
RESEARCH ON AN EXPERT SYSTEM FOR

DATABASE OPERATION OF

SIMULATION/EMULATION MATH MODELS

Phase I Results

VOLUME I

Prepared by:

K. Kawamura, G.O. Beale, J.D. Schaffer,
B.-J. Hsieh, S. Padalkar, J.J. Rodrlguez-Moscoso

Center for Intelligent Systems
Vanderbilt University
P.O. Box 1804, Station B

Nashville, Tennessee 37235

This work was performed for NASA's George C. Marshall Space Flight Center
under contract NAS8-36285.

AUGUST 9, 1985

RESEARCH ON AN EXPERT SYSTEM FOR

DATABASE OPERATION OF

SIMULATION/EMULATION MATH MODELS

Phase I Results

VOLUME I

Prepared by:

K. Kawamura, 6.0. Beale, J.D. Schaffer,
B.-J. Hsieh, S. Padalkar, J.J. Rodriguez-Moscoso

Center for Intelligent Systems
Vanderbilt University

P.O. Box 1804, Station B
Nashville, Tennessee 37235

This work was performed for NASA's George C. Marshall Space Flight Center
under contract NAS8-36285.

AUGUST 9, 1985

VOLUME I

TABLE OF CONTENTS

Page
SUMMARY ~T~

INTRODUCTION 11

REPORT ORGANIZATION Ill

PART I. BACKGROUND

1. Spacecraft Attitude Control Problem 1.1
2. Coupling Symbolic Processing and Numerical Computation 2.1

PART II. EXPERT SIMULATION SYSTEM

3. System Definition 3.1
3.1 Operating System Environment
3.2 Inference Engine (GENIE)
3.3 Expert System (NESS)

4. NESS Implementation 4.1
4.1 NESS Overview
4.2 NESS Architecture

5. NESS Knowledge Description 5.1
5.1 Knowledge Acquisition
5.2 Knowledge Overview

PART III. GENERIC SIMULATION MODEL

6. Model Definition 6.1
6.1 Model Overview
6.2 Prototype 0
6.3 . Prototype I

7. Model Simulation 7.1
7.1 Time-Domain Analysis
7.2 Frequency-Domain Analysis

Pseudo Open-Loop Response

PART IV. SYSTEM RUNS, VERIFICATION & EVALUATION

8. System Runs 8.1
9. System Verification 9.1
10. System Evaluation 10.1

PART V. CONCLUSIONS

11. Conclusions 11.1

SUMMARY

SUMMARY

This report describes the results of the first phase of a project,
"Research on an Expert System for Database Operation of
Simulation/Emulation Math Models," for NASA's George C. Marshall Space
Flight Center. The project was designed to bring techniques from artifi-
cial intelligence (AI) to bear on task domains of interest to NASA Mar-
shall Space Flight Center. One such domain is simulation of spacecraft
attitude control systems.

During the 7 months of this phase, two related software systems were
developed and delivered to NASA. One was a generic simulation model for
spacecraft attitude control, written in FORTRAN. The second was an expert
system which understands the usage of a class of spacecraft attitude
control simulation software and can assist the user in running the
software. This "NASA Expert Simulation System" (NESS), written in LISP,
contains generaT knowledge about digTtal simulation, specific knowledge
about the simulation software, and self-knowledge.

These two prototype software systems constitute a "proof of prin-
ciple" demonstration of the applicability of AI technology to a task of
interest to NASA. They also represent software tools which can be in-
crementally extended until they can perform genuinely useful work.

INTRODUCTION

INTRODUCTION

Current NASA planning to begin in 1986 the design and development of
a low earth-orbit Space Station poses a unique opportunity for development
of an expert system for coupling symbolic processing and numerical com-
putation.

Development of the Space Station System will require close coordina-
tion between system designers from NASA, the aerospace industry and
others. An intelligent system can provide design coordination for the
diverse teams expected to participate in the development of the Space
Station by handling the access and data requirements to and from various
simulation models and by assisting the user in running them.

Most current expert systems focus on the symbolic processing and
inference mechanisms of artificial intelligence (AI) and are not well
suited to deal with engineering problems requiring dynamic simulation
models. Therefore, a need exists for coupling symbolic reasoning with
conventional mathematical algorithms to provide a basis for multilevel
expert systems.

Recognizing such a need, NASA's George C. Marshall Space Flight
Center awarded a contract to Vanderbilt University Center for Intelligent
Systems to develop an expert system to run a class of spacecraft simula-
tion programs. This contract has the following long-range objectives:

1. To create an expert system that can assist the user in running a
variety of the simulation programs employed in the development of the
Space Station.

2. To create an expert system that understands the usage of a NASA-
supplied database management system and that can assist the user in
the operation of various features of the database system.

As a first step toward development of such an intelligent system, an
expert system was developed, called NESS (NASA Dcpert Simulation System),
which understands the usage of a prototype spacecraft attitude control
simulation model and can assist the user in running the simulation model.
NESS was built using a general inference engine called GENIE (GENeric
Inference Engine), written in Franz!isp. The simulation software, written
Tn Fortran-77, implements a generic spacecraft attitude control system and
includes modules such as Controller, Body Dynamics, Quaternion Transforma-
tion, and Integrator.

11

REPORT ORGANIZATION

REPORT ORGANIZATION

This document details the work performed on Phase I of Contract NAS8-
36285, "Research on an Expert System for Data Base Operation of
Simulation/Emulation Math Models," for the Marshall Space Flight Center of
the National Aeronautics and Space Administration. It was prepared by the
Vanderbilt University Center for Intelligent Systems in accordance with
the contract's Statement of Work.

This document consists of Summary, Introduction and Report Organiza-
tion sections, five main parts, references and three appendices. Of the
five main parts, Part I provides background information on the spacecraft
attitude control problem and the coupling of symbolic processing and
numerical computation. Part II gives an overview of the expert simulation
system NESS. Part III describes the generic simulation model and offers a
discussion of the time- and frequency-domain analyses it can perform. Part
IV contains the results of sample runs, system verification and system
evaluation. Part V provides conclusions. Part I through V make up Volume I
.of the Phase I Report.

Appendix A is a user's manual for NESS developed under this contract
and is contained in Volume II. Appendix B is a programmer's manual for
NESS. Appendix C contains a discussion on Quaternions. Appendix D provides
a listing for NESS and a simulation model listing.

iii

PART I. BACKGROUND

1_. SPACECRAFT ATTITUDE CONTROL PROBLEM

The function of a spacecraft attitude control system is to maneuver a
space vehicle into a certain orientation, defined by a reference vector,
and to maintain that orientation over an extended period of time. As an
example of this attitude control, consider the pointing control system for
the Space Telescope (Nurre and Dougherty). The control system must
maneuver the telescope through a 90 degree arc in less than 20 minutes,
and then maintain a stable line-of-sight to within 0.007 arc-seconds for
24 hours. Thus, the control system must be designed to maneuver through a
large change in direction and then track the vehicle's position about a
constant direction. The vehicle's dynamics would be represented by non-
linear differential equations during the maneuvering mode; in the tracking
mode, the equations could be linearized about the desired operating point.
In Phase I of this research project, only the simulation of the vehicle
and control system during the tracking mode is considered.

The commanded inputs to the control system would generally be angular
position. Both angular position and angular rate would be measured by star
trackers and rate gyros, and these measurements would be available to the
control system. The torque required to accomplish the maneuvers would be
provided by a set of control moment gyros (CMG's). Generally, redundancy
in sensors and actuators would be a design feature of the control system.
For example, four sensors could be positioned to measure some variable in
three-dimensional space such that any three of the sensors would provide
linearly independent measurements. With this type of configuration, all
four sensors could be used and consistency checks made on the measure-
ments. If any one sensor failed, the remaining three could provide com-
plete coverage of the desired variable. Figure 1.1 is a simplified il-
lustration of the pointing control system for the Space Telescope. The
controller, control moment gyros, and rate and position sensors mentioned
above can easily be identified in the figure. The Fine Guidance Sensor
block is used in different ways for the different modes of searching for a
new target, coarse tracking of the target, and finally maintaining an
attitude locked onto the target.

One factor which makes the control of a space vehicle more involved
than the traditional position control problem of classical control theory
is the need for several coordinate frames, and the fact that these coor-
dinate frames move with respect to time. Some of these various coordinate
frames specify the actual vehicle orientation, orientation of the target
with respect to the vehicle position, and alignment of the guidance sen-
sors. Other coordinate frames define the orbital and magnetic vertical
orientations of the vehicle and the plane of the vehicle orbit. Some of
these coordinate frames have their origin attached to the vehicle, others
have their origin on the Earth. However, all of the coordinate frames are
specified relative to a single inertia! coordinate frame having its origin
at the center of the Earth. Often, the coordinate frames are defined such
that pairs of frames have one common axis. In the case of the Space Tele-
scope, examples of coordinate frames which have common axes are the orbi-
tal and magnetic local vertical coordinate frames, the orbital local
vertical and orbital coordinate frames, and the equatorial inertial and
equatorial earth-fixed coordinate frames. Figures 1.2 and 1.3 illustrate
some of the coordinate frames used on the Space Telescope (Kennel, 1976).

1.1

I
O)
•o

<
•o

a.
•̂ -
in

1.2

OJ

to
c.

os
Q)
O

&

O)
•o

•o
c
(O

o>
X

e+J

o
v
c.

(NJ

I
en

1.3

0)
4->
to

O

8

•M

QJ

(O
•n-
S-
o

4->
(O
3
CT
UJ

• •

co
*

t-H

t
3

"«5
•r- <U
J- C
O <C
-»J ^
(O Q.
3
^ŵ
UJ

X
t— O
(O C
C -r-
i- 3
O) CT
>• UJ

1.4

Figure 1.2 shows the vehicle control axes frame and attitude reference
coordinate frame for arbitrary vehicle and reference directions. Figure
1.3 shows the equatorial inertial coordinate frame.

Transformations are possible between these various coordinate frames
(Brady et al., 1982; Paul, 1981). A matrix can be defined which can multi-
ply a vector in one coordinate frame to convert it into the equivalent
vector in a second coordinate frame. Premultiplication of the vector by
the matrix corresponds to having all rotations relative to the original
coordinate frame, while postmultiplication corresponds to having the
rotations specified in the current coordinate frame. The elements of the
matrix can be functions of the Euler angle rotations necessary to align
the axes of the two coordinate frames. Transformation from one coordinate
frame to another can be done in one step or as a series of operations
involving intermediate coordinate frames. Transformation matrices can also
be defined in terms of Roll-Pitch-Yaw angles between the coordinate frames
or in terms of a rotation about a specified vector. This last approach is
normally applied to spacecraft attitude control problems using the concept
of Quaternions. A Quaternion is a four element array; three of the ele-
ments define the vector about which the rotation is made, and the fourth
element is the angle of rotation. The Quaternion is described in detail in
Appendix C, and its use in this research project is discussed in the
section on the Generic Simulation.

A simple space attitude control system would have a minimum of three
(3) coordinate frames. These coordinate frames would represent the iner-
tial coordinate system, the actual vehicle orientation, and the target
reference direction. Zero position error is achieved when the reference
and vehicle coordinate frames are parallel to each other. These three
frames are used in the generic simulation for this research project. The
function of the attitude control system is to maneuver the space vehicle
until its coordinate frame becomes parallel to the reference coordinate
frame, and then to maintain that orientation until new reference direction
commands are given. The differences between actual and commanded angular
positions and actual and commanded angular rates would be used by the
control system as the error signals to the actuators. These signals would
command torque from the actuators about an axis to force the errors to
zero. This amounts to determining the transformation matrix between the
current vehicle orientation and that of the reference vector, and deter-
mining the control signals necessary to physically implement that trans-
formation matrix.

REFERENCES

Brady, et al., Robot Motion: Planning and Control, MIT Press, Cambridge,
1982.

Kennel, H.F., "Space Telescope Coordinate Systems, Symbols, and Nomencla-
ture Definitions," NASA Technical Memorandum, TMX-73343, September,
1976.

Nurre, G.S. and Dougherty, H.J., "The Pointing System for Space
Telescope."

1.5

Nurre, G.S., Dougherty, H., and Tompetrini, K., "Space Telescope Pointing
Control System."

Paul, R.P., Robot Manipulators: Mathematics, Programming, and^ Control, MIT
Press, 1981.

1.6

2. COUPLING SYMBOLIC AND NUMERIC COMPUTATION

One of the major design decisions of this project was to maintain a
clear separation between the generic simulation software system, which
performs the numeric computations, and the expert system which performs
symbolic reasoning computations. This parallels the situation in which a
human expert sets out to perform a numeric simulation experiment. The
human expert, using his knowledge of the system to be modeled and the
characteristics of the numerical software at his disposal, makes decisions
about how to instantiate his experiment. These decisions are then fre-
quently implemented by creating an input file to be read by the general
purpose simulation software. This file contains parameters describing his
system and switches which inform the simulation system of the options
selected by the expert user. The user then issues a command to the operat-
ing system to run the simulation program. If it runs without error, he
then examines the output file(s) and interprets the results.

Following this model, an expert system (NESS) was designed as a
software system separate from the generic simulation software. Figure 2.1
shows the interaction of these two systems schematically. Each system was
written in the programming language most natural to it. The generic
simulation software was written in FORTRAN, following years of traditional
engineering practice, and NESS was built using a general inference engine
(GENIE [Sandell, 1984]) written in LISP, following current AI practice.

The knowledge-base of NESS contains three types of knowledge: general
knowledge of spacecraft attitude control simulation; knowledge of the
input parameters and their formats required by the generic simulation
software; and self (or internal control) knowledge.

USER

GENIE-BASED
EXPERT
SYSTEM

write SIMULATION
MODEL

PARAMETER
FILE

>

i
CL

f

GENERIC
SIMULATION

MODEL

wHte^ OUTPUT
FILE

GRAPHICS
SOFTWARE

GRAPHICS
DISPLAY

Figure 2.1.
2.1

The user-interaction scenario is envisioned as follows. The user
invokes NESS, which queries him about his system and the experiment he
wishes to perform. This interaction should avoid requiring the user to
specify all the low-level parameters. Rather, it should concentrate on the
major engineering decisions required to get an answer to his major ques-
tions. The setting of the low-level parameters should be inferred and
performed by NESS using its knowledge. However, for an expert user, these
low level details must remain accessible so that NESS's recommendations
can be overridden, if desired. After gaining sufficient information to
specify a complete experiment, NESS runs the simulation and checks for
run-time error messages from the operating system. This process uses the
FRANZ LISP ability to call UNIX systems functions to fork descendent
processes and is described in more detail in Appendix B. Failures should
be rare if the knowledge is sufficient to avoid setting up experiments
which can be predicted to fail.

NESS would then examine the output file(s) created by the simulation
program and interpret them for the user in light of his major questions.
This may involve exhibiting plots of system responses and comments on the
stability of the proposed system design.

The prototype implementation of NESS described in this report cannot
be considered a complete realization of this vision. Rather, it should be
considered a "proof of principle" demonstration and a foundation upon
which to build the full capabilities. True to the theory of good expert
system design, extensions to the existing knowledge-base should be rela-
tively easy to implement. Indeed, the current system was developed from an
initial knowledge-base of only two rules. All of the capabilities
described in the rest of this report were added to that original system,
one by one, thereby demonstrating the soundness of the overall approach
and its consistency with the theory of good expert system design. Some
future expansions will be described in Part V of this report.

One additional point should be made concerning the coupling of
numeric and symbolic computation in this system. Occasionally, a simula-
tion expert may need to perform some quick calculations before he is ready
to run an experiment, the calculation of the eigenvalues of the proposed
system matrix is an example. Some system behaviors may be anticipated from
this information, and so NESS is able to make those calculations. Since
numeric computation is not a strong aspect of the LISP programming lan-
guage and well-tested FORTRAN routines for computing eigenvalues are
available, this operation was effected by directly linking a compiled
FORTRAN subroutine with a LISP demon which NESS calls when needed. This
design continues the parallel with human practice. Engineers needing
eigenvalues or other complex calculations, usually use a pocket calculator
(often programmable) or an easily accessible computer.

REFERENCES
- . f

Sandell, H.S.H., A Knowledge Engineering Tool for Creating Frame- and
Rule-Based Expert Systems, Ph.D. Dissertation, Vanderbilt University,
Nashville, TN, 1984.

2.2

PART II. EXPERT SIMULATION SYSTEM

3. SYSTEM DEFINITION

3.1 OPERATING SYSTEM ENVIRONMENT

The prototype systems developed for this project use several operat-
ing system features specific to the Vanderbilt VAX system. The expert
system (NESS) was designed using the GENIE inference engine (Sandell),
which in turn was written in FRANZ LISP (Foderaro). NESS contains LISP
code, which makes calls to functions provided by the EUNICE version 3.2
operating system. EUNICE, in turn, operates under version 3.5 of the
VAX/VMS operating system. The generic simulation model was written in
FORTRAN and runs under the supervision of EUNICE. The various system
environments and their relationships are illustrated in Figure 3.1.

VMS version 3.5

EUNICE version 3.2

!FRANZ LISP

1GENIE 2.3
i
! 1NESS 1.0
i i
i

1GENERIC SIMULATION !
!MODEL !

Figure 3.1

3.2 GENERAL INFERENCE ENGINE

The expert system was designed using GENIE, a general inference
engine developed at Vanderbilt University. GENIE allows a user to create
an expert system with the help of an interactive process. GENIE also acts
as an interpreter for the user-created expert system. The main features of
GENIE are summarized below.

Frames

GENIE stores all facts about the domain in a data structure called a
frame. A frame can be tailored to behave like a variable, a matrix, a set
of variables, facts about the domain, or almost anything else the user has
in mind. A frame in GENIE is represented as follows:

3.1

(frame_name
(slotl_name (valuel))
(slot2 name (valueZ))

(slotn name (valuen)))

Note that a slot may itself be a frame, and this may be repeated to
any depth.

Rules

Rules are used by GENIE to store knowledge from the domain. Rules are
of the form

IF condition THEN action

where the condition as well as the action may be highly complex in nature.
A rule, when evaluated, behaves as follows: If the condition is true, then
the action is performed; if not, nothing is done.

Rule-Bases

A collection of rules is called a rule-base. The GENIE rule inter-
preter can apply a rule-base with either of two control strategies,
forward-chaining or backward-chaining.

Forward-chaining

In this mode all rules in a rule-base are evaluated in a sequential
manner until no rule's condition holds true.

Backward-chaining

In this mode we first make a hypothesis about our domain or set a
goal to be satisfied. GENIE then evaluates all rules referring to our goal
in order to satisfy it.

Menu-Inputs

GENIE provides a menu-input facility to gather information from the
user. The user examines the a menu of various choices that appears on the
screen and then indicates his choice.

Agendas

Control information about driving the expert system is in special
frames called agendas. GENIE uses the information in these frames to run
the expert system.

NESS can utilize all the facilities mentioned above. Please refer to
the GENIE User's Manual for more detailed information about them.

3.2

A description of the salient portions of the expert system follows.

3.3 NESS (NASA EXPERT SIMULATION SYSTEM)

The main function of NESS is to gather initial values of parameters
necessary for the simulation experiment, organize them in the correct
format in a file, and run the FORTRAN-based simulation program, which gets
its input data from the file created by NESS. In addition, NESS allows the
user to look at the parameter values and change them if necessary before
running the simulation program. After the simulation has been run, NESS
allows the user to observe the outputs generated by the simulation
program. NESS also has the capability of loading in initial values of
parameters from a file and is able to store current initial values of
parameters in a file for future reference.

The primary knowledge in NESS is concerned with gathering input data
for the simulation experiment. NESS first asks the user for initial values
of some parameters. To obtain other necessary values, it then asks the
-user questions from which it can infer those particular values. This is
done in a systematic manner as follows:

a) NESS gathers all the data required to define the system to be simu-
lated. This includes getting values for the inertial and controller
matrices, initializing the Quaternion module and selecting a method of
integration.

b) NESS asks for the type of response to be obtained from the system. It
does so by asking the user to choose either STEP or FREQUENCY
response.

c) NESS then completes the set of parameters that are required to run the
simulation experiment.

This process is illustrated in Figure 3.2.

After all parameter values have been obtained, the simulation program
can be executed. The user may observe the results of simulation following
its execution.

3.3

DCONFIGURE INERTIAL MATRIX
2)CONFIGURE CONTROLLER MATRICES (Kp & Kd)
3)CONFIGURE QUATERNION
4)DETERMINE INTEGRATION ROUTINE

\/

5)DETERMINE TYPE OF RESPONSE
(step or frequency)

\I

6)DETERMINE NECESSARY INITIALIZATION
PARAMETERS
(TO Jfinal, del taT, error etc)

\t

7) RUN SIMULATION PROGRAM

DEFINITION
OF SYSTEM
TO BE
SIMULATED

DEFINITION
OF SYSTEM
RESPONSE

INITIALIZATION
OF PARAMETERS

Figure 3.2

3.4

£. NESS IMPLEMENTATION

4.1 NESS OVERVIEW

When the user starts NESS, the screen displays the following menu.

1) Exit to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a disk file.

These represent the functions that NESS can perform during a session.
The user is asked to enter a choice and NESS executes the function. After
the function has been executed, NESS returns to the menu, thus allowing
.the user to choose another function. This is known as the TOP LEVEL of
NESS.

Explanation of the Above Functions

1) Exit to GENIE

This function allows the user to halt NESS and go to the GENIE en-
vironment.

2) . Set up initial parameter values

This is the main function of NESS, i.e., collecting initial values of
parameters necessary for the simulation experiment. This function is
performed through the use of a rule-base named value_input_rb, which is
driven in the backward-chained mode.

3) Run simulation program

This function allows the user to run the FORTRAN-based simulation
program provided the initial values of the necessary parameters have
already been specified. Using a backward-chained rule-base called run_rb,
this function creates the data file required by the simulation program and
runs it using a FRANZ LISP function called "process," which allows a
program written in a foreign language like FORTRAN to be executed in the
EUNICE environment.

4) Display current parameter values required for simulation

This function displays a menu of all parameters known to NESS. The
user can choose the parameters of interest with a forward-chained rule-
base disp_init val_rb, which displays the values of the chosen parameters.
In addition, tTTe user can go back to the TOP LEVEL by means of an option
present on the menu at this level.

4.1

5) Display outputs generated by simulation

This function displays a menu of the outputs generated by the simula-
tion program. The user can see any of the outputs simply by indicating a
choice from the menu. Another choice provided allows the user to return to
the TOP LEVEL of NESS.

6) Change initial parameter values required for simulation

This function displays the same menu displayed by Function 4, i.e., a
menu of all parameters known to NESS. From this, the user can choose the
parameters whose values he wants changed. This is done using a forward-
chained rule-base named change_param rb. Once again, using an option
present on the menu, the user can go Fack to the TOP LEVEL.

7) Set initial parameter values to default values

In this function the user is prompted for the file containing the
default values of parameters; NESS then loads in these values into its
database. At present, the file containing the default values of parameters
has to be one that has been stored, using Function 8 (store current
parameter values in a disk file).

8) Store current parameter values in a disk file

This function prompts the user for the name of a file in which the
current values of parameters should be stored.

At this point it should be remembered that certain functions of the
TOP LEVEL menu, such as 'set up initial parameter values,1 'run simulation
program,' 'set up default values of all parameters,' and 'store current
parameter values in a disk file,' return to the TOP LEVEL immediately
after their work is finished. The other three functions (excluding Func-
tion 1 'Exit to GENIE1) remain in their particular mode until the user
chooses to return to the TOP LEVEL.

4.2 NESS ARCHITECTURE

As noted earlier, the main constituents of GENIE are data frames,
agenda frames, menu-input and rule-bases. The agenda frames provide a
control strategy for NESS, the menu-input provides a means of entering a
user's choice from a menu of options, and the data frames are used to
store data. The rule-bases form a primary source of knowledge and can draw
inferences and perform other useful work such as gathering information
from the user.

The two basic structures that occur throughout NESS are:

1) An agenda frame followed by a menu-input, followed by one or more
rule-bases. This structure is used when some input is required from
the user. Input is through menu-input. The rule-base then uses the
input given by the user to perform the necessary functions.

4.2

AGENDA FRAME

MENU-INPUT

RULE-BASE

2)

Figure 4.1

An agenda frame followed by a rule-base. In this structure inputs may
or may not be required from the user. If any inputs are required, they
can be obtained through the rule-base. Rules may ask the user for
information they require, if it is not already known.

AGENDA FRAME

RULE-BASE

Figure 4.2

The difference between the two structures lies in the way they obtain
inputs from the user. The first structure uses a menu-input stage in which
the user must indicate his choice from a menu of options displayed on the
screen. In both the structures, a backward-chained rule-base may be
employed to gather various types of inputs, e.g., input from a menu, a
numerical input, or a literal input. In NESS, the first structure utilizes
only a forward-chained rule-base, while the second utilizes only a
backward-chained rule-base. Figure 4.3 diagrams the architecture of NESS.

The start agenda frame initiates NESS and loads in necessary files.
Then it calls topjevel agenda, which keeps NESS at its TOP LEVEL MENU
until the user decTdes to return to the GENIE environment. The
top level_agenda frame displays the TOP LEVEL MENU of functions described
earTier, and after the user has made a choice it drives the stage_l_rb to
carry out the function selected. Stage_l_rb performs the functions given
in the TOP LEVEL MENU either by calling an agenda frame that deals with a
specific function, or by performing other functions itself.

4.3

i•»
3
n

-?

-

o»

«
•r
1.3

i*

3

*
I

,2

-*

1!

15
s •? *•I"

"-*

C
ur

re
nt

\

sr
 V

al
ue

s
V

*!
^
r
II

S'S

^x--̂ .̂/ \
4-» <A

If
X 0)
* **•si
(A «O

I y

^^

s *̂**.
f \.

^ I
3 cn
M £
t/i a.

^ /

/^^\

*J L.

= C a

r'
v J
^ —

*JZ

x to
UJ

\X

V
-^

^

X

^

N

1
1

to
£
0

5-
*CL
in

'if

l̂ 1

o

3
a.1 I

£

i

?1*
•" "*« **•

5 «S

t

-

\

/

\
X

\
/

N
X

\
/

^

'

I
U

TJ
(-

Cl
«

t:
X

\

X

-

i

i

a.

§

3

i!

Ê

1
«

s?

3

£

\

X

V

^

\X

s
/

\
X T

•»
t

1
1

J
1

' J=.
0

J. 3

; ̂» ...
5 1
S «

1

1
t

T
•
i

•J
t

T

\

ch
ai

ne
d

€

i
ii

3 1
J >»: «
D a= v»

»IW| **"

!^> g

§25
g 5§

VI

V

s

£ «

l1 -̂— 3 >c

11"

Pi
p
•6 a

— &

Xx/

\

.

\

•s
S

a «
c 2"o *•

•*•! = -i«i
•J VI

\\

o <a
4-> g

</> O

— +>«l VI

/

/ \

\ /

to
LU

U.
O

UJ

CO
••a-

4.4

A description of all rule-bases follows.

a) Stage_l_rb

The majority of the rules in this forward-chained rule-base are of
this form.

IF the user desires to perform one of the functions listed on the TOP
LEVEL MENU, THEN GENIE performs that function by calling the FRANZ LISP or
GENIE functions that will accomplish the job.

In some cases these functions drive agenda frames that control some
of the complex functions listed on the TOP LEVEL MENU.

Other rules prevent the user from running the simulation program or
looking at the outputs of the simulation program if the necessary condi-
tions for carrying out these functions are not fulfilled.

b) Value_input_rb

This is the backward-chained rule-base which gathers initial values
of parameters necessary for the simulation experiment. The backward chain
starts from rule_l, which says:

IF values have been found for all parameters necessary for simula-
tion, THEN print message saying that the user can run the simulation
program.

IF values have not been found for all parameters, THEN NESS evaluates
rules concerning each of those parameters. Generally those rules are of
two forms.

1) IF the user supplies the value of a parameter, THEN that parameter's
value is found.

2) IF NESS can infer a parameter value from information provided by the
user, THEN that parameter value is found.

Thus, when all required parameters have initial values, this rule-
base stops execution and returns control to the TOP LEVEL.

At this juncture, some explanation of how frames are used in NESS
should be provided. Frames are used to store parameter values. Different
types of frames can store different kinds of information, e.g., scalar
values, matrices, and specific attributes about parameters.

A frame which stores scalar values would look as follows:

(initial value
(TO (0.0))
(deltaT (0.001))

•
•
•

(error'(O.OOOl)))

4.5

Here initial value is the name of the frame and TO, delta!, error are
the names ofthe parameters, which are scalar in nature. Following the
parameters are their values as found by NESS. Initially the values would
be "nil," signifying that they are not yet found.

A matrix frame would look as follows:

(Kp
(d 1) (1.0))
((1 2) (0.0))

•
•

((3 3M1.0M)

Here Kp would be the name of the matrix, and slots (1 1) to (3 3) would be
the elements of the matrix. Following the elements are their values.

A frame containing specific attributes about parameters would look as
follows:

(Kpjnatrix
(matrix_type (diagonal))
(matrix full (true)))

3) Disp_init_val_rb

This forward-chained rule-base allows the user to look at parameter
values. The rules in it are of the form:

IF the user wishes to see a particular parameter's value, THEN dis-
play that parameter's value using suitable FRANZ LISP or GENIE functions.

4) Change_param_rb

This forward-chained rule-base lets the user change parameter values
before running the simulation program. Its rules are of the form:

IF the user wishes to change a particular parameter's value, THEN
change that parameter's value by asking the user for a new value, and
storing the new value in the slot reserved for that parameter.

But, if the user wishes to change values of a matrix, another
forward-chained rule-base called change_matrix_rb is invoked.

5) Ou tputjdi spl ay_rb

This forward-chained rule-base allows the user to look at the results
of the simulation experiment. The rules in it are of the form:

IF the user wishes to look at a particular result, THEN display it by

4.6

making an operating system call, which displays the contents of the file
containing the result of interest onto the screen.

This is done by using the FRANZ LISP function "exec," which receives
as its argument any valid operating system command.

6) Run_rb

This backward-chained rule-base runs the simulation program. First,
eigenvalues of the system matrix are computed, and the results are used to
infer the value of Tfinal. Special FRANZ LISP functions create the cor-
rectly formatted data file and execute the FORTRAN-based simulation
program from the EUNICE environment.

4.7

5. NESS KNOWLEDGE DESCRIPTION

5.1 NESS KNOWLEDGE ACQUISITION

The knowledge residing in NESS was gathered from two primary sources,
domain experts at NASA and members of the task force at Vanderbilt. The
domain experts at NASA outlined the main purpose of the project and gave
the task force suggestions regarding what they would like NESS to do. The
task force at Vanderbilt was divided into two groups, the control group
and the expert system group. The control group produced the FORTRAN-based
simulation program and gave the expert system group instructions regarding
the organization of NESS. The control group had frequent contacts with the
experts at NASA, from whom they gained domain-specific knowledge about the
project. They then developed the simulation model and generated the
knowledge that was to be incorporated into NESS. The expert system group
interacted with the control group and obtained all the knowledge necessary
to design NESS, and developed the software for NESS as well.

5.2 NESS KNOWLEDGE OVERVIEW

NESS contains three basic types of knowledge in its knowledge-base.

1) Knowledge on FORTRAN program inputs

NESS recognizes the format of the data-file containing parameter
values as required by the FORTRAN simulation model. This knowledge is
contained in a special purpose FRANZ LISP function called
lsetup_init_val_in_simula.inp l.

2) Knowledge on simulation

The simulation knowledge in NESS is limited to the parameters whose
values are required by the simulation model. Most of the parameter values
are provided by the user.

NESS contains some knowledge that enables it to infer certain
parameter values. For example, to configure the Kp and Kd matrices, NESS
knows that if either of them is not wanted by the user then all elements
of that particular matrix are set to 0.0. If the user does not want any
cross-coupling between control axes for a particular type of control, then
NESS infers that the particular matrix is diagonal and sets the off-
diagonal elements to 0.0. If a matrix is found to be diagonal, NESS finds
the values of the diagonal elements from the user. In case the user wants
all the diagonal elements to have the same value, NESS asks the user for
that common value and sets all diagonal elements to that common value. If
NESS finds a particular matrix to be non-diagonal then it asks whether the
user wants that matrix to be symmetric or not. If the user wants a sym-
metric matrix, then NESS prompts the user for only six of its values and
infers the other three. If a non-symmetric matrix is desired then NESS
prompts the user for all nine of its values. To find the initial angular
rate omega, NESS asks whether the user wants omega to be 0.0 for all axes.
If the user so desires, NESS sets omega for all axes at 0.0. If the same
non-zero values of omega are desired for all three axes, NESS prompts the
user for that value and sets all three values to that common value. If the

5.1

user desires three different values for omega, then NESS prompts the user
for three different values. The same kind of inference is used to initial-
ize angular position theta in case the Quaternion is not wanted. If the
Quaternion is wanted, then theta is initialized to its initial values. To
find Tfinal (the time when the simulation program should stop
computation), NESS finds the eigenvalues of the system matrix. It then
finds the eigenvalue that is closest to 0.0. NESS takes the inverse of
this value (TAU) and multiplies it by 5.0 (a heuristic constant) to get
the value of Tfinal for step response. For frequency response NESS finds
the eigenvalue real part closest to 0.0, inverts its real part and passes
this value to the FORTRAN program. In case either Kp or Kd contain all 0.0
elements, the value of TAU becomes infinity. In this case a default value
of 1.0 is chosen for TAU by NESS and hence Tfinal for step response be-
comes 5.0.

This type of knowledge is represented by rules in value_inputjrb
rule-base. A typical rule looks as follows:

IF
[proportional control is not desired] i

THEN
[each element of Kp matrix = 0]

and [Kp matrix is full]
and [Kp_matrix_type is zero]

3) Self-knowledge (control)

NESS also contains knowledge about its own functions. This knowledge
is used to prevent the user from running the simulation program or dis-
playing, changing, or storing parameter values in a disk file when there
are no parameter values in the database. NESS also prevents the user from
displaying the outputs generated by the simulation program when the
simulation program has not been run. NESS also contains knowledge which
allows the user to display and change parameter values, display outputs
generated by the simulation, store current parameter values in a disk file
and set parameter values to default values.

This type of knowledge is represented in NESS by the stage_l_rb rule-
base.

A typical rule looks as follows:

IF
[user wants to run simulation program]

and [all simulation parameters are not known]
THEN

[display a message telling the user that the simulation
program cannot be run]

5.2

REFERENCES

Sandell, H.S.H., The GENIE User's Manual, Vanderbilt University, 1984.

Foderaro, J.K. et al.. The FRANZ LISP Manual, University of California,
Berkeley, June, 1983.

Winston, P.H., Artificial Intelligence.

5.3

PART III. GENERIC SIMULATION MODEL

6. MODEL DEFINITION

6.1 MODEL OVERVIEW

The Generic Simulation Model shown in Figure 6.1 represents the
generic spacecraft attitude control problem during the tracking mode. Two
prototypes of the generic simulation model, Prototype 0 and Prototype I,
are presently running under DEC VAX-VMS 11/780. A more detailed descrip-
tion of each prototype model will be discussed in the following sections.

etctui1

o *£)

*e° P̂
QUATERNION INTEGRATOR

COMMAND
6ENERATOR

*«ctu«l

Figure 6.1. Block Diagram of the Generic Simulation Model.

The present software realization of the simulation models was done in
a unique way in order to satisfy the modularity requirements. Each block
in Figure 6.1 has been implemented as a module, giving the software en-
gineer an easy way to make future changes.

Following is a discussion
generic simulation model.

Command Generator

of the most relevant features of the

Commanded angular attitude and/or rate are the inputs to the system.
Thus, the Command Generator drives the system to meet the required input
specifications in position and/or angular velocity.

Controller

Attitude error and rate error are the components of the controller
presently implemented. While the attitude error may or may not drive the
system according to the design requirements (Glaese et al., 1976), the
rate error plays a more relevant role when performance of the system is
tested under small position variations. In this way the control law of the
attitude control system is considered proportional to attitude errors
and/or rate errors depending on design requirements.

6.1

Actuators

The actuators will act as the modules for introducing the steering
distribution laws; other torque laws, such as the magnetic torque law for
a pointing system, are also included in this module for the Space Tele-
scope (Nurre).

Body Dynamics

The body dynamics module represents the vehicle dynamics. Rate-change
equations form the basis of the body dynamics. The corresponding equations
for changes in angular position may or may not be included in this module.

Quaternion

Quaternion-rate equations are solved during the simulation to deter-
mine actual attitudes (Ickes 1970). The Euler angle convention is followed
during the solution of such equations, and new angular positions are
determined from the updated rotation matrix VR (Attitude Module Section
2).

Integrator

Three different integrators have been included in this module, giving
the user the opportunity to select one of them. They are Euler, Runge-
Kutta 4th order, and Predictor-software realization.

Sensor Units

Sensor units include rate and position sensors. They provide the
actual values for angular attitude and rate, which will be compared with
the input commands.

6.2

6.2 PROTOTYPE 0

Prototype 0 represents the simplest version of the Generic Simulation
Model represented in Figure 6.1. This model was developed for the sole
purpose of verifying the performance of the Generic Simulation Model
without Quaternions.

Figure 6.2 illustrates the block diagram for Prototype 0. The various
modules in this representation are discussed below.

Actual

COMMAND
GENERATOR

^actual

Figure 6.2. Block Diagram of Prototype 0.

Command Generator

Input commands for angular position and angular rate are considered.
The input commands are therefore represented by QC ande^

Controller

The control law is given by the torque command equation:

Tc = KP
ee 4 Kd"e

The KD and Kd matrices are the proportional and derivative gain matrices
of the system, respectively.

Body Dynamics

The dynamics of the vehicle to be controlled are represented by the
set of differential equations

e =

w = r (Tc-u)xin))

where w is the rate vector; I is the inertia matrix of the vehicle; Tc is
the torque command vector; and x stands for the vectorial product between

6.3

two vectors.

Integrator

The two sets of differential vector equations are solved by either
Euler, Runge-Kutta 4th order or fourth-order Predictor-Corrector routines.
The selection of the type of integration routine can be made during the
interaction with the expert system..

6.3 PROTOTYPE I

Prototype I more accurately models the spacecraft attitude control
problem than Prototype System 0. With Prototype System I, the spacecraft
can be in a moveable coordinate frame with respect to a reference direc-
tion. In the simulation of this vehicle, a Quaternion is used to transform
the coordinates in one frame into equivalent coordinates in the other
frame, an operation discussed in Section 1. Since the vehicle coordinate
frame (V) is moving, a differential equation is a function of the vehicle
angular rates. The Quaternion rate is integrated numerically, along with
the differential equation representing the body dynamics, to produce the
current value of the Quaternion. A vehicle-to-reference transformation
matrix is thereby formed as a function of the Quaternion. The angular
position of the vehicle can then be calculated by equating this specific
transformation matrix with the solving for the angle of rotation (Kennel
1976). This angle is the angular position of the vehicle in the vehicle
coordinate frame. In the simulation of Prototype I, it is assumed that the
reference coordinate frame (R) has zero angular rate.

The block diagram for Prototype I is shown in Figure 6.3. The various
modules in this representation are discussed below.

6y Uy)

COHHAND
GENERATOR

Figure 6.3. Block Diagram of Prototype I.

6.4

Command Generator

During simulation of the system, only commanded angular attitude is
considered. The input command is therefore represented by 9 .

Controller

The control algorithm is represented by the torque command equation

Tc = Veerr ' Kd'a)v
where 0e represents the attitude error (the difference between the posi-
tion command sc and angular position in V coordinates), Kp the propor-
tional gain matrix, u>v the body rate in terms of V coordinates, and Kd the
derivative gain matrix. Since inertial hold conditions are assumed during
the simulation, the angular rate of the R frame ur is assumed to be zero.

Body Dynamics

The dynamics of the vehicle for this prototype system are defined in
terms of

where rate variations d/dt (o>v) are defined in V coordinates and in terms
of the F function, which is the same representation as the one in
Prototype 0.

Quaternion

The Quaternion-rate equations (Klumrnp 1976) are defined by

d/dt(Q) = G(t, Q,Wy)

where Q represents the Quaternion, G is the vector function of states
containing the information related to angular rates in V coordinates. (See
Appendix C for a full discussion of Quaternions.)

Integrator

The numerical solution of the two sets of vector differential equa-
tions above is done in a similar way as the integration applied for
Prototype 0. Euler, Runge-Kutta 4th order, and Predictor-Corrector
routines can be chosen by the user during the interaction with the expert
system. The current Quaternion values and angular rate in V coordinates
are obtained from the integral solution of the aforementioned equations.

VR Transformations

Once the current Quaternion is known, a process of Quaternion nor-
malization is performed to update these elements. After the normalized
Quaternion is found, the rotation matrix VR is computed to determine the
actual attitude of the vehicle.

6.5

A new set of actual angular positions with respect to each axis is
computed from the current VR matrix. These new attitude values are in
terms of Euler angles in V coordinates.

REFERENCES

Kennel, H.F., "Space Telescope Coordinate Systems, Symbols, and Nomencla-
ture Definitions," NASA Technical Memorandum, TMX-73343, Sept. 1976

Glaese, J.R. et al., "Low-Cost Space Telescope Pointing Control System,"
Journal of Spacecraft, Vol. 13, No. 7, July 1976.

Space Station Project to the System Dynamics Lab, Marshall Space Flight
Center, September, 1984.

Klummp, A.R., "Singularity-Free Extraction of a Quaternion from a
Direction-Cosine Matrix," Journal of Spacecraft, Vol. 13, No. 12,
Dec. 1976.

Ickes, B.P., "A New Method for Performing Digital Control System Attitude
Computation Using Quaternions," AIAA Journal, Vol. 8, No. 1, Jan.
1970.

6.6

7. SYSTEM SIMULATION

The purpose of a spacecraft attitude control system is to maintain
the spacecraft in a fixed orientation for a certain period of time. In
order to test the performance of such a control system, time-domain and
frequency-domain analyses were conducted. The details of simulation
methods, analytical routines, and other useful information provided by the
simulation are presented in the following sections.

7.1 TIME-DOMAIN ANALYSIS

Since the outputs of spacecraft attitude control systems are usually
functions of time, the performance of the system in the time-domain must
be evaluated.

Among time-domain analytical techniques, the step response method is
often used. In general, a step waveform is chosen since it is easy to
simulate and its instantaneous jump in amplitude shows how quickly the
system will respond to a sudden input change (Kuo 1981).

The step input generated by the command generator is usually in an
angular position, representing a sudden rotational requirement to the
vehicle. The step response analysis will provide the following informa-
tion:

a) Transient Response:

How fast the vehicle would respond to the input command. Tran-
sient response is characterized by delay time, peak time, and rising
time, and maximum overshoot.

b) Steady-State Response:

The final accuracy of the vehicle in steady state. The steady
state is characterized by the steady-state error and settling time.

Initial Parameter Values

Most initial parameter values are provided by the user during an
interactive session with the expert system. The description of each
parameter is summarized below:

. Initial time

. Time interval

. Integration allowance round error
(for multistep integration methods)

[to]

[del tat]

[Bound(4)]**

. Steady-state error

. Input command for:

[sse]

X-axis
Y-axis
Z-axis

[Bound(13)]
[Bound(14)]
[Bound(15)]

7.1

. Initial conditions of:
Prototype 0 Prototype I

- angular rate
Omega(x) [Y(l)] [Y(l)]
Omega(y) [Y(2)] [Y (2)]
Omega(z) [Y{3)] [Y(3)]

- angular position
Theta(x) [Y(4)] N/A
Theta(y) [Y(5)] N/A
Theta(z) [Y(6)] N/A

- Quaternion
Roll angle N/A [Y(7)]
Pitch angle N/A [Y(8)]
Yaw angle N/A [Y(9)]

. The three (3) by three (3) proportional
gain matrix [Kp]

. The three (3) by three (3) derivative
gain matrix [Kd]

. The three (3) by three (3) inertia matrix [INMAT]

* The variable names in the square brackets are used in the
FORTRAN program.

** "Bound" is a vector which contain various input parameters;
see the FORTRAN routine GENSIM in Appendix D for details.

Current Experimental Conditions;

. The inertia matrix INMAT is either identity or a multiple
of identity.

. The initial conditions of angular rate are zero.

Response Analysis Routines

Three routines (see Appendix D for details), OUTPUT_17, ANALYS, and
RESULTS, are used to analyze the step response.

OUTPUT_17 will be called in each time interval to write all the
intermediate angular positions and rates into a file that will be used by
RESULTS.

ANALYS obtains data from OUTPUT_17 to calculate the intermediate
values:

. percentage of maximum overshoot [PMO]

. the starting point of rising time (10% of input) [RTini]

7.2

. the ending point of rising time (90% of input) [RTend]

. delay time (50% of input) [DT]

. settling time [ST]

RESULTS uses the outputs of ANALYSIS and provides options to display
outputs in several formats:

. maximum overshoot, delay time, rising time, peak time, and
settling time in numerical values

. numerical results of angular position and rate with respect
to time in a screen-page format

. the graphical plotting of outputs

All of these outputs are stored in different files which can be
examined in the expert system NESS by entering the proper choice in TOP
LEVEL MENU of NESS.

Figure 7.1 illustrates the process-flow diagram of the Generic
Simulation Model.

7.2 FREQUENCY-DOMAIN ANALYSIS

The basic feature of the frequency-domain analysis is that the per-
formance description of a linear time-invarient control system is given in
terms of its steady-state response to sinusoidaily-varying input commands.
Since the frequency-domain analysis lets us predict the time-domain
characteristics of the performance of a system based on the sinusoidal-
steady-state analysis information, it has constituted the core of classi-
cal control theory.

Stability is one important characteristic that can be derived from
the frequency response. In general, the larger the gain margin and phase
margin, the more stable the system becomes.

Initial Parameter Values

Most of the parameter values of frequency response are also provided
by the user during an interactive session with the expert system. The
description of each parameter is summarized below:

. Initial time [to]

. Time interval [del tat]

. Integration allowance round error [Bound(4)]
(for multistep integration methods)

. Input sinusoid amplitude [Amp]

7.3

o
o

oo

DC
LU

O

o:
«c
o
o

a:
en

. Input sinusoid lowest interest frequency

. Input sinusoid phase

. Number of frequency decade

. Number of sampling frequencies per decade

. Input command

. Initial conditions of:

- angular rate Omega(x)
Omega(y)
Omega(z)

- angular position
Theta(x)
Theta(y)
Theta(z)

- Quaternion
Roll angle
Pitch angle
Yaw angle

X-axis
Y-axis
Z-axis

[Y(2)
[Y(3)

C Y(4)
[Y(5)
C Y(6)

N/A
N/A
N/A

. The three (3) by three (3) proportional
controller matrix

. The three (3) by three (3) differential
controller matrix

. The three (3) by three (3) inertial
matrix

[Freq]

[Phase]

[Ndec]

[Nsd]

[Bound(13)
[Bound(14) ;
[Bound(15) !

Prototype 0 Prototype I

Y(2)
Y(3)

N/A
N/A
N/A

Y(7)
Y(8)
Y(9)

[Kp]

[Kd]

[INMAT]

Current Experimental Conditions

. The inertial matrix INMAT is either identity or a multiple of
identity.

. The input angular position commands are zeroes or

Amp x sin(Freq x t + Phase)

Freq is the current input frequency

. The input angular rate commands are zeroes or

Amp x Freq x cos(Freq x t + Phase)

The following parameter values will be calculated before running
simulation.

7.5

Lowest frequency (Freq)
The frequencies of interest for spacecraft range from
1/60 Hz. to 20 Hz (or 0.1047197 rad./sec. to 104.7197
rad./sec).

Number of sampling frequencies (Nsf)
The user is asked to provide the lowest frequency of
interest, the number of frequency decades (Ndec), and
number of sampling frequencies per decade (Nsd).

The following formulae are applied to obtain testing
frequencies which are equally spaced on a log scale.

The total number of sampling frequencies (Nsf) are

Nsf = Nsd x Ndec +1 (1)

The constant multiplier (Const) is calculated by:

Const = EXP(LN(10.0)/Ndec) (2)

where
EXP is the exponential function
LN is the natural logarithm function

Then, the next frequency is the product of Const and
the current frequency

Freq(next) = Freq(current) x Const (3)

For example, if the user gives the lowest frequency as
0.1 rad./sec., Ndec is 3, and Nsd is also 3, from Eq.(l)

Nsf = 3 x 3 + 1 = 10

The constant is

Const = EXP(LN(10.0)/3) = 2.1544347

From Eq.(3), ten sampling frequencies are

the first decade:
Freq(l) = 0.10000000 rad/sec
Freq(2) = 0.21544347 rad/sec
Freq(3) = 0.46415880 rad/sec

the second decade:
Freq(4) = 1.0000000 rad/sec
Freq(5) = 2.1544347 rad/sec
Freq(6) = 4.6415880 rad/sec

the third decade:
Freq(7) = 10.000000 rad/sec
Freq(8) = 21.544347 rad/sec

7.6

Freq(9) = 46.415880 rad/sec

the fourth decade:
Freq(lO) = 100.00000 rad/sec

. Final time (tf):
This input parameter is calculated by the heuristic

tf = 6 x Tau + T (4)

Where T is the period of the input frequency.

Thus, tf will be different for each frequency.

Pseudo Open-Loop Frequency Response

While we are usually interested in the open-loop frequency response,
spacecraft attitude control systems are closed-loop systems. In order to
conduct the frequency-domain analysis, a pseudo open-loop frequency
response analysis method was introduced from a utility program of the
Simulation Lab at NASA Marshall Space Flight Center. For each frequency,
by injecting a sinusoidal signal at a proper position in the closed-loop
system, the pseudo open-loop amplitude and phase can be calculated once
the system reaches steady state.

It is easily shown that the relationships of amplitude and phase
between open-loop and close-loop systems can be expressed as:

AMPQl = AMPcl[AMPcl + 2 x AMPc] x cos(PHAcl) + 1] (5)

PHAQl = PHAcl - tan"
1 [AMPcl x sin(PHAc]) + 1]

1/2 (6)

where
AMP = Amplitude
PHA = Phase
ol = open-loop system
cl = closed-loop system

For the system shown in Figure 7.2, the open-loop transfer function is

G(s) = Y(s)/X(s) (7)

X(S)
G(s)o v a ;

! Y(s)
i >
i

Figure 7.2

If X(s) is a sinusoidal function, then by applying the discrete

7.7

Fourier transform (Oppenheim & Schafer 1975), the discrete form of Y(s)
can shown as

Y{n) = AMPcl x sin[(2 x TT x n/N) + PHA] (8)

where
n is an integer between 0 and N-l
N is the total number of samplings in T

Solving the closed-loop amplitude and phase from Eq. (8), we get

AMPcl = 2 x [C
2 + S2]1/2

PHAcl = tan'̂ C/S)

where
N-l

C = z cos(2 x TT x n/N) x Y(n) (9)
n=l
N-l

S = z sin(2 x TT x n/N) x Y(n) (10)
n=l

Substituting Eq. (9) and Eq. (10) into Eq. (5) and Eq. (6), the
amplitude and phase of pseudo open-loop can be obtained.

Analysis Routines

Four routines (see Appendix D for details), INITIALIZE, ANALYS,
POLFRCAL and RESULTS are used to analyze the frequency response.

INITIALIZE will be called in the beginning of each frequency response
and performs the following initialization tasks:

. clears all the temporary storages

. computes input period [Period]

. computes angular frequency [Omega]

. computes integrate starting time [ts]

. computes integrate stop time [tf]

ANALYS performs the following tasks:

. computes the current angular position and rate errors to
integrate sine and cosine series for the discrete Fourier
summation [THS(I), THC(I), OMS(I), OMC(I)]

7.8

. computes the new angular position and rate errors
[Therr(I), Omerr(I)]

POLFRCAL will be called when the current frequency analysis is
finished and uses the outputs of ANALYS.

. computes pseudo open-loop frequency amplitude and phase in
decibels (dB) and degrees, respectively.

[THAOL(I), THPOL(I), OMAOL(I), OMPOL(I)]

RESULTS uses the outputs of the POLFRCAL routine and produces the
frequency response outputs in several formats:

. Amplitudes and phases in numerical values for every frequency
in the frequency range

. Bode plotting

REFERENCES

Kuo, B.C., Automatic Control Systems, 4th Edition, Prentice-Hall, 1981.

Oppenheim, A.V., and Schafer, R.W., Digital Signal Processing, Prentice-
Hall, 1975.

7.9

PART IV. SYSTEM RUNS, VERIFICATION & EVALUATION

8. SYSTEM RUNS

The primary knowledge in NESS is concerned with gathering input data
for the simulation experiment. NESS asks the user to provide initial
values of some parameters and obtains others by asking questions from
which it can infer them. This is done in a systematic manner as follows:

a) NESS gathers all the data required to define the system that is to be
simulated. This includes getting values for the inertial and control-
ler matrices, initializing the Quaternion module and selecting a
method of integration.

b) NESS asks for the type of response desired from the system. This is
done by giving the user a choice of selecting a type of response from
STEP or FREQUENCY responses.

c) NESS then completes the set of parameters required to run the simula-
tion experiment.

This is illustrated by the following sample NESS session logs for
Prototype I.

8.1

STEP RESPONSE

! Welcome to NASA Expert Simulation System (NESS) !

Loading GENIE, and NESS.... (please be patient)

GENIE version 2.3 generated on Tue Apr 2 12:25:06 1985

NESS version 1.0 generated on Thr Jun 27 11:45:05 1985

This Expert System provides an intelligent interface to a generic
simulation program for spacecraft attitude control problems. Below
is a menu of the functions the system can perform. Control will
repeatedly return to this menu after executing each user request.

Please make only one choice at a time

top_level_choi ce
top_level_menu

1) Exit to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a disk file

Please enter choice(s):
* 2

For the present, the Inertia matrix is assumed to be diagonal.
It is also assumed all diagonal elements to be 'equal7. Th: ?
assumption makes the 'system' uncoupled in nature-
Please enter the common element of the diagonal
Matrix.

Please, enter the following parameter valuer

inerti al_matri x
<1 1)

Please enter value:
» 1

All values of the 'Inertia matrix' have been found.

Do you. want a proportional (P) type control?
(For P and PD type control)

1) yes
2) no

Please enter choice(s):
tt 1

For proportional control, do you. want cross-coupling between control axes?

8.2

1) yes
2) no

Please enter choice(s):
2

Do you want the same proportional controller gain along
al1 axes ?

1) yes
2) no

Please enter choice(s):
tt 1

The common value o-f the Kp gain -for all axes is required. It is
called Kp (11).

Please, enter the -following parameter value:

Kp
(1 1)

Please enter value:
» 1

All values o-f the Kp Matrix have been found.

Do you want a differential <D> type control?
(For D and PD type control)

1) yes
2) no

Please enter choice(s)s
« 1

For differential control do you want cross-coupling between control axes?

1 > yes
2) no

Please enter choice(s):
2

Do you want the same differential controller gain for
all axes ?

1) yes
2) no

Please enter choice(s):
1

The value of the Kd Controller Gain Matrix common to all axes
i5 required.

Please, enter the following parameter value:

B. 3

Kd
(1 1)

Please enter value:
» O.5

All values o-f the Kd Matrix have been -found.

Do you want the Quaternion block to be included in the simulation'

1) yes
2) no

Please enter choice(s):
1

Please enter initial roll angle (rotation about the X axis)
Enter your value in radians
Please enter value:

» 0

Please enter initial pitch angle (rotation about the Z axis)
Enter your value in radians
Please enter value:

» O

Please enter initial Yaw angle (rotation about Y axis)
Enter your value in radians
please enter value:

» O
The Roll, Pitch, and Yaw angles have been initialized.

Please, select one method o-f integration:

1) Euler
2) Fourth-order Runge-KXitta
3) Predictor corrector

Please enter choice(s):
tt 1

Please select -from the -following menu the type o-f System
response. Please make only one choice.

1) Step response
2.) Frequency response

Please enter choice(s):
tt 1

You can apply the input command to only one axis or none of them
Please select your choice (only one)

1) X
2) Y
3) 2
4) none

8.4

Please enter choice(s): •
ft 1

The time of application o-F the input signal, also known as
the initial time, is required. Usually its value is 0.0
seconds.

initial_value
TO

Please enter value:
» O

Initial values -for angular rate and/or angular position are required

The angular position for all axes have been initialised.

Do you want the initial value of the angular velocity to be O.O
all axes?

1) yes
2) no

Please enter choice(s):
tt 1

The angular rate has been initialized.

Please, enter a value for delta_T. This is the value of the time
increment in the simulation.

Please enter value:
» 0.01

Please, enter the steady state error in percentage. For example,
type in 2.0 for a 27. steady state error.

Please enter value:
» 2

All parameter values needed for the simulation program have been found.
By using option 3 of the TOP LEVEL MENU, the simulation program can be
run.

#* Please make only one choice at a time ##

top_level_choice
top_level_menu

1) Exit to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a disk file

B.l

Please enter choice(s) :
3

Eigenvalues computation has been succes-ful.

Tfinal
20.0

Just above is the value of -final time (T-final) as computed by
the system. Do you think that this value is what you want ?.
If you answer no then you can provide a new value for Tfinal.

1) yes
2) no

Please enter choice(s):
1

Do you want to run the Simulation Program?
- If you say NO, you can QO back and review parameter values.
- If YES, you will be running the FORTRAN-77 simulation program.

1) yes
2) no

Please enter choice(s):
1

Initial parameter values are being put into 'input file7

The 'simulation program' is now being run...(Be patient)

FORTRAN-77 'Generic Simulation Program' under Execution

— Type of response analysis selected = STEP

#* Please make only one choice at a time ##

top_level_choice
top_level_menu

1) Exit to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a disk file

Please enter choice(s):
5

The simulation program generates the following outputs:

8.6

- Options 2 and 3 are ASCII -file plottings.
— Options 4 and 5 are numerical outputs.

Be sure to have run the simulation be-fore observing the
outputs. The outputs shown will correspond to the out-
puts generated when the simulation was last run.

output_display_choice
output_display_menu

1) Return to TOP LEVEL MENU
2) Plot of omega
3) Plot o-f theta
4) Characteristics o-f the step response analysis
5) Numerical output generated by simulation

Please enter choice(s):
3

Plot o-f Angular POSITION [Theta (x) 3 (radians) vs Time (seconds)
1 . tO 1

1.39
1.31
1.24
1.17
1.09
1.02

0.948
O.B75
0.802
0.729
0.656
0.583
0.511
0.438
0.365
0.292
0.219
0.146
0.729E-01
O f\f\f\C^rflf\ W

• UUUt̂ lW *

0.

X X

X X

X

X X X X X X X

X XX XXX X X X X X X X X X X X X X X X X *

X X X X X X X X X X

X X X X

x x x x

•

X

X

X

X

OOE+00 3.3 6.6 9.9 13. 17. :

r

£

.

20.

8.7

The simulation program generates the -following outputs:
- Options 2 and 3 are ASCII -file plottings.
- Options 4 and 5 are numerical outputs.

Be sure to have run the simulation be-fore observing the
outputs. The outputs shown will correspond to the out-
puts generated when the simulation was last run.

output_disp1ay_choi ce
output_di sp1ay_menu

1) Return to TOP LEVEL MENU
2) Plot o-f omega
3) Plot o-f theta
4) Characteristics o-f the step response analysis
5) Numerical output generated by simulation

Please enter choice(s):
2

Plot of Angular RATE COmega<xM <rad/sec) vs Time (seconds)
0.720
0.667
0.615
0.562
0.510
0.457
0.405
0.352
0.299
0.247
0.194
0.142
O.B93E-01
0.368E-01
— . 15BE— Ol v• A whJb. V JL ji

-.683E-01
-.121
-.173
-.226
-.279
-.331 •»

0.

! x x
X

x
x

x x

X X X X X X
X X

x xx x x x x x x x x

X X X X X X X
X

X X

X X
,

OOE+00 3.3 6.6 9.9 13. 17. 2

f

10

8.8

The simulation program generates the -following outputs:
- Options 2 and 3 are ASCII -file plottings.
- Options 4 and 5 are numerical outputs.

Be sure to have run the simulation be-fore observing the
outputs. The outputs shown will correspond to the out-
puts generated when the simulation was last run.

output_display_choice
output_display_menu

1) Return to TOP LEVEL MENU
2) Plot o-f omega
3) Plot o-f theta
4) Characteristics of the step response analysis
5) Numerical output generated by simulation

Please enter choice(s):
tt 1

Please make only one choice at a time

top_level_choi ce
top_level_menu

1) Exit to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required -for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a disk file

Please enter choice(s):
1

8.9

FREQUENCY RESPONSE

! Welcome to NASA Expert Simulation System (NESS) i

Loading GENIE, and NESS.... (please be patient)

GENIE .version 2.3 generated on Tue Apr 2 12:25:06 1985

NESS version 1.0 generated on Thu Jun 27 11:45:05 1985

This Expert System provides an intelligent inter-face to a generic
simulation program for spacecraft attitude control problems. Below
is a menu of the functions the system can perform. Control will
repeatedly return to this menu after executing each user request.

#* Please make only one choice at a time ##

top_level_choice
top_level_menu

1) Exit to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a disk file

Please enter choice(s):
2

For the present, the Inertia matrix is assumed to be diagonal.
It is also assumed all diagonal elements to be 'equal'. This
assumption makes the 'system' uncoupled in nature.
Please enter the common element of the diagonal of the Inertial
Matrix.
Please, enter the following parameter value:

inerti al_matri x
(1 1)

Please enter value:
» 1

All values of the 'Inertia matrix-' have been found.

Do you want a proportional (P) type control?
(For P and PD type control)

1) yes
2) no

Please enter choice(s):
1

For proportional control, do you want cross—coupling between control axes?

8. 10

1) yes
2) no

Please enter choice(s):
2

Do you want the same proportional controller gain along
all axes ?

1) yes
2) no

Please enter choice(s):
tt 1

The common value o-F the Kp gain for all axes is required. It is
called Kp (1 1) .
Please, enter the -following parameter value:

Kp
(11)

Please enter value:
» 1

All values of the K'p Matrix have been found.

Do you want a differential (D) type control?
(For D and PD type control)

1) yes
2) no

Please enter choice(s):
1

For differential control do you want crosr- ~ axes'

1 > yes
2) no

Please enter choice(s):
2

Do you want the same differential controller gain for
all axes ?

1) yes
2) no

Please enter choice(s):
tt 1

The value of the Kd Controller Gain Matrix common i~ : :. . .. L=J-
is required.
Please, enter the following parameter value:

Kd
(1 1)

8. 11

Please enter value:
» 1

All values of the Kd Matrix have been -found.

Do you want the Quaternion block to be included in the simulation?

1) yes
2) no

Please enter choice(s):
tt 1

Please enter initial roll angle (rotation about the X axis)
Enter your value in radians
Please enter value:

» 0

Please enter initial pitch angle (rotation about the Z axis)
Enter your value in radians
Please enter value:

» 0

Please enter initial Yaw angle (rotation about Y axis)
Enter your value in radians
Please enter value:

» 0

The Roll, Pitch, and Yaw angles have been initialized.

Please, select one method of integration:

1) Euler
2) Fourth-order Runge-Kutta
3) Predictor corrector

Please enter choice<s):
1

Please select from the following menu tine ^ype of System
response. Please make only one choice.

1) Step response
2) Frequency response

Please enter choice(s):
tt 2

You can apply the input command to only one axis or none of them
Please select your choice (only one)

1) -X
2) Y
3) Z
4) none

Please enter choice(s):

8. 12

1

The time o-f application of the input signal, also known as
the initial time, is required. Usually its value is 0.0
seconds.

ini tial_value
TO

Please enter value:
» O

Initial values -for angular rate and/or angular position are required
The angular position -for all axes have been initialized.

Do you want the initial value o-f the angular velocity to be O.O
all axes?

1) yes
2) no

Please enter choice(s):
1

The angular rate has been initialised.

Initial parameter values -for FREQUENCY response analysis are required.

Enter the Amplitude of the input waveform -for FREQUENCY response
Normal value is 1.0 radian
Please enter value:

» 1

Enter the lowest -frequency o-f input wavw-form to be applied to
the system -for FREQUENCY response
Enter your value in Hertz
Normal value is O.O159154 Hz corresponding to 0.1 rad/sec
Please enter value:

» 0.0159154

Please enter a value -for deltaT for frequency response.
If you choose 512 from the menu below deltaT will be fixed
to 1/512 or 0.00195312 sec.
This value of 512 is recommended.

1) 256
2) 512
3) 1024

Please enter choice(s):
tt 2

Enter the number of decades of input signal for FREQUENCY response
Normal value is 3 decades

8. 13

Please enter value:
» 3

Enter the number o-f sampling frequencies per decade
•for FREQUENCY response
Normal value is 3 -frequencies
Please enter value:

» 3

Enter the phase o-f the input wave-form -for FREQUENCY response
Normal value is 0.0 radians
Please enter value:

» 0

All parameter values -for FREQUENCY response analysis have been
•found.

All parameter values needed for the simulation program have been found.
By using option 3 of the TOP LEVEL MENU, the simulation program can be
run.

Please make only one choice at a time #*

top_level_choice
top_level_menu

1) Exit to BENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a dish file

Please enter choice(s):
3

Eigenvalues computation has been succesful.
2.0

Given above is the calculated value of TAU.

Do you want to run the Simulation Program?
- If you say NO, you can go back and review parameter values.
- If YES, you .will be running the FORTRAN-77 simulation program.

1) yes
2) no

Please enter choice(s):
1

Initial parameter values are being put into 'input file'

B. 14

The 'simulation program7 is now being run... (Be patient)

FORTRAN-77 'Generic Simulation Program' under Execution

- Type of response analysis selected = FREQUENCY

C Display of computation results 3
C -From FORTRAN-77 3

Please make only one choice at a time #*

top_level_choi ce
top_level_menu

1) E:-;it to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required -for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required -for simulation
7) Set up initial parameter values to default values
8) Store current parameter values in a disk -file

Please enter choice(s):
5

The simulation program generates the following outputs:
- Options 2 and 3 are ASCII file plottings.
- Options 4 and 5 are numerical outputs.

Be sure to have run the simulation before observing the
outputs. The outputs shown will correspond to the out-
puts generated when the simulation was last run.

output_di splay_choi ce
output_di splay_menu

1) Return to TOP LEVEL MENU
2> Plot of omega
3) Plot of theta
4) Characteristics of the step response analysis
5) Numerical output generated by simulation

Please enter choice(s):
3

Do you want to display for theta
1) Ampli tude.
2) Phase.

Please enter choice:

8. 15

1

(decibel) Bode Plot o-f POSITION AMPLITUDE -for x-axis vs FREQUENCY
T) O P - ^ - 1 -

15.0
9.96
4.96

— "?R~7F— (")1 -t• -_'O / C. '-' 1 ~

-5.04
-10. 0
-15.0
-20.0
-25.0
-30. 0
-35. 0
-4O.O
-45.0
-50. 0
-55.0
-60.0
-65.0
-70. 0
-75 . 0

A

A

A

A

A

(
*

A

A

r

•

—80. U -t 1 " H \r =tu/ s>ti_ i

0.10 1.0 10. 0. 10E+03
*

The simulation program generates the -following outputs:
- Options 2 and 3 are ASCII file plottings.
- Options 4 and 5 are numerical outputs.

Be sure to have run the simulation be-fore observing the
outputs. The outputs shown will correspond to the out-
puts generated when the simulation was last run.

output_di splay_choice
output_di splay_menu

1) Return to TOP LEVEL MENU
2) Plot o-f omega
3) Plot o-f theta
4) Characteristics o-f the step response analysis
5) Numerical output generated by simulation

Please enter choice(5):
tt 3

Do you. want to display -for theta
1> Ampli tude.
2) Phase.

Please enter choice:

S. 16

tt 2

(degrees) Bode Plot of POSITION PHASE -for >;-a::is vs FREQUENCY
O. OOOE+00 H
-10. 1

-30.4
-40.5
-50.6
-60.7
-70.8
-80.9
-91.1 F
-101.
-111.
-121.
-132.
-142.
-152.
-162.
-172.
-182.
-192.
-202.

P
P

F:•

p

P F'-•
F

P
H . . r

i-

:'(rad/sec)
0.10 1.0 10. 0.10E+03

The simulation program generates the -following outputs:
- Options 2 and 3 are ASCII -file plottings.
- Options 4 and 5 are numerical outputs.

Be sure to have run the simulation be-fore >-.--.^>
outputs. The outputs shown will corr-.
puts generated when the simulation <••

output_di splay_choice
output_.di spl ay_menu

1) Return to TOP LEVEL MENU
2) Plot of omega
3) Plot o-f theta
4) Characteristics of the step response analysis
5) Numerical output generated by simulation

Please enter choice(s):
1

**' Please make only one choice at a time ##

topjl evel _.choi ce
top_.l evel _menu

8. 17

1) Exit to GENIE
2) Set up initial parameter values
3) Run simulation program
4) Display current parameter values required -for simulation
5) Display outputs generated by simulation
6) Change initial parameter values required -for simulation
7> Set up initial parameter values to de-fault values
8) Store current parameter values in a disk file

Please enter choice(s):
1

8. 18

9. SYSTEM VERIFICATION

In the design of any software, a major consideration is the verifica-
tion of the design. It is extremely important to determine whether or not
the software correctly implements the specified design. As software
designs become larger and more complex, this task becomes increasingly
difficult. Methods of verification include comparison with analytic solu-
tions and comparison with known and accepted solutions from other designs.
Each of these methods is used in the verification of the software
developed during Phase I of this research.

Generally two approaches are taken in verifying a software design.
First, individual routines are tested to determine that they correctly
perform their operation. Once all (or as many as possible) of the routines
are tested individually, the overall collection of routines must perform
satisfactorily. This step is necessary as a final check of the design and
to verify that the main program properly initializes variables and calls
the various routines in the proper order.

The system represented by the generic simulation is sixth-order. The
system description includes three matrices, each of dimension three-by-
three. These matrices are the inertia matrix, the proportional gain
matrix, and the derivative gain matrix. If the inertia matrix is a mul-
tiple of the identity matrix and each of the two gain matrices is
diagonal, the sixth-order system is broken up into three completely inde-
pendent second-order systems. These three systems are then also linear for
the body dynamics chosen for the generic simulation. Since analytic solu-
tions for second-order linear systems are readily available for responses
to step and sinusoidal inputs, a convenient basis of comparison exists for
this situation.

In order to verify the software in the uncoupled configuration, the
simulation is run for step and sinusoidal inputs for commanded position.
The sinusoidal input is used to produce the system's frequency response,
and the step input produces a time domain response. Results of the simula-
tion are compared to solutions generated analytically for the same
parameter values. Close agreement between the solutions obtained analyti-
cally and through simulation verifies that the simulation software is
accurately modeling the given system and accurately solving those equa-
tions of motion for the specified input. This approach has been taken to
verify the software for Prototype 0. Table 9.1 shows the analytic and
simulated position outputs for a step input, and Table 9.2 presents a list
of analytic and simulated characteristics, such as percent overshoot, for
the same input. Table 9.3 and Table 9.4 present frequency domain results.
In each table, the position command is a sinusoid of specified frequency,
and both analytic and simulated results are shown. In Table 9.3, the rate
command is zero, and in Table 9.4, the rate command is the time derivative
of the position command. These Tables show excellent agreement between cne
simulation results and those obtained analytically.

Tables 9.5 and 9.6 include step response results for Prototype I; the
former table shows the actual output position values, and the latter table
gives the summary characteristics of the step response. There is close
agreement between the results of Prototype 0 and Prototype I, as would be

9.1

expected. Since the results of Prototype 0 agree closely with those of the
analytic solution, the performance of Prototype I is also verified. Table
9.7 presents the frequency domain results for Prototype I. The rate com-
mand is zero in this table. Again, there is close agreement between
Prototype 0 and Prototype I, providing verification of the accuracy of the
simulation software. Tables 9.8 and 9.9 list the input parameters used
during time-domain and frequency domain analysis, respectively.

One of the computations that the software must perform is the deter-
mination of the eigenvalues of the system. In the uncoupled case where
only second-order systems are considered, this is trivial. When the two
controller matrices have non-zero off-diagonal elements, motion along the
three coordinate axes will be coupled; however, as long as the inertia
matrix remains a multiple of the identity matrix, the system is still
linear. Determination of the eigenvalues then requires the manipulation of
a six-by-six matrix. The eigenvalue routine was evaluated by testing it on
a seven-by-seven matrix with known eigenvalues. The matrix has two sets of
complex conjugate eigenvalues, one repeated real eigenvalue of multi-
plicity two, and one real distinct eigenvalue. Most of the eigenvalues are
represented by irrational numbers. The software routine used to determine
the eigenvalues completed the calculation of these eigenvalues to well
within the expected round-off error.

9.2

Time
(sec)

•===============:

0.00000
0.50000
1.00000
1.50000
2.00000
2.50000
3.00000
3.50000
4.00000
4.50000
5.00000
5.50000
6.00000
6.50000
7.00000
7.50000
8.00000
8.50000
9.00000
9.50000
10.0000

Theta !
Analy. NESS !

(rad) !
: = = = = = = = === = = = === === = = = = === = ===s === = ==-J

0.000000
0.104405
0.340300
0.610493
0.849426
1.023360
1.124350
1.161650
1.153120
1.118450
1.074590
1.033620
1.002290
0.982846
0.974359
0.974152
0.979007
0.985996
0.992934
0.998504
1.002170

0.000000
0.103096
0.339653
0.611507
0.852124
1.027101
1.128246
1.164889
1.155205
1.119230
1.072416
1.032493
1.000809
0.981385
0.973183
0.973394
0.978680
0.986027
0.993203
0.998885
1.002555

:==================4

TABLE 9.1
Comparisons of Analytical and Computational Results

for Theta of Step Response (Prototype 0).

9.3

! Character! sties
of

Step Response
f===============:

PMO (%)
PT (sec)
RT (sec)
DT (sec)
ST (sec)

f=====-=====-====

Analy.

16.3033
3.6200
1.6400
1.2900
8.0800

NESS

16.6023
3.6100
1.6300
1.2900
8.1000

PMO - PERCENTAGE OF MAXIMUM OVERSHOOT
PT - PEAK TIME
RT - RISING TIME
DT - DELAY TIME
ST - SETTLING TIME

TABLE 9.2
Comparisons of Analytical and Computational Characteristics

Results for Theta of Step Response (Prototype 0).

9.4

Frequency
(rad/sec)

0.1000
0.2154
0.4642
1.0000
2.5140
4.6240
10.0000
21.5400
46.4200
100.0000

Amp!
Analy.
(dB)

19.96
13.14
5.82
-3.01
-14.18
-26.86
-40.04
-53.54
-66.67
-80.00

Itude
NESS

19.96
13.13
5.82

- 3.00
-14.16
-26.83
-40.03
-53.25
-66.72
-80.06

Analy.
(degree)

- 95.71
-102.16
-114.90
-135.00
-155.10
-167.84
-174.29
-177.34
-178.77
-179.73

Phase
NESS

- 95.75
-102.19
-114.95
-135.10
-155.42
-168.38
-175.31
-179.71
-183.48
-190.50

TABLE 9.3
Comparisons of Analytical and Computational Results for Frequency

Response of Prototype 0 (Rate command = 0 & Amplitude = 1.0).

9.5

Frequency
(rad/sec)

0.1000
0.2152
0.4642
1.0000
2.1520
4.6420
10.0000
21.5200
46.4200
100.0000

[-===========:

Analy.
(dB)

40.04
26.86
14.18
3.01

- 5.82
-13.14
-19.96
-26.66
-33.33
-40.00

==========

Amplitude
NESS

sssssssz;

39.98
26.84
14.18
3.01

- 5.83
-13.13
-19.97
-26.68
-33.13
-39.51

Analy.
(degree)

-174.29
-167.84
-155.10
-135.00
-114.90
-102.16
- 95.71
- 92.66
- 91.23
- 90.57

Phase
NESS

-174.47 !
-167.77 !
-155.16 !
-135.15 !
-115.22 !
-102.65 !
- 97.02 !
- 95.17 !
- 96.77 !
-101.19 !

TABLE 9.4
Comparisons of Analytical and Computational Results for Frequency
Response of Prototype 0 (Rate command = Derivative of Step Command

& Amplitude = 1.0).

9.6

Time
(sec)

0.00000
0.50000
1,
1,
2,
2,
3,
3,
4,
4,
5,
5,
6,
6,

00000
50000
00000
50000
00000
50000
00000
50000
00000
50000
00000
50000

7.00000
7.50000
8.00000
8.50000
9.00000
9.50000
10.0000

Analy.

0.000000
0.104405
0.340300
0.610493
0.849426
1.023360
1.124350
1.161650
1.153120
1.118450
1.074590
1.033620
1.002290
0.982846
0.974359
0.974152
0.979007
0.985996
0.992934
0.998504
1.002170

Theta
SYS. 0
(rad)

0.000000
0.103096
0.339653
0.611507
0.852124
1.027101
1.128246
1.164889
1.155205
1.119230
1.072416
1.032493
1.000809
0.981385
0.973183
0.973394
0.978680
0.986027
0.993203
0.998885
1.002555

SYS. I

0.000000
0.103240
0.340560
0.613719
0.855714
1.031648
1.133025
1.169142
1.158355
1.120997
1.074658
1.031832
0.999473
0.979799
0.971699
0.972247
0.977973
0.985753
0.993275
0.999179
1.002947

TABLE 9.5
Comparisons of Analytical and Computational Results

for Theta of Step Responses (Prototype 0 & I).

9.7

! Character!' sties
of

Step Response

PMO (%)
PT (sec)
RT (sec)
DT (sec)
ST (sec)

f ================

Analy.

16.3033
3.6200
1.6400
1.2900
8.0800

SYS. 0 SYS. I

16.6023 17.0077
3.6100 3.6100
1.6300 1.6200
1.2900 1.3000
8.1000 8.1500

=============================4

PMO - PERCENTAGE OF MAXIMUM OVERSHOOT
PT - PEAK TIME
RT - RISING TIME
DT - DELAY TIME
ST - SETTLING TIME

TABLE 9.6
Comparisons of Analytical and Computational Characteristics

Results for Theta of Step Responses (Prototype 0 & I).

9.8

}-======:======

Frequency
(rad/sec)

f============
0.1000
0.2154
0.4642
1 .0000
2.5140
4.6240
10.0000
21.5400
46.4200
100.0000

tSBSSBSSSSSSS

============================

Amplitude
Analy. SYS. 0 SYS. I
(dB)

============================
19.96 19.96 19.96
13.14 13.13 13.13
5.82 5.82 5.82
-3.01 - 3.00 - 3.00
-14.18 -14.16 -14.16
-26.86 -26.83 -26.83
-40.04 -40.03 -40.03
-53.54 -53.25 -53.25
-66.67 -66.72 -66.73
-80.00 -80.06 -80.03

===========

Analy.
(degree)

- 95.71
-102.16
-114.90
-135.00
-155.10
-167.84
-174.29
-177.34
-178.77
-179.73

=========
Phase
SYS. 0

=========
- 95.75
-102.19
-114.95
-135.10
-155.42
-168.38
-175.31
-179.71
-183.48
-190.50

=========H

SYS. I i
1

====3====H

- 95.76
-102.22
-115.00
-135.21
-155.67
-168.90
-176.43
-182.10
-188.84
-202.37

=========4

TABLE 9.7
Frequency Response {Rate command = 0) Comparisons for Analytical

(Prototype 0) and Computational (Prototype 0 & I) Results
(Amplitude = 1.0).

9.9

! Input Parameter unit value !

- Initial time

- Final time

- Time interval

- Steady-state-error

- Input commands
angular position

angular rate

- Initial conditions
SYS. 0

(sec)

(sec)

(sec)

(%)

(rad)
theta(x)
theta(y)
theta(z)

(rad/sec)
omega(x)
omega (y)
omega(z)

0.00

10.0

0.01

2.00

1.0
0.0
0.0

0.0
0.0
0.0

angular position (rad)

angular rate

SYS. I
Quaternion
angular rate

- Kp, Kd, INMAT
•

! - Integration method

theta(x)
theta(y)
theta(z)

(rad/sec)
omega(x)
omega (y)
omega (z)

(rad)
(rad/sec)

omega(x)
omega(y)
omega(z)

1

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

dentity matrices

Euler method

TABLE 9.8
Input Parameters for Time-Domain Analysis.

9.10

! Input Parameter unit value !
+==s===+

- Initial time (sec)

- Starting time for computing
open-loop freq. response (sec)

- Final time (sec)

- Time interval (sec)

- Lowest frequency (rad)

- Number of frequency decade

- Number of sampling frequencies per decade

- Input commands
angular position (rad)

theta(x)
theta(y)
theta(z)

angular rate (rad/sec)
omega(x)
omega (y)
omega(z)

- Initial conditions
SYS. 0

angular position (rad)
theta(x)
theta(y)
theta(z)

angular rate (rad/sec)
omega! x)
omega(y)
omega(z)

SYS. I
Quaternion (rad)
angular rate (rad/sec)

omega(x)
omega (y)
omega(z)

- Kp, Kd, INMAT identity

0.0

ts = 6 x Tau

ts + T

1/512

0.1

3

3

1.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

matrices

- Integration method Euler method

TABLE 9.9 Input Parameters for Frequency-Domain Analysis.

9.11

10. SYSTEM EVALUATION

The specific goals of this project evolved in the project's early
weeks and did not result in concrete performance targets. The major goal
of Phase I became to produce a prototype system to demonstrate the
feasibility of applying AI technology to this task domain and further to
serve as a foundation for a more intelligent system. With this goal in
mind, many interactive evaluations were performed with NASA personnel
while the prototype was taking shape. While these informal evaluations
resulted in many of the features embodied in the prototype system, we now
feel that a more formal evaluation is in order.

We envision the evaluation as a cooperative activity between the NASA
personnel, who will specify what they would like the system to do, and the
Vanderbilt project team, who will try to specify what can be achieved. We
propose that this evaluation be the first activity of Phase II and that
from it a set of clear performance objectives should be formulated for the
system at the end of Phase II.

The following thoughts are suggestions which may be helpful in fram-
ing this evaluation.

a) After the Phase I prototype system is demonstrated, it might be useful
to draft a statement of the desired performance envelope for the
ultimate expert simulation system now envisioned by NASA. This state-
ment should describe the ideal user interaction format, the practical
limits on the generality of the generic simulation software (i.e.,
when special-purpose routines would be expected) and a clear statement
of the inferences (expert knowledge) NESS would have to be able to
perform to be useful. The suggestions offered in the Phase II proposal
might be helpful here, and a statement of the prior experience ex-
pected of the user community would also be useful.

b) With a clear statement of the desired performance envelope in hand,
the performance of the prototype can be evaluated and a clear list of
work to be done can be formulated and prioritized. This, then, would
become part of the Phase II agenda.

10.1

PART V

CONCLUSIONS

The current phase of development (Phase I) has produced an expert
system that can assist the user in running a class of spacecraft attitude
control simulations. Although the knowledge-base and the simulation model
are relatively simple and limited, we have successfully demonstrated the
coupling of symbolic processing and numerical computation. Future work
(Phase II) will include enhancement and expansion of the capabilities of
both the expert system and the simulation model.

In Phase II, the expert system will be extended to interpret the
output data and determine system characteristics such as percent over-
shoot, settling time, gain margin and phase margin. NESS will also be
extended to recommend parameter values or subroutines that should be used
to get the desired results.

The simulation model will be extended to include actuator and steer-
ing distribution equations. It will also be extended to include bending
modes in the body dynamics equations. Finally, it will be modularized in
such a way that NESS will allow the user to choose a combination of sub-
modules in the simulation model and run experiments.

11.1

