ENCAPSULATION PROCESSING AND MANUFACTURING YIELD ANALYSIS

SPRINGBORN LABORATORIES, INC.

P. Willis

- ADD-ON ACTIVITY TO BASELINE CONTRACT ON DEVELOPMENT OF ADVANCED ENCAPSULATION MATERIALS (PHASE III)
- NOT YET FUNDED

GOALS:

- UNDERSTAND THE RELATIONSHIPS BETWEEN:
 - FORMULATION VARIABLES
 - PROCESS VARIABLES
- DEFINE CONDITIONS REQUIRED FOR OPTIMUM PERFORMANCE
- RELATE TO MODULE RELIABILITY
- PREDICT MANUFACTURING YIELD
- PROVIDE DOCUMENTATION TO INDUSTRY
Process Development

Material Variables

Lamination Pottants
- Ethylene/Vinyl Acetate (EVA)
- Ethylene/Methyl Acrylate (EMA)

Casting Pottants
- Aliphatic Polyurethane (PU)

Adhesives/Primers
- Three Basic Primer Systems

Cover Films
- Tedlar, Acrylics, FEP

Formulation Variables:
Type and amount of:
- Curing Agents (Peroxides)
- Antioxidants
- Ultraviolet Screeners
- Ultraviolet Stabilizers (HALS)
- Self Priming Agents

Storage Conditions:
- Time, Temperature, Humidity, Light Air Exposure

Quality Control:
- Determine anlytical methods to verify composition
- Publish QC specifications for material certification
PROCESS DEVELOPMENT

Process Variables

(VACUUM BAG LAMINATION)

- AMBIENT CONDITIONS:
 - TEMPERATURE
 - HUMIDITY
 - BAROMETRIC PRESSURE

- VACUUM PRESSURE (INITIAL) AND TIME OF EVACUATION

- TEMPERATURE - RATE OF RISE

- TEMPERATURE - ULTIMATE

- DWELL TIME, AT TEMPERATURE

- RATE OF COOLING

- TIME/TEMPERATURE/PRESSURE INTER-RELATIONSHIP

(CASTING LIQUID SYSTEMS)

ABOVE VARIABLES, PLUS:

- 2 COMPONENT MIX TIME

- DEGASSING PRESSURE

- PUMP AND FILL TIMES

- MIX UNIFORMITY

- GEL TIME
PROCESS DEVELOPMENT

Quality and Performance Criteria

METHOD:
- PREPARE TEST MODULES AND/OR OTHER TEST SPECIMENS WITH CHANGE IN SIGNIFICANT VARIABLE(S)
- DETERMINE THE EFFECT

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>CONDITION</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>POTRIANT</td>
<td>ADEQUATE CURE</td>
<td>PERCENT GEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THERMAL CREEP</td>
</tr>
<tr>
<td></td>
<td>TRAPPED BUBBLES</td>
<td>VISUAL</td>
</tr>
<tr>
<td></td>
<td>DISCOLORATION</td>
<td>VISUAL</td>
</tr>
<tr>
<td>CELLS</td>
<td>BREAKAGE</td>
<td>VISUAL, RESISTANCE</td>
</tr>
<tr>
<td></td>
<td>INTERCONNECT</td>
<td>RESISTANCE</td>
</tr>
<tr>
<td></td>
<td>REGISTRATION</td>
<td>VISUAL</td>
</tr>
<tr>
<td>COVER FILMS</td>
<td>TEARS/PUNCTURES</td>
<td>VISUAL</td>
</tr>
<tr>
<td></td>
<td>WARping/SHrinkage</td>
<td>VISUAL</td>
</tr>
<tr>
<td>GLASS (SUPERSTRATE)</td>
<td>FRActURE</td>
<td>VISUAL</td>
</tr>
<tr>
<td>ADHESION</td>
<td>BOND STRENGTH</td>
<td>PEEL TEST</td>
</tr>
<tr>
<td></td>
<td>ENDURANCE</td>
<td>WATER SOAK (50°C)</td>
</tr>
</tbody>
</table>

NEED TO DECIDE ON:
- STANDARD TEST SPECIMEN(S)
- STANDARD TEST PROTOCOL
- UNIFORM DATA SETS
PROCESS DEVELOPMENT

Data Analysis

- Statistical analysis complicated by lack of uniformity in data type

- Two types of data:
 - Discrete (Pass/Fail)
 - Continuous
 - Cell fracture
 - Interconnect breakage
 - Trapped bubbles
 - Thermal creep
 - Glass fracture

 For continuous data types:
 - Two level factorial experiments
 (most information, fewest experiments)
 - No. experiments = 2^K, K = no. variables
 - Determines effect of single variable at two levels
 - Determines factor interactions (several variables)
 - Permits ranking of variables according to magnitude of effort
 - Linear analysis possible for subsequent predictive capability

 For discrete data types:
 - Prepare scatter plot vs. variable
 - Plot the zero failure line
 - Use graphics to specify boundary conditions and acceptable processing "windows"
 - Determine failure probabilities - binomial distribution
Manufacturing Practice

DISCRETE VARIABLES

- Prepare graphical interpretation of data
- Determine "zero failure" line
- Define boundary conditions for defect-free manufacturing

Example: Cell breakage

\[O = \text{PASS} \]
\[X = \text{FAIL} \]

RESIN TEMPERATURE \((^\circ \text{C}) \)

BACKFILL RATE \((\text{mm Hg/sec}) \)

ZERO FAILURE LINE

VACUUM PRESSURE \((\text{mm Hg}) \)
MANUFACTURING PRACTICE

CONTINUOUS VARIABLES

- GRAPHICAL PRESENTATION ALSO GOOD FOR CONTINUOUS VARIABLES
- PROVIDES BOUNDARIES FOR PROCESS/FORMULATION VARIABLES
 BASED ON CRITERIA OF ACCEPTABILITY
- EASILY USED IN MANUFACTURING PRACTICE

EXAMPLE: PERCENT GEL
 (DEGREE OF CURE)

PROPERTY LINES
70%
60%
50%

TEMPERATURE
(°C)

DWELL TIME
(MINUTES)

PEROXIDE CONTENT
(%)
PROCESS DEVELOPMENT

Future Work

• IDENTIFY SIGNIFICANT VARIABLES
 • FORMULATION
 • PROCESSING

• DETERMINE MATERIALS SPECIFICATIONS
 AND QUALITY CONTROL METHODS

• ASSESS EFFECT OF VARIABLE(S) AND
 RANK ACCORDING TO IMPORTANCE

• DEFINE FORMULATION AND PROCESSING
 "WINDOWS" (ZERO FAILURE)

• CONVERT DATA TO PRACTICAL ENGINEERING
 FORMAT

• RELATE DATA TO MANUFACTURING YIELD
 • ASSIGN PROBABILITY OF FAILURE
 • NORMAL DISTRIBUTION (?)
 • WEIBUL (?)

• PREPARE TROUBLE-SHOOTING GUIDE:
 "WHAT'S WRONG IF . . . ?"
JPL Process Sensitivity Analysis

1. Define Variables

 - Processing
 - Determine Criteria of Performance
 - Uniform Test Specimen(s)
 - Uniform Test Protocol
 - Uniform Data Set
 - Discrete Data
 - Plot Data
 - Rank Variables and Cofactors
 - Brackets and Boundaries
 - Bernoulli Probability Distribution
 - Graphical Presentation
 - Assign Probability Values-Required Criteria
 - Determine Manufacturing Yields
 - Continuous Data
 - Factorial Experimentation
 - Rank Variable(s) and Cofactors
 - Brackets and Boundaries
 - Multivariate Analysis
 - Graphical Presentation

469