SILICON DENDRITIC WEB GROWTH
WESTINGHOUSE ELECTRIC CORP.
S. Duncan

Technology
Single crystal ribbon growth

Approach
Silicon dendritic web growth
Contractor
Westinghouse Electric Corp.
Advanced Energy Systems Division
JPL Contract 955843

Report Date
10/3/84

Goals
For 1984
• Demonstrate 10 meter length of continuously melt replenished web crystal growth
• Demonstrate 10 square centimeters per minute steady-state web growth

Status
• 6 ¼ meters of uninterrupted, continuously melt replenished web growth has been achieved with three different growth configurations
• Steady-state web growth of 8 cm²/min has been achieved
• Major improvement in web growth reproducibility has been achieved
• Concepts for higher growth rate have been developed

Principal Activities This Period
• Grow Long Web Crystals From Continuously Replenished Melt
• Develop Temperature Distribution In Web And Melt
• Improve Reproducibility Of Growth
• Develop Configurations For Increased Growth Rates (Width And Speed)
• Develop New Growth System Components As Required For Improved Growth
• Evaluate Quality Of Web Grown
Continuously Melt-Replenished Web Growth

Three Web Growth Configurations Have Achieved Long Growth (Approx. 6 Meters)

- J435 (3.3 cm width)
- J460L (1 cm width)
- J460LS (5.1 cm width)

Critical Regions of Temperature Distribution in Silicon Web Growth

- Between Crucible Compartments (Growth And Melt Replenishment Compartments)
- Within The Growth Compartment
- Vertical Profile Within The Growing Web
- Horizontal Profile Within The Growing Web
SILICON SHEET

ORIGINAL PAGE IS OF POOR QUALITY

TC1
TC2
TC3

Lids

TC1
TC2
TC3

Silicon

Crucible

Feed Compartment

T Axial
T Control
Melt Temperature Distribution

\[T_M + 14 \]
\[T_M + 4 \]
\[T_M \]

\[\Delta T = 0.4 \pm 0.2^\circ C \]
\[\Delta T = 1.2^\circ C \]
\[\Delta T = 2.5^\circ C \]

Principal Methods for Control of Melt Temperature Distribution

- Stationary Shield Configuration
- Dynamically Positionable Shield Configuration
- Dynamically Positionable Work Coil
- Design Of The Barrier Which Separates Crucible Compartments
Susceptor Shields

For Control Of Melt Temperature Distribution Includes Both Fixed And Adjustable Shields

Temperature Distribution Within the Growing Web

- Determined By Design Of The Susceptor Lids And Top Shields
- Predicted By Computer Model
- Lid And Shield Temperatures Measured In Growth System
Reproducibility of Web Growth

Improvements This Period

- Crucible Re-Designed For Better Susceptor Fit And Improved Thermal Transfer
- Rectangular Work Coil Fabricated With Precision Dimensions
- Perimeter Shields Re-Designed For Reproducible Spacing
- Mated Parts Fitted For Uniform Thermal Transfer

Configurations for Increased Growth Rates
(Width and Speed)

- Concepts Are Generated Through Computer Modeling
- Initial Design Specification Derived From Models
- Design Is Verified Through Experimental Web Growth
- Experimental Web Growth And Measurements Provide Data For Additional Input To Model

Growth System Component Development

Major Examples Of Component Development In This Reporting Period:

- New Crucibles
- Improved Crucible Barriers
- New Induction Heating Work Coils
- New Furnace Cover Plate For Higher Growth Rate
- Improved Feeder For Polysilicon Pellets
- Thermal Elements For New Growth System Designs
- Instrumentation For Monitoring Dendrite Thickness (Incomplete)
Web Quality Evaluation

Sources

From This Program
- Residual Stress Via Web Split Width Measurements
- Dislocation Density Via Etch Pit Counting
- Defect Type, Distribution And Structure Via X-Ray Topography

From Associated Programs
- Impurity Evaluation
- Electrical Properties
- Solar Cell Data

WEB SAMPLES FOR STRUCTURE ANALYSIS

- 33cm

Split Width

- 25cm
Problems and Concerns

Calendar Schedule Of Goals Is Tight

Summary

- Technology And Direction Of Development Sufficient To Surpass Goals When Fully Developed
- Major Improvement Achieved In Length Of Continuously Melt Replenished Crystal Growth