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FOREWORD 

The Institute for Atmospheric Optics and Remote Sensing (IFAORS) 
is pleased to submit the final report on tasks a through d of NASA 
Contract NASl-l6253. We have pleasure in acknowledging the assistance 
of M. P. McCormick and L. R. McMaster of NASA, Langley Research Center, 
who provided many useful discussions on the various aspects of this 
wOl.'k. 
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ABSTRACT 

This ~eport presents results of the analysis of data taken on the 
stratospheric aerosol, using lid,)r, Quartz Crystal Microbalance (QCM), and the 
SAGE and SAM II satellite systems. The main objective of the work reported 
h.:s been to use the data, taken wlth the NASA-LaRC instruments, to study 
the stratospheric effects of volcanic eruptions during the period between 
the launch of the SAGE and SAM II satellite systems and Octobc.r 1980. Four 
significant volcanic eruptions, for which data are available, occurred during 
this period--Soufriere, Sierra Negra, St. Helens, aniJ Ula\Yun. Data on these 
have been analyzed to d~termine the changes in stratospheric mass loading 
produced by tae er~ptions, and to study the dispersion of the newly injected 
material. 

The main conclusions drawn from the study are: 

1. Data, obtained by using morc than one of the listed sensor systems to 
study th~ atmospheric aerosol, enables a composite picture of the aerosol to 
be constructed, that is not possible ~sing data from a single sensor alone. 

2. Quantitative use of the QCM data, obtained after recent volcanic 
eruptions, has to await the completion of ongoing calibration studies. 

3. The prevolcanic, background, stratospheric aerosol mass in 1979 
was approximately 5 x 105 m0tric tonp. 

4. There l.S a tendency for both the nonvolcanic and volca.1ic aerosol 
to diyide itself into three zones between latitudes 90° S to 25° S, 25° S to 25° N, 
and 25~ N to 90° N, with altitude and concentration changes occurring near 
the bc,undaries of these zones. 

5" The most significant p.t.ratospheric effect produced by any of the 
erupti,olls studied was for St. Helens, which injected approximately 3 x 105 
metric tons of aerosol. 

6. Stratospheric aerosol m:.ss lo~ding, after an eruption, rises to a 
maximum after an interval of 3 to 4 months, followed by a rather slower 
decline. 

7. Dispersion of injectod material occurs immediately after an eruption, 
meridional movement taking place approximatelyalollg isentropic flow lines. 
In the case of an ~quatorial eruption, global dispersion may occur in a period 
of abvut 6 months. 
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1. INTnODUCTION 

The Most important reason for the continued study of str itoS!?" • ..;·i.: 
aerosols is their potential impact on global climate. The primar; !t.rosol 
parameters that need to be mo~sured for this purpose are their concentration. 
size distribution. shape. composition and refractive index. All these 
characteristics show regional. global lind temporal variations. creating the 
need f.or a global a"ros'~l data base. A sig:tificant part of this information 
is in the process of being supplied by five NASA sensor systems--ground­
based and airborne lidar; quartz crystal microbalance (QCM) cascade impactor, 
stratospheric aerosol measurements II (SAM II), and ~tratospheric aerosol 
and gap exper.iment (SAGE). 

Tlese three sensor types complement one another extremely well. each 
providilg information about a separate aspect of the over~11 stratospheric 
aerosol problem. Lidarmeasures aerosol backscatter with good spatial and 
temporal resolution. Ground-based system" hav9 been used to pt'ovide 
detailed time histories of the variations in aerosol content over a single 
point on the gromld. An airborne system has the additional advantage 
that it may be moved rap~dly to a point of interest. e.g., ~ volcanic 
eruption, or even used to explore a given region of the stratosphere. Use 
of multiwave1ength systems provides some information about aerosol size 
distributions. The SAGE and SA}l II satellites measure aerosol extinction 

.. 0.45 IJI1l (SAGE) and 0.45 IJI1l and 1.0 \lm (SAGE and SAM II). They do not have 
,:., ability to resolve very fine spatial det-ail, as may be done using lidar, but 
dre able to make aerosol extinction measurements with almost global coverage. 
1'hey, thus. provide an overall global monitoring capab,ility for stratospheric 
aerosols, /lot presently achievable by any other technique. In contrast to 
the above sensors. the QCM is an in-situ measurement device that both 
samples. for future study and analysis, as well as deter.mines the aerosol 
mass distribution function. The colle 'ted samples are later studied for 
size. shape and chemical composition. ~'he QCM has p:!:oveil 'tself a very 
useful in~trument for the study of the latter aerosol pro~urties. Its 
use as a probe for the mass distribution function is stlll mlder investigation. 
The results of these calibration studies are not yet complet~ and we have 
been mlable to use the mass distribution data in the present analysis. 

The main emphasis of the work presented in this report is on the 
analysis of the stratospheric effects of volcanic eruptions occurring between 
the launch of the SAM II satellite experiment (October 24. 1978) and 
October. 31, 1980. During this perioa, four volcanic er·,,,cions occurred 
that produced observed stratospheric effects; three of these were at low 
latitudes. one at a midlatitllde. Although the effects of these eruphons 
spread away from the position of the source, relatively little volcanic 
material reached the polar regions. except from the eruption of Mt. st. Helens 
on May 18. 1980. Because SAM II observations are confined to latitudes 
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poleward of about 650 , in contraat to SAGE observations which covered all 
latitude between about 700 Nand 700 S, little SAM II data have beeot studied 
and results fro,n this satellite will not be pres.;,nted here. An extensive 
study has been made of SAGE data between its launch on February lB, 1979, 
~nd October 31, 19BO, and a somewhat less detailed study of data up to 
December 31, 19BO. Where lidar data are available, these also have been 
studied in detail, using that obtalned from both ground-based and airhorne 
systems and this analysis has been carried through in less detail to data 
obtained in the summar of 19B1. For the reason given earlier, which will 
be discussed in more detail in Section 3.3, the quartz crystal microbalance 
data have not been included h this study of volcanic effects. 

In this report, separate chapters are devoted to an analysis of the 
observed effects of each of the three volcanoes--Soufriere, Sierra Negra 
and St. Helens. Although the eruption of Ulawun occurred within the 
October 197B t~ October 19BO time period, it~ main stratospheric effeots 
did not take plaoe until November or Dccembel: ]'9BO, and these will only 
be outlined in Chapters 4 and 9, in comparison with the efrects of the other 
eruptions. It may be noted also, that no sigr.lficant lidar data are 
available showing the effects of the SiE'crra Negra and Ulawun eruptions. 
Appreciation of the stratospheric effects of volcanic eruptlons is most 
easily made in terms of the background stratospheric aerosol for nonvolcanic 
periods. For this reason, Chapter 4 is devoted to a discussion of the overall 
global aerosol variation in 1979 and 19BO, covering a period of relatively 
low volcanic activity as well as one with several significant eruptions. 
This chapter also contains a discussion of the assumptions made and techniques 
uced to convert aerosol extirction to mass loading. 
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2. BACKGROUND 

2.1 ~_hniquds for studying the Stratospheric Aerosol 

In the Introduction we listed, as the primary aerosol parameters, 
their concent.ation, size distribution, shape, composition and refractive 
index. In order to measure these parameters over as large a range of space 
ar.d time as possible, a variety of different method3 are empl()yed. These may 
conw'niently be di vided into in situ and remote techniques, and a list of those 
more commonly used is given in Table 2.1. Of those listed, only satellite 
occultation (SAGE and SAM II (McCormick et aI, 1979)) has global coverage/ 
analysis of this data has thus added greatly to our knowledge of stratospheric 
aerosol cl:.matology. Satellite occultation's main e,1.isadvantage is that, 
with a limited number of such satellites .i n orbit, it; is a ma.\:ter of chance 
if the observation point happens to be near a rag ion of r~rticular interest, 
such as a volca.nic eruption. This gap is, at present, filled by the use of 
airborne lidar which may be directed rapidly to a place of interest. Ground­
base~ lidar is valuable because it is able to provide a continuous time 
hi.story of the behavior of the s.:ratospheric aerosol OVer a single point 
on the globe (Swissler et a1. 1982). Moreover, lidar syste,ms have a good 
vertical (ground-based and airborne) and horizontal (airborne) spatial 
resolution, that is not obtainable from SAGE and SAM II. Aerosol layering 
and changes related to regional atmosplleric dynamics may be particula.t'ly well 
studied usi. g lidar. 

Satellite occultation and lidar give only limited information on aerosol 
size distributions (via multiwavelength measurements) and less on aerosol 
shape (some information is obtainable from lidar polarization measurements). 
Information on these is at present obtained using in situ techniques which 
also sample the aerosol for subsequent composition determination. The 
in situ tachniques may .• e divided into two d,\sses, impactors (and ':ilter 
samplers) and opti.cal counters. Measurements made by the latter are most commonly 
limited to size distribution and concentration measur.ements only, although 
a wider range of particle radii, from 0.1 ~ >1 ~m, may be studied, than is possible 
by direct sa~pling (Hofmann and Rosen, 1981). composition and shape measurements 
on aerosols are made by in situ sampling and subsequent analysis. Filter 
sampling (Lazrus and Gandrud, 1974; Gandrud and Lazrus, 1981) using both 
aircra ft and balloon platforms is used to provide, both an elemel.cal analysis 
of the collected aerosol, and to estimate the mass mixing ratio of the 
dominant stratos~heric sulfate constituent. Aerosol size distribution is 
difficult to obtain directly from filter sampling and more commonly inertial 
impactor" are used fcr thi., purpose (Gras and Ayers, 1979; Farlow et aI, 1981). 
Impacted p~.rticles a,;e directly axamined by electron microscope and sized 
over a wide range (radius ~0.03 ~m). Problems arise with deformation of 
the particle upon impact, p'lrticularly for liquid droplets and considerable 
errors may ar.lse, especially with th,' larger particles. 
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TABLE 2.1: TECHNIQUES FOR STUDYING THE STRATOSPHERIC AEROSOL 

Method or instrument 

Rezoote 

Satellite occultation 
-SAGE and SAM II 

Ground-based dnd 
airborne lid1lr 

In Situ 

Airborne inertial 
impactor 
-wire collector, 

QCM, etc. 

Balloon and airborne 
filter samplers 

Balloon and airborne 
light scattering 
particle counters 

Parameters measured 
(or deduceci) 

Aerosol extinction 
(concentration + some 
infonnation on size 
distribution) 

Aerosol backscatter 
(concentration + some 
information on size 
distribution and shape) 

Size distribution and 
concentration, shape, 
composition. Maso 
distribution. 

Composition, aerosol mass 
mixing ratio 

Size distribution and 
concentration (includ­
ing condensation nuclei) 

4 

' . .. 

Coverage possible 

Global, tropopause or 
below to 35 km 

Single loca~ion (ground­
based), r£gi0nal (air­
borns), 0 ~ 3L km 

Regional, 0 ~ 20 km 

Regional, 0 ~ 20 km 
(aircraft), ~ 30 krn 
(balloon) 

Regional, 0 ~ 20 km 
(aircraft), ~ 30 km 
(balloon) 
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It should be noted that lidar and statellite occultation measurements 
extend throughout the stratospheric aerosol layers (tropopause'" 35 kill). 
Balloon sampling has the same vertical coverage but in situ airborne measure­
ments are limited to a.bout 20 kIn maximwn altitude. For many purposes this 
i~ su.~fici.mt, but .:nder some circumstances, such as t.1G recent eruption of 
El Chichon, which inject.ed material up to 30 kill, airbo1:ne measurements may 
not p~ovide sufficient coverage. 

Z.2 The Nature and Buhavio~~he Stratospheric Aerosol 

The stratospheric aerosol is relatively simple compared to the tropospheric 
aerosol. ~evertheless, it has certain properties and characteristics which 
will be outlined in this section before proceeding to a discussion of the new 
data obtained by S~GE and lidar and, in particular, the Volcanic effects. 
The various a&pects, which we shall review briefly only, are as follows. 

1. The variation of aerosol concentration with global location and altitude. 
.Its time variation and the effects of volcanic eruptions. 

2. The chemical composition. 

3. The aerosol size distribution and particle shape. 

4. The sources and sinks for stratospheric aerosols and the in situ 
chemical and microphysical processes. 

Figure 2.1 shows a contour plot of diL~r~bution of stratospheric 
aerosol mass with latitude and altitude, based on data from Rosen et al (1975). 
The main features are the manner in which t~e mixing ratio contours follow 
the height variation of the tropopause,with a maximum mixing ratio about 
8 kill above the tropopaus., at all latitudes. Significant variadons in this 
picture occur after a vol~'nic eruption has injected material dlrectly into 
the stratosphere (Cadle et al. 1976, Newell and Deepak, 198Z, Lazrus et al, 1979). 
Such an eruption create~ a strong local increase in aerosol concentration 
which rapidly expands to a regional scale and, more slowly, to a global scale. 
(Cadle et al, 1976, suggests a period of about 6 months for global dispersion.) 
This is followed by a gradJal decay (Swissler et al, 1982) which is quasi­
exponential with a decay constant of 6 to 12 months. 

The background aerosol in the stratosphere has been shown to consist mainly 
of sulfate and the model adopted by Russell et al (1981) consiste~ of 
75 percent H2S04 plus 25 percent (NH4)2S04' Near the tropopause th~~ would 
be contaminated by tropospheric aerosols with both inso),uble (soil and 
silicate dust) and soluble components. Recently, Hayes e.t al, 1980, and 
Russell and Hamill (1982) have questioned the existance of (NH4)2S04 in 
appreciable quantities in the stratosphere and their present aerosol model 
consists of a H2S04/H20 moisture in an approximately 3,1 mass ratio. This 
pictux'e is seriously perturbed after a volcanic eruption injects material 
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Figure 2.1 Latitude distribution of the concentration of stratospheric aerosols (from Rosen et al., 1975). 
Nur.lbers on the diagram give the number of aerosol particles per mg of air. 
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directly into the stratosphere. Solid volcanic ash, conaisting of irreguldr 
particles with sizes from 0.1 ~m to 3.0 ~m is present in large quantities 
along with the liquid and gaseous components (Cadle et aI, 1980, Farlow et aI, 1900). 
The larger particles, because of their mass, do not remain long in the 
stratosphere but fall into the troposphere where they mix and become lost. 

Aerosol size distribution are traditionally unimodal (Russell et al, 1981) 
with a peak in the size distribution (dn/d log r versus log r) at 
around 0.1 ~m (Gras and Laby, 1981). The distribution is narrow and the 
concentration of particles of radii 1 ~m is four to six orders of magnitude 
lower than that for particles of radii 0.1 ~m. There is considerable 
difficulty in measuring the larger aerosol particles because of their low 
concentrations and the above picture has b'len recently challenged by 
measurements obtained by Hofmann and Rosen (1981). Using a Ilew large 
particle optical counter, they have detected a second maximum in the aerosol 
size distribution at a radius near 1 ~m. Their results were obtained after 
the recent eruption of Mt. St. Helens and may not be typical of the long-
term background aerosol, nevertheless, they must be considered as a factor 
that will add additional uncertainty into optical modeling calculations • 

The stratospheric aerosol is believed to be formed during volcanically 
quiet periodp from OCS which diffuses upwards from the troposphere. This is 
supplemented by S02 directly injected into the stratosphere by volcanoes 
(Toon et al, 1979; Turco et aI, 1979; Turco et aI, 1980a,b). The OCB and 
S02 are oxidized to H2S04 which then nucleates onto small condensation nuclei 
present in the stratosphere. Particle growth occurs by condensation of H20 
and H2S04 onto the nucleated pArticles and coagulation by collision also 
serves to form larger particles. Particles are subject to transport. mechanisms-­
diffusion and sedimentation. At the tropopause particles will be lost by 
sedimentation; evaporation, particularly at the upper levels, \·,ill also act 
as a particle sink. The interaction of all these factors le.?ds to a very 
complicated behavior for the stratospheric aerosol and recently attempts have 
been made to include the"e in one-dimensional models (see r',ferences above) . 
That these have some measure of success may be an indication that, to a first 
approximation, zonal and meridional variations, in the undisturbed aerosol 
layer, are secjndary to the local physical and chemical processes. Nevertheless, 
many problems l~in, these range from the question of the r~lative 
importance of OCS and S02 oxidation as source mechanisms for the aerosol to 
the behavior and nature of both the largest and the smallest aeroncl 
particles. In particular, models are just beginning to be produced for the 
perturbing effect of volcanic eruptions (Turco et aI, 1982). The exact 
manner in which the new aerosol develops depends upon the actual concentrations 
of S02 and H20 in the volcanic plume. A maximum optical depth should occur 
about 3 months after the eruption, followed by an approximately exponential 
decay, with a time constant of 6 to 12 months. 
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2.3 Volcanic Eruptions During the Period of Study 

The years 1975 to 1979 following the eruption of Fuego in Central America, 
have formed a relatively quiet period in terms of volcanic eruptions that 
have had a major effect on the stratospheric aerosol content (Swissler et aI, 1982). 
Since November 1979, there have been several eruptions of significance, 
culminating in the recent eruption of El Chichon which has produced the 
largest stratospheric effects since the 1963 eruption of Agung, and possibly 
earlier. Those recent eruptions believed to be of significance are listed 
in Table 2.2. One earlier 1979 eruption, that of Soufriere, is also listed, 
not because of its global influence, which was very small, but because its 
local effects were quite definite and observed both by airborne lidar and by 
SAGE satellite (McCormick et al, 1982). This list of eruptions is certainly 
not complete, even for those that have injected material into the stratosphere 
(e.g., the er"ption of Garoloi in August 1980 (Sedlecak et al, 1981) has not 
been included) but shows those for which we have definite observations made 
either by SAGE, or lidar, or both. One reason for this lack of completeness 
is illustrated by the column heights listed in the table. The majority of 
these column heights ar.e based on visual eotimates, both by experienced and 
inexperienced observers. It may be noted that the column height shown for 
Ulawun is only 10 km, well below the tropopause height at the latitude of 
the eruption. Despite this, there is very little doubt that this eruption 
produced a marked stratospheric effect. The explanation must lie in either 
an error in the estim~ted column height or in another unobserved eruption 
ft'om the same volcano, possibly at night. Some similar reason probably 
applies to the eruption of December 1981 to January 1982, for which we are 
not even sure of the responsible volcano. 

In the Introduction, it was noted that this report covers analysis of 
SAGE satellite data from January 1979 to December 1980, and the corresponding 
lidar data, where available. During this period four eruptions have been 
observed, sufficient to be able to deduce some general characteristics 
common to all. In addition, some further lidar data have been available 
up to the summer of 1981, covering two more eruptions of importance. 
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TABLE 2.2: RECENT VOLCANIC ERUPTIONS AFFECTING THE STRATOSPHERE 

Date Volcano Location Column Height 

April 17, 1979 Soufriere 
0 

13.3 N, 61.2°W 18 - 20 kin 

November 13, 1979 Sierra Negra 
0 

0.8 S, 91.2°W 14 kin 

May 18, 1980 St. Helen", 
0 

46.2 N, 122.2°W 23 kin 

October 7, 1980 Ulawun 
0 

5.0 S, 151. 3°E 10 kin 

Apra 27, 1981 Alaid 
0 

lSS.S o E 15 kin Sll.8 N, 

May 15, 1981 Pagan 
0 

18.1 N, 
0 

145.8 il 13 - 20 kin 

December - January 1982 Possibly Pagan Lidar at 10 N -- shows peak at 17 kin 

March 19, 1982 St. Helens 
0 

46.2 N, In.2°W 14 Ion 

March 28 - April 4, 1982 E1 Chichon 
0 

17.3 N, 
0 

93.2 W 26 kin 
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3. DATA SETS AVAILABLE FOR STUDY 

3.1 SAGE and SAM II (McCormick et al, 1979) 

The SAM II experiment was launched on board the NIMBUS-7 satellite on 
October 23, 1978, and has since been making aerosol extinction measurements 
at a wavelength of 1.0 ~m. As indicated in the Introduction, the observations 
are coniined to latitudes polewards of about 65° Nand S and, for this 
reason, have not been extensively studied for volcanic effe~ts. SAGE was 
launched on February 18, 1979, aboard the AEM-B satellite into a highly 
processing orbit giving its measurements global coverage. SAGE was designed 
to make two sets of observations per day-'-at satellite sunrise and sunset, 
using four radiometer channels. Two of these, at 0.45 ~m and 1.00 ~m, have 
been inverted b> obtain aerosol extillction coefficients. Due to a partial 
failure of the satellite power supply, a few months after launch, the 
observational schedule was reduced in June 1979 to sunset events only and 
routine data were obtained for these until the final satellite failure in 
November 1981. 

During the period of work covered by this report, SAGE data for 1979 
and 1980 only were available. The basic transmission data were inverted to 
obtain a vertical extinction profile at 0.45 and 1.00 ~m for each event. 
The vertical resolution on these profiles is 1 km and, although the data are 
basically stratospheric, a significant nurnb~r of the profiles extend downward 
into t.he troposphere. The orbit of SAGE is such that approximately 15 sunset 
(and 15 sunrise events during the period immediately after launch) were 
obtained each day, separated by 24° in longitude. The latitude of observation 
changes slowly from pole to :,:>le, a complete cycle taking about 2 months. 
A list of SAGE movements for the entire satellite life history is shown in 
Table 3.1. 

It mus~ be noted that the SAGE data used in this report were inverted 
using a preliminary inversion scheme. The effect of this on the data 
product has been twofold: 

1. The 1 ~m extinction profiles, although clo~e to the best obtainable 
values, contain small errors. Analyses carried out at a later date 
have shown that any systematic error is probably very small «3 percent) 
but that individual data points may be in error by as much as 10 per­
cent. In terms of the volcanic effects to be discussed, such an 
error is small and not likely to change the main conclusions, 
qua:itatively or quantitatively. 

2. The 0.45 ~m channel may contain significant errors and use of the 
0.45 ~m/l.OO ~m ratios based on the preliminary inversion scheme 
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Date 

Feb 21, 79 

Mar 3 

Mar 22 

Apr 5 

Apr 29 

May 14 

May 18 - 25 

May 30 

June 10 

June 12 - Aug 3 

Ju1 25 

Aug 4 

Aug 7 

Sep 13 

Oct 20 

Day No. 

52 

62 

81 

95 

119 

134 

138 - 145 

150 

161 

163 - 215 

:<06 

216 

219 

256 

293 

TABLE 3.1: SAGE GLOBAL NOVEMENTS 

Latitude of Latitude of 
Sunset Events Sunrise Events 

° 60.0 S 49.4°N 

• 29.3°5 57.7°N I 
I ° 31.0°5 

I 
64.6 N 

° 58.5°5 I 38.3 N 

I 52.2°5 41. 9°N , 
I 19.9°5 71. 3°N 

I 68.1°N 27.0°5 

I 
49.1°N 46.5°5 ! 

6C.3°N 

65.6°N 

73.2°N 

60.60 5 

54.5°N 

Comments 

First data 

Sunrise northern 1iIn...t 

Sunset northern limit 

Sunrise southern limit 

Sunset sout.hern limit 

Sunrise northern limit 

Sunli t period 

Sunset northern l.tmit 

Sunrise southern limit 

Data ver:/ e=atic 

Final sunrise data 

Start sunset data only 

North limit 

South limit 

North limit 
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Date 

Nov 21, 79 

Dec 31 

Jan 14 - 26, 80 

Jan 27 

Mar 4 

Mar 26 - Apr 7 

Apr 8 

Apr 30 - May 8 

May 11 

June 23 

Jul 7 - 19 

Jul 20 

Aug 28 

Sep 28 

Oct 21 - Oct 30 
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TABLE 3.1: Continued 

Day No. 
Latitude of Latitude of 

Sunset Events Sunrise Events 

325 70.1°S 

365 46.4°N 

14 - 26 

71.3°S 

64 57.1°N 

I 
86 - 98 

I 99 57.1°S 

121 - 129 

132 71. 9°N 

175 4(.4°S 

189 - 201 

202 69.3°N 

241 55.6°S 

272 61. 7°N 

295 - 304 

CoIIments 

South limit , 

North limit 

Sunlit period 

south limit 

North limit 

Data gap 

south limit 

Sunlit period 

North limit 

South limit 

Sunlit period 

North limit 

South limit 

North limit 

Sunlit period 
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Date 

Oct 31, 80 

Dec 13 

Dec 25, 80 - Jan 10, 81 

Jan 11 

Feb 17 

Mar 7 - 16 

Mar 19 

Apr 13 - 20 

Apr 21 

June 5 

June 16 - 29 

Jul 1 

o 
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TABLE 3.1: Continued 

Day No. Latitude of Latitude of 
Comments Sunset Events Sunrise F'vents 

305 74.8°,; South limit 

348 I 46.5°N North limit 
I 

360 - 10 I Sunli t period , 
I 

I 11 67.8°S South limit 

I 
48 53.6°;:1 North limit ! 

i 

66 - 75 I Data gap , 
78 63.3°S SOl,th limit 

I 
103 - 110 

I 
Sunlit period 

111 75.7°N North limit 

156 46.7°s South limit 

167 - 180 Sunlit period 

182 66.7°N North limit 
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TABLE 3.1: Concluded 

Latitude of Latitude of 
Day No. Sunset Events Sunrise Events 

222 50.9° S 

i 
240 - 246 

246 72.8°N 

275 - 284 

I 285 ,70.9° S 

322 46.7° N 
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should be made with extreme cautior. Use of such jata wIll not be 
further discussed in this report. 

3.2 Lidar ---
NASA-LaRC is currently using two lidar system~ to study stratospheric 

aerosols. One is a large grryund-based system located in Hampton, VA 
(37 0 N, 76 0 W) which operates "sing a ruby laser (0.6943 \lm). The other is 
an airborne system which has the capability of operating using either a 
ruby laser or a Nd,YAG laser (1.06 \lm) • 

The ground-based system has been in use fo~ many years, it has a 
:..eceiving r:,irror with a diameter ot 48 inct.os ann a ruby lidar with on 
aV3ilable output energy of 2; J at 0.1 Hz (McCormick, 1975). ~he system 
has been in fairly continuous operation since 1974 and a good long term 
data set has been built up for scattering from stratospheric aerosols 
(McCormick et al, 1978/ Swissler et al, 1982) whlch clearly sho"s volcanic 
effects. These Observations have continued through to the present time 
covering, in considerable detail, the period (January ~980 to June 1982) 
discussed in this report. 

The airborne lidar system is of more recent construction, particular 
in ~erms of the availability of the Nd,YAG channel. Special missions have 
been flown to investigate the atratryspheric effects following volcanic 
eruptl.ons (McCormick, 1982/ Kent, 1981) and the system has been used to 
assist in the vall.dation of SAGE/SAM II satellite data (McCormick et al, 1981/ 
Russell et al, 1981). Table 3.2 shows a list of missions flown between 
April 1979 and June 1981, the data from which will be discussed in this 
report. 

3.3 Quartz Crystal_Microbalance 

In November 1978, a set of correlative e~erinents was carried out over 
Sondrestrom, Greenland, with the objective of testing the validity of the 
data obtained by the SAM II experiment (Russell et al, 1981). As part of 
this series of experiments a quartz crystal microbalance was flown on 
boar~ a Sabreliner aircraft at altitudes of 9.5 to 12.5 km. The OCM is a 
multistage impactor that allows aerosol particles to be sEparated into ten 
different size fractions between 0.045 and >22 \lm. The mass of aerosol 
within each size range is determined from the change in resonant frequency 
of the piezoelsctric crystals used as collection surfaces (cor,\pared to a 
reference crystal) and constilaent composition is obtained from post-flight 
SEM analysis of the samples. Data taken at various flight altitudes during 
this series of experiments has been made available to us for analysis. 
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TABLE 3.2: LANGLEY RESEARCH CEN'fER AIRBORNE 

L!DAR FLIGHTS BETWEEN APRIL 1979 AND JUNE 1981 

Date Flight Area " 

! , 
April 14-20, 1979 caribbean and Brazil 

~I 

May 21-28, 1980 Eastern USA and Ca.lada 

Sept. 16-24, 1980 virginia to Washington State, USA and return 

Dec. 9-15, 1980 New York State, USA and Frobisher Bay, Canada 

c. June 27, 1981 Virginia Coast. USA 
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Because it has been discovered with the Sondrestrom measurements that 
the techniques employed with the QCM, in particular the crystal coatings 
and temperature pairings were inadequate for stratospheric measurements, it 
is considered that the sondrestrom data set is of poor quality. Through 
additional experience with stratospheric flights on the U-2 aircraft, these 
techniques have been improved considerably. In addition, calibration studies 
are being conducted under similar stratospheric conditions which will further 
refine the instrument accuracy. As these studies are not yet complete, we 
decided against the use of QCM rlata, in our study of volcanic effects, even 
where such data exists. 

A brief discussion of our own rulalysis of the sondrestrom data is 
given in Section 8 of the report and, in somewhat mc~e detail, in the Appendix. 
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4. GLOBAL STRATOSPHERIC AEROSOL CONCENTRATIONS, 

FEBRUARY 1979 - DECEMBER 19BO 

4.1 Conversion of Satellite and Lidar Data to Mass Loading 

The SAGE and SAM II satellite systems and lidar measure respectively 
tne aerosol extinction and aerosol backscatter at certain wavelengths. These 
are optical quantities, which can only be converted to aerosol concentrations 
if certain assumptions are made concerning both the scattering mechanism 
and the aercsol properties. It is commonly assumed that Mie theory may be employed 
to calculuce the optical characteristics, that i~, that the aerosols are 
spherice~. in shape. This assumption is probaciy justified when we have an 
aged aerosol population that is not too close to the t~opopause. Immediately, 
after a volcanic eruption, significant quantities of volcanic ash are normally 
present along with gas,~ous and liquid effluents. The ash particles are almost 
certainly nonspherical and use of Mie theory may lead to serious errors. 
Development of an alternative theory to calculate Rc~ttering from such particles 
has not been attempted for a variety of reasons. The first is the extreme 
difficulty of carrying out such calculations for irregular particles although 
certain shapes, such as ellipsoidal, are amenable to treatment (Schuerman, 19BO). 
More important, perhaps, is that such calculations are normally only required 
under conditions in whiCh other errors are mucr. larger. Volcanic ash probably 
only resides in the stratosphere for a few weeks after a significant eruption 
(Hofmann and Rosen, 19B1). During this period the concentrations of aerosol 
are highly localized and very irregular. Present sampling techniques, including 
SAGE, do not permit a complete sampling of the aerosol distribution. A few 

.localized values only may be obtained which are then ltsed t-:> estimate the 
overall distribution. Very considerable errors enter at this stage which 
are certainly comparable to those involved in assuming the applicability of 
Mie theory. A further point is that, as indicated above, the ash has a short 
residence time, from the point of view of understanding the eruption mechanism, 
it is undoubtedly important, from the point of view of the long term climatic 
effects of the eruption, it is of secondary importance compared to the 6ulfuric 
acid aerosol. Similer arguments may be advanced for the region of the 
stratosphere just close to the tropopsphere. This is a region of exchange 
b~tween troposphere and stratosphere and larger particles may occur here. Ie 
is also a region in whiCh penetration of the stratosphere vy tropospheric cloud 
takes place. Under such conditions, very large errors in th~ estimation cf, 
stratospheric mass loading may occu::: and, as will be discuss •• d later, we have 
tended to ignore this region when calculating mass loading. 
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Russell et al (1981) have presented an extensive discussion of 
stratospheric aerosol models and the intercomparison of satellite and lidar 
data. In this comparison they have used nine different commonly used size 
distributions and made a detailed error analysis based on t;lese size 
distribution types and the range of likely refractive indices. In their 
analysis they have used the dustsonde ratio obtained by research workers at 
the University of Wyoming, Department of Physics and Astronomy as a key parameter. 
The dustsonde ratio NO.15/NO.25 is defined as the ratio of the number of 
particles with radii' :'.15 lim to that with radii >0.25 lim. There is a large 
data base on this parameter for stratospheric aerosols and it is a useful 
single parameter for describing the relative number of large and small 
particles. Derivation of a conversion factor for the optical scattering or 
extinction to n~ss as a function of this ratio is particularly useful as 
dustsonde measurements are availabl~ following the recent vo)c '~ic eruptions. 
In their analysis Russell et al (1981) assume the aerosol to oonsist of a 
mixture of sulfuric acid, water and anmonium sulfate. In the inner stratosphere 
(more than 2 km above the troposphere) they assume the aerosol to consist of an 
equal mixture by weight of 60 percent H2S04 (n = 1.40), 75 percent H2S04 
(n = 1.42), 90 percent H2S04 (n = 1.13) and (NH4)2S04 (n = 1.52). In our 
calculations, which will be presented below, we have used the same mixture 
of components. 

Recently, Russell et al (1982) have modified their model to take account 
of one new development and a faotor previously omitted from tlleir calculations. 
Results obtained by Hayes et al (1980) have indicated that the (NH4)2S04 
previously believed to exist in the stratosphere, may have been produced 
in the course of t',;ansport and laboratory analysis. Russell et al have 
deleted (NH4)2S04 from their model and have included the effect of temperature 
on the refractive index of H2S04/H20 mixtures. By a curious coincidence the 
changes in optical scattering and extinction prod'!ced by including these 
modifi~ations cancel almost exactly, leaving the conclusions based on the 
original model almost unchanged. 

Mie ca,lculations have been carried out, using Russell et al's (1981) 
models of the aerosol size distribution for the extinction (at 1. 0 lim) 
to mass ratio as a function of dustsonde channel. This has been done with 
both an H2S04(9)/Il;!O(3)/(NH4)2S04(4) mixture at room temperature and an 
H2S04(3)/H20(1) mixture at stratospheric temperatures. OVer the channel 
ratio range 1.2 ~ 16 the maximmn difference between the extinction/mass 
ratio for the two compositions was less than 2 percent. The curve for the 
latter is shown in Fig. 4.1 where it can be seen that the ratio can vary 
between 4 x 102 and 2 x i03 m2 kg- l . ~le figure also shows a mean prevolcanic 
dustsonde ratio as 4.7 (E/M = 1.22 103 m2 kg- l ) and a value 100 days after 
the St. [,. lens eruption as 5.5 (E/M = 1.10 x 103 m2 kg-l ). These values are 
essential',' the same, being wel; within the spread of dustsonde ratios 
(3. 5 ~ 7 "\ the layer maximum) shown by Pinnick et al (1976) for a range of 
global soundings. Immediately after an eruption when considerable quantities 
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Figure 4. I Conversion factor for extinction/aerosol mass as a function of dustsonde channel ratio for the 
inner stratosphere (models were taken from Russel et 01 .. 1981). Also shown is a value calculated USinll the 
numerical data obtained by Hofmann and Rosen (1981). 
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of ash are present, the dustsonde ratios are erratic and the size distribution 
is then far from the standard values. Also shown in Fig. 4.1 is the result of 
a numerical calculation using Hofmann and Rosen's data of January 19B1 after 
the eruptions of St. Helens and Ulawun. It can be seen that the value agrees 
well with those based on the models. This is somewhat coincidental,as 
analysis of a larger number of postvolcanic size distributions shows that this 
ratio is variable and that its actual value is uncertain due to the lack of 
knowledge of the exact concentration of the larger ~art!Iles with radii of 
the order of 1 ~m. In this report the value 1.22 m kg has been adopted 
as a single value for converting extinction to mass loading. It should be 
remembered that this factor is an approximation only. 

Less Use has been made in this report of lidar data, for the calculation 
of aerosol mass loading, than of the SAGE extinction data. Russell et al (19Bl) 
have discussed in detail the conversion of backscatter cross-sections to 
extinction cross-sections and expressed their results as functions of model 
type and dustsonde channel ratio. Over the same range of channel ratios as 
shown in Fig. 4.1 the backscatter/extinction ratio BO.69/El.00 varies from 
about 0.02 to 0.10 sr-l. This is shown in different form in Fig. 4.2, 
where this ratio is plotted as a function of aerosol particle radius. It can 
be seen that ~he function has a minimum value for particle radii between 0.2 
and 0.7 ~m. This is the particle group, for normal stratospheric aerosol 
distributions, that is respor.,,<.l:;le for tho majority of the backscatter. Where we 
have fOWld it useful to conv2rt lidar backscatter to equivalent SAGE 
extinction we have used the conversion factor BO.69/El 00 = 0.03 sr- l . (The 
corresponding value for BO.69/Mass is 36.6 m2 sr-1 kg-i.) 

4.2 Stratosphuric Aerosol Mass Lo~ 

In order to study the stratospheric effects of volcanic eruptions, it is 
necessary to have a clear picture of the background stratospheric aerosol 
Frior to the eruption. Of particular importance is the stratospheric aerosol 
mass loading, both from the aspect of the tot~! global mass loading as a 
function of time and of the aerosol distribution with height and latitude. 
Soma information on these has already been discussed in Section 2.2 but a 
far more detailed picture has emerged from a study of the 1979 and 19BO SAGE 
data; this picture will be presented in this section. 

Nineteen hundred seventy nine (1979) represented the last year of 
relatively low volcanic activity. Although Soufriere erupted in April 1979 
and produced significant local stratospheric effects, its influence on the 
global stratospheric aerosol was negligible. The SAGE data between its 
launch in February 1979 and thu eruption of Sierra Negra in November is 
representative of the background stratospheric aerosol insofar as the term 
has meaning. These data have been ·.,sed in several ways. The total global 
mass loading has been calculated, contour plots of extinction and extinction 
ratio as a function of latitude have been produced and specific aspects, 

22 

•• 

I I , 
): .j 

'. 

.~ 
I 

I 

~ 

{ 
I 

I 
I 

I 
I 



, I 

" I 

~, , 

~ , , , 

i , 
: ( I , 

t 

\ 

PARTICLE RADIUS 11m 

Figure 4.2 The ratio (backscallering function at 0.69 iJI'I)l(extinetion cross-section at 1.00 iJI'I) plolled as 
a function of particle radius. 
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such as the location of the mixing ratio maximum have been studied in some 
detail. 

SAGE data have been subdivided in sets of measurements, as described in 
Section 3., representing the movement of the satellite observation point 
from one latitude extreme to the other. Within each set the data have 
been further subdivided into 10· latitude intervals and the mean extinction 
and optical depth calculated within each 10· latitude belt. These data have 
then been used to calculate the total aerosol mass loading and to plot 
contour maps of extinction and extinction ratio (aerosol extinction/molecular 
extinction) • 

An example of one such contour map for aerosol extinction is shown in 
Fig. 4.3 for the period March 22 to April 28, 1979. The units used in this 
figure for extinction are 10-4 krn- l and the data have been plotted between 
altitudes of 5 and 35 km. Also plotted on the same figure i6 the height of 
the tropopause as a function of latitude. The lines of constant extinction 
are, to a first order of approximation, parallel to the tropopause altitude. 
The height of peak stratospheric extinction, which is not clearly shown in the 
figure, occurs a few kilometers above the tropopause. Below the peak the 
extinction is fairly constant and near the tropopause the situation is very 
confused, particularly in low latitudes, by occasional cloud which ~enetrates 
the tropopause, producing very high extinction values. 

The companion plot to Fig. 4.3 showing extinction ratio rather than 
extinction is shown in Fig. 4.4. This is remarkable for a strong maximum, 
ab<)ut 10 kilometers above the tropopause in equatorial regions, and a continuing 
ridge at the same altitude above the tropopause extending to high latitudes. 
The penetration of th,-, tropopause by cloud in low latitudes is still clear 
and it is interesting ~1 note the extinction ratio minima at tropopause heights 
occU1::dng near the tropol.'ause folding region in latitudes 25° to 35· N 
and S. Cou'plete sets of ~ontour plots of extinction and extinction ratio 
are shown for 1979 and 1981' in Appendix 2. 

One particular feature of the stratospheric aerosol layers that has 
emerged from the SAGE anal~sis is a marked break between the equatorial 
and midlati tude layers. TI:,is is net shown clearly in Figs. 4.3 and 4.4 due 
to the latitude smoothing '.n the" e plots. Fig. 4.5 shows the data for 
approximately the same pel'iod (Sp:::bg 1979) plotted in a slightly different 
form. This figure shows a probability contour plot for the occurrence of the 
extinction ratio peak. ~he data are thus similar to that shown in Fig. 4.4, 
but is obtained from a study of individual scattering profiles rather than a 
zonal average. This figure is clearly broken into three sections, one over 
the equator, the others polewards of latitude 30·. There appears a strong 
height discontinuity at 20· to 30· coincident with the so-called tropopause 
break or folding region. Fig. 4.6 shows the same data plotted as a function 
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of altitude above t"e tropopause rather than absolute altitude, the difference 
altitude being calc"lated for each SAGE event. A mllan altitude dif:!erence of 
10 km is apparent, together with a slight hemispheric asymmetry. Of particular 
interest is the tropopause folding region where the altitude difference 
shows its minimum value, Buggesting that stratospheric material may be d" n 
down at these latitudes. Similar plots arc obt~ined for the other seasons, 
all showing the same behavior near the tropopause folding regions and also 
showing seasonal variations, as well as a hemispheric asymmetry. 

Mass loading calculations have been made, based on the same data 
subdivisions. The extinction values within each 10· latitude belt have been 
used to calculate the total stratospheric aerosol optical depth which has then 
been integrated for each hemisphere. Ideally, in calculating the stratospheric 
aerosol optical depth, the aerosol extinction should be integrated for all 
le'lels above the tropopause. Thi s approach calo lead to errors. It is clear 
from our own data, and from othel; publillhed data, that clouds can penetrate 
the tropopause, leading to higl. extinction levels which, if included, would 
distort the integrated values which are hopefully obtained for aerosol alone. 
In addition, the tropopause levels used are based on a global grided analysis 
and may not be exactly correct for the region in which the SAGE measurement 
is made. For these reasons, it was decided (a similar approach was used by 
Russell et al, 1981) to calculate the optical depth from a height 2 km above 
the tropopause. A further cOAplication was introduced in May 1980, when the 
algorithm used to derive the tropopause heights was modified, resulting in 
significant errors in the estimated heights over certain latitude bands. 
This error was not corrected until 1981 and in order t~ avoid a data dis­
continuity, a model rather than the actual tropopause height has been used in 
most of the calculations presented in this report. 

A typical t~sult for. the latitude variation of the str.atospheric optical 
depth, defined as above, is shown in Fig. 4.7 for the period March 22 to 
April 28, 1979. This figure shows minimum optical dopth at latitudes of 
20· to 30·, typical of all prevolcanic and some postvolcanic data. Fig. 4.7 
also shows hemispheric asymmetry which appears to be seasonally variable. 
This variation is shown more clearly in Fig. 4.8, where the mean hemispheric 
optical depth is plotted as a function of time from March 1979 to December 1980. 
The times of the three major volcanic eruptions during this period are marked 
and the right-hand ordinate shows the equivalent hemispheric mass loading 
using the conversion factor discus~ed in the previous section. The following 
points are shown in the figure. 

1. Previous to the eruption of Sierra Negra, both hemispheres show a 
mean mass loading of about 2.5 x 105 tonnes (global total = 
5.0 x 105 tonnes). 
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Figure 4.7 Latitude variation 0/ the mean stratospheric optical depth (measured from two kilometers 
"bove the .ropopause) for .. he period March 22-April 28. 1979. 
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3. The three volcanoes marked on the figure all produced stratospheric 
effects. Full details of the first two of these eruptions at'e 
given 1n Sections 6 and 7. The following is a brief slnnmary of the 
global behavior of each. 

(a) Sierra Negra: This was an equatorial eruption occurring in 
November 1979. The movement of the stratospheric input was 
asymmetric, the majority (at least 60 percent of the injected mass) 
moved into the northern hemisphere. The maximum stratospheric 
effect was reached about 3 months after the eruption when the 
increase in total mass loading was about 1.B x 105 tonnes 
or about one-third of the previous background total. In May 1980, 
it is still possible to separate the effects of Sierra Negra 
from those of St. Helens. At this time (3 months after 
maximum loading) the increase due to Sierra Negra has fallen 
to less than 1.0 x 105 tonnes. 

(b) st. Helens: St. Helens erupted on May 18, 1980, at 46° N. The 
majority of the injected material moved northwards and relatively little 
entered the southern hemisphere. A flat maximum in loading was 
reached 2 to 4 months after the eruption. The eruption of 
~lawun occurred too soon after that of Soc. Helens for the 
expec'.ed decrease to be easily separated. It is, however, 
anticipated that a study of the 1981 data will assist in this 
respect. The total loading increase produced by st. Helens 
was approximately 3.0 x 105 tonnes--an Exact estimate heing 
difficult to make on account of the remaining influence of 
Sierra Negra. Of this total, it seems likely that about 
90 percent remained in the northern hemisphere up to September 1980 • 

(c) Ulaw~: The eruption of UlawtUl was equatorial, similar to that 
of Sierra Negr~. Unlike Sierra Negra, the stratospheric input 
did not moV!! rapi11y away from the equat.or. The 1980 data 
does not show the peak effects of the eruption, but it js 
anticipated that they will be contained in the 1981 data. In 
late November 1980, the increase in southern hemi8phere mass 
loading due to Ulawun was approximate 1 y 1.1 x 105 tonnes. A 
slightly smaller amount entered the northern hemisphere (the 
hemisphere total is not available due to the SAGE orbital 
charact.eristics) giving a total extra loading 6 week" after the 
eruption of about 2.0 x 105 tonnes. It is to be anticipated 
that the 1981 SAGE data will show an increase up to a level 
comparable with or slightly less thall that from Mount St. Helens. 

A summary of the above information is given in Table 4.1. 
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TABLE 4.1: STRATOSPHERIC AEROSOL MASS LOADING CHANGES 
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5. STRATOSPHERIC EFFECrS OF THE ERUPTION OF SOUFRIERE 
(McCormick et al, 1981; McCormick et al, 1982, Kent, 1981, Fuller et al, 1982) 

5.1 Introduction 

The Soufr~ere volcano is located on the Caribbean island of St. Vincent 
(13.30 N, 61.20 W, see Fig. 5.1) ru,d erupted several times in April 1979, 
sending material to stratospheric heights (Shepherd et al, 1979). Approximately 
10 days after the first major eruption, SAGE made measurements at the latitude 
of St. Vincent while moving from south to north. Events showing enhanced 
extinction in the stratosphere, attributable to material from the volcano, 
were observed. similar but rather weaker events were noted as SAGE moved 
north during the subsequent week, and the effects disappeared at a lat~~ude 
of about 400 N. Detailed times and estimated column heights of the "arious 
eruptions are listed in Table 5.1 (Shepherd et al, 1979l. As for ot)-er 
column height estimates shown in this report, it should be remember,!d that 
these are estimates only and subject to considerable error. 

At the time of the first eruption the NASA P3 aircraft carrying the 
airborne lidar system was on a mission in BraZil. It was directed to the 
location of the volcano and arrived in time to observe the largest eruption 
of the series on April 17, 1979. On the following day, a mission was flown 
in the neighborhood of the volcano in order to use th~ lidar system to 
study possible stratospheric injection of material by the eruption. 

5.2 Lidar Observations 

The flight path for the lidar mission of April 17-18 was determined on 
the basis of local meteorological observation~ made in Trinidad (110 N, 620 W, 
see Fig. 5.2). Strongly scattering layers were observed ~Jve the local 
tropopause (h ~ 16 km) with aerosol/molecular scattering ratios as large 
as 100 (see Fig. 5.2 for the height of thesa layers). These were thin 
(less than 1 km in thickness) and extended up to 20 km altitude. Strong 
shearing had occurred, with different parts of the plume moving in different 
directions. Examples of the scattering profiles, typical of those to be 
observed immediately after a volcanic eruption are shown in Fig. 5.3. The 
plume movements have been interpreted in terms of the high altitude wind 
systems as measured at Trinidad and will be discussed below in Section 5.4. 

5.3 SAGE Observations 

An example of a typical low-latitude background aerosol extinction 
profile observee r.y SAGE is shown in Fig. 5.4(a). No enhancement over 
back· 'round due to a high-altitude plume is present, and the extinction 
decreases fairly slowly with altitude between about 12 km and 22 ~n • 
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TABLE 5.1: 

Date 

April 13, 1979 

April 14, 1979 

April 17, 1979 

April 22, 1979 

DATES AND TIMES OF MAJOR ERUPTIONS OF 

SOUFRI~RE VOLCANO 

Time, GMT 
Estimated column 

altitude, Ian 

2108 17 to 18 I 

! 

1550 17 to 18 
, 

2057 18.7 

1037 17 
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heights in kilometers of the stratospheric layers observed on the flight. 

.. 

, i 

• I, 

I 

• 

j 

• , , 
t , 

I 
,',>". 



,I 

, 

., 
~, 

~' 
~.' 

"-,. ~~. , 
'" ' .. r 
8, '-. 
", , , 
! 
r' 
~ I: 
2 , 
~. , 

, , 
.. , 

I I , , , , 
I 
¥ 
t' 

f; 
~ 

(" 

i 0 • 
" 7 

3!! ! APRIL 18, !~fI>' , 
30H 0012 GMT 

I LAT. 11.4 N LONG. 62.0 W 
~ 2!i 
:!S 

3!! 
APRIL ' 18, 1979 , 

30 0026 GMT 
LAT. 12.0 N LONG. 61.0W 

~ 2e 

~ 
20 

15 · ........... liioPOPAUSE' .-. 
5 

10 co: 
S 5 

o ~ 10 15 20 25 30 
o I I I I Ii I I 

00 ~ 10 15 20 ZS 30 

AEROSOL BACKSCATTER RATIO 

3!! rr--'--'-~----'r-.,-., 
: APRIL 'IB, 1979 • 

30 H 0106 GMT 
: LAT. 10,7 N LONG,!l8.8 W 

~ ~ 
<!!> 
w 20 

~ IS · .. ••• •••••• TROPOmUSE •.• 
5 co: 10 , 

51 
o i , 

--' ...l 

0 5 10 I~ 20 ~ 30 

35r.--r--r--.-,--~., 
APRIL 'IB, 1979 • 
0117 GMT 30 
LAT. 10.2 N LONG. 57.B W 

~ 2S 
<!!> 

w 20 
c 
::> 

I~ I-

§ 10 
• 
• 

5~ 
0 • ..L , I 

0 ~ 10 15 20 2!i 30 

AEROSOL BACKSCATTER RATIO 
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Figure 5.4 SAGE mmsurements shortly after the April 1979 eruptions of Soufriere. 
(a) Normal aerosol extinction profile as determined by SAGE satellite system. 
(b) Enhanced aerosol profile observed on April 24. 1979. 
(c) Locatiuns of enhanced aerosol extinction (50 percent or more above normal) are marked 

by crosses. Altitude of each layer peak is shown in km. Latitudes for each day of SAGE 
measurements are shown by dashed lines. 
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Figure 5.4(b) shows the profile obtained on tho same day when SAGE Wa& 
close to St. Vincent. The profile has a maximum which is approximately 
four times greater than normal at an altitude of about 20.5 km. Such 
enhanced values were observed on at least eight occasions after the Soufiere 
eruptIons in April. Figure 5.4(c) shows the locations of these events. 
The events shown in this figure have been restricted to occurrence& on which 
the enhancement was 50 percent or more above the normal value at that height 
and latitude, and with a peak at least 2 km above the tropopause. The 
latter restriction has been included to eliminate records with a possible 
contamination from tropospheric high-altitude water or ice clouds. 

'1'Wo groups of events are seen, one over West Africa and the other over 
the Atlantic Ocean. These two 9roups are believed to be related to separate 
volcanic eruptions, and their interpretl>.tion is discussed in more detail 
in the next sec~ion. The plume which moved norcheast over the Atlantic 
Ocean gradually descended. This is shown in more detail in Fig. 5.5 where 
both the layer and the tropopause height descend in a sim11ar manner as 
lati tude incl'oases. 

In Fig. 5.6(a), the SAGE data have been redrawn in a slightly different 
form with the tropopause plus 2 kill restriction removed. Shading is used to 
indicate the various plumes and their altitudes. All information for 
heights down to 18 km has been included. At the lower latitudes, the 
tropopause was occasionally above 17 km. Nevertheless, both areas of high 
extinction new show extensions at low altitudes toward the south. These 
extensions are probably associated with the volcanic emissions and not cirrus 
clouds. 

5.4 Interpretation of the Observation~ on Dispersion 

In order to estimate the mass and interpret the dispersion of the material 
injected lnto the stratosphere, the SAGE and LIDAR observations must first 
be related to the individual volcanic eruptions. The interpretation of the 
SAGE data ir" terms of the individual explosions is not immediately obvious. 
In order to analyze movements of the stratospheric plumes in detail, it is 
desirable to have as much high-altitude meteorological information as 
possible from the vicinity of the volcano and along the plume trajectory. 
Unfortunately, in this case, the observed trajectories lie over the 
Atlantic Ocean, where there are no m~teorological stations. A large-scale 
analysis, therefore, would seem to offer the best hope fo~ calculating the 
possible plume movements. Global maps of temperature and geopotential height 
for this time per:.od were obtained from the Natlonal Oceanic and Atmospheric 
Administration (NOAA). These maps were based on a combination of satellite 
and rawinsonde observations (Smith et al, 1979). Use has also been made of 
high-altitude wind data (rawinsonde) from Barbados (150 km eas~ of St. Vincent) 
and TrJ .. nidaa (~50 km south of St. Vincent). 
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Figure 5.5 Variation in height of the volcallic plume as it moved northwards over the Atlantic Ocean and 
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While interpretation of the SAGE data nas been made using a combination of 
local and global wind trajectory analysis, that for the lidar data are 
more usefully made using the local meteorvlogical data only. In contrast 
to the SAGE observations, where identification of the plwne responsible for 
a given observation is a significant problem, the lidar observations 
almost certainly relate to the eruption of April 17. Fig. 5.6{b) 
shows the data of Fig. 5.2 redrawn in simplified form and ~dtimates of the 
movements expect,ed from high altitude winds superimposed. The l.atter are 
based on a combination of meteorological information from Barbados and 
Trinidad and show a generally southerly movement with strong shear. There 
is, in general, very good agreement between the lidar observations and 
the observed wind measurements both in terms of the general southerly movement 
and the rather complicated shear pattern. It should also be noted that the 
lower level material would be expected to move along the vectors for the 
70 and 100 rob levels, in rough .1greement with the SAGE map shown in Fig. 5.6 (a) . 

In order to discsuss the SAGE observations, it is necessary to review 
the general characteristics of the low-latitude winds in the vicinity of the 
volcanoe~ which show the following main features. 

1. A strong zonal component, along "lith a weak and somewhat erratic 
meridional component. 

2. A reversal in the zonal component at a height of 19 to 20 kill. The 
wind direction above this height is toward the west and below it 
toward the east. 

3. A fairl.y rapid increase in wind speed with increasing latitude. 
The profile and height of the zonal wind reversal remain similar. 

Tr.ajectories for the material injected into the stratosphere by the 
explosions of April 13 and 17 have been calculated (McCormick et a1, 1981). 
These calculations were made using winds derived geostrophical1y from the 
NOAA geopotential height maps. They were based on the assumption that the 
injected material remains on the 70-mbar surface (1 mbar = 100 Pal. These 
trajectories indicate that the material from the explosion of April 13 
moved eastward across the Atlantic Ocean and reached the coast of Africa 
about April 20. The material from the explosion of April 17 commenced 
moving in an eastward direction but then turned north after it reached 
longitude 420 W. Both trajectories agree qualitatively with the position 
of the plumes over West Africa and over th~ Atlantic Ocean as determined by 
SAGE, but the trajectory analysis predicts the material arrives at these 
locations too early. Moreover, the trajectory for the explosion of April 17 
does not correspond with the airborne lidar obse,>:vations. This disagreement 
is believed to arise because global maps tend to emphasize larger scale 
features of the flow fields and neglect local fluctuations, and also because 
the geostrophis approxi~ation used in calculating the trajectory appears 
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to overestimate wInd sp"ledo when used closer to the equator than about lSo N . 
A detailed comparison was made of winds dovised geostrophically from the 
NOAA maps with the measured valueD from two groups of Caribbean meteorological 
stations. The results of this analysis indicate that acceptable agreement 
was obtained for stations between 160 and 190 N. but for stations between 
100 and 130 N, the geostrophic wind exceeded the true wind speed by roughly 
a factllr of two. 

A somewhat simpler analysis, based on data from the local Caribbean 
rawillso~de stations, may bl! used in attempting to identify the origins of 
the two plumes. It is clear, from consideration of the velocity required, 
that the plume seen Over W'3st Africa on April 23 and 24 cannot be associated 
with the explosion of Apr!l 22. It could, however, originate with either of 
the explosions of April 13 and 14 (considered as a single event), or 17. 
In the former case, an eastward velocity of 7.4 m/s would be required; 
in the latter, an eastward velocity of 12.1 m/s. The relative plausibility 
of these two values may De examined in terrna of data from Caribbean stations. 
Table 5.2 lists the observed mean wind velocities for the period between 
April IS and 24, 1979, and Table 5.3 lists the required eastward velocity 
for transport to Africa by April 23. Wind data are shown in Table 5.~ 
for the 50- and 70-rnbar levels (20.7 and IB.6 Jon) which '~ound the altitude 
of the West African str<'tospheri(; cloud. Because the latitude of the cloud 
is no longer the same as that of st.. Vincent, wind data for San Juan, 
Puerto Rico, have been added to those for Barbados and Trinidad. <lie strong 
latitudinal variation in the wind is clear and ~;'.·l11parison of the values 
in 'rable 5.2 with those in Table 5.3 indicates tilat it; is very unlikely 
that the cloud originated from the April 17 explosion. The hypothesis that it 
originated from the April 13 and 14 explosions is further substantiated by 
a detailed examination of the daily zonal wind behavior at Barbados and 
Trinidad. On Apdl 15, 16, and 17, strong eastward winds (5 to 15 m/I'l) 
were observed at the 50- to 70-rnbar level. On April 18, 19, a'ld 20, the 
mean zonal wind was close to zero, preventing any sy ltematic eastward drift. 
of the cloud produced by the eruption of April 17. One further point may 
be noted. Figure 5.6(a) Sh~NS that, for the WeDt African cloud, the lower 
altitude part of the cloud has moved farther, and, therefore, considerably 
faster, than the upper altitude part. This corresponds to the normally 
observed decrease of the eastward zonal wind with increasing altitude during 
this season in the lower s t. ~ ".osphere. 

Although it has been deduced that the Wert African cloud originated 
at St. Vincent April 13 and 14, the problem of identifying the source of the 
other a.nd larger cloud still remains. The SAGE events shown in Fig. 5.4(c) 
seem to indicate that the plume extending over the North Atlantic Ocean 
originated at the volcano on April 22, coincident with the final major 
explosion. This ignores the question of what happened to the cloud from the 
explosion of April 17, which produced the highest column of the series and 
which, as we have seen earlier, initially moved in a southet'ly direction. 
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TABLE 5.2: CARIBBEAN MEAN WIND VELOCITIES (APRIL 15 TO 24) 

Station T,atitude Altitude, krn 
~ 

Eastward velocity, mls 

Darb~dos and Trinidad 
(averag,,) 

.,~ 18.5

0 

N-...JL--_ 

San Juan 

1_, __ -

lB.6 
20.7 

lB.6 
20.7 

3.5 
3.9 

7.8 
-2.0 

TABLE 5.3: PhRAME~'ERS OF STRATOSPHERIC CLOUD OVER WEST AFRICA 

Height, krn. • . . . . . . 
Mean latitude (average of measurements on April 23 and 24) • 

Required eastwal'd velocity if ori~inating on 
April 13 or 14, mls . . . . . ..... 

Required eastward velocity if originating on 
April 17, mls . . • . ,. '" . . 
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In order to see if the North Atlantic plume could be <elated to this earlier 
eruption an analysis of the air movements at a pressure level of 50 mbar 
(20.7 Jan) has been carried out using rawinsonde data trom Barbados and 
Trinidad.rhe starting point for the trajectory was 120 N 600 W at 
0000 GMT on April 19, which is based on the lidar observations of the plume 
at thiE height, position, and time. Subsequent movements up to 1037 GMT 
on April 22, when the final major eruption occurr!,j, are shown in Fig. 5.7. 
The total movement, then, from lit. Vincent hetween IIpril 17 and 22, is only 
a rew degrees in longitude and 1<. ti tildE>, placing it \'ery close to t:he 
location of the SAGE observation oJ! April 23. Furthermore, it is reasonable 
that t.he disrers!.o:m of the plume over this period would allow it to extend 
back to the volcano, thus overlapping any plume produced b'l the explosion 
of April 22. The SAGE observation of Apri~ 23, therefore, most likely 
pertains to the plume due t() the eruption of April 17, but the proxl.mity 
to the volcano and the prl.'"ailing winds make it impossible to rule out aome 
contribution due to the e.,uption of April 22. : .milltr considerations apply 
to the obsl.'~~ations made subsequently. 

It appears that the clouds still in t:he vicinity of St. Vincent on 
April 22 and 23 commenced to move rapidly northeastward ever the Atlantic 
Ocean. The e""planation lies in the arriv .. .i of a new weather system into thl.' 
area. During the period April 20 to 23, a strong low-pressure trough 
extended south\,ard along tho Atlantic coast of the United SLates into the 
Caribbean. In conjunct:ion with a high-pressure area centered east of the 
Caribbean, this prouuced a movement to the northeast, the beginning of 
which i" apparent in Fig. 5.7(a). Subsequent to April ~3, the low-pressure 
region moved slowly northeast across the Atlantjc and finally abated on 
April 28. It seems clear that th~ plume was moved by this system, and 
Fig. 5.7(b) depicts the ~eteorological situation at 70 mbaI on April 26 when 
the plume was observed u approximately 300 N. The final date on which tne 
plume was seen agrees with that on which the low-pressure region abated, 
the required speed of movement of about 8 m/s is typical for this altitude 
and latitude region. 

Figure 5.4(c) indicates that the cloud extending northward over the 
Atlantic descended as it moved. This is in agreement with general deductions 
based on the 70-mbar temperature map for April 18 over this region. This 
map shows that air parcels traveling northward t~nded to warm up, a feature 
that remained tzue throughout the following week. This warming is almost 
certainly caused by adiabatic compreosion dua to downward motion. Calculations 
have been carried out to determine the amount of descent expected, assuming 
that an air parcel follows an isentropic trajectory. These showed that a 
parcel at a height of 20 km and a latitude of. 100 N would have been expected 
to descend between 1 and 2 km by the time it reached 400 N. This value is 
in agreement with the SAGE measurements given in Figs. 5.4(c) and 5.5. 

47 

.. 

I 
t 
! 
I .. , 

.~ 



"~-"~~""---'''-''-':-'''~'-:''----'''-,~ .',"'n=··~·~~~~--""'·:"""'~i 

( 0) 

t!I 

ORIGINAL PM':!~ .~ 

'JF POOR QUALITY 

0537 leT 
--1---- ._Q7-_1-'2~,2-;A1"'"'iI'--___ t-__ . -150N 

65°W 600 W 55°W 

(b) 

Figt:re 5. 7 (a) Calculoted wind trajectory at 50-mbar pressure level (20.7 km) lor the period April 19 
and 22, 1979. Starting point/or trajectory is based on lidar data of AprillB. 

(b) High-altitude pressure map at 70-mbar at 1200 GMT on April 26, 1979. Crosshatched 
area shows position 0/ stratospheric plume on this day; dashed line indicates trajectory 0/ 
plume on preceding and /ollowing days. 
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In order to ussess the observability of the volcanic clouds by SAGE 
the dispersion of the ~louds must be estimated. A climatological analysis 
(McCormick et al, 1981) indicated that the clouds would have expanded to a 
size of 1000 ~n or more after a period of about 10 day~ in agreement with 
estimates based on the SAGE data. 

5.5 Mass Loading 

It is possible to use the map in Fig. 5.4(c), in conjunction with the 
actual extinction values, to provide an estimate of the total mass of new 
stratospheric aerosol created by thes(! volcanic eruptions. Such an estimate 
is subject to some error, as the geographical sampling by SAGE is somewhat 
coarse and, in order to convert the extinction values into a mass loading, 
a model for the aerosol particle 91:<e aistribution and composition must be 
employed. As far as the geographJcal extent of the plume is concerned, it 
has been assumed that the extinction measured in each of the eight 
str~tospheric events is representative of the aerosol spread over a 
rectangul~r Q"ea whose dimensions Are given by the longitudinal separation 
of SAGE evehts and the latitudinal separation of SAGE tracks (approximately 
240 longitude by 50 latitude). 

An intermediate step in the calculation or the mass loading is the 
integrated extinction BaI defined hy the fol',owing equation. 

2 
Plume 

where 

Q ~ extinction due to aerosols at a height h in the plume "'ah 

i3
anh 

= normal background extinction due to ae~osols at a height h 

Ah = height interval (1 km in practice) 

A = area of Earth's surface covered 

The summation is carried out from the bottom to the top of the plume. The 
results ~f the calculations are shown in Table 5.4, where the West Afri~an 
and Caribbean"North Atlantic plumes have been listed separately. Only the 
events of April ~3 and 24 are included in the values shown for the integrated 
extinction and mass loading for the Caribbean-North Atlantic plumes. This 
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TABLE 5.4: ATMOSPHERIC EXTINCTICN AND STRATOSPHERIC AEROSOL MASS LOADING 

FROM SOUFRI~RE, ST. VINCENT 

I Area of Earth Vertical Integrated 
covered, Jan2 thickness, extinction, 

Jan Jan2 

West African plume 3.1 x 106 
1.4 6.3 x 102 

Caribbean-North 7.7 x 106 2.1 18.8 x 102 

Atlantic plume 

Total 10.8 x 10
6 I 1.9 25.1 x 102 

Background 5.1 x 10
8 

Stratosphere 6.1 x 105 
global value (tropopause + 2 Jan 

upwards) 

Estimated 
mass loading, 
metric tons 

0.52 + 0.2 x 103 I 
i 

1.6 + 0.6 x 103 

J 
+ 0.7 x 103 I 

2.1 I 
I 
I 

I 

+ 1.0 x 105 
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is because it is thought that the remainder of this plume emerged from, and 
contains some of, the same material that was seen on these two days. The 
value shown for the layer thickneus is the width of a rectangle whose area is 
equal to that under the layer peak and whose length is fitted to the layer 
peak. As might be expected, the integrated extinction for the Caribbean­
North Atlantic plume is greater than for the West African plume because the 
former contains the material injected into the stratosphere by the largest 
explosion of the series. (Also shown in Table 5.4 are corresponding 
values for the entire global stratospheric aerosol, estimated from SAGE 
global data.) It can be seen that, on a global soale, the Soufriere 
event was small, contributing less than 0.5 percent to the total integrated 
extinction. Conversion to mass loading has been made using the ratio 
ElM = 1.22 x 103 m2/kg as deacribed in Section 4.1 resulting in the values 
shown in the final c~lumn of Table 5.4 Estimates of errors are shown in the 
table, which are based on a consideration of the errors in the actual 
measurement of the extincti,,~., in sampling, in the estimP.c:es of the area of 
the Earth's surface covered, an~ in the extinction-to-mass conver.sion ratio. 
In addition, a small error may .:iss due to uncertainty of the c<'llDPosition 
of the newly injected or formed ae~osol, which may contain a cer~ain amount 
of fine ash with a considerably higl)sr refractive index (cadle et al, 1976). 
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6. STRATOSPHERIC EFFECTS OF THE .,RUPTION OF SIERRA NEGRA 

6.1 Introduction 

The Sierra Negra volcano, in the Galapagos Islands (0.83· S, 91.17· W), 
erupted on November 13, 1979, producing an eruptive cloud large enough to 
be seen on NOAA's SMS-l weather satellite. The cloud separated into two 
lobes moving SE and SW, respectively, at an altitude estimated, from infrared 
imagery, to be about IS km. Although volcanic activity extended into 
December, no further eruptive clouds were detected (SEAN Bulletin !, Nos. 11 
und 12, 1979). 

At t!". time of the November 13 eruption, SAGE was making observations 
in the southern hemisphere. The observations reached their most southerly 
point on November 22, 1979, and then moved north, passing over the latitude 
of the volcano on December 13, 1979. New stratospheric material wa~ clearly 
visible north of latitude IS· S and the development and movement of this 
material was visiblp on the SAGE extinction profiles up to the time of the 
eruption of St. Helens (May 18, 1979). No lidar observations were made on 
the stratospheric effects of this volcano, using any of the NASA-Langley 
systems, although enhanced scattering was observed at Fukuoka, Japan, 
which was attributed to its effects (Fujiwara et al, 1982). 

6.2 SAGE Observations 

As the SAGE observation point moved northwards in December 1979, 
evidence of increased scattering that could definitely be attributed to the 
Sierra Negra eruption, was first obtained at a latituu~ of about 20· S. 
Examples of extinction profiles obtained during this northward ~ovement are 
ahown in Fig. 6.1. Fig. 6.1(a) shows a typical profile of the undisturbed 
stratospheric aerosol layer, Fig. 6.1(b) shows one taken in a region of 
volcanic enhancement. A clear volcanic layer at a height of 19 km is 
evident, with an extinction that is over one order of magnitude greater 
than the normal background level. Several such profiles were observed and 
their geographical distribution is discussed below. Fig. 6.1(c) shows 
the mean ext.inction profile for all observations taken within the latitude 
belt o· tc 10· S. The average is over both normal and volcanic~11y enhanced 
layers and, unlike the single profile in Fig. 6.1(b), it has no clear 
maximwn above the tropopause. This was a characteristic of all such mean 
profiles close t.? the equator at this time. Further away from the equator, 
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Figure 6.1 Examples of SAGE extinction profiles obtained at the time of the Sierra Negra eruption. 
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at this time, and on the equator at later times, the volcanic layer become a 
more distinctly separated. 

Fig. 6.2 shows global contour maps of the stratospheric optical depth 
before and after the Sierra Negra eruption. As in Section 4.2, the optical 
depth has been measured from 2 km above the tropopause (a model tropopause 
has been used) and is plotted for complete movements of SAGE from one extreme 
of la~itude to the other. The map in Fig. 6.2(a) shows very clearly the 
typical nonvolcanic behavior, with optical depth minima occurring at latitudes 
of 25° to 30° and maxima lying between and <>utside these latitudes. 
Fig. 6.2(b) shows the corresponding posteruption contour map. The loca~ion 
of the SAGE observations moved north and passed over the latitude of 
';iel'ra Negra 30 days after main eruption. The data in the southern part of 
the map thus represent an earlier epoch relative to the time of the 
eruption than that shown in the northern section. The map clearly shows 
areas of enhanced extinction from the Sierra Negra eruption, with a strong 
concentration on the equator, close to the eruption site and a significant 
anount already moving toward the north. (The isolated point of large 
optical depth at 58° S, 162° wi,·· believed to be associated with clouds 
close to, or penetrating, a high local tropopause.) 

The data have been plotted in a different format in Fig. 6.3. This 
figure shows the zonal mean extinction for the same two periods as a function 
of height and latitude. That in Fig. 6.3(a) shows little detail but Fig. 6.3(b) 
shows very clearly the northward movement of the volcanically injected 
material. Fig. 6.4(a) and Fig. 6.4(b) show similar zonal mean extinction 
plots for the periods January 27 to March 6, 1980, and May 12 to June 20, 1980. 
The latter period is after the eruption of St. Helens, but SUfficiently 
close so that its stratospheric effects were still confined to the western 
hemisphere. At this time the Sierra Negra effects were well distributed 
longitudinally and Fig. 6.4(b) shows the zonal mean extinction for the 
eastern hemisphere only. The main features by these figures are: 

1. The movement of part of the material from the equatorial stratosphere 
to the high latitude stratosphere, the dominant movembnt being to 
to the north, but some .. ate rial clellrly moving to the sOl.lth (but 
becoming disconnected from the main mass) • 

2. The existence of a reservoir of material over the equator even 
as late as June 1980 (seven months after tt.e eruption) whose 
altitUde gradually increased. 

3. The material r.hanging latitude tends, as a first approximation, to 
follow the tropopause altitude changes. 
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Figure 6.2 Maps showing the stratospheric optical depth. measured from two kilometers abo"e the 
tropopause. as obtained by SAGE. 

(a) September 15-0ctober 21. 1979. 
(b) November 22-December 30, 1979. 
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Figure 6.3 Zonal mean extinction obtained by SAGE. 
(a) September 15-0ctober 21, 1979. 
(b) November 22··December 30, 1979, 

Dashed fines show the mean latitude for each day's observations. The solid line at the base of Ihe plaited 
extinction values shows a height two kilometers. hove the tropopause. 
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Figure 6.4 Zona: mean extinction obtained by SA OE. 
(a) January 27-March 6, 1980. 
(b) May I2-June 20, 1980 (Eastern Hemisphere only). 

Dashed lines show the mean latitude for each day's observations. The solid line at the base of the plolted 
extinction values shows a ho!ight two kilometers above the tropopause. 
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In order to show more clearly the altitude changes in the peak (or 
aprarent peak) of the injected material the data have been replotted in 
Fig. 6.5 j,n terms of aerosol!inolecular extinction ratio, rather than 
aerosol extinction. This figure shows contour plots of the mean extinction 
ratio as a function of altitude and time for the fot~ 10· latitude bands 
between the equator and 40· N. Fig. 6.5(a), for latitude band O· to 10· N, 
shows the injeotion of material near the equator, its rapid initial increase 
in altitude and subsequent show rise. (Note the penetration by the tropopause 
of high altitude clouds.) Fig. 6.5(b) is essentially similar to Fig. 6.5(a) 
but Fig. 6.5(c) and Fig. 6.5(d) show that the material arrived at th~se 
latitudes reasonably well separated from the tropopause. It should be 
noted, however, that both Fig. 6.5(c) and Fig. 6.5(d) show the same gradual 
rise in peak altitude and that the separation of the peak from the tropopause 
increases with increasing latitude. Similar plots have been prepared for the 
southern hemisphere. These show the same features, although somewhat more 
weakly, because of the lower concentrations of injected mAterial. 

6.3 rnterpretatio~a~~iBcussion of Observed Dispersion 

Mean zonal wind velocities on the equator, particularly at the 70 mb 
and 50 mb levels (approximately 18.5 and 20.5 kin) are characteristiually 
weak (Newell et aI, 1972). Their typical order of magnitude--about 1 m sec-I-­
implies a movement of about 90 kin per day or about 3000 kin in the 30 days 
between the date of eruption and the arrival of the SAGE observation point 
at the equator. ·rhis is of the same order of magnitude a9 the movements 
shown in Fig. 6.2(b), although the actual wind systems are likely to be 
dominated by the biennial oscillation and by irregular winds. Fig. 6.2(b) 
further shows that the meridional movement has been at least as great as 
the zonal movement 0/. the equator and that, as expected, the zonal movement 
and dispersion at high latitudes has been greater than that at 10l<er 
latitudes. 

The mean meridional circulation across the equator in the lower stratosphere 
vari .. s seasonally (Reiter, 1975) wjth a south-north movement occurring in 
December-February and a north-south movement occurring in June-August. The 
mean south-north movement in the northern winter agrees well with the movement 
of the new aeronol as shown in Fig. 6.3(b). The expected reverse movement in 
May-June 1980 is not immediately obvious in the data plots already shown but 
is, in fact, detectable and will be commented on in more detail in Seotion 6.4. 

Trajectories for the movement of upper air parcels may be calculated 
by assuming that they move isentropicallYI that is, that they follow surfaces 
of constant potential temperature (Dutton, 1976). Potential temperature, 
defined as 
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F'.::Jre 6.5 Contour plots of stratospheric extinction ratios before and after the eruption of Sierra Negra. 
The variation of the exlinction ratio is s::qwn as a function of altitude and time for four different Northern 
Hemisphere latitude belts. 
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where T is the thermodynamic temperature and p is the pressure in millibars, 
varies very consIderably with both altitude and latitude. It is of interest 
to examine whether the stratosph~ric aerosol, for which the newly injected 
volcanic mat:erial serves as an excellent marker, follows 'sentropic surfaces. 

In order to examine whether the material from Sierra Negra moved 
approximately isentropically when changing latitude, potential temperatures 
corresponding to the periods of satellite observation have been calculated 
using the NOAA meteorological data supplied for the times and locations "f 
the measurements. The resulting contour plot for potential temperature in 
December 1979 is shown in Fig. 6.6(a). Superimposed on the potential 
temperature contours a,re the 'tropopause height and a shaded area showing the 
region of the volcani" layers defined in terms of the aerosol/molecular 
extinctio~ ratio. An example of the way in which this layer ib defined is 
shown in Fig. 6.6(b) where the ~xtinction ~atio for the prevolcanic period 
October 21 to November 21, 1979, has been plotted as well as for the post­
volcantc period November 22 to December 21, 1979. The layer is defined as 
~ying b~~ween the points where the difference between the ,~rves is greater 
than half the difference at the peak of the volcanica1l.y enhanced layer 
(shaded area in Fig. 6.6(b». It may be noted that, although the volcanic 
layer falls with increasing latitude, it lifts away from the tropopause. 
Although theJ," is considerable irregularity, the layer of enhanced extinction 
follows quit~ closely the lines of constant potential temperature. Fig. 6.7 
shows a second example, the potential temperature data being calculated 10r 
February 1980 dnd the SAGE data shown for the January 27 to March 6, 1980, 
sweep period. Although the layer has now moved up in altitude at all 
latitudes, it still lies reasonably closely t" !:he constant potenti",l 
temperature contourE, particularly in the nocthern hemisphere. 

S<?veral explanations may be advanced for the height increase for the 
layer that is shown in Fig. 6.5. The first possibility is that it: is 
produced oVt!r the equator by the mean Hadley cell circulati,0n (Reiter, 1975). 
The increase at other latitudes is then produced by transport of the material 
outwards from the equatorial reservoir. This is plausibly supported by the 
fact that, as shown in Fig. 6.7, the layer is much thicker at h;,h latitudes 
t:han it is at the equator, as would be expected if it contained material 
transported from the equator at different times. Us;ng Reiter's plots of 
mean meridional mass circulation, it is possible to calCUlate a mean lIadley 
cell vertical velocity for the stratosphere over the equator. This varies 
from about 0.3 rom s-l at a height of 16 km to zero at about 20 km. OVer ~ 
period of 1 month the vertical movement would be less than, or equal to, 
about 0.8 km. This is in quite good agreement with the movements shown in 
Fig. 6.5, moreover the vertical moven,ent slowed' as the layer reached greater. 
altitudes. 
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Figure 6.6 (a) Potential temperature us a function of altitude and latitude for December 1979. Also 
shown in the figure are the positions oJ the tropopause and the new stratospheric volcanic 
layer produced by Sierra Negra. 

(b) Figure showing the manner in which the extent and position of the volcanic layer is 
defined. 
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Negra. 
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Hadley cell circulation is not the only explanation for the observed 
height increase. It is possible that fractionation occurred in the original 
volcanic plume, with the gaseous component rising high<lr. Initially, this 
would be invisible at a wavelength of 1 ~m. Subsequent slow conversion to 
H2S04 aerosol would .Jive the impression of a rise in the I. er height. !\ 
simpler explanation is that the apperent movement. is simply a combination of 
vertical diffu~ion, causing the layer to expand, combined with sedimentation 
of the larger particles from the bottom of the layer into the tropopause 
where they are lost. Some cleansing of the bottom of the layer will also 
undoubtedly occur due to cloud action near the tropopause. 

To distinguish between the above possibilities is not easy and careful 
modeling work ip- required on them and any other mechanisms to ide~tify 
certain characteristics of each that might be sought for in the SAGE data. 

6.4 Mass Loading Changes 

In Section 4.2 a brief outline was given of the stratospheric aerosol 
mass loading changes associated with the Sierra Negra eruptions. Fig. 4.8 
showed the time history f.or the mass loading in each hemisphere in which it 
could be seen that more new aerosol moved into the northern than the southern 
hemisphere. In orde~ to continue discussion of the mass loading changes 
observed, it is convenient to divide the stratosphere into three regions: 
an equatorial zone between +20· ana -20· latitude and a northern and a 
southern zone lying between the poles (SAGE data only extended to about ±70· 
latitude) and 20· latitude on either side of the p.quator. This division 
follows the manner in which the nonvolcanic aerosol a~pBars to be divided 
globally a~d it enables one to discuss conveniently the way in which the 
eruptions of both Sierra Negra and Ulaw'ln created equatoriaJ. reservoirs of 
stratospheric material (it also, fortuitously, divides the global surface 
into three almost e·xactly equal regions). Fig. 6.8(a) shows the way in 
which the stratospheric aerosol mean optical depth varied within e~~h of these 
three global sectors from February 1979 to June 1980. (Data in June 1980 
is plott.ed for the eastern hemisphere only because of contamination of the 
westeru hemisphere by material injected by Mount St. Helens.) Previous to 
the Sierra Negra eruption there is virtually no variation in the e~uatorial 
sectors ~bereas the other two sectors show a strong antiphase seasonal 
variation. ~n order to examine the increases in each sector due to Sierra 
Negra in more detail, the seasonal variation of the background aerosol in 
each sector has L~en modeled through to June 1980. In this modeling, it 
has been assumed that. the equator shows no seasol",l change and that the 
northern and southern sectors show equal antiphase variations. The modeled 
variations are shown as dashed lines on Fig. 6.8(a). Fig. 6.8(b) shows the 
optical depth for each sector with the modeled background varia.tion removed. 
A right-hand ordinate has been added to the figure showing the approximate 
equjvalent mass loading in each sector. The figure shows the following 
points: 
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Figure 6.8 (a) Mean stratospheric optical depth (from two kilometers above the tropopause). /ar three 

~ .. ----. 

latitude zon~s. between February 1979 and June 1980. 
(b) Mean stratospheric optical depth increase produced by the eruption 0/ Sierra Negra/or 

the same latitude zones as shown in Figure 6.8(0). A scale showing the equivalent mass loading 
is drawn on the right-hand ordinate. 
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1. The equatorial and northern sectors reached their maximum optical 
depth about 3 months after the eruption following which, a slow 
decrease occurred. This decrease is more rapid for the equator 
than for the northern sector. 

2. The southern sector mass loading did not start to become appreciable 
until after December 1979 and showed a significant increase in 
April-June, 1980, at a time when the other sectors were showing a 
mass decrease. 

The slow rise to a maximum optical depth, which is shown more clearly 
in Fig. 6.9(a) for the total global mass loading by Sierra Negra is almost 
certainly associated with conversion of S02 gas to H2S04 aerosols. As 
discussed in Section 2.2, estimates of the lifetime of S02 in the stratosphere 
are of the order of 25 to 100 days. In the case of this volcano, the 
equilibrium mass loading (production = loss) is reached after about 90 ±20 days. 
ThiO decline following the initial rise is to be ascribed to various loss 
mechanisms such as sedimentation of the larger particles and stratospheric­
tropo~l?h'~ric exchange, both near the tropopause free region and at other 
points where clouds penetrate the tropopause. The exponential decay time 
shown by he curve in Fjg. 6.9 is about 5 months. This agrees quite well 
wHh the time of 7 months quoted by McCormick et al (1978) for the period 
immediately after the Fuego eruption on the basis of lidar measurements. 

The different variation of the mass loading in the northern and southern 
sectors as shown in Fig. 6.8(b) is almost certainly related to the global 
circulation. As was commented on earlier, circulation across the equator 
in the stratosphere, at the sclstices, is from the summer to winter 
hemisphere. This explains well the initial rapid movement of material into 
the northern sector. It also explains the behavior of the southern sector. 
In December very little flow is expected from the equator into the southern 
hemisphere but a considerable flow would be expected in May-June. This 
corresponds exactly to the variation of the mass loading in the southern 
sector which shows no change in November-December 1979, but a rath",," surprising 
increase in May-June of 1980, when the levels in the other sectors are 
decreasing. 

Fio. 6.9(b) show3 the ratio of the total volcanic mass loading outside 
the equatorial sector to that within the equatorial sector. It, thus, 
provides an indication of the rate at which the material is dispersing 
latitudinally and of the sense in which we still have an equatorial reservoir. 
It may be noted that there is an initial rapid increase in the ratio followed 
by a further slow rise towards the value for the background prevclcanic level. 
Based on the diagram, it may be stated that the material was well distributed 
globally after about 6 months. 
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Figure 6.9 (a) Time variatian of the total strat('spheri:: mass loading increase produced by the eruption 
of Sierra Negra. 

(b) The ralio (aerosol loading increase polewards of 20'S af" 20'N)I(aerosolloading in­
crease between 20'S and 20'N) plotted as afunction of time between November 1979 and June 
1980. 
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7. STRATOSPHERIC EFFECTS OF THE ERUPTION OF ST. HELENS 

7.1 Introduction (Newell and Deepak, 1982/ Science 211, .815-838, 19_8& 

Mount St. Helens erupted on May 18, 1980, sending material to a height 
estimated, by radar, to be greater than 24 km. This oruption lasted about 
9 hours, t.he col.umn height averaging about 16 km. Several smaller eruptions 
occurred during the following 6 months, but, although several of them 
penetrated the tropopause, their durations were all to be measured in 
minutes, rather than hours, and the maximum observed height for these 
eruptions was about 15 km. It i$ thought that these later eruptions will 
have produced local str~tospheric affects but had little impact, on a global 
scale, compared to that of the May 18 eruption. The location of Mount St. Helens 
within the USA has meant that there was a concentration of scientific 
effort to study its eruptions which nas not been equalled for any other 
volcano. Consequently, there are m2asurements of its effluents made from 
the ground, from in situ aircraft and from space, enabling a detailed picture 
of the eruption to be constructed. 

Prevailing westerly winds on May 18 swept the lower sections of the 
plume (0 + 15 kin) rapidly to the east and out over the Atlant.lc Ocean. 
That portion between 12 and 15 km circled the globe in about l,5 days. The 
upper section of the plume (18 + 25 kin) drifted slowly westwal'C: and out 
over the Pacific Oetan, circling the globe westward in about 60 days. At 
altitudes between 15 and 18 km the motion was exceedingly complex, lying 
initially over the webtern USA and Canada. 

Estimated of the total mass of volcanic material injected into the 
atmosphere are approximately 2.4 x 108 tonnes. Most of this mass settled 
rapidly from the troposphere. In situ sampling of the stratospheric plume 
3 months after the eruption suggp.sted that the residual aerosol mass in the 
stratosphere was then about 2.5 x 105 tonnes. Samples taken at various times 
after the eruption showed a mixture of ash and sulfuric acid with highly 
variable ratios. 

At the time of the May 18 eruption, SAGE was making measurements over 
high northern latitudes and moving south. It was thus ideally situated 
to view the stratospheric cloud produced by the volcano and the observation 
point passed over the latitude of St. Helene on May 25. It returned to the 
same latitude in early August when considerable dispersion of the stratospheric 
material had taken place. 

Lidar measurements made at NASA-Langley a few days after the May 18 
eruption, observed the lower stratospheric plume passing overhead. In 
addi tion, an airborne mission was mounted on ~lay 21 to observe the extent 
of this plume. Observations continued to be made at NASA-Langley (and at 
other lidar stations around the globe) and several more airborne missions 
were flown under the plume during the months following the eruption. 
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7.2 SAGE Measurements (Kent, 19aO) 

At the time of the May 18 eruption SAGE was rnbking measurements at 
latitud~ 620 N. The observation point moved south during the succeeding 
days and SAGE first obtained evidence of a significant volcanic enhancement 
on May 22 at 54c , 1010 W. During tne following d~.ys, as it passed ovel' the 
latitude of Mt. St. Helens and moved sC'uth very large extinction values were 
recorded over and near the North American continent. An example of such 
extinction profile is shown in Fig. 7.1 in comparison with a normal profile. 
Such volcanic layers were observed at all altitudes up to 23 krn. At this 
stage, only a few days after the eruption, relatively little diapers ion 
had occurred and a contour map oF. the stratopsh"ric optical depth (from the 
tropopaulle + 2 krn) is shown in Fig. 7.2. In this figure there are two very 
clear areas of volcanic enhancement corresponding to the two stratospheric 
air streams described in Section 7.1. The lower level plume, at an altitude 
of about 16 l\m has moved e~stward over the Atlantic Ocean. The uppe: level 
plume, at an altitude of abo'lt 23 km, has moved more slowly westward over the 
Pacific coastline. The equivcJ.ent zonal extinction plot is shown in Fig. 7.3 .. 
There is a long thin column '-'f "laterial at about 500 N reaching up to 23 km; 
the regions of enhanced extinction close to the tropopause at lower latitudes 
correspond to the plume over the Atlantic Ocean. 

On its return north in July 1980, SAGE entered a fully sunlit period 
and no observations were possible. The I.e:<t observation of the volcanic 
cloud was then not take., until August 1980. A map of the optical depth and 
zonal extinction are shown in Figs. 7.4 dnd 7.5. A very con~iderable amount 
of dispersion has taken place, coupled with an increase in the mean optical 
depth. The new aerosol appears to have moved towards the north,although 
it should be notnd that if ".'" equivalent movement south had taken place in the 
sarne altit"de 1 ge (12 ... 18 krn), much of the material would have entered 
the tropopause ~ 1 become lost. In spite of the complete zonal dispersion, 
the stratospheric material still shows a great deal of inhomogeniety on a 
continental scale. The material at the upper levels (21 - 23 km) has moved 
southward rather than northwards, lying mainly in the latitude band 200 to 
400 N. Some parts of this cloud have retained their coherence, such as that 
mase appearing on Fig. 7.4 at 330 N, 1100 E which represents the most 
intense concentration of material at an altitude of 23 km. The smaller 
mass at 28" N, 34" E is also at the same al ti tude. Similar ;>lots to those 
show~ for May and August 1980 have been prepared for successive SAGE sweeps 
up to the time of eruption of Ulawun, showing the development of the 
St. Helens stratospheric ulaterial. The main features of these plots are 
as follows. 

1. The injected material remained at high northern latitudes at least 
up to October 1980, when small amounts crossed the equator. 
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2. The magnit'lde of the 2.')nal and meridional inhomogenities gradllally 
decreased with the material becoming stratified horizontally and 
latitudin:llly. 

3. Th", equ,l valent mdSS loading (see Fig. 4.8) increased from May to 
Auyust 1980, and then remained approximately constant until 
October 1980. The following map fOL' November-December 1980 showed 
a slight decrea"c bt.tween latitudes 40° and 50° N, but t:nfortunately 
the observdtions did not extend further north than 48° N. 

7.3 Lidar Ob""rvations (Kent, J.98l; McCormick, 1982) 

Lidar measurements were taken with the ground-based system at NASA­
Langley immediately following the eruption of May 18, 1980. New stratospheric 
layers were first observed at alti tudes less the,n 20 km on June 4. An 
example of a profile taken on the following day is shown in Fig. 7.6 together 
with an earliel' nonvolcanic profile. The profile in Fig. 7.6(b) is typical 
of those observed for new volcanic material with sharp, thin layers of high 
peak bac~scatter ratio. The LaPC airborne lidar system was also flown on 
several missions over the eastern USA and Canada between May 21 and 28. Peak 
backscac_. ~ ratios as high as 100 were recorded on one flight south 0;: 
Lake Erie. On these fl i.ghts material was seen at va.cious heights beb:een 
12 and 16 km, the layers at the greater altitudes being observed further 
~~u~h in general. One of the rnost stri~ing factors of these observations 
was the vertical shearing of the layers. On the flight of May 27 near the 
coast of South Carolina a thin l.,yer with a thickness of about 0.5 km was 
observed. Over a flight path of about 400 km this layer was found to 
deocend smoothly f!:'om an al ti tude of 16.0 km to 13.5 km. 

Observations continued at NASA-Langley and several more airborne missiol1S 
were f10wn to observe the development of the new layers (see Table 3.2). 
Fig. 7.7 shows a auccession of further profiles from NASA-Langley between 
,July 1980 and June 1901. That of July 14, 1980, shows the merging of the 
separate layers to a rath"r jagged single profile. Fig. 7.7(b) shows a 
new layer at a h"ight cof 21 km (this was first seen on July 25). By November 
(Fig, 7.7(c)j a great deal of smoothing had taken place in the scattering 
profile and layering is no longer evident. 'rhe final figure for June 11, 1981, 
does indeed have material from Mount St. Helens still f'resent but shows the 
layering characterist':'c of a new eruption. 'rhe material is believed to have 
come from the 3rupti.on of Alaid on April 27, 1981. 

One of the more interesting missions flown by tra airborne system was 
that to :?rot.isher Bay on DeGernber 9-15, 1980. A map of the flight path is 
shown jn Fig. 7.8. on compurison with Fig. 7.5, it can be seen that this 
flight is co a region wher·J there was a strong concentration of stratospheric 
aerosnl at altitudes helow 20 km. Examples of two-color lidar profiles taken 
are ahown in Fig. 7.9. The layer is smooth at both locations and the increase in 
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Figure 7.6 Lidar profiles obtained at NASA .. Langley. Hampton. Virginia. before and ajte/the eruptioll 
of Mount St. Helens. 
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intensity between Plattsburg (46 0 N) and Frobisher Bay (65 0 N) is evident. 
The backscatter ratio for the Nd:YAG wavelength is greater at all altitudes, 
than that for the ruby wavelength. This is as theoretically expected, model 
calculati.ons for the H2504/H20 aerosol predict a ratio of about 2.5 ~ 3 for 
scattering at the two wave L",ngths. 1'his is in good agreement with values at 
the layer maxima in these two figures. ','here is, in addition, some variation 
with al~itude below the maximum, where the Nd:YAG backscatter falls more 
rapidly than the ruby backscatter. This may be caused by a change in size 
distribution or refra,-tive index and has not thus far been examined in detail. 

Lidar measurements on the St. He .. ens stratospheric effects have been 
made at many stations in other parts of the USA and in Europe and Japan. 
These clearly show the arrival of the material in its passage round the globe 
and will be described in the next sectioll on dispersion. 

7.4 Dispersion of the New Strat~spheric Material 

The two me,st significant features of the dispersion of the new strato­
spheric material from St. Helens are: 

1. its separation into two major plumes, travE:ling in opposite 
directions around the globe, and 

2. the movement of the majo~ity of the material northward, to be 
retained at latitUdes north of 40 0 N. 

Th~ global movement of the plume is most easily seen by the appearance 
of scattering layers over the worldwide network of lidar statior,s in the 
northern hemisphere. Newell et aI's (1972) t'lbles for mean summer zonal. 
wind velocity have been used to predict the expected global circuit times 
for various levels and heights in the atmosphere. The results of these 
predictions are shown in Fiq. 7.10, where it can be seen that material at a 
height of about 13 km may be expected to orbit thr 3arth in about 18 days. 
In contrast, the westward moving material above 20 km will. be expected to 
take three to four times as long. Publ,ished Iidar data on the times of 
arrival of stratos"heric layers has been used to construct Figs. 7.11 and 7.12 
(Hirono et aI, 1982; Iwasaka and HayashJ.da, 1980; D'Altoni and Visconti, 1981; 
Reiter et aI, 1980; Hauchecorne at aI, 1980; Thomas et aI, 1.981; Gardner at aI, 
1980; Eloranta 1980; DeLuisi et ,<1, 1980). In addition tI,e dates of 
observat.io(; by SAGE of high altitude_layers, have been added to Fig. 7.12. 
These figures alsc show 'che predicted movement from Newell et aI's tables 
(dashed line in Fig. 7.11, shaded area in Fig. 7.1:2). In Fig. 7.12, it has 
also been possible to Jistingl'ish between the arrival of material at 20 ':0 22 kID 
and ~t 22 to 24 km. Similarly, in Fig. 7.11, distinction has been made, where 
possible, between the times of arrival of material at 12, 13 to 14 and 15 km. 
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In both figures there is good agreement between the observed arrival 
times and the predictions of the model_ In Fig. 7.12, the distinction 
between the arrival of material at 20 to 22 km and at 22 to 24 km is also 
clear, the higher material traveling fes~er and being observed first at all 
stations. The SAGE observationH of the hlgher altitude material also agree 
well and it should be noted that this is after about one and one half 
circuits of the Earth. l'he agreement in Fig. 7.11 is not as good as that in 
Fig. 7.12, which is to be, expected, in view of the higher velocities and more 
irregular air streams in the lower stratosphere. Nevertheless, the agreement 
is still good and, where it has been possible to distinguish between layers 
at different altitudes, the higher level layer has been observed first, as 
predicted by the model. 

The meridional dispersions of the volcanic material will be discussed 
in the next section in conjunction with the mass analysis. 

7.5 Mass r~ading and Meridional Movement 

In Section 4.2, we discussed the stratospheric mass loading changes 
produced by Mount St. Helens, concluding, on the basis On SAGE data, that the 
total loadl.ng increased by about J x 105 tonnes, on which about 90 percent 
remained in the northern hemispheI'e in September 1980. Detailed analyses 'If 
the mass loading changes and distributior. are rendered difficult by the 
existance of aerosol from Sierra Negra at the time of the St. Helens eruption 
and by the eruption of Ulawun before the St. Helens aerosol had decreased 
to any appreciable extent. 

The total mass loading from St. Heler.s remained at about its peak value 
of 3 x 105 tonnes between August and october, that is between 3 and 5 months 
after the eruption. As commented on, in Section 7.2, the November 1980 
SAGE sweep did not extend further enough north to obtain a mass loading for 
St. Helens at this time, even though the l.nfluence of Ulawun was still 
confined mainly to the equatorial zone. One point of interest not rliscussed 
in Section 4.2 is whether there is evidence 0' movement of material trom 
st. Helens into the equatorial zone and across into the southern hemisphere. 
In order to examine this, the mean optic~l depth, for the latitude belt 
-20· -, +20·, has been computeu for the period April to October 1980 (data 
for October is computed for longitudes 90' W to 90· E only, to avoid 
contamination by Ulawun). The results of this computation are shown in 
Fig. 7.13. As mentioned earlier the equatorial zone shows little seasonal 
variation in optical depth and the decrease between April and May is almost 
certainly due to the remaining affec~s from the eruption of Sierra Negra. 
Between May and August there is very little change but, be<:ween August and 
October, there is a definite increase. The (~quivalent rise in mass loading 
is about 60 kilotonnes or about 20 percent of the total peak loading from 
St. Helens. We, thus, have evidence of appreciable southward transp,rt of 
the St. Helens material. More detailed inspection of the latitudinal 
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(20'S-20'.'I/) during the period April-October 1980. 
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distribution in October 1980 show that, of this 20 percent, ~ome 15 percent 
was still between o· and 20· N and about 5 percent had cross(>d the equator 
into the southern hemisphere. 

It is also possible to use the lidar data presented in Sectior. 7.3 to 
compute a figure for the total aerosol mass loading. Since the lidar dala 
set is confined to a small part of the northern hemisphe1"e, such an estimate 
will be based on very poor sampling compared to estimates based cn "AGE 
data. In order to have a reasonable chance of a reliable estimat., it is 
necessary to wait until it can be assumed that the volcanic material is 
well dispersed zonally. This will also mean that vertical layering has, 
to a large extent, disappeared. 

As an example, let us consider the lidar profile of November 12, 1960, 
shown in Fig. 7.7(c) and take a conversion factor for i30.69/Mass as 
36.6 m2 kg- l sr- l (Section 4.1). If we assume that the NASA-Langlev 
lidar profile represents an average for the whole northern hemisphere, we 
may integrate the profile and arrive at a total mass loading for the northern 
hemisphere of 7.5 x 105 tonnes. This may be contrasted to the value of 
6.0 x 105 shown in Fig. 4.8 and computed from SAGE data. This value could 
undoubtedly be refined by exrunining our assumption that the NASA-Langley 
profile is typical of the whole northern hemisphere. Lidar data from other 
stations could be included and also that from the airborne lidar. In the 
absence of SAGE information this would undoubtedly be a worthwhile procedure. 
Given the exitance of SAGE data and the ulilikelihood of obtaining better 
accuracy for mass loading figures from lidar, this procedure has not been 
attempted for St. Helens. Under other circumstances, such as after the 
recent eruption of El Chichon, when no SAGE data were available, the use of 
airborne lidar data for mass calculations has been extremely useful. 
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8. QUARTZ CRYSTAL MICROBALANCE DATA 

An indicated earlier, analysi.s of the QCM data from the November 1978 
experiments, performed ncar Sondrestrom, Greenland, has led us to dec,de 
against using these data as a quantitative indicator of stratospheri~ aerosol 
concentrations. A detailed analysis of these data carried out by A. Zardecki 
of IFAORS is included in the IIppendix to this report, together with a brief 
outline of the theory of operatIon of the instrument. In the Appendi'l' the 
data are presented as cumulative aarosol size distributions and are usuJ 
to calculate the equivalent optical extinction at 1.0 ~m. 

An example of an aerosol size distribution, (dN;,l log r), calculated 
from the cumulative size distribution measured using the QCM at an altitude 
of 11.3 km, is shown in Fig. 8.1. 1I1so shown in the same figure is a size 
distribution obtained by Farlow et al (19Bl) at 12.2 km over Poker Flat, 
Alaska, in July 1979. This measurement was made by collecting aerosol 
particles of cylindrical wires and fr. turni ng the samples to the laborator'l 
for analysis. Both s~ts of measurements are made at similar latitudes and 
altitudes and might be expected to agree reasonably well. The difference 
between them is significant and ty;ncal of the early QCM data. The 
Farlow et al curve shows the familiar unimodal distribution normally accep~ad 
as typical for stratospheric aerosol size distributions (Russell et al, 1981). 
In contrast, the QCM data show an excess of both smal.l and large particles. 
The latter, in particular, is responsible for the rather large mass loadings 
often quoteci for QCM data (Chuan et al, 1981). 

A further comparison of QCM and other data are shown in Table 8.1 which 
lists mass loading and optical extinction values. Two values of mass load-
ing are shown, taken from Chu~n et al (1981) for the QCM, and Farlow et al (1981), 
for impactor data. Farlow et al, discuss their impactor data in some detail, 
comparing it with other measurements on stratospheric aerosols. They conclude 
that their own values may be slightly high (the particle radii should he 
reduced by about 15 percent), but certainly not low. Nevertheless, the QCM 
values are still higher by a factor of about six. The 1.0 ~m extinction values 
shown for the Greenland QCM data are based on our own calculations (see 
Appendix) and yield a value of the order Df 10-3 km- l • The SAM II and SAGE 
experimental values for the same conditions are less than or equal to 
2 x 10-4 km- l , agreeing quite well with values calculated from Farlow et al's 
data, but not the QCM based values, which are one-half to one order of magni­
tude larger. 
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Figure 8.1 Aerosol particle size distributions obtained by: the quartz crystal microbalance over 
Greenland in November 1978 and by wire impactor over Alaska in July 1979 (Farlow et al .. 1981). 
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TABLE 8.1: COMPARISON Or' QCM AND OTHER DATA 

Altitude Authors Instrument 

11.3 km QCM 

13.0 km QCM 

12.5 km Russell et a1 SAM II 
(1981a) 

12-18 km I Chuan et a1 QCM 
(1981) 

12-18 km I Farlow et al Impactor 
(1981) 

12-18 km SAGE 

Mass loading 

-3 1 ;Jg ~, 

0.16 IJg m -3 

i.O jJIIl 

extinction 
(km-1 ) 

-4 
6.1 x 10 

-4 11. 9 x 10 

-4 2.0 x 10 

-4 1. 86 x 10 

-4 1.2 x 10 
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9. SUMMARY AI;.) CONCLUSIONS 

Tables 9.1 and 9.2 summarize the main findings ,.ith regard to the 
aerosol mass loading changes produced by the three volcanoes studied, together 
with an outlille of Ulawull's behavior (Table 9.1), and thei~ growth and 
dispersion characteristics (Table 9.2). The analysis has a130 demonstrated 
the range of information that is potentially available from satellites such 
as SAGE and from lidar, whether airborne or ground-based. It has, in 
addition, shown that the information given by thee!" techniques (alld by the 
quartz cryotal microbalance when the calibration of this has been completed) 
is complimentary rather than overlapping, enabling different aspects of the 
aerosol behavior to be measured. 

The study was fortunate in having a nine-month period of measurements on 
a quiet background stratospheric aerosol layer (the effects of Soufriere were 
negligible on a global scale). This has enabled not only the mass loading to 
be determined accurately but also the seasonal changes to be studied. One 
finding that was not anticipated was the diVision of the background aerosol 
into three latitude band& separated at approximately 2SoN and S. 

The various volcanoes studied show a considerable variety of stratospheric 
affects. Although not all the char.acteristics listed below could be studiee 
for each volcano, tho following summary car, be given of their general 
behavj':)r. 

a: .he injected mass disperses quite rapidly both longitudinally and 
latitudinally. The genp.ral behavior corresponds well to global ~irculation 
models but individual upper level weather systems can cause major local 
deviation~ from these. 

b) The volcanic aerosol has a tendency to divide or isolatp. itself into 
zones similar to thobe into which the back~round aerosol is civided. 
Considerable flow of material occurs bet>'een these zones, flow taking place 
along .sentropic surfaces. 

c) The time between the eruption and the maximum mass loading increase 
is about 3 months, in agreement with the model ~f T'xco et al. (1981). The 
peak loading is followed by a slow delcine, the in:,.tial decay time (determined 
for Sierra Negra only) is about 5 months. 

d) The '-:0 equatorial volcances (Sierra Negra and UlawulI) show a gradual rise in 
the height vf the injected material with time after t.he eruption. Several 
explanations are possible for this. 

The 1981 SAGE and lidar data, when analyzed, should add very ~onsiderably 
to the above picture. It is anticipated that, when the study of these is 
complete, it will be possible to establ,ish the general characteristics of the 
growth and dispersion of stratospheric plume" resulting from volcanic eruptions. 
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TABLE 9.1: STFJ~'1'OSPHERIC AERC'50L MASS LOADING CHANGES - SUMMARY 

! 

r 
I . 
" . 
I , 
, I 

I 
~ 

~ q 
~ 
J 

,:\< 

"r 
~ 

'" '" 

SUBJ'ECT 

Present AnaJysis (SAGE data, unless otherwise stated) 

Global background pre-volcanic, 1979 - total 
- winter maximum 
- summer maximum 

Soufriere - Total injection 

Sierra Negra - Peak tota! injection 
peak northern hemisphere 
peak southern hemisphere 

St Helens 

total injection 
northern h~isphere 
southern hemisphere 

- Peak total injection 
peak northprn hemisphere 
peak southern hemisphere 
peak injection (LIDAR) 

3 months 
Q~ter eruption 

6 months 
after eruption 

4 months 
after eruption 

Ulawun - Total injection, six weeks after eruption 

Earlier Volcanoes 

Agung (March. 1963) - total injection 

Fuego (October, 1974) - total injection 

St Augustine (January. 1976) - total injection 

fl _>_ ' ....... 
)~.'" .. ~-. r 

~. 

... ~ .1'. .J,~. -"4!.. ", ,'~>'. m 

--~.;. ..... 

ESTIMATE.') MASS LOADING 
(METRIC TONS) 

-4-, 

5 
- 4.8 x 10 5 

2.5 - 2.7 x 105 

-' 

2.2 - 2.3 x 10 

2.1 + .7 x 10 3 

< 
1.8 x 105 
1.1 x 105 
0.7 x 10 

5 
0.9 x 105 
0.5 x 105 
0.4 x 10 

5 
3.0 x 105 
2.8 x 105 
0.2 x 105 
4.5 x 10 

2.0 x l() 5 

3 x 107 (Cadle et al., 1976 
Cadle et al., 1977) 

3 - 6 x 106 (Cadle et al., 1976, 
Cadl~ et al •• 1977 

5 Lazrus et al .• 1979) 
6 x 10 (Cadle et a1., 1977) 
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TABLE 9.2: COMPARISON OF THE STFATOSPHERIC EFFECTS PRODUCED B7 THE ERUPTIONS 

OF SOUFRItRE. SIERRA NEGPA. ST. HELENS AND ULAWUN . , . "-
i I 

Time From 

I 
Peak Mass Er,lption to Decay Time 

Date of I snjection Peak. Loading to lIe of Peak Dispersion 
Volcano Eruption I Latitude I (10 Metric Tons) (Months) Loading (~;onths) Characteristics 

1 
I 
I 

! April 1979 13.30 N i 3 
Not Available Soufriere 2.1x10 Not Available 25\ of the injected aerosol , 

f 
:~ 

: )~ 

'" 
'tt '" 
~{ 

~ 
~" 
( , 
, 
>' 

i 
. 

I stayed within the equatorial 
I 
I 

, 
zone; 75\ moved rapidly ; 

, 
I 

I 
, 

I i 
North within ten days of the I 

I , eruption~ Material changed 

I 
I latitude approximately 

i 
I 

j isentropically. Long term 
I I I dispersion characteristics , I are unknown. 
! I 

, 

SieTra Negra I Nov. 0.80S 
I 5 , 

1979 I 1.8xlO 3 5 40\ of the injected aerosol 
i ! moved rapidly northward. A I I 1 I declining equatorial reser-, 

I I I voir was visible up to June, i 

I i 

I 
1980. Material changed 1ati-

I tude isentropically and that 
I , 

remaining in the equatorial 
I I , 1 zone gradually rose in height , 

I after its inject~on. 

I May 1980 46.20N I 5 
3.0xlO 4+1 Not Available A majority of the injec~~ 

I I 
1 -
I material moved to the North 

I 
I of the volcano and dispersed I 
I only slowly from that region. I 
I 5 months after the eruption,. 

, 
I : , 80\ of the injected material 

, 
was still Norte 0; 200N, only I 

I 5\ had crossed the equator. I 

Oct. 1980 5.00S ;. 2.0xlO 5 ;'1.5 Not Available New stratospheric material 
was still ~ll conf_ned to 

, 
! 

1/1 

I 
the equatorial zone six weeks 
after the eruption. The 
height of the material gradu-L I all~ increased during this 
perl.od. --' 
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APPENDIX 1 

PHYSICAL AND OPTICAL PROPERTIES OF 
STRATOPHERIC AEROSOLS BASED ON MEASUREMENTS BY 

QUARTZ CRYSTAL MICROBALANCE CASCADE UIPACTOR 

A. Zardecki 

I. INTRODUCTION 

'rhe purpose of this investIgation is to extract information about 

physic"l and optical properties of stratospheric aerosols on the basis of 

measurements performed by the Quar.tz Crystal Microbalance (QCM) impactor. 

The data, which we are using, were collected during flights ove. Sonder-

strom, ,Greenland, in late November 1978. Since the QCM instruments provides 

essentially the logarithmic mass distribution dM/d 10gl.0 dp ' d
p 

being the 

particle diameter, our first task is to convext the mass data into aerosol 

size distribution. Two methods to achieve this will be desc.ibed in this 

repe'!·" least square curve fit and point-by-point power law fit. Once 

the size distribution is obtained, the Mie theory enables one to calculate, 

in particular, the extinction and backscatter coefficients. These will 

be presented together with physically meaningful extinction to number and 

backscatter to number ratios. 

II. BRIEF THEORY OF QCM CASCADE IMPACTOR 

Inertial impactors are devices used to classify particles with 

respect to their aerodynamic size. The instrument consists of a series 

of stages, each composed of an orifice through which the aerosol flows 

normal to a collecting surface. The air flows over the collecting surface 

and on to the next stage. Particles too large to fol· '/ the air medium 

deposit on the collecting surface. The basic mechanism of collection is 

inertial impaction. 
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The efficiency of a 9tage for particles of a given size is defined 

as the fracti,," of the particles removed from the gas flowing through 

the stage. At a given flow rate, the stage efficiency depends on the 

s: _kes number, St, given as 

St = 
lBlJd ( 1) 

which is defined as the ratio of the particle stopping distance to a 

characterll3tic length such as the jet diameter. In Eq. (1), U is the 

average velocity through the jet, d is, at width or diameter, p , is 
p 

the particle density, C is the cunningham slip correction factor, d is 
p 

the particle diameter, Bnd IJ is the fluid viscosity. Ideally, the 

efficiency curve should be a step function corresponding to a given 

Stokes parameter. In practice, the efficiency curve is "S" shaped. A 

stage is usually characterized by the diamet .. r corresponding to 50% 

efficiency: 

• d 
P 

where the asterisk refers to the value at 50% efficiency. 

(2) 

For complex aerosol particles, impactor data are often reported ir. 

terms of the aerodynamic diameter, de fined as the diameter of a 

hypothetical sphere of unit density with the same stokes number as the 

particle in question. since the variation in the Cunningham slip factor 

is usually negligible for small diameter diffe.rences, Eq. (1) implies 

the geometric diameter, d~g), is related to the aerodYllamic diameter, 

d(a) through p , 
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d(a) I IP 
p p 

( 3) 

The quartz crystal microbalance impactor (QCM) i9 a multistage impactor 

which senses the mass of suspended aerosols, dS a function of pal:ticle 

3 4 
size ' , Each impactor stage contains a piezoeler.tric crystal microbalance 

which senses the mdSS of the partic.los collectf.:l I,',' a change in oscillator 

frequency between a reference crystal and the sensing crystal. This 

t()chr,ique, providing data free from some of the ambiguities present in 

light scattering data, has been proposed to be used for measurements to 

support the SAM II and SAGE ground truth programs. 1 , 

III. DETEl<M~.IATION OF THE SIZE DIS'fRIBUTION 

The mass of particle~, M, collected on an impaction plate in usually 

expressed in terms of the logarithmic mass distribution 

(4) 

where d is the particle diameter. Let d
p1 

and d denote the lower and 
p p2 

upper bounds of particle diameters deposited at a given stdge. ~'his 

corresponds to the number 6N l ,2 of particles given as 

~ 
dp2 

, 
llN l ,2 f dN ad (5) ~ 

dd P 
P 

d
pl 

Employing a log scale, Eq. (5) is re~citten as 

d
p2 

(~nl0)-1 f 
dN 

dd 
llN l, 2 ~ ---l? 

d 10910 d d 
P P 

(6) 

d
pl 
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We now assume that for a given stage the functioHl dN/d 10910 d
p 

is 

-1 nearly conscant as compared d . Eq. (6) thus be~omes 
p 

d
p2 

-1 dN 

f 
dd 

lIN l ,2 ~ (in 10) d .---E. 
1091CJ d d 

P P 
dpl 

( 7) 

For the Celesc0 Model C-1000 QCM Cascade, the 50% efficiency points for 

each stage as given by the instrwnent manufacturer are listed below: 

Stage Diameter (Microns) 

1 25.00 
2 12.50 
3 6.25 
4 }.20 
5 1.60 
6 0.80 
7 0.70 
8 0.20 
9 0.10 

10 0.05 

It is seen that the ratio of two consequtive 50% efficiency points is 

constant and equals 2. This permits us to assume the constant ratio 

dp2/dpl = 2 in Eq. (7), which thus yields 

lIN l ,2 = 
dN log 2 ( 8) 

Since ~M = dN(4/3)rr (d /2)3 p , we obtain for the size distribution 
p p 

dN/dd , in terms of the measured quantity K, the following formula: p 
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dN 
dd 

P 

K 
7( 47"/-;':;37) =-Tl7"( d;- i'2') 3 p d ~n 1 0 

p p p 

Or introducing the particle size distribution for radi.us r 

Eq. (3) hecomes 

n (r) 
dN 3K 

- dr = 4 Tl r l'-p'-;;~-n":'l":'O 

d /2, 
P 

( 9) 

(10) 

Tables 1-3 $um~arize both the mass data and the radius distribution 

functions as obtained from Eq. (10). The results refer to stratospheric 

aerosols measurements made over Sondf rstrom, Greenland, in late 

November 1978. Included is also the number of particles registered 

at a given stage, N, related to K through the formula 

bN= 
3K 10910 2 

4Tlp r 3 
p 
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TABLE 1: Data for M~ss Distribution and Size Distribution at 
Altitude z " 37,000 feet 

STAGE 
NO. 

10 

9 

8 

7 

6 

5 

4 

3 

2 

d 
P 

()Jm) 

0.05 

0.10 

0.20 

0.40 

0.80 

1.60 

3.20 

6.40 

12.80 

r 
()Jm) 

0.0,15 

0.050 

0.100 

0.200 

0.400 

0.800 

1.600 

3.200 

6.400 

K -3 
(rog m ) 

0.40 

0.43 

0.37 

0.13 

0.26 

1.16 

0.76 

lIN 
-3 

(em ) 

1.02 x 10- 3 

1. 37 x 10-2 

1.48 x 10-1, 

0.65 x 10
0 

1. 79 ,Y 10-2 

1.B x 10-2 

0.68 x 10- 3 

-4 
1.16 }' 10 

TABLE 2 : Data for Mass Distribution and Size Distribution 
Al titlJde z ~ 41,000 feet 

STAGE d 
K 

!w r 
-3 

NO. P ()Jm) (rog m ) (cm- 3) (\.UT.) 

10 0.05 0.025 0.500 1.28 x 10
3 

9 0.10 0.500 0.560 1.79 x 10
2 

8 0.20 0.10 0.400 1.59 x 10
1 

7 0.40 0.20 0.430 2.14 x 10° 

6 0.80 0.40 

5 1.60 0.80 0.500 3.90 x 10-2 

4 3.20 1.60 1.025 9.99 x 10-3 

3 6.40 3.20 0.800 9.75 x 10-3 

2 12.80 6.40 0.930 1. 42 x 10-4 
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11 (r) 

-3 ··1 
(em )Jm ) 

5.90 x 10+4 

3.96 x 10+3 

2.13 x 10+2 

4.68 x 10
0 

3.23 x 10-2 

1.02 x 10-2 

3.08 x 10- 4 

2.61 x 10- 5 

at 

n (r) 

(em 
-3 -1 

)Jm) 

7.37 x 10
4 

5.16 x 10
3 

2.30 x 10
2 

1.55 x 10
1 

7.03 x 10-2 

3.01 x 10-3 

4.39 x 10-4 

3.19 x 10-5 
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III. RETRIEVAL OF OPTIC'.' PARAMETERS 

Once the particle size distribution has been determined, the optic,l 

quantities of interest, such as the extinction and backscatter coefficients, 

can be computed by applying the standard results of the Mie theory. In 

terms of the Mie efficiency factor for extinction, Q ,the extinction 
ext 

coefficient is given by 

2 
Q t(m,x)rrr n(r)dr ex (12) 

where the complex refractive index m ~ m
l 

- im
2

, x denotes the size 

parameter, while r l and r 2 are the minimum and maximum values of the 

particle radii. 

The backscatter coefficient is defined as the power scattered 

back per steradian divided by the incident flux. Introducing the Mie 

amplitude 51 (x,m,8) and the Mie intensity function i
l 

(x,m,6) equals 

15
1 (x,m, 6) 12 /k2, where k is the wave number, we can express the back­

scatter coefficient as 

0B (m,x) = i
l 

(x,m,lBO) 

Equation (13), wh;.ch holds for monodisperse aerosols, differs 

by a f.actor 4rr ft'om the definition 
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d t d b 0 , dO, 5 a op e Y e1rmen ]1an. 
In the case of polydisperse aerosols, the 

situation studied here, the backscatter coefficient Bp is obtained 

on integration Over the size distribution. Thus 

r
2 

Bp (A,m) = J i l (x,m,180) nCr) dr 

r
l 

In actual computations, we have at OUr disposal a sequence of 6-8 

(14) 

values of n, = I. (r ,) from which we wish to reconstruct the true size ~ ~ 

distribution n (r). ','WO different methods of reconstruction have been 

used: (i) the le~st square curve fit; (ii) point-by-point power law 

fit. We now proceed to a brief description of these methods and to 

presentation of sample results. 

A. Least Square Curve Fit 

The data points contained in Tables I-III show a fairly monotonic 

decrease when displayed on a log-log plot. Thi:, suggests the following 

five parameter fit to the size distribution 

10910 nCr) 

(.15 ) 

with the coefficients Ci , i = 1, ..• , 5 to be determined. We 

notice that the first two terms on the right hand side of Eq. (15) 

reproduce the power-law size distributions. The remaining terms, 

therefore, can be considered as corrections to the power law, where 
-a nCr) _ r 

In Fig. 1, we show a typical curve corre"ponding to the 
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Fig. 1 Size distribution obtdined by QCM at altitude z = 37,000 ft. 
Symbols represent the measured values. 
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altitude z = 37,000 feet as obtained directly by this method. In 

order to extrac~ the values of optical parameters, two types of scaling • 

have proven to be necessary: 

(i) Conversion of the aerodynamic radius into geonetric radius. 

This implies the substitution of Eq. (2) 

(~.o/p )" 
p 

since the instrument was calibrated at p = ?O. 

(i!.) Conversion of the 50\ efficiency cut off radius inte a 

geometric mean radius. This implies the rescaling 

In Table IV typical results referring to extinction and backscatter. 

coefficients are shown. 

B. Point-By-Point Power Law 

Junge
6

, has found that the size distribution of collected 

atmospheric aerosols can be represented by the power law 

(16) 

On a log-log plot, having :oglor as its abscissa and loglOn(r) as 

ordinate, each pair of data points contained in Tables 1-3 is connected 

by a straight line, if the power law of the form given by Eq. (16) is 

assumed. 
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The same scaling procedure is discussed in previous subsection 

is still implied. In Tables 5.1-5.3 and Table 6 some typical results 

are collected. 

IV. CONCLUDING REMARKS 

The results presented in Tables 4 and Table 6 show that the 

least square curve fit and the point-by-point methods lead to substantially 

equivalent results with the accuracy 5 - 15%. 

In the LSCF method, for a given density p , the quar.tities 8 , 
p ext 

8(11), 8 t/8(1T) and 8 tiN ( .15) vary with the indey of refraction. ex ex 

On the other hand, in the point-by-point method, both 8 t and 8 •. /N(.l5) 
ex ex~ 

are highly insensitive of the refractive index. 

Both methods show that the extl.nction co-efficient is smallest for 

z = 41,000 feet. 

116 

, . 



, ,1: \,. \\0- _ e;... • r .. -. __ ~l1H€ 4~""<' t:r~'T>~-~ -_"w. 

e 

;: ., -~ 
V • ",. 

~ 

I:-., 
"-V , 

0 v 
: on: 
~ 
V 

" 
:C ! 

~ 
• !i 

• 
! ~ 

~ " 
~ ~ .. 

I:-~ - .,',a V 

8-
l~ c 
1~ 

G 
.of , 
• • .v 
HI . ~ 
~ . o V 

~ 

~ 
u , 
• ~ .,' 

ei 
"i: :8. 

( 0':: 
: . 
';l!i 

~ 

'" "I 
• -• ~ 0 , 

t~ .. ;;: 
~ 

- ;: V , ~ 

~ -:: .. 
• • • 

, I 
.!!t 
V • 

~~ 
1! ~ • • • .If 
5v 
~ . 
V • 

il.!l 
0: .. 

;; 
~ ~ • "'., • Z In 01 .. -• > -V 

• ~ 
i ~ ~ "'., , ~, 

<0 .:. 8 
V C .. -.~ 

Q~ 
O-N" - , 
"'~ • • • • -• • -- ..; , 
vA 
• • -.. .. -. • U , . 
y-

4 

• 
.; .. ~ 

!! .. 
~ 

.V ., -- .. 8 .... 
"'4 "-

~ 

C 
~ 

N • .. -
o 

- --. -- "~- .- --,. -~--""''-'-·''''',"",>':!I'~7''''''''''.;[="T:<'-'''''''~'_·'''''''''V''''''~¥F-''''''''''''~~'~~'''!!?i:~ .. ~,S_~,~"~_lm~il"'~!li~'f-;:i\\~'~""~r!ii~iJ"'1II1!111 .. 

, 

- ~ 
0 0 
~ ~ 

• • .. .. ., .. ., ., 
.; .; 

.. .. 
0 0 
~ ~ 

• • 
~ 0 
0 '" .. 0 
~ .. 
0 .; 

.. .. , , 
0 0 
~ ~ 

• • .. ., .. .. 
:;t ., ., 
.; 0 

'" 
., , , .. 0 

~ ~ 

• • 
'" •. ., ., .. ., 
'" .. 
.; .; 

0 0 .. .. 
'" 

.; 

0 0 
0 0 
~ ~ 

• • .. .. .. .. 
.; 0 

~ ~ 
0 0 
~ ~ 

• • ... ... 
~ ~ 

.; 0 

;: 
;;; 8 
~ 

.; -- -, , .. 0 .. '" ..; ..; 

.. ... 

..; 

0 
g , ... ., 

uH;C 
OF. POO;{ QLu,LiI 'I . 

~ ~ .... ~ ~ ~ ~ 
0 .. ~ 0 0 0 0 
~ ~ • ~ ~ ~ ~ 

• • • .. • • • .. .. ... ~ .. .. ., 
~ .. .. ~ .. .. ~ 
~ ., ., .. ~ '" .. 
.; .; .; .; .; .; 0 

... .. .. .. .. .. ... 
0 0 0 0 0 0 0 
~ ~ ~ ~ ~ ~ ~ 

• • • • • • • 
~ ~ .. .. ... '" .. .. ~ .. ~ .. ... ., ., .. 0 ., ., ~ .. 
~ ~ .. ~ .. .. ~ 

.; .; 0 .; .; .; 0 

.. .. .. .. .. .. "r , 
'0 

, , 
'0 '0 0 0 0 0 

~ ~ ~ ~ ~ ~ ~ 

• • • • • • • 
'" 0 .. .. .. :: .. 
0 ., 

'" '" ... 0 
~ ~ ~ .. .. .. .. 
'" .. .. ., .. '" .. 
.; 0 0 .; .; .; .; 

., ., .. .. .. .. .. , , , 
'0 '0 

, 
'0 0 0 0 0 

~ ~ ~ ~ ~ ~ ~ 

• • • • • • • .. .. .. .. .. 0 ~ ., ... 0 ... .. ... .. ... 0 .. .. ~ .. ., .. .. .. .. ~ ~ '1 .; .; .,; 0 .,; .,; 0 

0 .. .. .. .. .. .. .. ... ... ... ... ... ... 
.; .; .; .; .. .. .. 

0 0
0 

0 0
0 

0
0 

0 0
0 0 0 0 

~ ~ ~ - ~ ~ ~ 

• • • • • • • .. .. .. .. 0 0 ~ .. ~ ~ ~ ... ... 
.; .; .; .; .; .; .; 

~ ~ ~ ~ ~ ~ ~ 
0 0 0 0 0 0 0 .. ~ ~ ~ ~ .. ~ 

• • - - - • • ... ., ., ., 
~ ~ ~ 

~ ~ ~ ~ 
., ., .. 

0 0 .; 0 .; .,; .; 

~ ~ .. '" ., ., 0 ., 
~ ~. ~ 0 ~ 

i ~ ~ .,; 
~ ~ ~ -- - ~ - - - ~ , , , , , , , .. .. 0 .. .. .. :iI •• .. "! '" ": '" 

~ ..; ~ ..; ~ ..; .. 
0 .. 
~ ... 

..; .. 
8 
<t 
~ .. 

117 

, 
( 

( 
~ 

I !,';' 

I 
~.~ 

~: 

" ~ 
I 

:I~~~'~ 



" ~7·'\W~'!f"¥'J\'IJT~~""-· 
• __ .' __ c._".._ ..... .". __ .... " ~ ~' .. _._~;-_ 

• ,~ 

,,1. 
O'{ 
~ 
~. 
~; 
J 

• ~ 

f(j 
~. "" 

f-' 
f-' 
(Xl 

TABLE 5.1: Summary of Physical and Optical Characteristics of Ae~501s Using 
()CM Impactor Measurements at Altitude 37,000 Feet 

Size Distribution nCr) = P1r-P2; Refractive Indexm=1.42 -i(O.O);Specific gravity Pp = 1.76 

rmin r PI P2 
A = 6 ,,(1.0) B= 6(11, 0.69) 

max ex. 
(\JIll) (\JIll) (kIn-I) (kIn -1 sr -1) 

0.038 0.75 0.43 x 10 
-1 

3.90 0.333 x 10 
-5 

O.lSO x 10 
-5 

0.075 O.lSl 0.19 x 10 
-1 4.22 0.238 x 10 

-4 
0.561 x 10 

-5 

o.lSl 0.302 0.16 x 10 
-2 

5.51 0.643 x 10 
-4 

0.226 x 10 
-5 

0.302 1.206 0.16 x 10 
-1 

3.58 0.271 x 10 
-3 

0.591 x 10 -5 

1.206 2.412 0.11 x 10 -1 
1.68 0.124 x 10 -3 

0.859 x 10 -5 

2.412 4.824 0.22 x 10 a 
5.05 0.936 x 10 -4 

0.554 x 10 -5 

4.824 9.648 0.21 x 10 -1 3.56 0.344 x 10 -4 
0.409 x 10 -5 

... -- .-

tl.tl1R I -, ~ 9.648 0.6146 x 10 0.3350 x 10 

. 1 -3 0 -3 1 
N(.15) = 0.193 x 10 em ; N(.25) = 0.249 x 10· em ; N(.15)/N(.25) = 0.773 x 10 

6 (1.0)/N(.15) = 0.319 x 10
1 

em2 
ext . 

•. ~?,- J.L. ~ 

-~ 

A/B 

(sr) 

I 

l . 

~ it 

----. - --

) 

) , 

.~ 

. ~ 

i 
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~LE S~: Summary of Physical and. Optical Characteristics of Aerosols Using 
(}CH Impactor HeaSUreDJenLS at Altitude 41,000 r'eet 

,. 
" 

Size Distribution n(r) ~ Plr-P2; Refractive Index m = 1.42 - i(O.O); Specific gravity Pp = 1.76 

r. I r PI P2 
A = 6 t(l.O) B = 6(11, 0.69) 

nun max ex 
(1JlIl) (\UIl) (laD -1) -1' -1 

Otm ,sr ) 

0.038 0.075 0.65 x 10 
-1 

3.84 0.428 x 10 
-5 

0.193 x 10 
-5 

0.075 0.151 0.12 x 10 
-1 

4.49 0.275 x 10 
-4 

0.660 ]( 10 
-5 

0.151 0.302 0.37 x 10 
-1 

3.89 0.132 x 10 
-3 

J.450 x 10 
-5 

0.302 1.::06 0.37 x 10 
-1 

3.89 0.724 x 10 
-3 

0.156 x 10 
-4 

1.206 2.412 0.31 x 10 
-1 

2.96 0.161 x 10 
-3 

0.113 x 10 
-4 

2.412 4.824 0.11 x 10 
0 

4.36 0.101 x 10 
-3 

0.617 x 10 
-5 

4.824 9.648 0.43 x 10 
-1 

3.78 0.456 x 10 
-4 

0.541 x 10 
-5 

0.038 9.648 0.1194 J( 10 
-2 

0.5149 x 10 
-4 

1 -3 0 -3 
N(.lS) = 0.311 x 10 cm ; N(.25) = 0.713 J( Ie cm ; N(.15)IN(.25) = 0.437 J( ::.; 

1 2 6 (l.0)IN(.15) = 0.384 x 10 em 
ext 

r .~ 

-"~ ------~"---

• 

AlB 
(sr) 

0.232 J( 1 0
2 
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TABLE 5.3: Summary of Physical and. Optical Characteristics of Aerosols Using 
()CH Impactor Measurements at: Altitude 43,000 Feet 

-:' -.,~~,...-..-

Size Distribution n(r) = Plr-P2; Refractive Index m = 1.42 - i(O.O); Specific gravity Pp = 1.76 

I 
;j 

I 

'( 
i{ 
~ 
~ 
.~ 

J: 

~r 
.~ 

'4 

.... 
'" 0 

r . r 
PI P2 A = B t(l.O) nun max ex 

(IJID) (1Jm) 
(Jan -1) 

0.151 0.302 -2 
4.93 -3 . 0.82 xlO 0.136 x 10 

0.302 -1 
4.15 -3 1.206 0.21 x 10 0.470 x 10 

1.206 2.412 -1 
1.30 -3 O.U x 10 0.170 x 10 

2.412 0 I 5.15 -3 4.824 0.37 x 10 0.138 x 10 

4.824 9.648 0 
4.58 -" 0.15 x 10 0.356 x 10 

0.151 9.648 0.9499 x 10 -3 

1 -3 0 -3 
N(.15) = 0.362 x 10 em ; N(.25) = 0.552 x 10 em ; N(.151IY(.25} 1 = 0.657 " 10 

1 2 B t(1.0)IN(.15) = 0.262 x 10 cm ex 

~~ .'~. //- J'L .-
--:---.... -------~.-- --'--

B = B(lT, 0.69) 

AlB 
(km -l~sr -I) (sr) 

0.472 x 10 -5 

0.101 x 10 -4 

0.117 x 10 -4 

0.812 x 10 -5 

0.416 x 10 -5 

0.3875 x 10 -4 
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