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1. Introduction

Gridded analyses of the state of the atmosphere during part of the Global

Weather Experiment (FGGE) have been produced by a special objective analysis

system (Baker, 1983) incorporated within the Goddard Laboratory for Atmo-

spheres (GLA) Fourth Order General Circulation Model (Kalnay et al., 1983).

In our previous contract (NAS5-26515) we utilized one month of these analyses

during the First Special Observing Period to determine large-scale circulation

statistics, including estimates of certain components of the energy cycle. In

that study, in fact, we examined two parallel sets of analyses, which in one

case included and in the other omitted data observed by satellite-based and

other FGGE special observing systems. This contract year, we have extended

the results of our previous work in two separate, but not unrelated, ways.

(a) First, from these two parallel analyses, which we labeled FGGE (full

FGGE system) and NOSAT (satellite omitted), we discovered that, by and large,

the two sets of fields were quite close over much of the globe. Nevertheless,

locally the influence of satellite-based systems led to some differences,

particularly over the Southern Hemisphere oceans.

Upon examining the differences between the FGGE and NOSAT cases, the

question arose concerning whether the GLA model itself was playing a large

role in producing features in the analysis fields, independent of the assimi-

lated input data. To answer that question, the GLA model was run again for

the same time period in a special way: after being started with an initial

state, no observations were assimilated for the duration of the run. This

method produces fields which define the "climate" of the model, with which the

data assimilation runs can be compared.

(b) As the second thrust .of the work this year, we have been examining

the diabatic heating fields generated by the GLA FGGE analysis. From these

fields, one can ascertain the role of total diabatic heating and of the

various diabatic heating components in the atmospheric energy cycle, in

particular in the generation of available potential energy. To date, we

have accumulated fields of four components of diabatic heating for the month

study period and are preparing to use them further for the energetics study.

2. The CLIMATE run . ;

The GLA model was initialized from the European Centre for Medium.Range

Weather Forecasts (ECMWF) analysis of December 15, 1978 at 0.0 GMT and was
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permitted to run for a period of 50 days without incorporating any input data.

For the last 30 days of this run time, equivalent to the monthly period of

January 6 - February 4, we were supplied with analysis fields of raw meteoro-

logical parameters at 00 GMT. Each parameter was averaged separately for the

entire month at each point of the 4° x 5° latitude-longitude global grid at

the 12 pressure levels 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70

and 50 mb. After the 20-day "start-up" period, the model fields are thought

to have very little influence of the original state, but instead reflect the

characteristics of the model itself. We label the average of such analysis

the "climate" of the model.

We have chosen to look at mean fields of zonal wind, u, meridional wind,

v, and temperature, T, and the quantities related to transient eddy components

of meridional transports of momentum and heat, u'v1 and v'T1 respectively.

Here the overbar indicates the monthly mean, while the prime denotes departure

from that mean. All fields were restricted to the portion of the globe north

of 68°S. To the south of that latitude, the high topography of Antarctica

affects the low-level fields.

In Figure 1 are plotted the monthly averages of u at 200 mb for the

(a) FGGE, (b) NOSAT and (c) CLIMATE analyses. Areas not shaded are wester-

lies; shaded areas are easterlies. In general, the features are similar in

the three analyses. However, maxima in the winds seem to be somewhat stronger

in the NOSAT analysis than in the FGGE analysis; examples of this are found in

the jet maxima off the coasts of Japan and North America and also over the

Southern Hemisphere oceans. The CLIMATE case yields even stronger features.

In fact, the strong feature south of Australia in the CLIMATE run is

considerably stronger than winds in that region as diagnosed by the two data-

assimilation runs. It can be seen by comparing the NOSAT field to the CLIMATE

field that the effect of adding conventional data to analyses produced by the

model climate is to dampen the zonal winds considerably. The further impact

of adding the satellite-based data (forming the FGGE field) is to dampen these

winds a bit further. This general impact on the zonal winds can be seen as

well in Figure 2 where the cross-section of zonally averaged zonal winds, [u],

is displayed. (Brackets denote the zonal average of a quantity.) Thus, the

maxima in the jet regions in the CLIMATE run are stronger than in either of

the data assimilation runs, and, in the Northern Hemisphere in particular, the

strong CLIMATE winds extend to lower levels in the atmosphere.



As for the meridional circulation, Figure 3 shows the distributions of v

at 200 mb for the three cases. Unlike the situation for u, there appears to

be no consistent picture of the relative strengths among the three cases of

the v analyses. One: area where upper atmosphere meridional winds are stronger

in the CLIMATE case "than in the others exists, for example, in eastern Asia.

The reverse situation,, however, seems to occur over much of South America. In

the latitude-pressure cross section of Figure 4, the zonally averaged mass

streamfunction associated with the meridional winds is shown. Here we see a

weaker Northern Hemisphere (winter) Hadley cell in the CLIMATE case, but a

somewhat stronger midlatitude indirect cell. Thus, there is no single effect

of data assimilation even on the zonally averaged meridional circulation.

In the case of the temperature field, the maxima and minima tend in

general not to be as extreme in the CLIMATE run as in the others. Figure 5

illustrates this observation at the 850 mb level, in particular over central

Siberia and Canada for minima, and western Australia, south and east Africa

for maxima. This is not the case, however, for west Africa, in the vicinity

of the Sahara, where very high values exist in the CLIMATE run. The atmo-

sphere above the Southern Hemisphere mid-latitude oceans appears to be

somewhat colder in the CLIMATE run. A zonal cross section of the temperature

field (Figure 6) shows that the CLIMATE analyses are somewhat different from

the others, especially in the high latitudes of both hemispheres. There, in

the CLIMATE run, the highest levels are colder, while the lowest levels are

warmer.

Figures 7 and 8 contain quantities related to the transient eddy

transport of momentum at 200 mb and that of heat at 850 mb, respectively, for

the three analyses. One interesting feature in u'v1 is the strong.center in

the Pacific off the coast of North America, apparent in .the FGGE, NOSAT, and

CLIMATE cases, but absent in a separate analysis not involving the GLA model

but based on rawinsonde and pilot balloon station data (see Figure 17 of

Salstein and Rosen, 1982). This feature, generated by the GLA model: climate,

may also be captured'in the NOSAT and FGGE analyses by aircraft observations,

but further investigation would be necessary to examine these observations for

confirmation of the feature.

Thus, the results of comparing the data assimilation runs to the CLIMATE

run are mixed. In many casesj the CLIMATE values are rather different from

the FGGE and NOSAT values, which are themselves quite close; this indicates



that the model climate does not dominate in forcing features of the anal-

yses. Such a case can: be observed, for example, in the u field at 200 mb

to the south of Australia. However, some influences of the climatology of the
i

model are seen in the data assimilation runs, such as the feature noted above

in the u'v' field off the coast of North America.

3. Diabatic heating fields

The GLA 4-dimensional model and data assimilation system were rerun for

our study period for the purpose of archiving a number of parameters related

to the model physics. ; Of these, we were interested in those important with

regard to the diabatic heating occurring within the model. Components of

diabatic heating are computed diagnostically every 30 minutes of model time,

and these were accumulated so that heating by the various components within

every six hour period is archived in units of °K day . The particular

quantities archived for the quarter-days ending 0, 6, 12 and 18 GMT were

fields of heating due to shortwave radiation, Qerj, sensible heating, Qc, and

latent heating, Q^, as well as the total diabatic heating, Q^. The fourth

component of diabatic heating, that due to longwave radiation, QTU> was not

archived in the same:manner, and so was recovered by means of taking the

difference between the total diabatic heating and the other three components:

QLW = QT -'<Qsw + °-s + QL>

The diabatic heating fields are produced and archived on the non-

dimensional "a" vertical coordinate system (Kalnay et al., 1983). As such,

they are representative of 9 equal-pressure layers from 10 mb to the surface

and are given at the midpoints of these layers. In the ff system, pressure is

variable for each day as well as for each gridpoint, and so it is not a good

system in which to form monthly sums. We have therefore chosen to transform
! • • • ' . ' .

the data onto the same number of pressure (p) surfaces and have picked for

that purpose the 9 convenient levels: 1000, 925, 850, 700, 500, 400, 300, 200

and 100 mb. In making' the transformation from a to p coordinates, the data at

each gridpoint for each day were interpolated or extrapolated linearly in the

logarithm of pressure onto the chosen pressure levels. If a gridpoint was

below the surface topography at some level, :no data value was given there for

the day. Finally, for each of the four synoptic hours separately, for the



temperature field, each of the heating fields and their cross products (and

some other related quantities — see Table 1), we formed sums of the values at

all locations of the,three dimensional grid, when available. In addition, the

number of data values forming these sums was stored so that mean values could

be computed.

In the next set of figures are presented monthly mean fields of the

diabatic heating components as well as the total diabatic heating for the four

synoptic hours, as derived by the method described above. The heating fields

are presented at both a lower and middle level of the atmosphere (850 mb and

500 mb, respectively).

Figures 9 and 10 show the heating due to shortwave radiation at the two

pressure levels; units are °K day , with values of 0 (no heating) shaded and

isolines at 1 °K day . Figures 11 and 12 show longwave radiative heating

sensible heating fields appear in Figures 13 and 14, and latent heating in

Figures 15 and 16. In Figures 17 and 18 are fields of the total diabatic

heating for the four synoptic hours, equal to the sum of the four components.

The heating components have been averaged for the four synoptic hours in

Figures 19 and 20 (labeled "24 hours"), and the 24-hour total diabatic heating

appears in Figures 21 and 22. In all fields other than shortwave heating,

negative values, or areas of cooling, are shaded, and isolines are 2 °K day •

The shortwave heating fields show the daily progression of the sun about

the earth's longitudes during this time period. At grid locations below the

topography, such as occurs at 850 mb in high areas of the Himalayas, Rockies,

Andes, and Antarctica, heating values are simply considered to be zero. These

areas are shaded in the maps of the shortwave heating field.

The longwave heating fields are negative everywhere above the topography,

with maximum cooling occurring in the tropics. There appears to be less of a

diurnal cycle noticeable in these fields, in comparison with shortwave

heating.

Sensible heating is strongly dependent at the lower level on the

land/ocean distribution and time of day, largely cooling over the continents

during the night and heating,during the day. There are some very strong

values at 850 mb over east; Africa, Australia, and South America during local

afternoon. At 500 mb, sensible,heating is mostly negative, with some small

positive regions observed.



Lastly, latent heating is weaker at 850 mb than 500 mb. At both levels,

the region of cooling due to evaporation is smaller than the region of heating

due to condensation. At the 500 mb level there are maxima in the equatorial

region and some very intense heating areas, particularly over the Indonesian

region and South America.

We see a clear distinction between the four synoptic hours in the total

diabatic heating fields (Figures 17 and 18). This diurnal signal in total

heating appears to be dominated by the sensible heating and shortwave

radiative heating processes, in that they produce their heating locally at

particular times of the day.

In comparing the four 24-hour component heating fields (Figures 19 and

20), we see in particular the importance of strong latent heating at the

500 mb level, and both latent and sensible heating lower down at 850 mb.

These, however, are more than balanced in most areas by the strong cooling

due to longwave radiation. Shortwave radiative heating is relatively weak

everywhere.

The 24-hour total diabatic heating fields (Figures 21 and 22) show

heating across much of the tropics at 850 mb, which is especially strong over

the land areas of South America, Africa, and Indonesia-Australia. Residuals

of these heating areas still appear at the 500 mb level. However, most of the

globe is covered at both levels by areas of less intense cooling.

4. Concluding remarks.

In our continuing efforts, we will use the diabatic heating fields shown

in the previous section to estimate their role in the generation of available

potential energy. These components of the energy cycle will be calculated in

both zonal mean form, G(PM), and eddy form, G(PE). These are terms within the

atmospheric energy cycle which were not possible to calculate from the NASA

GLA data prior to the archival of the heating components from the FGGE run.

An approximate formulation of the two G terms was originally given by

Lorenz and is shown below in the framework of Peixoto and Oort (1974). This

traditional approach involves the calculation of the G;terms from the hori-

zontally averaged static stability factor Y and the various heating fields:



G(PM) = // Y(P) [T]" [Q]" dm

G(PE) = G(PTE) + G(PgE) = // Y(p) ([T'Q
1] + [T*Q*]) dm

where [¥]" = [T7] - / [Y] cos <J> d<|> ,

is a departure from a hemispheric or global mean. The asterisk denotes a

departure from zonal mean and dm is an element of mass. As indicated above,

we will consider the generation of potential eddy by both transient eddies

(TE) and standing eddies (SE).

A more exact form of the generation terms based on Boer (1975) will also

be calculated as follows:

G(PM) = // W [CJ] dm

p) . ([T'Q'] + [T*Q*]) dm

Here [N] is an "efficiency factor" (see Lorenz, 1963) and the stability

factor Y is based upon latitude as well as pressure. The results obtained

from this more exact approach will be compared with those from the Lorenz

approximation. In this way, a number of estimates of the previously unavail-

able generation terms will be obtained.
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Table 1

Quantities relating to diabatic heating fields.

Averages formed for January 6 - February 4, 1979c

Quantity

1 T (temperature, °K)

2 Qgy (heating due to shortwave radiation, °K day"1)

3 QLW (heating due to longwave radiation, °K day )

4 Qc (sensible heating, °K d a y )

5 QL (latent heating, °K day"1)

6 T . Qsw

7 T ' QLW
8 T • Qs

9 T • QL

10 T2

n Qsw2

12 QLW
13 QS2

2

15 Q 2 (total heating2) ,

16 Number of time periods grid point is above topography

17 a) (vertical velocity, 10"° mb s )

18 ps (surface pressure = reference pressure + 10 mb)

Total heating: QT = Qgw -f QLW + Qg + QL

TQT = TQSW + TQLW + TQS + TQL
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