even

2
: z Fjmp® :
p=0 @mim =1 i(25 ) =1 [(©-2p)(w+ ) + mIg2] (12)

i

\ 2—m odd
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In this equation ?Qmp(l) is the normalized inclination function

_ (2—8 ) (22+1) (2—m)!
Fomp®) = D) Fomp ()

(Rubincam, 1982, p. 364), while I is the inclination of the satellite orbit with respect to the earth’s
equator, Q the position of the orbit node on the equator, w the argument of perigee, ana f the true

anomaly.
Using (11), (12), and the succeeding equation, one can write

Kt J*
AN Y] (0, ) Yy o0

=(=1) : _

{1Fgimip
ot z L|j| (Ig)*¢|m|p

h=0 P_

K+ KR+ |J| +m + Iml[ (-8, :[

+i {(1—25”“) [(L-2h)wgtfg) + TIQg] + (1-25 1 1 II(R=2p)(w+() + imI2] +K © }
€

_ ) - ) L — Jeven
( ANkt —1(=28g k) ANK|2 I: ¢ _meven
(1-26 . ) ANIKI — (1=26 kI (125 1) ANIKI 2 I léine;:;;
_1_1_i _
- (-2 1a) 7 _ ~ L-1Jodd
STOP AN — =28k (=285 ANK| 2 I ¢ m even
1
\ —(l—25]|J[)(|—25m|m|)ANIK“+i(l—ZOKIKI)(1—251|_||)(l—25m|ml)ANlKI?_

Iv: L - Jodd
2 — m odd
(13)

where KNIKII and KN!KIZ are the earth-fixed albedo coefticients of the geophysical spherical har -
monics; these harmonics are defined in Appendix 2. Also, ls, g, wg, and fs are the orbit parame-

ters for the sun.
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Now realizing that any sum of the following sort can be written

Nl 1R +N 4L +2
Y OY Tm= I Y X [argpawn)dr bom)]
K=—N J=—L m=-% K=0 J=0 m=0

: [ Ckym* CkJ-m* CK-Im *Ck-J-m* C_KIm* C—KJ-m* C_K-Im* C_K-J-m ]

and that

as well as making use of (8) - (10) and (13) in (7) yi ds, after a great deal of labor, the albedo 2ccel-

eration expressed in terms of the satellite orbit parameters:

2 9 oo (e <]
3 "Ry CRrFg 2
A <§> 23 3
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+L o+
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+

z
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(28, N2 8 M2L+1)(22+1) (148 | (148 1 )(1+5

+L  +

+ 2 2 Frpdg) FampD
h=0 p=0

N L £-1

NOL G bQ_ bg
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ZQI 2Q+l -K J m-1 -K

N L 2+l N L 41

-—/

0 0 0 2!2+3 2Q+1 m-1
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In this equation
S
VUh = (L - 2h)(ws 4 fs) + JQS

and

L
Vemp = (-2p)w + N + mQ

It should be noted that K, J, and m are now non-negative numbers, as may be seen from the summa-
tion symbols in (14). Also, only the Roman numerals for the four conditions are given to save from
writing “L — M even, £ — m even " etc., over an’ over.

It is of some interest that the leading subscript on the inclination functions can take on the values
Oand 1, in contrast to the gravitational case. These functions are listed in Table IlI, since they are
not given in the standard references.

The albedo acceleration can be expressed in terms of the orthcgonal components (R, S, W) used
in Gauss’ form of Lagrange's planetary equations. These components are derived via a rotation

matrix from the Cartesian components, l';.'f. °x') found in (14):

B P
FR. " cos (w + 1) cos Q cos (w + 1) sin Q sin (w + 1) sin | X
—cos Isin 2 sin(w +f) +cos I cos Q sin (w + 1)
- (15)
sl= —sin (w + ) cos Q —sin (w + ) sin Q cos (w + ) sin | y
—cos I sin Q cos (w +f) +cos I ces 2 cos (w + 1)
..W.J sin I sin Q sin | cosQ cos | J L%

(Rubincam, 1982, p. 370). In this equation R is the radial component of acceleration, S is the trans-
verse component in the plane of the orbit, perpendicular to R and positive in the direction of motion,
while W is normal to the orbital plane and positive in the direction of the angular momentum (e.g.,

LY et A

Blanco and McCuskey, 1961, pp. 177-178). Of course Ty =X X+ y +% 7.

22



The general equations for R, S, and W will not be written here. Instead only the case of zonal
albedo variations will be considered, so that the light and dark markings of the earth vary only with
latitude. The reason for doing this is that only the zonals will give 2 long-term change in the Kep-
lerian elements, barring a resonance. So K = 0 from this point onward.

Using the general relations

cosacosb = Ycos (atb) + Yicos (a-b)
sinasinb = —Y%cos (atb) + Yacos (a-b) (16)
sinacosb = Jasin (atb) + Yisin (a—b)
cos asinb = Ysin (atb) — Jasin (a—b)

(e.g., Kaula, 1966, p.31) together with (14) and (15) yields the following equation for the radial

albedo acceleration:

° 2
7R CxF \ o w 4L oo 4R
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4cM rs N=0 L=0 J=0 £=0 m=
1
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S can be found from (17) by substituting w +{ + n/2 for w + f where it explicitly appears in the

above equation. (The w + f hidden in VIQmp is not to be tampered with.) Hence S will not be

written here.
W is more easily found than R. By (14) and (15) it is

2 * @ oo 4L oo
nR“CpF ag \2
RFs /3 - _
we Tl ()pzzz oD SRy
My \rg N=0 L=0 J=0 ¢=0 m=0
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(2828 LA+ (48,800 =0 p=0
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Again it is to be reminded that (17) and (18) apply only to zonal variations in albedo, i.e., K =0 in
these equations.

This completes the lengthy derivation of the albedo acceleration. It remains to find the dy and
by.

3. Derivation of coefficients

The dp_ will be found first. Define a “hemisphere function™ H such that

1 in the sunlit hemisphere
H =

0 elsewhere

then H has the Legendre polynomial expansion

(= -]
H = EHL PL (COS ws)
L=0
where
Hp = %[PL_1 (0) - PLy) (O]
with

P_l(O) =+
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(Longman, 1962, pp. 846-847). Defining now the ‘“‘daylight function”
o0
D = H cos ws= z HL cosyg Py (cos vg)
L=0

insures the proper behavior of the irradiance over the whole earth: ~ cos y g in the sunlit hemi-
sphere, ~0 in the shadowed. Using
(L+1) PLH(cos vg) + L PL_l(cos ws)

(2L+1)

PL (COS v S) =
(Hobson, 1955, p. 32) allows writing

D= 2 d P (cosvg)
L=0

as required, where

L L+
dy = [——)H{_; + H
L (21.—1) L-1 (2L+3) L+]

L+1 (2L+1) L
1 = | P 0 _
: [ (2L+3) L@ - Gihars L0t <2L—l) PL‘Z(OJ

and P_,(0) =0.

The dy can now be found from standard tables for the Legendre polynomials (e.g., Hobson,
1955, p. 17). A listing of the dj for 0 < L < 6 is given in Table IV. Note that all of the d| for
odd L are zero, except for dj. A graph of D using the first seven terms in the summation is shown
in Figure 4. Notice that it is an excellent approximation to the exact function.

Finding the by is harder work. Using the binomial expansion (e.g., Selby, 1973, p. 470)

(1-2pcosn+pr2 = (1+q)~2 = 1 -2q+3q2—4q3+...

(whereq = —2p cos n + p2) and multiplying c2s n — p gives the following approximation B’ for
B:
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B = (cosn—p) (1-2q+3¢%—...)
e (o203 — 305 + 407 — 509+ 6011 — 7013 48015 _ 9517 +10p19 11,21 412023
1325+ 14027 — 1529 + 16531)
+(1— 602 +150% — 2805+ 450% — 66010+ 91912 — 12014 +153016 — 1905'8 + 231,20
276022 + 325024 — 378,26 + 435028 — 496p30) cos n
+ @p— 2453 +7205 — 16007 +3000° — 50411 + 784513 — 1152515 + 1620017 - 2200019
+2904021 — 3744023 + 473225 — 5880027 +7200p2%) cos? n
+ (1202 — 80p% +28006 — 72008 + 1540010 — 2912512450404 -8160516 + 125400 '8
— 18480020 + 26312022 — 36400024 + 49140926 — 64960p28) cos> 5
+ (3203 — 24055 + 96007 — 28000° + 672001 ! - 14112513 + 26880515 — 475200 17 + 792000 1?
_ 125840021 + 192192923 — 283920 25 + 407680027 cos* n
+ 800 — 67206 + 30248 — 9856010 + 2620851% — 60480514 + 12566416 — 240768018
+432432020 _ 736736922 + 1201200524 — 1886976 p20) cos® n
+(19205 — 179267 +896007 — 322560 11 +94C80p 13 — 23654401 + 532224p17
_ 1098240519 + 2114112021 — 3843840023 + 6662656p27) cos® n
{44805 _ 460808 + 25344510 _ 99840012 + 3168000'4 — 86169616+ 20866560!8 — 4612608020

+9472320p 22 _ 18304000 p24) cos’ n

+(102407 — 115200% + 691200 | — 2956800 13 + 1013760513 - 2965248017 + 7687680 12
— 1812096002) + 39536640023 cos® n

+(230408 — 28160010 + 183040 ' 2 — 844800014 + 3111680016 — 97377280 18 + 26906880, 20
— 67358720p22) cos® 1

+(51200° — 67584011 +473088p!3 — 2342912015 = 92252167 - 307507200!°
+90202112p21) cos 109

+(11264910 — 159744 012 + 1198080p 14 — 633651216 + 265574400 18 _ 93920472p20)cos ! 15

+(24576,' 1 - 3727360!3 + 2981888515 — 16773120 o7 +745472005!%) cos'2 1
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+ (5324812 — 860160014 + 7311360516 — 43581440,18) cos!3 n

+(114688 '3 — 1966080 5 + 17694720p17) cos!4 »

+(245760p 14 — 4456448 !6) cos!5 7

+(524288p15) cos! 0 (19)

after terminating the expansion at the q15 term (inclusive). The approximation given above holds
only for n < Arc cos p; elsewhere B’ = 0.

The by can be found from the inner product (e.g., Hobson, 1955, p. 42):

by =(2§_"1)‘[" B Py (cosn) sinn dn .
0

Hence,

1
v _[2
bg=< Q;‘)[ B’Pg (cosn) d (cosn ) (20)
p

where bQ' is the approximation to bq. The lower limit of this last integral reflects the fact that B’ =0
in the region invisible to the satellite. The bQ' will be used ir. place of by in what follows.
It is easier to compute the bg' numerically than to give analytical expressions for them. Using
the basic equation
_afll — ez)

e 21
: l+ecosf W21

and the numerical values for R 5, a, and e for Lageos result in
p =0.520049 (1 +e cos f)

so that

pM = (0.520049)" (1 + ne cos f)

sincc e is small. This equation, together with (19) and (20), yield the bg' listed in Table V for £
running from 0 to 6. The values for bg' in turn allow
6
B'= )  byPg(cosn)

=0
to be computed. This function is shown in Figure 5 plotted against n together with the exact ana-
lytical expression for B. Both curves assume Lageos to be in a circular orbit. The figure shows
that the approximation for B is not as good as the one for D.
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4. Earth Albedo
Now that the formalism for the albedo acceleration has been developed, it is time to consider what
model to use for the earth’s albedo for short wavelengths. Since only the zonal terms in the albedo
are retained (K = 0), it comes down to the matter of choosing Agg, KIOI‘ A50). etc. Stephens
et al. (1981) summarized several years’ worth of satellite data from which a set of coefficients can
be derived. They give the monthly zonal mean albedos for latitude bands 10 degrees wide, plus the
yearly average for each band (see their Table 4b). Assuming that the albedo values refer to the mid-

point of each band (so that the value for 60°N — 70°N is :aken to be at 65°N, for example), one
can do a least-squares fit to the data with a sum of Legendre polynomials.

The resulting coefficients KOOI through X401 for each month, which come from fitting the first
five polynomials, are shown in Figure 6. This figure shows that the coefficients for even N are all
fairly constant throughout the year. The coefficients for odd N show a distinct sinusoidal behavior
with a period of one year. However, 7\301 is not sinusoidal about zero like f_\lm. Rather, it shows
a constant offset which is presumably due to the presence of the large Antarctic ice cap. The coef-
ficient 7\00] gives a rough measure of how good the fit is, since its time-averaged value is actually
0.30, varying only between 0.29 and 0.32 during the year (Stephens et al., 1981, p. 9744). The
least-squares estimate is consistently high, but only a little.

Clearly it will do no grezt violence to the data to take

A@,2) =0.30 Fo‘o(cos 0)
+10.05 cos fg) Py o(cos o)
+0.10 Fz’o(coso )

+[-0.01+0.03 cos fg] P3¢ (cos)
+0.04 P4 cost ) (22)

as the model for the earth’s albedo. This is a hybrid expression: 7\00] is Stephens et al.’s (1981)
time-averaged value, while the other coefficients are based on Figure 6. Obviously a more accurate
expression could be obtained by analyzing Stephens gt al's (1981) original data, but (22) is good

enough for the purposes considered here (see Figures 6 and 7).

Note that the coefficients for even N are assumed to be constant. The time-varying parts of
KlOl and '_‘301 are modeled with cos fg; this can be done due to the fortuitcus “ircumstance of
perihelion passage occurring near the first of the year. Note also that the albedo is dominated by
the zeroth and second degree harmonics.
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5. Lageos
The analytical formalism and the albedo niodel will now be applied to the Lageos satellite. Lageos

has the follo:. * ¢ parameters in addition to those shown in Table I:

Q=Qq,+ ﬂ(t—to)
wEw,+ c:J(t—to)

where
Q,= +28.5596 deg

wo= +171.9271 deg

to=2902.5 days (Julian Date) .

For further information about Lageos, see Smith and Dunn (1980) and Rubincam (1982).

The Lageos values will be used to compute R, S, and W via (17), (18) and the modification of
R which yields S. Other vaiues necessary for the computation are those given in Table II, the dj
given in Table IV, the by’ given in Table V,and the f_\NOI given by (22). Also, the earth’s orbit about

the sun will be taken to be circular, so that (aq/rs) = 1. Further,
wg *fg = kg +fg)y + (o + 1) (t —ty)

where

(wg +fg), = 42.0087 deg.

The subscripts will run between the following values in the summations: 0 <« N< 4, 0< L < 4,
and0< ¢ <SS,

What does one get for R, S, and W using all of this data? The answer is: thousands of terms for
each of the accelerations, for each value of N. Many of the terms are zero, since l—(—l)N+L+Q and
the 3-j symbols are often zero. A computer program is necessary to make all of the calculations.
It also proves convenient to gather together all of the terms with the same frequency with the aid
of the computer.

Sample calculations for R, S, and W as they vary over one revolution are shown in Figures 8 — 12
for the major terms in the albedo N = 0 and N = 2. In all of these figures the sun is on the equator
and Lageos passes directly over the subsolar point. The correct qualitative behavior for R when

N =0 (Levin, 1962; see also Anselmo et al., 1983) is evident in Figure 8. Here the acceleration is
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roughly zero in the shadow, rises to a maximum when Lageos is directly over the subsolar point
(where the reflection is strongest), and then falls off symmetrically towards zero. Likewise Fig-
urc 10 shows the correct qualitative antisymmetric behavior for S (Levin, 1962; Anselmo et al.,
1983): nearly zero in the shadow, and then negative as the satcllite approaches the subsolar point
and the sunny area pushes Lageos against the direction of motion. S is zero because of symmetry
when Lageos is over the subsolar point; then positive as the sunny area pushes Lageos along its way.
Note that the maximum amplitude for S is about an order-of-magnitude less than that for R, also in
agreement with Levin (1962).

One way in which Figure 8 differs from Levin’s figure is that his R has a flat top. Also, the
humps in Levin's S are separated by a stretch where S is zero, while the humps of Figure 10 are
joined together. [hese differences are due to Levin’s oversimplification of the problem.

No figure shows W for N = 0; it is zero over the entire orbit, by symmetry. However, W for
N = 2 is shown in Figure 12.

The long-period perturbations in the Keplerian elements a, e, w, | and & for N = 0 are found
next using the Gaussian form of Lagrange’s planetary equations. Perturbations in the mean anom-
aly M are not considered. The assumption of a circular orbit will be dropped when considering
changes in a, e, and w but retained when considering changes in I and Q.

The change in the semimajor axis with time is given by (e.g., Blanco ind McCuskey, 1961, p. 178)

da _ 2 [(ersin DR +a(l — e2)S]

dt
nr./l-e

2

ns/l —c2

{(esin )R + (! +e cos 1)S]

where n is the mean motion and use has been made of (21).
Substituting R’ for R and

§'= S, +(ecos NS’ (23)

in the above equation yields

d 2
= ——= ((sin DR, * cos £(S,, +S])) (24)
dt Lp. nvVl-—e*
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to first order in e for the long-period (1.p.) part of da/dt. The prime denotes the parts of R and S
which contribute to the long-period perturbations, while R, and S, are the portions of R'and §'
respectively which are independent of the eccentricity. S’ is written to first order in e; hence the

term (e cos f) §;" in (23). Thefa~torecos fultimately comes from the eccentric part of p. A term

28,/(nV l—ez) wnich appears after making the substitution of (23) into (24) has been dropped,
s‘ne it contributes only short-period teims.
The long-period terms in R and S are all of those which contain t(w+f) inside the trigonometric

argument; all other terms are short-period. According to the computer program they are

Ry, = 10-12 [ + 11.729 cos[(wg +fg) - W+N |
- 11.729 cosi(us+fs) + (w+h) ]
+ 19.829 cos[(ws+fs) - (w+f) Q]
+ 40.293 cos[(ws+ fg) + (w+NH-0 ]
+ 1.735cos[wg+fg) — (w+f) +Q ]
+ 0854coslwgtfg) + N+ ]} ms™2 (25)

s’ = 10712 | - 1215sin[(wgtfg) — @+ |
- 1215 sm[(wgt+fg) + (w+i) ]
— 2.0535"’1[(0}84’.'5) - (w+h) -]
1 4.174sin[wgtfg) + (w+) -]
- 0.|80sin|(ws+rs) - (w+N + Q)
+ 0088sinjwg+fg) + @+N+al} ms? (26)

w
"
+

0.754 sin[(wg *+ fg) — (w+f) ]
0.754 sin[(ws + fs) + () }
1.275sin[(w g +fg) - (w+) — Q)
~ 2591sin[e gt fg) + (w+) —0)
+ 0.112 Sinlbs"’fs) - (w+) 0]
~ 0055sinlwgtfg) + (w+N+ql) ms2 7

1o~ 12 |

Substituting (25) — (27) in (24) and using (16) yields for the change in semimsjor axis

Aa - A3, " - 0.40 cos[(wg + fs) - w
~ 0.62cos[(wg+fg) + w ]
— 0.95 cosl(wg + fg) —w - (93
+ 3.82 Cos[(ws + fs) + w -0l
- 0.05cos[(c +fg) - w +OF
+ 0.03 cosl(wg +fg) + w +Q)| mm (28)
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after integrating and dropping some more short-period terms. Here Aa is Aa at time t,. The per-
turbations in the semimajor axis are thus quite small. The largast term has an amplitude of 3.82mm
and a period of 833 days. A graph of (28) is shown in Figure " 3.

The change in eccentricity with time is given by (e.g. Blancc and McCuskey, 1961, p. 178)

de ~\/ 1 _62 a(l —82) r
= (esinph)R+|————| S ;

dt nae r a

so that

—
\/]—e‘

na

de
dt

=

L.p.

(sin f )Ro' + (2 cos ) So’ }

after again making use of (21). Substituting (25) and (26) in this equation and initegrating gives

Ae — A
[ae—de], o6 {— 0.844 cos[(wgtfg) —w ]

- 1.304 coslwg+fg) + w ]
2.000 cos[(c.‘s-i'fs) - w—-Q]
+ 8.028 cos[wgtfg) + w—9Q]
~ 0.097 cos[wgtfg) —wt+Q ]
+ 0.066 cos[wg+tfg) +w+tQ ]}

€

(29)

Thus e changes by only about one part in 105. A graph of (29) is shown in Figure 13 also.

Proceeding in similar fashion,

do  \/f—e? , '
— V= (cos f)R—sinf[H» : }S+[ff5m (wtf) cot l] W‘
- ni )

% 2
dt nae a(l-e~ a(l—e)

(e.g. Blanco and McCuskey, 1961, p. 178}, so that

dw | \/_"e_l(ccs R, — (2sin ) S’ 1
€

— >~ h
dt ‘l.p. na
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and the term containing W has been ignored, since it is multiplied by e. Using (25) and (26) and

integrating yields
Aw - Aw, = —0.174cosl[(wg +fg) — w ]
+ 0.269 cos[(u)s 3 fs) + w ]
—0.412 cos[(ws + fs) -—w -]
— 1.656 cos[(wg +fg) + w —Q]
— 0.020 cos[(wg +fg) - w +Q]
— 0.014 cos[(cvrg+fg) + w +Q] arcsec -

See Figure 14 for » graph.

The equations above give all of the long-period terms for the stipulated conditions on N, L, and
2. Unfortunately, the corresponding equations for the perturbations in the inclination and longi-
tude of node contain a great many more terms. This is becavse W, which controls these perturba-
tions, contains a large number of contributing terms, unlike k .nd S. Only those terms in Al and

AQ which have an amplitude greater than 10~ arc sec will be listed here:

Al -aly=10"% | 1.795 sin[ ]
- 0.501 sin| 22 ]
+0.395sin[2wg +fg) — 2]
+ 3.018 sin[2(w ¢ + fg) — 202 |
+ 0.205 sin[2(ws + fs) -39 1]
— 0.141 sin[2(w g + fg) — 49 |
- 0.191sin[4(wg+fg)— 42 1} arcsec

a9 - aQ, =10"*{ 3.956 cosi - al
+ 0.360 cos[ 201
— 0.257 cos[2(wg * fg) i
— 0.870 cosi2(wg tfgi— @ |
+ 1.234 cosj2(wg t+ fg) - 20 ]
—0.115 cos[2(wg +fg) — 32 1 |  arcsec

I'hesc perturbations are small.
These expressicns are again derived from the classical equations (e.g.,Blanco and McCuskey,
1961, p. 178). W itself is not given. For grephs of the above perturbations, see Figures 13 and 14.

There is also a secular contribution to the node:
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aa | 4 1
—_- = — 7.856 x 107 arc sec yr—
dt | sec

which is also small. This completes the derivation of the perturbations in the Kcplerian elements
for N =0.

The perturbations due to the higher harmonics (N > 0) in the albedo (22) are generally smaller
than those for N=0. For instance, the largest term in R’ for N = 2 yields an amp!itude of 0.29mim
for tne perturbation in the semimajor axis. Since the perturbations for N = 0 are alrzady small, the

perturbations for N > 0 will not be computed, with one exception. It turns out that the N =2 and

N = 4 harmonics contribute significantly to the secular motion of the nodc, being +8.390 x 10~4

and +2.310 x 10~% arc sec yr“l. respectively. The second degree terrn more than cancels the zeroth
degree term, Ziving a total of

dnl

> +2.844 x 10~% arc sec yr"l
dt | sec

for ail three terms.

6. Discussion

The formalism develcped here results in some rather lengthy equations for the albedo accelera-
tions. However, a virtue of these equations is that they hold whether the satellite sees the terminator
or not; in other words, they are perfectly valid for any sun-satellite geometry. Hence there is no
need for separate equations for the terminator-visible and the terminator-invisib'e cases, as in past
treatments.

Application of thc formalism to lageos’ orbit snows the effect of sunlight diffusely reflected
from a uniform earth to be quite small. The periodic perturbations in the node 2, for instance, are
far below the residuals level of about (.03 arc sec of the sateliite laser ranging data (Rubincam,
1984, Figure 2). Alsc, the semimajor axis a is perturbed at the Smm level over a period of 833
days. This is smaller than the effect of some individusal solar eclipses on the orbit of Lageos. The

eclipsc of 28 farch 1979, for example, increased the semimajor axis by about 17 6mm within the
space of an hour (Rubincam and Weiss, 1985). The albedo perturbations in e, I, and w are likewise

tiny. (Interestingly, the perturbations in a, e, and w are dominated by the radial acceleration R.) The

perturbations due to the higher harmonics (N > 0) in the albedo are also small. Hence diffuse re-

flection plays only a minor role in long-period perturbations in Lageos™ orbit.
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It is clear from the periodic nature of (28) that Lambertian reflection cannot explain the ob-

served secular decay of 1.1mm day_l

in the semimujor axis (e.g., Rubincam, 1982). This has been
attributed to charged particle drag (Afonso €t al, 1980; Mignard, 1981; Rubincam, 1982; A-
fonso et al., 1985). Morgan (1984), however, suggests the decay may be caused by forward scat-
tering due to a morning-evening asymmetry in the albedo.

Lambertian reflection cannot explain the observed unmodeled along-track variations in accel-
eration, either. These long-period variations have magnitude ~ 2 x 16712 ms—2 (e.g., Rubincam,
1985: Anselmo et al., 1983). It is obvious from ¢ .7 that the along-track albedo acceleration is of
magnitude e x 2.5 x lO"l2 ms_:Z = 0.01 x 1(:12 ms‘z‘ This is two orders of magnitude too
small to explain the observations.

The physical reason why the long-period varictions in S depend on the eccentricity e is as fol-
lows. Consider the effect of a single surfice :'ement on a circular orbit. The surface element re-
flects according to Lambert’s law. On ti.. arc where the satellite approaches the element radiation
pressure pushes the satellite against the direction of motion, giving a negative contribution to S.
Correspondingly on the arc where the satelliie moves away from the element the satellite is pushed
in the direction of motion, giving a positive contribution to S. The positive and negative contribu-
tions will exactly cancel when summed over a circular orbit because of the symmeiry of the diffuse
reflection required by Lamber:’s law. The same will obviously hold true for a sum over surface ele-
ments. Hence there can be no long-period variations in along-track acceleration for a circular orbit;
only shori-period. An eccentric nrbit must be invoked to give the asymmetry needed to produce
long-period variations in S; thus the appearance of e.

This argument will hold regardless of the changes in albedo across the face of the earth. There-
fore a north-south asymmetry in the albedo cannot be invoked to explain the observed variations
in along-track acceieration as by Anselmo et al. (1983}, at least not with Lambertian reflection.
Walch (1982) also finds Lambert’s law inadequate to explain the observations. He numerically
modeled a combination of Lambertian reflection, specular reflection, and infrared radiation using a
zonal albedo. His resulting acceleration is about an order-of-magnitude smaller than observed. This
is still an order-of-magnitude larger than that computed here. The difference is presumably due to

his inclusion of specular reflection, which is not considered here.

What then is causing the observed variations in along-track acceleration? One possibility is
fluctuations in charged particle drag ( Afonso et al., 1985: Rubincam, 1982). Another is varia-
tions in forward scattering (Morgan, 1984).

How well do the assumptions made here mimic reality? There have been some obvious simpli-

fications: higher harmonics and tesseral harmonics in the albedo, a w.' “length-dependent albedo,
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an oblate earth, a ragged terminator, etc. have all been neglected. Perhaps more serious is the as-
sumption of a time-averaged albedo, rather than a time-varying albedo. Also, more Legendre poly-
nomials could certainly be used to improve the approximation for B, i.e., bring the dashed line
closer to the solid line in Figure 5.

All of the above probably produced negligible error com»ared to the main assumption: that the
earth reflects sunlight according to Lambert’s law. In fact the ways in which the earth reflects
light are still poorly understood (Stephens et al., 1981, p. 9741). Clouds and land behave some-
what like Lambert’s law (Jacobowitz, 1981; Stowe and Taylor, 1981; Gube, 1982, pp. 57-38), but
the oceans display a distinct anisotropic reflectance pattern with a strong specular component
(Stowe and Taylor, 1981). Snow and ice are also non-Lambertian reflectors (Stephens et al. 1981,
p. 9741). Hence the main future endeavor in this field should be in pursuing laws of reflectance
more realistic than Lambert’s law. However, the problem will become much more complicated be-
cause of angular dependence as well as the space and time variations of reflecting surfices. A start
has been made in this direction with specular reflection (Walch, 1982) and forward scattering
(Morgan, 1984).

As for the present formalisin, it can be modified to examine the perturbations in Lageos’
orbit due to infrared radiation. These can then be compared to Sehnal’s (1981) results. This work

is now in progress.
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APPENDIX 1

This appendix shows that the force in Lambert’s law cannot be written as the gradient of a
potential .

-
Suppose the satellite’s position is at ?l in Figure 3; the force is directed along r| and is propor-

tional to

- X1 X1 4y Vi +2q 2 z
r| cos g 1 %1 Y1 % T4 Sy 4
3 3 r
r r I

[xz 2,2

A . 1

= _l l xl + y_lzl yl + | — Z
\ rl4 rl4 r]4

2. *f this force were derivable from a potential, then one could write

\?'.here rl?'=x]2+yl2 +2) 2 y
r_f =VV where (aV/dx) = x]zll(xl +y) +2zp ) ,etc. apart from constant multiplicative fac-

tors. Then it should certainly be true that

a |2Y) - 3 [V
ay 1 0z
Working this out implies that
Yl

TP PO A i
Since y is not necessarily equal to zero, the above equation cannot always hold. Hence there can
be no Lambert law potential.

It is easy to see physically why this is so: the work done over a closed circuit is not zero. Con-
sider taking a particle around the elementary circuit ABCD in Figure 3. The circuit is assumed for
simplicity to lie in the y| -z, plane. No work is done over circular arcs BC and DA since the force
is perpendicular to the path. Over AB the work done is Ary cos al/rlz, apart from constant fac-
tors where B is the angle between AB and the z; axis. Likewise the work done over CD is
—Ary cos ﬁz/rlz, where f, is the angle between CD and the Z) axis. The net work is thus
Ary (cos By — cos ﬁz)/rlz. This is not zero, since | # 5. Hence the force is not conservative and

therefore not derivable from a potential.
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APPENDIX 2

The quantum-mechanical spherical harmonics YLJ(G ,A) are related to the geophysical spherical
harmonics Yuj(o »A) by the equation

JHJ|
(=1

YLJ(O,A) = [?u”l O,A)- (1 - 25“]')1?””2(9.7\ﬂ

(412 8 )1%
The inverse relations are

YL@ = 5@ -5,p1"% (-1 Y 0 0) +Y, 6 0)) . 1>0
(72 — 51"

NSRPICRY =Dy ey -y o 120

i

The geophysical spherical harmon.cs are defined by
?u](o,x) = l_’LJ(coso ) cos mA
?uz(e,)\) = FL’J(cos 6) sin mA

where

= L-1)! v
PLj(cos) = | (2 -5 oJ) (2L+l)( 2| P; y(cos6)
(L+J)! ‘

so that

21
f f ?uj(() A) ?L'J'j'(o)\) sinf@dfd d\ = 4n 6LL‘ 5yy Bjj"
0 0

In other words, the geophysical spherical harmonics follow Kaula’s (1966, p. 7) 4 normalization.
Note that sz(o,)\) = 0. Likewise any coefficient CLJ of YLJ(G ) is related to the coefficients
(—:LIJ“’ CLIJIZ of the respective ?LIJI ] @.n), 7””2(9 W) by
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J+1J|

CLJ = [7(2 —601)]%(—1) : [EUJ“ +(1 - 281|J|)i6uj|2]

and

CLn
[47(2 =8 4)y)

i

YVa

[(—1)J c? +CL"] ;

CLy2
[4n(2 — 50_])]

Obviously, ELOZ =0.

Jed -]
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TABLE CAPTIONS
Table I. Notation for quantities relating to Lageos. The quantities in the first part of the table re-
fer to Lagros’ orbit, while those ir. the second part refer to the satellite itself. Dash (-) indicates
various numerical values are assumed.
Tatle II. Notations for quantities relating to the sun, earth, and universe. Dash (--) indicates
various numerical values are assumed. Symbols not shown in Tables I and Il are defined in the
text.
Table IIl. Unnormalized inclinations functions FQmp(” for2=0,1.

Table IV. Values for dL'

Table V. Values for bé for Lageos, based on £ =0.520049 (1 + ecosf).
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TABLE ]

Notation for quantities relating to Lageos. The quantities in the first
part of the table refer to Lageos’ orbit, while those in the second part
refer to the satellite itself. Dash ( — ) indicates various numerical

Quantity

Semimajor axis
Eccentricity

True anomaly
Inclination

Mean motion
Earth-Lageos distance
Argument of perigee
Perigee rate
Longitude of node
Node rate

Ra/TL

Radiation coefficient
Mass

Radius

values are assumed.

Symbol

DOEES 3~ 0

m
-~ -

TABLE 11

Numerical Value

1227x10" m
0.004
109.9 deg
4.645x10~4 5]

- 0.2112 deg day !

0.3425 deg day !

1.13
407 kg
03m

Notation for quantities relating to the sun, earth and universe. Dash
(—) indicates various numerical values are assumed. Symbols not
shown in Tables I and 11 are defined in the text.

Quantity

Semimajor axis
True anomaly
Inclination
Earth-sun distance
Argument of perigee
Longitude of node
Daily motion

Solar constant

Earth aibedo

Radius of albedo surface
Speed of light

Gravitation constant
Time

Symbol

51

Numerical Value

1.496 x 10” m

23.44 deg

¢}
0.9856 deg day -1
1376 W m 2

6381 km
2.998 x l08 ms !
667x10 11 m3 kg'ls_z



TABLE Il

Unniormalized inclination functicns FQ::‘.p(') for

2=0,1.

4 m p Femp(D
0 0 0 1
1 0 0 (sinl)/2
1 0 1 (—sinh/2
1 1 0 (1 +cosl)/2
H 1 1 (1 —cosl)/2

TABLE IV

Values foi dL

L dp

0 +1/4

1 +1/2

2 +5/16
3 0

4 -3/22
5 0

6 +13/256



TABLEV
Values for bQ' for Lageos, based on p =0.520049 (1 + e cosf).

L bg
-1 0

0 +0.45795 + 0.37014 ecosf
1 +1.23058 + 1.21735ecosf
2 +1.64127 + 2.25323 ecosf
3 +1.63083 + 3.20260 e cos f
4 11.31099 + 3.74560 e cos f
5 +0.88601 + 291399 ecos f
6 +0.50452 + 2.71441 ecosf
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FIGURE CAPTIONS

Figure |. The Lageos satellite. Lageos is a completely passive satellite whose aluminum surface is

studded with laser retroreflectors.

Figure 2. Positions of the sun, satellite, and surface element in the inertial coordinate system xyz.
The coordinate system does rot rotate around with the earth. The x-axis points to the vernal equi-
nox and the z-axis lies along the rotation axis. Since the system is considered to be inertial, fic-

titious forces produced by the earth’s motion around the sun are ignored.

Figure 3. The local frame x|y z| of the surface element dS. The vector ?l and the circuit ABCD

are discussed in Appendix 1; otherwise they are to be ignored.

Figure 4. The function D (dashed line), for L summed between 0 and €, and the exact function

cos ws (solid line), both plotted against Vg D is basically the normalized solar irradiance.

Figure 5. The approximaticn for the function B (dashed line), for £ summed O and 6, and the

exact function (solid line). Both are plotted against . A circular orbit is assumed.

Figure 6. The coefficients KOOI through X401for each month. The error bars indicate one stan-
dard deviation. Arrows indicate error bars too big to fit on the graph. The larger errors are due

to sparser data because of shadowing at either pole.

Figure 7. The time-averaged zonal albedo of Stephens et al. (1981) (solid line), and the time-aver-

aged approximation used here (dashed line).

Figure 8. The radial acceleration R over one revolution for N = 0. The sun is on the equator and

Lageos passes over the subpolar point.

Fignre 9. The radial acceleration R over one revolution for N = 2. The sun is on the equator and

J.agces passes over the subpolar point.

Figure 10. The along-track acceleration S ove: one revolution for N = 0. The sun is on the equator

and Lageos passes over the subpolar point.
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Figure 11. The along-track acceleration S over one revolution for N = 2. The sun is on the equator

and Lageos passes over the subpolar point.

Figure 12. The acceleiation W (normal to the orbital plane) over one revolution for N = 2. the

sun is on the equator and Lageos passes over the subpolar point.

Figure 13. The top graph shows the long-period changes in Lagecs semimajor axis and eccentricity.
The changes in a and e have virtually the same shape; hence only one graph is used for both. The
bottom graph shows changes in inclination. Both graphs are for an earth with a uniform albedo
(N=0)and Agy; =0.3.

Figure 14. The long-period changes in the longitude of the Lageos node (top) and the argument
of perigee (bottom) with time. The secular change in Q is omitted. Both grag:s are for N = 0,
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Lageos is a completely passive satellite whose aluminum surface is studded with

The Lageos satellite.

Figure 1.

laser retroreflectors.



SUN

X

Figure 2. Positions of the sun, satellite, and surface element in the inertial coordinate system xyz. The coordinate
system does not rotate around with the earth. The x-axis points to the vernal equinox and the z-axis lies
along the rotation axis. Since the system is considered to be inertial, fictitious forces produced by the
earth’s motion around the sun are ignored.
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Figure 3.  The local frame x,y,7; of the suriccc element dS. The vcctor?l and the circuit ABCD are discussed

in Appendix 1: otherwise they are to be ignored.
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Figure 13. The top graph shows the long-period changes in the Lageos semimajor axis and eccentricity with time.
The changes in a and e have virtually the same shape, hence only one graph is used for both. The bot-
tom graph shows changes in inclination. Both graphs are for an earth with a uniform albedo (N = 0)

andfom =0.3.
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