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SUMMARY 
I 

Various conr~6urations of Edge Delaminatlon Tenslon (EDT) test specimens 

were rnanufact4rea and tested to assess the usefulness of each confIguration for 

measuring interlaminar fracture toughness. Tests were performed on both brIttle 

(T300/5208) a~d toughened-matrix (T300/BP907) graphlte reinforced composite 

lamlnates. The mi~ed-mode lnterlamlpar fraoture toughness,G , was measured -1, C 

during tension tests of (30/-302/30/90 ) , n=1 or 2,(35/-35/0/90) , and 
n s s 

(35/01-35/90) layups d~signed to delaminate at low tenslle straIns. Laminates s 

were made WIthout inserts so that delamlnations would form naturally between the 

central 90 0 plle~ and the adJac~nt angle plIes. Laminates were also made WIth 

Teflon inserts ~mplan~ed between the 90~,plies and the adJacent angle (6) pIles 

at the straight edge to obtain a planar fracture surface. In addltlon, mode I 

lnterlaminar ten~ion fracture toughness, GIc , was measured from lamlnates WIth 

the same layups but wIth inserts In the midplane, between the central 90 0 pIles, 

at the straight edge. All of the EDT oonf~gurations were useful for ranking the 

delamination resistance of c~mposites with dlfferent matrlx resins. Furthermore, 

the variety of layups and confi~urations available yield interlamlnar fracture 

toughness measurement~ ,both pure mOQe I and mlxed mode, needed to generate 

delamInation failure criteria, 

The lnfluence of insert thickness and location, and coupon SIze on G c 

values were evaluated. for- toughened-matrlx composites, laminates Wl th 1. 5-mll 

thick inserts yielded interlarninar fracture toughness numbers conSIstent Wlth 

data generated fnom laminates without inserts. Coupons of various sizes Ylelded 

similar G Values. Th~ influence of residual thermal and mOlsture stresses on c 

calculated strain energy release rate for edg~ delamlnatlon was also reviewed. 

Edge delamination data may be used to quantify the relatlve Influence of 
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residual thermal and moisture stresses on inter laminar fracture for dlfferent 

composite materials. 

NOMENCLATURE 

6a Finite element size at delamination front 

E Axial modulus 

ELAM Laminate modulus 

* E Modulus of laminate completely delaminated 

along one or more interfaces 

E" ,E22 Lamina moduli 

G'2 Lamina shear moduli 

G Strain energy relea~e rate 

GI,GII,GIII Strain energy release rate components due to opening, 

sllding shear, and tearing shear fracture modes 

M M+T M+T+H G ,G ,G Strain energy release rate due to mechanical, mechanical 

plus thermal. and mechanical plus thermal plus hygroscopic 

loads 

G~ Critical strain energy release rate for delamination onset 

Glc Critioal mode I strain energy release rate for 

delamination onset 

6H Percentage moisture weight gain 

h ply thickness 

N Number of plies 
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M ,M,M Moment resultants x y xy 

[Q] Transformed reduced stiffness matrix 

~T Temperature difference between stress-free temperature 

and test temperature 

t laminate thickness 

tA Thickness of adheslve bond 

u Strain energy denslty 

Ex,Ey'Y XY In-plane strains 

Kx,Ky,Kxy Out-of-plane curvatures 

v
12 

Lamina Poisson's ratio 

a Stress 

e Fiber'orientation angle 

3 



INTRODUCTION 

A simple tension test was proposed for measu~ing the mixed-mode 

interlaminar fracture toughness of composites [1-5]. In this test,laminates are 
-

loaded in tension to develop high irtterlaminar tensile and shear stresses at the 

straight edge causing delamination. For tfiese laminates, a noticeable change in 

the linear load-deflection curve occurs at the onset of edge delamination. The 

strain at delamination onset is substituted into a closed form equation for 

strain energy release rate, 0; to obtain the critical value, G , for edge c 

delamination. This Gc value is a measure of the interlaminar fracture toughness 

of the composite material. Finite element 'analyses are performed to obtain the 

contribution of the O~ack-openlng, GI , sliding-shear, Grr , and tearing-shear, 

Grrr , fracture modes to the total strain energy release rate. 

The edge delamination tension (EDT) test has been used to rank the relative 

delamination resistance of compoSites with brittle and toughened-resln matrices, 

and determine their fracture mode dependence. However, the accuracy of 

interlamihar fracture toughness measurements generated from such tests has been 

questioned [6]. Self-similarity of delamlhation growth, accuracy of the finite 

elemeht analysis of mixed-mode ratio ratios, and the influence of resldual 

thermal and moisture stresses on critical strain energy release rates, Gc ' are 

some of the concerns that have been ~aised. Recently, a pure mode I version of 

the EDT test, with Teflon inse~ts embedd~d in the midplane at the straight edge, 
I 

was proposed to overcome some of these concerns [1]. 
I, 

This paper will examine interpretation of data for three configurations of 

the EDT test, one without inserts, one with midplane inserts, and one with 

inserts at the 9/90 interfaces. Four different layups were tested: 
I' 

(30.-302,30,90n)s' n=1,2, (35,-35,0,90)s' and (35/01-35/90)s. These layups were 
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deslgned to Yleld the lowest delamlnation onset strain to measure a glven G c 

[4]. Laminates were tested in the three configurations: (1) the pure mode-I 

configuration with mid-plane inserts, (2) a mlxed-mode configuration with 

inserts at the interface between the central 90 0 plies and the adjacent angle 

plies, and (3) the original mixed-mode conflguratlon where delamlnatlons form 

naturally at the 6/90 lnterfaces. Data generated from EDT tests with dIfferent 

coupon sizes and insert thlcknesses were compared for composites with graphlte 

* * * fibers (Thornel T300) in both brlttle (Narmco 5208) and tough (Cycom BP907) 

matrix resins. The accuracy of flnlte element analysls of mixed-mode ratios and 

the signiflgance of residual thermal and moisture stresses to straln energy 

release rates were also addressed. 

* Use of Manufacturer's trade name does not constitute endorsement, either 

expressed or implied, by NASA or AVSCOM. 
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MATERIALS 

Composite panels of two graphite epoxy materials; Thornel 300 (T300) fIbers 

in Narmco 5208 matrIx and T300 fIbers In American CyanamId BP907 matrIX, were 
, . 

fabricated. Table 1 lists the basic lamina properties (E11,E22,G12,v12) measured 

for' these two materials uSing' the procedure outhned in reference 2. Panels were 

made with the following layups: (301-302/30/90 )" where n=1 or 2, n s 

(35/-35/0/~0) , and (35/01-35/96) .• Thin strips of Teflon were inserted at s s 

selected locations in each panel uSIng a template. As shown in figure 1, panels 

were constructed so that coupons WIth and without inserts were cut from the same 

panel. The Teflon strIps were eIther 1.5 or 3.5-mils thIck, and were placed 

either at a single a/90 interface or at the midplane between the two central 

ninety degree plies. Coupons were cut from the panels with Inserts extendIng 

either throughout the width, for determinIng lamInate modulus WIth the interface 

completely delaminated, or WIth inserts extending partIally through the width 

from both edges, for measuring interlaminar fracture toughness. Table 2 listS 

the fIve coupon sizes that were tested. Unless otherwise specified, fIve inch 

long by one inch wide (SIze E) coupons ~ere tested. 
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TEST PROCEDURE 

Coupons were loaded In tension, through friction grips, in eIther a screw­

driven or hydraulic machine at a relatIvely slow crosshead speed. Tests were 

conducted under ambient laboratory condltions, l.e. at a nominal room 

temperature of 70°F and a relative humidity of 60%. In most cases, a minImum of 

five replicate tests were performed for each laminate orientation. Longitudinal 

strain was measured using extensometers, either a sIngle clip-gage or a paIr of 

direct current differential transducers (DCDT's) mounted on the centers of the 

front and back faces of the coupon. Table 2 lists the extensometer gage lengths 

for the various speCImen SIzes tested. Load and straIn were contInuously 

monitored and recorded on an X-Y recorder. Coupons without Inserts were loaded 

until delaminations formed on the edge and the corresponding abrupt jump In the 

load deflection curve was observed [1-5J. Coupons with Inserts extendlng 

partially through the wIdth from eIther edge were loaded untIl a notIceable 

change in slope or non-linearity was observed in the load-deflection curve. A 

zinc-iodIde solution was Injected in the delaminated interface, and an X-ray 

radiograph was taken to confirm that a delamInation had extended from the Teflon 

insert. Coupons WIth inserts extending throughout the lamInate wIdth were loaded 

until a load deflection curve was obtained for measurIng laminate modulus wlth 

the interface delamInated throughout. 

7 



ANALYSIS 

Laminated Plate Theory 

The interlaminar fracture toughness ,G , of a composite lam1nate is the c 

critical value of the strain energy release rate, G, required to grow a 

delamination. A closed-form equation was derived for the mixed-mode strain 

energy release rate for edge delamination growth in a composite lam1nate [1J. 

This equation 

G 

where E = nominal tensile strain 

t = laminate thlckness 

ELAM= laminate modulus 

* 

(1) 

E = modulus of a laminate completely delaminated along one or more 

interfaces 

is independent of delamination size. The strain energy release rate depends on 

the laminate layup and the location of the delaminated interface, which 

* * determines (ELAM- E ). If the lamina properties are known, then ELAM and E can 

be calculated from laminated plate theory and the rule of mixtures [1-5J. The 

(30/-302/30/90) layups delaminate at the 30/90 interfaces. n s 

As outlined in ref.[1J, after delamination these layups are modeled as 

three sublaminates, two (30/-30)2S and one (90)2n laminate, loaded 1n parallel 

to account for the loss in transverse contraction as delam1nations grow under an 

applied strain. ThUS, 
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* E 
8E(301-30) + 2nE(90) 

8+2n 
(2) 

Where E(90) 1S equal to E22 , and E(301-30) can be calculated elther from 

lam1nated plate theory or measured from a tenslle test of a (301-30) lam1nate s 

[1-5J. The (35/-35/0/90)s and (35/01-35/90)s layups delaminate between the 0/90 

and -35/90 interfaces, respectively. After delamination, these laminates are 

modeled as two (35/01-35)s sublaminates and one (90)2 laminate, yieldlng 

* E 
6E(35/01-35) + 2E(90) 

8 

where E(35/01-35) may be calculated elther from lamlnated plate theory or 

measured from a tensile test of a (35/01-35) laminate. However, assuming the s 

sublamlnates to be symmetrlc Ylelds a Sllghtly dlfferent axial modulus than lf 

they are modeled as (35/-35/0) and (35/01-35) asymmetrlc laminates due to the 

bendlng-extension coupling and tWlst-extenslon coupllng present in these two 

asymmetric layups, respectlvely. The axial modulus of an asymmetric layup may be 

calculated from lam1nated plate theory by assumlng Ny' Nxy ' KX' My' and Kxy are 

all zero for a constant E [8,9,10J. ThlS technique allows for a non-zero K and 
x y 

Y1elds a slightly dlfferent axial modulus for the asymmetric configuration than 

for the symmetric conf1guratlon. 

Table 3 compares the axial modulus calculated from laminated plate theory 

for the (35/-35/0) and (35/01-35) sublaminates for both the symmetric and 

asymmetrlc conflgurations uS1ng lamlna propertles from table 1. A small 

difference In modulus was obtalned for the (35/-35/0)T layup compared to the 

(35/01-35) layup, but no slgnlficant difference was observed for the 
s 

(35/01-35)T layup. 
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Because the delamlnatlons that formed naturally (i.e. wlthout artlflclally 

implanted inserts) at 6/90 lnterfaces In all the layups tested wandered from one 

6/90 interface to its symmetric counterpart (fig.2a), these laminates were all 

modeled as a set of three symmetric sUblaminates after delamination (fig.2b), 

[1-5]. However, for the laminates that contained Teflon inserts In one 6/90 

interface (fig.2c), the laminates were modeled as two asymmetric sUblaminates 

* after delamination. Hence, the equations for the delaminated modulus ,E , for 

the (30/-302/30/90 ) , (35/-3510/90) , and (35/01-35/90) layups become 
n s s s 

* E 

* E 

* E 

4E(30/-30)s + (4+2n) E(30/-302/30/902n)T 

8+2n 

3E(35/-35/0)T + 5E(35/-35/0/90
2

)T 

8 

3E<35/01-35)T + 5E(35/0/-35/90
2

)T 

8 

(4) 

(5) 

(6) 

respectively. The asymmetric sublamlnate moduli in equations 4-6 were calculated 

using lamlna properties from table 1 and are llsted in table 3. Table 4 compares 

* * the delaminated modulus, E , calculated for the natural delaminatlon to E 

values calculated for the single artificially-delamlnated 6/90 lnterface. The 

* differences among E values, and hence the corresponding differences among G 

values from equation (1), illustrate that for the natural delamlnation case the 

delamination is driven only by a mismatch In transverse (Polsson) contractlon 

between the sublaminates, but for the artificially delamlnated case, the 

delamination is driven by a combination of Poisson mlsmatch and the curvature 

assumed by the asymmetric sublamlnates before the delamlnatlon grows from the 

insert. 
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If the insert is placed at the mId-plane between the two central 90 0 plies 

(flg.2d), as was proposed in reference [7J, then no Poisson mismatch results, 

and the delamination is driven entIrely by the curvature assumed by the 

asymmetric sublaminates before the delamination grows from the insert. For this 

mid-plane delaminatIon case, the delaminated modulI of the (301-302/30/90 ) , n s 

(35/-35/0/90)s' and (35/01-35/90)s layups become 

* E 

* E 

* E E(35/01-35/90)T 

(7 ) 

(8) 

(9) 

respectively. The asymmetric modulI In eqs.7-9 were calculated uS1ng lamIna 

* propertIes from table 1 and lIsted In table 4 as E for a mIdplane (90/90 

interface) 1nsert. Because these midplane delaminatlons are drIven entirely by 

asymmetrIc sublamlnate curvature with no Poisson mismatch, the delamination IS 

purely an opening mode-I fracture. Therefore, for midplane delamInatIon, eq.l 

becomes 

(10) 

* where E 1S calculated from one of equations 7-9, for the part1cular layup 

tested. 

Recently, an analysis was developed that 1ncorporates the 1nfluence of 

residual thermal and moisture stresses to the stra1n energy release rate for 
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edge delamination [10J. Th1S analys1s yielded the following equation for the 

total strain energy release rate 

G ( 11) 

where t is the thickness and u is the strain energy density of the original 

laminate (LAM), the sublaminates (SUB) ,and the ninety degree plies (90). The 

strain energy density is defined as 

(12) 

where N 1S the number of plies, and {Elk is the transpose of the total strain 

vector for the kth ply, which includes contribut1ons from mechanical load1ng, 

thermal gradients (~T), and hygroscopic (molsture) percentage weight ga1n 

(~H). The stress vector for the kth ply In eq.12 1S given by 

( 13) 

where [QJ k is the transformed reduced stiffness matrix of the kth ply as defined 

in laminated plate theory. Therefore, equation 11 requires a ply-by-ply 

evaluation of the strain energy density in the laminated and delamlnated reglons 

to account for the biaxial thermal and moisture stresses present In the 

laminate. 

Figure 3 shows the influence of residual thermal and moisture stresses on G 

for edge delamination in the -30/90 interfaces of the eleven-ply 

(301-30/301-30/90/90) lamlnate with an applied mechan1cal strain of 0.01 and s 

~T = -280°F. As shown on the ord1nate, the strain energy release rate due to 
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M mechanical loading only, G , calculated from eq.11 is ident1cal to G calculated 

from eq.1. However, if the res1dual thermal strain is included, the strain 

M+T M energy release rate, G ,is higher than G for the same applied mechanical 

strain. If the laminate also absorbs m01sture, the residual thermal stresses are 

M+T+H 
relaxed and the strain energy release rate, G , decreases depend1ng on the 

percentage of moisture weight gain, ~H. For the case shown in fig.3, the 

residual thermal stresses are completely relaxed after a moisture we1ght ga1n of 

M+T+H M 
approx1mately 0.7% where G is equal to G • Epoxy matr1x compos1tes may 

absorb nearly this much water from the ambient laboratory a1r in a matter of 

weeks [10J. Therefore, the influence of res1dual thermal stresses may be 

relatively small at amb1ent cond1tions, but may become more significant under 

dry or water-saturated cond1tions. Furthermore, composites that are manufactured 

at higher temperatures but absorb very little moisture may requ1re that thermal 

and moisture effects be 1ncluded in the G analysis for edge delam1nat1on. 

However, the relative contr1bution of residual thermal and m01sture stresses to 

G is smaller for toughened-matr1x compos1tes that delam1nate at h1gh strains 

because a large mechan1cal stra1n at delam1nation onset has a much greater 

contribut1on to the strain energy released than ~T or 6H. 

The tests in this study were conducted on graphite epoxy materials 1n the 

ambient laboratory environment described earl1er. Therefore, the 1nfluence of 

res1dual thermal and m01sture stresses were not included 1n the data reduct10n 

for these tests. 

F1nite Element Analys1s 

A quasi-three d1mensional finite element analys1s was performed wlth the 

virtual-crack-extension technique to determ1ne the GI , GIl' and GIll components 
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of the total stra1n energy release rate for several configurations of the edge 

delamination test [1-5J. rn reference [1J, the Gr,Grr , and Grrr components were 

calcuated for an eleven-ply (30/-30/30/-30/90/90) layup that delaminated 1n the s 

-30/90 1nterfaces. The Grrr component was neglig1ble for this layup. The 

delamination growth was modeled for four different initial delaminat10n Slzes. 

The results indicated that the Gr/Grr ratio varied with delamination size; 

however, the finite element mesh used in ref.[1J was very coarse for the longest 

delamination sizes modeled. SUbsequent finite element analyses of th1S layup 

[2J, and other layups [4,5J, were performed w1th a slngle mesh refinement for 

all delam1nation lengths. These analyses indicated that the Gr and Grr 

components were independent of delamination length. 

Recently, an anisotropic elastic1ty solution and slngular hybrid finite 

element formulation were employed to analyse the strain energy release rate 

components for edge delamination [llJ. Figure 4 compares the nond1mensionalized 

strain energy release rate components calculated for delamination in the -35/90 

interfaces of a (0135/-35/90) laminate uS1ng both the displacement-based, s 

eight-noded square, parabolic finite elements and the slngular hybr1d element at 

the delaminat10n front. Both analyses were performed w1th several different mesh 

refinements, and the results have been plotted as a function of element size at 

the delamination front, ~a, normalized by ply thickness, h. Between 0.18 < ~a/h 

< 0.55, the singular hybr1d element yields constant Gr and Grr values. However 

in reference [llJ, the slngular hybr1d analysis yielded var1able Gr and Grl 

values for singularity element sizes ~a/h < 0.18, and for ~a/h > 0.55. The 

reasons for these variations are the following. First, for ~a/h < 0.18, the 

neighboring regular eight-noded elements are also subjected to the slngular 

stress field. Thus, the crack tip element 1S too small. Second, for ~a/h > 0.55. 

the crack tip singular elements are required to capture both the slngular and 
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far-field components, WhlCh the slngular element is unable to handle. Thus the 

crack tlP element is too large. However, when the size of the slngular element 

is 0.18 < ~a/h < 0.55, the element is not subjected to these extreme 

requirements and is able to delineate the stress field accurately and yield 

accurate GI and GIl values. Therefore, the singular hybrid analysis with mesh 

refinements ln this range may be used as a bench mark solution to compare to 

other solutions. 

In contrast to the results for the slngular hybrld element, the GI and GIl 

values calculated wlth the eight-noded displacement-based element at the 

delamlnation front vary continuously with ~a/h. Therefore, a converged Solutlon 

lS never obtalned for this element using the virtual-crack-extension technique. 

However, if an element size of ~a/h=0.25 is used, the G components calculated 

with the eight-noded element agree fairly well wlth the singular-hybrld element 

results. Hence, four square elements through the ply thickness, with dimenslons 

~a/h = 0.25, appear to be a good cholce for the dlsplacement-based finite 

element mesh at the delamination front. Table 5 lists the ratio of GI to the 

total G calculated for the four layups tested in thlS study wlth either natural 

delaminatlon, where both 8/90 interface delaminatlons are modeled, or for a 

single 8/90 delaminatlon growing from an lnsert. These GI/G rat lOS were 

calculated using the dlsplacement-based flnite element analysls wlth the 

suggested mesh refinement. The total G conslsted of GI and Glr only Slnce the 

calculated GIrl component was negligible for each case. 

15 



RESULTS 

Test data were compared for laminates with various insert thicknesses, 

insert locations, and coupon sizes to indentify if these dIfferences in 

configuration influenced interlaminar fracture toughness measurement. Because 

previous studies using the edge delaminati9n test on graphIte epoxy compOSItes 

indicated that the GI component alone may Gontrol the onset of delamInatIon, the 

GI components of the measured Gc for different layups were compared first [4,5J. 

In addition, Gc measurements were plotted as a function of tne GI and GIl 

components assuming a lInear failure criterion. 

VariatIon in G with insert thickness c 

Because the interlamlnar fracture toughness is measured at the onset of 

delamination from the lnsert embedded at the straight edge, the thIckness of the 

insert will determine the relative sharpness of the delamlnat~o~ front. If the 

lnsert IS too thick, the delamlnation may behave as if the crack tip was blunted 

and had a fInite notch root radius. ThIS blunted crack would YIeld hIgher 

apparent toughness values than a sharp crack. Therefore, EDT coupons were made 

with two dlfferent insert thicknesses, and data were compared to adhesive bond 

toughness data with comparable bond thicknesses to determIne If interlamlnar 

fracture toughness values could be obtained from coupons wIth Inserts. 

Figure 5 compares Inter laminar fracture toughness measurements for 

(301-302/30/902)5 laminates made of T300/5208 and T300/BP907. Tests were 

conducted on laminates with 3.5 and 1.5-mil inserts at the mIdplane, and on 

laminates without lnserts. All three configurations showed the Improved 
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toughness of the T300/BP907 compared to the T300/5208 mater1al. For both 

materials, the laminates w1th the thicker 1nserts yielded h1gher apparent 

toughness values than the laminates w1th the th1nner inserts. 

As 1llustrated in fig.6, these results may be compared to fracture 

toughness measurements of adhesive bonds assum1ng that the resin pocket that 

forms at the end of the insert is analagous to an adhesive bond with a 

thickness,tA, equal to the insert thickness. Previous work on adhes1ve bond 

fracture indicated that the bond thickness must be below a certain value to 

achieve a realistic fracture toughness measurement [12J. Figure 7 shows fracture 

toughness measurements determined from double cantilever beam (DCB) adheslve 

bond tests, with BP907 as the adhes1ve, as a funct10n of bond thickness. The 

data ind1cate that fracture toughness is constant for bond thicknesses below 2.5 

mils. For bond thicknesses greater than 2.5 m1ls, fracture toughness 

measurements are unrealistically h1gh due to the relaxed constraint on the resin 

allowing greater local1zed plastic deformat1on near the crack tip. Using the 

adhesive bond analogy, the Grc results shown in f1g.5 for T300/BP907 EDT tests 

may be artificially elevated for the laminates with 3.5-mil inserts. but Grc 

values for laminates with 1.5-mil inserts should be representat1ve of Grc for 

delamination growth between plies. 

Figure 5 also shows G results for laminates without 1nserts (open symbols) c 

and their Gr components calculated from fin1te element analysls (table 5). For 

the T300/BP907, the Gr component of the natural delamination m1xed-mode test 

agrees well with the Grc measurement from the laminate with the 1.5-mll lnsert 

and Grc measurements from DCB tests on thin adhes1ve bonds (f1g.7) [12J. 

For the T300/5208 lam1nates, the G~ component of the natural delamlnatlon 

mixed-mode test was higher than the Grc measurements from laminates w1th both 

the 1.5-mil and 3.5-mil mldplane inserts. However, these natural delamination Gc 
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values were higher than G values measured previously on eleven-ply layups [1J, c 

and they had considerably more scatter than the GIc measurements, Wh1Ch may 

indicate that extensive matrix cracking may have been present in the four 

central 90-degree plies before delamination occurred [4J. Therfore, these 

experiments were repeated on ten-ply (301-302/30190)s laminates that were less 

likely to experience extensive matrix cracking before delaminat+on because of 

the reduced number of ninety-degree plies. 

Figure 8 shows results obtained from the ten-ply T300/5208 lam1nates. The 

total G measurements were slightly lower and had less scatter than results for c 

the twelve-ply laminate, but the Gr component still exceeded the GIc values 

obtained from the two m1dplane insert tests. The trend of higher 1nterlam1nar 

fracture toughness for the natural delamination compared to the fracture 

toughness of the thin adhesive bonds simulated by the teflon inserts 1S 

cons1stent w1th the trends noted when compar1ng neat resin Glc fracture 

toughness values for br1ttle resins to interlam1nar Glc values as measured by 

composite double cantilever beam (DeB) tests [13J. For example, f1gure 9 ~hows 

the correlation between neat resin Glc and composite Glc for a var1ety of reS1n 

matrices. For the tougher resins, neat resin Glc exceeds compos1te GIc due to 

the large plastic zones that form 1n neat resin fracture tests. However, for the 

brittle reS1n matrices, neat resin Glc is less than Glc for the compos1te. 

Apparently, the close proxim1ty of the fibers 1n the composlte, WhICh IS 

analagous to a very thIn bond line. does not significantly lower toughness by 

increasing constraint for the brittle resin, but may actually increase the 

toughness due to the interaction of the crack front with the f1bers creating 

more plastic flow locally at the fibers than was observeq in neat resin 

fracture tests [14J. 
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All subsequant test data reported was generated with the 1.5 mil inserts 

and compared to data generated from coupons without lnserts. 

Variatlon in G w~th insert location c 

Flgure 10 compares the Grc values for midplane delamlnation of the 

T300/BP907 ten-ply (301-302/30/90)s layup with the Gr components of Gc for the 

natural mixed-mode delamlnation, and for mixed-mode delamlnation from lnserts in 

a single 30/90 interface. These Gr values are in excellent agreement. Therefore, 

all three configurations of this 30/90 layup Yleld similar results for the 

T300/BP907 toughened-matrix composlte. 

Variation in G with coupon Slze c 

Mlxed mode delamination tests where conducted on (35/-35/0/90) T300/5208 s 

laminates with and wlthout inserts, and on T300/BP907 lamlnates wlthout lnserts, 

using five different coupon sizes (table 2). Flgure 11 compares G measurements 
c 

for the five coupon Slzes. The variation in mean values of G measurements for c 

the T300/5208 and T300/BP907 laminates without inserts was small compared to the 

scatter in the data for each coupon size. However, for the T300/5208 lamlnates 

with inserts, the coupons wlth ten lnch gage lengths appeared to Yleld Sllghtly 

lower Gc values than coupons with flve inch gage lengths. ThlS dlfference may be 

attributable to the contribution of curvature to delaminatlon growth dlscussed 

previously. The unlform K curvature ln the asymmetric sublaminates may be less 
y 

extensive in the shorter speclmens because of the smaller dlstance between the 

grips in the shorter coupons. 
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Variation in Gc with Layup 

Figure 12 compares G and GI data for (35/-35/0/90) and (35/01-35/90) 
c c s s 

T300/5208 laminates wlth no inserts, with midplane inserts, and with inserts at 

a single 6/90 interface. For the mlxed-mode conflgurations, the G values for c 

the two layups do not agree. Table 5 shows that the GI/G ratios for these two 

layups are different. Although the two layups have different mode I percentages, 

fig.12 lndicates that the GI components for delamination onset from the lnsert 

in the 6/90 interface are nearly identical for both layups. The GIc values from 

coupons of the two layups containing midplane inserts also agree. However, the 

GIc values from laminates with midplane inserts were lower than the GI 

components of G for laminates wlth 6/90 interface lnserts. As noted earller for c 

the 30/90 layup, for the brittle 5208 matrlx composite the toughness 

measurements from lamlnates with inserts are lower than the measurements from 

natural delamination. 

Although the data generated ln thlS study lndlcates that the GI component 

is responsible for delamination growth even under mlxed-mode loading, the 

criterion for mixed-mode delamination may be generally expressed as a fallure 

envlope defined by the polynomial 

(1 4) 

In reference [15J interlaminar fracture data ln the literature was plotted and 

indicated that a linear failure crlterlon, where m=1 and n=1, provided the best 

fit to the data. Figures 13 and 14 show simllar plots for T300/5208 and for 

T300/BP907 using the data generated in thlS study along wlth edge delamlnation 
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data for T300/BP907 from ref.[16J, and Gllc data from End-notched flexure tests 

[17J. These plots also indicate that a linear failure criterion may be 

appropriate, however data from tests with other GI/GIl ratios are needed to 

accurately determine the shape of the failure envelope. Because the Gllc values 

are nearly an order of magnitude larger than the Glc values for these two 

materIals, the failure envelope IS almost horIzontal over the range of GI/GII 

ratios tested. Therefore, even if delamInation failure IS governed by a linear 

failure crIterIon as depected In figures 13 and 14, the faIlure appears to be 

controlled by the GI component alone when the data is plotted as shown in 

fIgures 5,10, and 12. 

DISCUSSION 

This discussion will summerize some of the advantages and disadvantages of 

the the edge delamInation tensIon (EDT) test configurations with and without 

inserts. Some advantages and disadvantages are common to both configuratIons. 

The EDT test Involves a sImple loading, does not requIre a measurement of 

delamination size, may be conducted on a variety of layups to provIde a ran~e of 

mixed-mode ratios, yields data consistent with other inter laminar fracture 

tests, and provIdes a ranking of the relatIve interlaminar fracture toughness of 

different composite materials. However, for EDT layups with zero-degree plIes, 

Gc measurement is lImIted by the failure strain of the fibers, whereas for 

layups without zero degree plies, toughened-matrix composites may exhiblt 

nonlinearity in the load-displacement curve before delamination onset [2,4J. 

Alternate layup designs such as (35/-352/35/02/90)s,where the increased lamInate 

thickness reduces the strain required to measure a given G ,may overcome these c 

limitations. No closed-form elasticity solution exists for edge delamination 

that yields Gl,Gll , and GIll for arbitrary layups, however, a singular-hybrid 
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f1nite element analysis yields a bench-mark solution for the var10US G 

components. The G measurements from the EDT test may be influenced by residual 
c 

thermal and moisture stresses, which can be included in the data reduction but 

would require measurement of stress free temperature, moisture content, and 

mOisture and thermal coefficients of expansion. 

One motivation for 1ncluding inserts at the edge was to remove the 

uncertainties in assuming the delaminations that naturally wander from one a/90 

interface to another (fig.2a) can be modeled as three sublam1nates loaded in 

parallel (fig.2b). Although the formation of the pattern shown 1n fig.2a along 

the edge 1S random, once the pattern is formed it remains unchanged as the 

delamination grows through the laminate width. Therefore the delam1nation growth 

through the width is self-similar, and the strain energy release rate assoc1ated 

with this growth is reflected in eq.1, as long as the delaminated modulus, 

* E ,accurately represents the modulus after the natural delaminat10n has extended 

through the laminate width. Plots of modulus as a function of delamination Slze 

were generated in previous studies and indicated that eqs.2-4 provide a fairly 

accurate estimate of delaminated laminate modulus [1,18,19J. Inclusion of an 

insert throughout the laminate width at the appropriate 1nterface, however, 

prov1des a direct measure of the delaminated modulus, in add1tion to providing a 

single planar delam1nation front for EDT tests. Therefore, the insert el1minates 

the need for lamina property measurements and laminate plate theory analysis to 

* determine E • However, the EDT tests with inserts have some d1sadvantages not 

found in the natural delamination coupons. A template is needed to locate 

inserts during the layup of the panel, and the insert material may deform dur1ng 

the cure resulting in non-uniform 1nsert thickness in the panel. Non-un1form1ty 

* of insert thickness may cause uncertaintity in the determination of E and G • c 

In addition, the dev1atlon from the llnear load-d1splacement curve is not as 
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abrupt for laminates with inserts. Because the delaminatIon grows from an 

embedded insert, delamination onset cannot be visually verifIed. Hence, the 

delamination onset strain IS more dIfficult to determine in laminates with 

inserts. Furthermore, because implanted delaminatlons at one asymmetrlcally-

located interface or at the midplane result in a bending-extension coupling 

* contribution to E , G measurements may vary slightly with specimen SIze. c 

Table 6 summerizes the advantages and disadvantages of the edge 

delamination test. Most of the concerns about accurate G measurement wlth the c 

EDT test may be overcome by choosing approprIate layups, thicknesses, and coupon 

sIzes, or by implantIng inserts at selected interfaces. However, for all the 

configurations of the edge delamination test, residual thermal and mOIsture 

stresses will contribute to the strain energy release rate for edge 

delamination. 

The signiflcance of residual thermal and moisture stresses to strain energy 

release rates ultImately depends on how these measurements are used. If 

toughness measurements are used to compare materials for improved delamInation 

resistance, then these thermal and moisture effects become of secondary 

importance. This is especially true If tests are conducted at room-temperature 

ambient conditions, and the difference in toughness measurements for dIfferent 

materials is large [3,5J. For example, the seven percent error in G calculated c 

in reference [10J due to neglecting thermal and mOIsture effects for T300/5208 

EDT tests is insignlficant compared to the ten-fold increase in G measured for c 

composites with toughened matrices [3,5J. If, however, these lnterlaminar 

toughness measurements are used as delamination failure criteria to predIct 

delamination growth in composite structures of the same materIal, but WIth 

different geometries and loadIngs, then these thermal and moisture effects may 

become more significant. Other factors may need to be addressed to accurately 
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calculate G. For example, assuming a 'constant 6T from the cure temperature over 

which there exists a constant coefficient of thermal expansion may be physically 

unrealistic. In addition, assuming that the average moisture content of the 

laminate is representative of the moisture content at the delamination front may 

also be in error. Some knowledge of the moisture distribution through the 

laminate may be needed. The detailed information required for carefully 

conducted laboratory tests may not be available to analyze the strain energy 

release rate for the delamination growing in the structure. Nevertheless, 

conducting edge delamination tests where these effects can be quantified, and 

compared to data from other interlaminar fradture toughness tests where these 

effects are not present, would help document the relative influence of residual 

thermal and moisture stresses on the interlaminar fracture of composite 

materials. 

CONCLUSIONS 

Edge delamination tension (EDT) tests were performed on both brittle 

(T300/5208) and toughened-matrix (T300/BP907) graphite reinforced composlte 

laminates designed to delaminate at the straight edge. The mixed-mode 

inter laminar fracture toughneSS,Gc ' was calculated from straight edge 

delamination data measured during tension tests of (301-302/30/90 ) , n=l or 2, n s 

(35/-35/0/90)s' and (35/01-35/90)s laminates without inserts, and laminates with 

inserts at the 9/90 interface. In addition, mode I inter laminar tension fracture 

toughness, GIc ' was measured from laminates with the same layups but with 

inserts in the midplane at the straight edge. The influence of insert thickness 

and location, coupon size, and layup,on G Measurement was evaluated. Based on c 

the results of this study, the following conclusions were reached: 
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1 .All configurations of the EDT test were useful for ranking the 

delamination resistance of composites w1th d1fferent matr1x resins. 

2.Strain energy release rate components may be accurately calculated with 

displacement-based elements, using the virtual-crack-extens1on technique, 

if eight-noded square parabolic elements are used at the delamination 

front with slde dimensions equal to one quarter of the ply thickness. 

3.For toughened-matr1x composites, laminates with 1.5-mil thick inserts 

yielded 1nterlaminar fracture toughness numbers consistent with data 

generated from laminates without 1nserts. 

4.Coupons of various sizes yielded similar results. 

5.Delamination appeared to be governed by a llnear fa1lure criterion 

relating GI and GIl. 
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TABLE 1 Lamina Materlal Properties 

T300/5208 T300/BP907 

E11 ' Msi 18.2 15.0 

E22 ' Msi 1.23 1.23 

G12 ' Msi 0.832 0.700 

\)12' 0.292 0.314 

TABLE 2 Speclmen DlmenSlons 

Coupon Size Length, in. Wldth, In. Grip distance, in. Gage length, in. 

A 10 1.5 7 4 

B 10 1.0 7 4 

C 10 0.5 7 4 

D 5 0.5 3 

E 5 1.0 3 
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TABLE 3 - Influence of Asymmetry on SublamInate ModulI - I 

E,Msl 

Layup 1300/5208 T300/BP907 

<35101-35) s 9.699 8.051 

<35/01-35)T 9.698 8.053 

<35/-35/0)T 9.562 7.927 

(35/-35/0/90 2)T 6.468 5.436 

<35/0/-35/902)T 6.664 5.604 

(301-30) s 7.030 5.899 

(301-302/30/902)T 5.640 4.770 

(301-302/30/904)T 4.885 4.150 
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* TABLE 4 - Delaminated Modulu5,E , for dlfferent EDT configuration5 

* Delamlnated Modulu5,E ,Msi 

Materlal Layup Natural 9/90 9/90 insert 90/90 in5ert 

T300/5208 (30/-30 2/ 30/90)5 5.870 6.196 6.420 

(30/ -302/30/90 2)5 5.097 5.600 5.640 

(35/-3510/90) 
5 7.582 7.628 7.550 

(35/01-35/90) 5 7.582 7.802 7.855 

T300/BP907 (3 01-302130/90)5 4.965 5.222 5.404 

(301-302/ 30/90 2 )5 4.343 4.733 4.770 

(35/-3510/90) 5 6.346 6.370 6.310 

(35/0/-35190) 
5 

6.346 6.522 6.570 
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TABLE 5 - Gr/G calculated from finite element analysis 

Layup 6~~§~ln~(~gn DD~uble Hgo e amlna n 

(3 01-302/ 30/90)8 0.68 0.64 

(301-302/30/902)8 0.66 0.64 

(35/-35/0/90) s 0.76 0.94 

(35/01-35/90) 0.49 0.63 s 
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TABLE 6 

Natural Delamination 

No Inserts 

*Easy to manufacture 

*Distinct jump in load-

displacement curve and 

delamination visible at 

onset 

*No size effect on G c 

*Delamination typical 

of those in structure 

Advantages and Disadvantages of the EDT test 

ADVANTAGES 

Artificial Delamination Both 

with inserts Configurations 

*Well-defined delamlnation *Simple loadlng 

plane on edge *G independent of 

* *E measured directly delamination size 

*Several layups 

for range of mixed-

mode condi t lOns 

*Data consistent with 

other toughness tests 

*Provldes ranking of 

Interlaminar Fracture 

Toughness of 

Composltes 
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Natural Delamination 

No Inserts 

*Irregular Delaminatlon 

forms on edge 

* *E must be calculated 

TABLE 6 (Continued) 

DISADVANTAGES 

Artlficial Delamination 

with inserts 

*Requlres Template to make 

panel 

* *E measurement affected 

by insert uniformity 

*Delamlnatlon onset 

hard to detect 

*Some size effect on G c 

'lJl 

Both 

Configurations 

*G measurement limlted c 

by flber fallure 

*Non-linear behavlor 

may occur before 

delamlnation onset 

*No closed-form 

solutlon for G 

components 

*Resldual thermal and 

moisture stresses may 

influence G c 



w 
U1 

14 12 ~I 
r---.! 

r-I 

'-I 
-I 

N 
r-I 

I-i-

Lt'\ 

1-~ 

Lt'\ 

1 -r 
r-I 

---~ 

Trim 

~ ~~ 
~ 

~ ~ 
~ ~ 

~ ~ ~ 
~ ts ~ m 

~ 
~ 

~ ~ ~ ~ W ~ 
~ 
~ 
DO( 

~ 
~ 

~ ~ ~ 
~ ~ ~ 

~ KX"X)o, 

Trim 

~1·I·l· 
D<'YIt'\ R%<s< ~ 

~ W §v 
Ii ~ ~ ~ ~ 

~ QQ\: m § ~ 
00?2S B 
~0Q0 ~ ~ 

q ~ ~.E 
~ ~~ I12SX: I<'/'\X 

I>C6 ~ ~ 
S<S22S ~I(S 

\XX> ~ 

~ 
\XX> 

~ ~ ;xx 
~ b<"I< 

J l 'V" _ 

For ElAM 
and Gc 

'- 'V" -' ~ 
For E* 

Fig. 1 

For Gc 

EDT Panel Showing Coupon Location and Inserts 
(Dimensions Are In Inches) 

Teflon 
inserts 

00 



W 
0\ 

(a) 

delamination 
Natural 

+3~jTL903 
z~Y 

(c) 

Delamination 
from 

e/90 insert 

Dela mi nation 
front 

(b) 
Natural 

dela mi nation 
modeled 

(d) 
Dela mination Ib= 7' 

from 
midplane 
insert 

Fig. 2 EDT Test Configurations 

t 



Fig. 3 Influence of Residual Thermal and Moisture 
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16 Abstract 

Various configurations of Edge Delamination Tension (EDT) test specimens, of 
both brittle (T300/5208) and touahened-matrix (T300/BP907) graphite reinforced 
composite laminates, were manufactured and tested. The mixed-mode interlaminar 
fracture touqhness, Gc ' was measured usina (30/-302/30/9~)s n=l or 2, 
(35/-35/0/90)s, and (35/0/-35/90)s layups designed to delaminate at low tensile 
strains. Lamlnates were made without inserts so that delaminations would form 
naturally between the central 90° plies and the adjacent angle plies. Laminates were 
also made with Teflon inserts implanted between the 90° plies and the adjacent angle 
(8) plies at the stralght edge to obtain a planar fracture surface. In addition, 
interlaminar tension fracture toughness, GIc' was measured from lamlnates with the 
same layups but with inserts in the midplane, between the central 90° plies, at the 
straight edge. All of the EDT configurations were useful for ranking the delaminatior 
resistance of composites with different matrlx resins. Furthermore, the variety of 
layups and configurations avallable yield interlaminar fracture toughness measure­
ments needed to generate delamination failure criteria. The influence of insert 
thickness and location, and coupon size on Gc values were evaluated. For toughened­
matrix compOSites, laminates with 1.5-mil thick inserts yielded interlaminar 
fracture toughness numbers consistent with data generated from laminates without 
inserts. Coupons of various sizes yielded slmilar hC values. The influence of 
residual thermal and moisture stresses on calculated strain energy release rate for 
edqe delaminatlon was also revlewed. 
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