
NASA Technical Memorandum 86448

NASA-TM-8644819850024509

CONCURRENT IMPLEMENTATION OF THE CRANK-NICOLSON METHOD
FOR HEAT TR,~NSFER ANALYSIS

JONATHAN B. RANSOM AND ROBERT E. FULTON

JUNE 1935

NI\S/\
National Aeronautics and
Space Administration

langley Research Center
Hampton, Virginia 23665 111

NF00624

MAR ~5 1986

U.!~GLtV RESEARCH CENTER
LIBRARY, NASA

.~,;r,j?TON, VIRGINIA

I
/

\ /

CONCURRENT IMPLEMENTATION OF THE CRANK-NICOLSON METHOD FOR
HEAT TRANSFER ANALYSIS

Jonathan B. Ransom
NASA Langley Research Center

Hampton, Virginia

Robert E. Fulton
George Washington University
NASA Langley Research Center

Hampton, Virginia

SUMMARY

Equations of large-order structures problems are often intractable on

current sequential computers due to memory and execution time limitations.

The introduction of a new generation of Multiple Instruction Multiple Data

(MIMD) computers provides an opportunity for significant gains in computing

speed and can make tractable the solution to large-order problems. One such

problem class is heat transfer analysis which is important to many aerospace

applications. To exploit this opportunity, concurrent methods for solution to

heat transfer analysis problems need to be investigated. This paper describes

two alternate implicit methods for time integration of the heat transfer

equations on a concurrent processing computer; the first is an iterative

technique and the second is a direct technique. The paper also discusses how

these methods were implemented on a specific experimental MIMD computer, and

gives timing and response results for the solution to an example transient test

problem. Execution times of the direct technique are approximately one half

2

those of the iterative technique. However, results indicate that as the number

of iterations per time increment decreases, it becomes more attractive to use

the iterative solution technique. This decrease in execution time per time

increment implies that, in a concurrent environment, an analyst may want to

solve a heat transfer problem initially using a direct method and subsequently,

switch to an iterative technique when the temperature gradients are more

predictable.

INTRODUCTION

The solution of the system of equations resulting from discretization of

large-order heat transfer problems is often very demanding in both execution

time and memory on sequential computers. The introduction of a new generation

of computers based on concurrent processing offers an alternative that promises

to alleviate these limitations. A concurrent processing computer contains

multiple processors which may operate simultaneously to share the computational

load and the memory requirements. Development of appropriate algorithms for

these computers can reduce computation time and can make tractable the solution

of large complex problems. The near-term introduction of a new series of

multi-processor computers termed Multiple Instruction Multiple Data (MIMD)

computers promises to provide a significant advantage in high-speed compu

tational scientific capability. Simple implementation of existing sequential

algorithms will not take full advantage of the capability provided by MIMD

computers. To utilize this opportunity for heat transfer, concurrent compu

tational methods appropriate to heat transfer analysis problems need to be

investigated. There are a number of solution techniques for solving such

problems and the proper choice of technique can be critical for the efficient

solution on MIMD computers. This paper explores two alternate implicit methods

for the solution of the heat transfer equation, one based on an iterative

method and the other on a direct method. The paper discusses their Implemen-

tation and gives results for the solution of an example transient test problem.

This study was carried out using a research MIMD computer called the Finite

Element Machine (FEM) at NASA Langley Research Center.

DESCRIPTION OF TEST PROBLEM

The test problem is to determine the subsequent temperature values

throughout a uniform rod when given the initial temperature distribution and

the history of the end conditions. The rod and boundary conditions are shown

in Figure 1. Distance along the rod is denoted by x, time by t, and the

temperature of the rod by T(x,t). The rod is insulated on the left end and

initially has a uniform unit temperature along the length except at the right

end where the temperature has been instantaneously reduced to zero. At the

right end, the temperature is taken to be one half initially and zero after-

wards. The temperature gradient at the left end is zero.

DESCRIPTION OF NUMERICAL METHOD

The general one dimensional heat conduction equation is

where

and K is the thermal conductivity, p is the mass density, c is the
p

(1)

specific heat, and a is the thermal diffusivity. Finite difference approxi-

3

mations are written for this expression. The rectangular finite difference grid

4

is shown in Figure 2. The spacing in the x direction is h and that in the t

direction is k. The mesh numbers in the x and t directions are i and j,

respectively. The first derivative with respect to time is approximated by

central half station differences and the second derivative with respect to x by

central whole station differences. The implicit Crank-Nicolson method (Ref. 1)

was chosen in this study because it is stable, has error of order h2 and k2,

and appears to be well-adapted to concurrent processing. The method uses an

average of approximations in the j and j+l rows and results in the solution

of tridiagonal sets of simultaneous equations •. Using the notation of Figure 2,

the heat-conduction equation for pOint (i, j + 1/2) reduces to

T i,j+l T, + kCt [Txx , + T] (2) 1,j 2 xx j +1 J

or

T, , 1 T. + B [{T. 1 . - 2T .. + T'+1 .} 1,J+ l,j 1- , J 1,J 1 , J

(3)

+ {T i -1 ,j + 1 - 2T i , j + 1 + T i + 1 , j + 1 }]

where B

and T. . is the temperature of the ith degree of freedom at the jth time
1,J

increment and subscript x denotes differentation with respect to the

coordinate x.

Two methods for determining the second derivative approximation in the

j+1 row are: 1) by assuming it initially and iterating; or 2) by moving the

term to the left hand side of the equation and solving directly. These two

methods are denoted "iterative" and "direct" in the text. For the iterative

scheme, equation (2) can be written with superscripts to denote the iteration

number, 1"', as follows

1"'+1
Ti ,j+1

For the first iteration, T is assumed
xXj +1

(4)

to be equal to T and
XXj

computation proceeds until Tr +1 and Tr are within a given convergence
xXj +1 xXj +1

criterion. For the direct scheme, equation (3) can be written as

-aT'_1 '+1 + {1+2a}T, '+1 -·aTi +1 '+1 1 , J 1, J , J
(5)

Equation (5) results in a set of tridiagonal equations required to !be solved

in moving from station j to j+1 as follows

1+2a - 2a

-8 1 +28 -a

-a 1 +28

T1 ,j+1

T2,j+1

.Tn,j+1

1-28 +2a

+8 1-2a +8
=

+a 1-2a

T1 ' ,J
T2 ' ,J

T , n,J

(6)

5

6

In this case all the unknowns at j+1 can be obtained through solution of the

tridiagonal system of equations.

CONCURRENT PROCESSING IMPLEMENTATION

On a concurrent computer (Refs. 2~5), one may distribute, over different

processors, the solution of specific nodal point equations. Communication

between the processors is accomplished by the interprocessor communications

capability of the concurrent computer. For the MIMD computer used for these

studies, the user can invoke either direct nearest~neighbor communications or

global bus communications for distant processors. In addition, on concurrent

processors" one must consider issues such as how much of the computation can be

performed concurrently, how this computation should be distributed, how many

processors should be used, and how much communication should occur between

processors. At some pOint, communication may become too time consuming, in

which case a trade--off must be made between sequential and concurrent computing.

These implementation issues are dependent on the architecture of each concurrent

computer; a brief summary of the FEM hardware and software is given below.

Concurrent Processing Hardware

The concurrent processing hardware used in this study is the NASA, Langley

Finite Element Machine (FEM) shown schematically in Figure 3. FEM consists of

1 an array of 16 processors which can communicate with each other over local

links or global bus paths. The controller uses the global bus as indicated in

Figure 3. FEMts flexible communication structure provides twelve nearest~

neighbor links of which eight are shown in Figure 3. The global communications

bus allows communication from one processor to any or all other processors. The

1
When this research was carried out, FEM had 12 processors.

7

hardware contains a global flag network that can be used to signal the

completion of a process.

Software
I I

The controller is the user interface to the Finite Element Machine. The

software on the controller for FEM is an extended version of the menu-driven

minicomputer operating system. In addition, software termed PASLIB (Ref. 6) was

written to support a set of companion commands residing on each processor of the

FEM. A user constructs a concurrent algorithm on the controller and invokes a

command to transfer the program and associated data to each processor or a sub-

set of processors. Communication is accomplished by including the appropriate

calls to PASLIB procedures (SEND and RECEIVE) in the concurrent algorithm.

CONCURRENT ITERATIVE TECHNIQUE APPROACH

For this concurrent implementation, m thermal equations are distributed

and solved on n processors. A typical distribution of computation is shown

below for the solution of n equations on n/2 processors.

T1,j+1 T 1 .
kCt. {T + T } + --

,J 2 xX 1 . XX1,j+1 ,J

> Processor 1 (7)

T T2 .
kCt. {T + T + --2,j+1 , J 2 xX 2 . XX2,j+1 ,J

T3,j+1 T3 . + ~g {T + T }
, J 2 xX3 . XX3,j+1 > ,J

Processor 2

T T4 . + ~g {T + T }
4, j+1 ,J 2 xX 4 . XX 4,j+1 ,J

8

T + g~ {T + T }
n-1,j 2 XX n_1,j XXn- 1,j+1

> Processor n/2

T + g~ {T + T }
n,j 2 xx. xx n,J n,j+1

All processors perform the same. functions. The computation flow for one

degree of freedom per processor is shown in Figure 5. Each column of the

figure represents the computation flow for the assigned degree of freedom.

The procedure can be readily extended to multiple degrees of freedom per

processor. Moving from time j to j+1 begins with an assumed second

derivative T for each assigned degree of freedom, the corresponding
xx j+l

temperatures are calculated using equation (4). The computation is inter-

rupted so each processor can communicate results for its assigned degrees of

freedom to its neighboring processors. The second derivative is then computed

by standard central difference approximations and compared to the assumed

second derivatives. If a given convergence criterion for the degrees of

freedom is met, local convergence is achieved. The FEM flag network is used

to check for convergence of all processors (i.e., global convergence). If

either the local or the global convergence test fails, each processor uses the

current calculated values of the second derivatives as the assumed values and

repeats the computation. When global convergence is achieved, all processors

simultaneously proceed to the next time step.

CONCURRENT DIRECT TECHNIQUE APPROACH

Approximation of the second derivatives by central differences results

in a tridiagonal system of equations. Therefore, a tridiagonal equation

solver was chosen as the direct solution technique. The cyclic reduction

method was chosen because' it appeared to lend itself best to concurrent

computations (Ref. 7). The resulting tridiagonal system of equations is

distributed evenly over n processors. A typical distribution of the n

rows of the tridiagonal matrix on n/2 processors is as follows

b c
~ a b c Processor

a b c
~ a b c Processor 2

(8)

a b c

a b Processor n/2

where a, b, and c are coefficients of the j+1 matrix shown in equation

(6). Equati~m (6) is used to solve for the unknowns at the j+1 increment in

time directly.' Computation begins with the coefficients a, b, and c of the

original system of equations stored in an array denoted P shown in Figure 6.

Each column of the figure represents the computation flow for the assigned

rows of the matrix of coefficients in equation (8) where q is the cycle

number in the cyclic reduction algorithm. Computation is interrupted for each

processor to communicate these coefficients to its neighboring processors.

New coefficients are then calculated by row operations on the matrix to

eliminate variables. If there have been enough cycles to sufficiently reduce

the original matrix, the temperatures are calculated. Otherwise, each

processor repeats the computation until the matrix has been reduced

sufficiently, after which the temperatures are calculated. Each

9

10

processor then simultaneously proceeds to the next time step and communicates

its temperature results in order to calculate a new right hand side of

equation (6). The cyclic reduction is redone with each time increment which

is required if a is a function of time, t, or space, x.

RESULTS

Results were obtained for a transient thermal test problem by an

iterative method and a direct method for solving tridiagonal systems of

equations. Temperature versus time results are shown in Figure 1.

The primary results are the computational times needed to calculate the

temperature distribution on a varied number of processors. The computational

speedup (the computation time required to calculate results on one processor

divided by the computation time required to calculate the same results on n

processors) derived from the concurrent approach can then be computed. The

computational speedup versus the number of processors for the iterative and

direct techniques are shown in Figures 8 and 9, respectively. The theoretical

maximum speedups would be the speedups if there were no overhead for concur~

rent processing and therefore, are equal to the number of processors used.

For a system of 24 equations, the speedup for the iterative technique is 6.9

on 12 processors. The speedup for the same system of equations using the

direct technique is 5.6 on 12 processors. The speedup values show that the

potential for decreasing the computational speed of the iterative technique is

greater than that of the direct method. However, the execution times for the

direct method are approximately half those of the iterative technique. The

speedups fall short of the theoretical limit because the amount of communi

cation required is relatively large compared to the amount of computation for

this problem size.

The speedup of the iterative technique relative to the direct technique

is called the relative speedup. It is defined as the execution time of the

direct technique for one time increment on one processor divided by the

execution times of the iterative technique for one time increment on n

processors. This ratio may be used to compare the execution times of the

direct and iterative techniques by assuming convergence of the iterative

technique after a given number of iterations. The relative speedups for a

varied number a iterations are shown in Table 1. The corresponding curves for

the relative speedups in the table are shown in Figure 10. The solid curve is

the relative speedups of the direct technique for one time increment and the

dashed curves are the relative speedups of the iterative technique for one

time increment. The iterative technique is faster than the direct technique

when its relative speedups are greater than those of the direct technique.

The timing results for the example problem indicate that when the number

of iterations per time increment is less than five, the iterative technique is

faster than the direct technique as shown in Figure 10. For the example

problem, the number of iterations per time increment varied from 14 iterations

to 4 iterations. The decrease in execution time per time increment implies

that in a concurrent environment an analyst may want to consider using the

direct technique initially and then switching to the iterative solution

technique when the number of iterations is known to be small. Although an

iterative technique is generally not used for the solution of a linear heat

transfer problem, interchanging algorithms may be an effective way to reduce

further the computational speed of heat transfer problem solutions.

11

12

EXTENSION TO NONLINEAR .PROBLEMS

The extension of the concepts discussed herein to the solution of

problems with nonlinear effects, such as surface radiation, creates added

complexities. One example of such a nonlinear problem is the one dimensional

heat-conduction equation with surface radiation

aT a
2
T 4 = a. + EaT

at ax2
(9)

where E is the surface emissivity parameter and a is the universal

physical constant.

Application of the Crank-Nicolson method to the nonlinear heat transfer

problem and using the average value for the nonlinear term leads to

T. . 1 1,J+
+ ~ { T } + !if..!! {T T } 4 Ti,j 2 TXXj + xX

j
+

1
16 i,j + i,j+1

The iterative solution becomes

Tr +1
i, j +1

+ ka. { + Tr } kE a {T Tr } 4
T i, j 2 T xx j xx j + 1 + 16 i, j + i, j + 1

and the concurrent solution method proceeds as discussed for the linear

problem.

(10)

(11)

The nonlinear direct method can be solved using a Newton-Raphson method

which leads to tridiagonal equations that can be solved as follows

Tr +1 = Tr 15T i,j+1 i,j+l + i,j+l (12)

and the sequence of direct calculations within a time increment take the form of

(1+28)-Y - 28

-8 (1+28)-Y -8

-8 (1+28)-Y

1 +28 - 28

-8 1+28 -8

-81+2B

where Y

r

oT, ,j+1

oT2,j+1

T1,j+1

T2 ,j+1

T . 1 n, J+

r

i

1-28 +28

+8 1-28 +8

+ ke:o
16

1 • • • n

(T 1 . ,J

(T 2 . ,J

T . n,J

+ T1,j+1)4

+ T2,j+1)4

(T . + T) 4
n,J n,j+1

(13)

The coefficients of the tridiagonal matrix on the left hand side of equation

(13) change with each iteration, therefore the cyclic reduction must be redone

with each iteration. Thus, for each increment in time, a sequence of direct

calculations must be carried out to obtain a changed result at j+1.

Therefore, the iterative approach would appear more attractive for the

solution of nonlinear heat transfer problems on a concurrent processing

computer.

CONCLUDING REMARKS

An iterative technique and a direct solution technique were used to

solve a transient heat transfer problem on a varied number of processors of a

13

r

r

14

MIMD computer and the performance results were compared. A description of

both methods, their implementation, and results are discussed. Both methods

provided significant speedup in computations as the number of processors

increased indicating that parallel computers can be beneficial in $olving

complex heat transfer problems. Results show that the iterative technique

would benefit more than the direct technique if the number of processors were

increased. The results also show that although the direct technique is the

faster of the two for sequential calculations, the iterative technique is

faster on a concurrent processing computer when the number of iterations per

time increment is known to be small.

For nonlinear problems, the formulation of the iterative technique

remains basically the same as for linear problems. The direct technique,

however, is reformulated such that it requires several Newton-Raphson cycles

per time increment to .obtain a result at a given finite difference station.

Therefore, the advantage of the iterative technique increases significantly

for concurrent computers.

Many future computers for large-scale engineering analysis will be

multiple instruction multiple data systems. While further algorithmic studies

are needed in several problem areas to help refine solution strategies, the

results of this study suggest'that heat transfer analysis problems are well

suited for implementation on future.parallel computers.

REFERENCES

1. Crank, J. and Nicolson, P.: A Practical Method for Numerical Evaluation
of Solutions of Partial Differential Equations of Heat-Conduction Type.
Proceedings of the Cambridge Philosophical Society, Vol. 32, 1947,
pp. 50-67.

2. Storaasli, 0.; Ransom, J. Bo; and Fulton, R.: Structural Dynamics
Analysis on a Parallel Computer: The Finite Element Machine. AIAA Paper
No. 84-0966-CP, May 1984.

15

3. Ransom, J.; Storaasli, 0.; Fulton, R.: Application of Concurrent
Processing to Structural Dynamic Response Computations. NASA CP 2335, 1984
pp. 31-44. .

4. Storaasli, 0.; Peebles, S.; Crockett, T.; Knott, J.; and Adams, L.: The
Finite Element Machine: An Experiment in Parallel ProceSSing. Research in
Structural and Solid MechaniCS, 1982, NASA CP 2245, also, NASA TM 84514,
July 1982.

5. Noor, A. K.; Storaasli, o. 0.; Fulton, R. E.: Impact of New Computing
Systems on Finite Element Computations. Impact of New Computations on
Computational MechaniCS, A. Noor, Ed., ASME Special Publication H00275,
1983, pp. 1-32.

6. Crockett, T. W.
Element Machine.

and Knott, J. D.: System Software for the Finite
NASA Contractor Report 3870, February 1985.

7. Hockney, R. W. and Jesshope, C. R.: Parallel Computers, Architecture,
Programming and Algorithms. Adam Hilger Ltd., Bristol, 1981, pp. 286-294.

16

TABLE 1 - RELATIVE SPEEDUPS FOR THE ITERATIVE TECHNIQUE

Speedup

2 3 4 5
Processors iteration iterations iterations iterations iterations

3.51 1. 76 1.17 0.88 0.70

2 5.71 2.90 1 .90 1.43 1.14

4 10.14 5.07 3.38 2.54 2.03

6 14.02 7.01 4.67 3.51 2.80

8 17.50 8.75 5.83 4.38 3.50

12 23.26 11. 63 7.75 5.82 4.65

17

0

II -.....,
I-

......
II
x

a:i
r-
..c:.

0..

.-:::

IN -- 5j - ~

N X, ...,
10 10 X- II

~ -
0 0 w r- ...
II x V'

II - c::
-:;;

r-,""" r- r-
"'''0 10 f-

.....
(1J
~
:::;
C"I

1..1...

0

II
x

0

II -......, ...
0 X - 10 r-
IO

18

e_
..
~ .-.....

......

.~
t_

..
+ + e_ e_

......

.~ e_- .-.....

......

.~ t-...
I I

t- o-.....

t_
...
~ .-I-

><

t

......
I .-..
+ e_

~

......
• e_

.. .-.....

......
I o-...
I

...,:.-

..:.a:: --

j"

.J::.

, ~

"'0

s....
01

OJ
U
c:
OJ
s...
OJ
'+
'+-.,...
"'0

OJ
+-I

c:: .,...
LA..

N

OJ
s....
;::)
01 .,...

LA..

" I \

I Float
(point
\ unit

Global
bus

" ~ '-----

Array local Ii nks Global bus

F"iqun:~ 3.- rE~ "'r!t~dware dna SD+t,oJare block diagram.

......
\0

.- Txxl~

T

T r
1

I

r+l

Ixxll
-r

1
~Txxl~

T r
2

~

r+l

\x12 •

~

i

it

r
3

T r
3

• • •
1

~T Ir xx N

r T .
N

Communicate r to processorsi(i = 1 e It N)

r+l

Txxl3
•
~ • • •

·1
T t
ixxlN

• r

No HConverged?}No Converged?
, Yes Yes

No

No -
Yes
-,

'""'--f Next
Time

Yes
-,

~ Next
Time

All convergence flags set?

'---

Yes ..,
Next
Time

Yes .,
""--..... Ne xt

Time

Figure 5.- Concurrent iterative ~etll~d movin8 fro~ station j to j+l.
N
.....,a

, t , ,
p (q) p (q) p (q) • • • P (q)
1 2 3 N
I I J I

~ Communicate p:q); i = 1 •• N, q = 1 •• cycles

t t t t
p (q+l)
1

P (q+l)
2

p (q+l)
3

P (q+l)
N

J I I I
No Enough cycles? (q = cycles)

t _t t t
T. T2 T3 • • • TN I

i t t t
Next Next Next Next
time time time time

t _i t t
Communication T.; i = 1 •• N

I ---

p = array of coefficients of the j + 1 matrix

riqurp 6.- roncurrent direct method movin9 from station j to 5+1.

N
N

......
I
o
x

/

• N

><

0"-
00

d

0
•

23

C/)

+-J
r-

::::I
CI)
Q)
s...
c::
0

+-J
::::I

..0

s...
+-J
VI .,....
"0

Q)
s...
::::I

+-J
to
s...
Q)
0..
E
Q)
I-

........

Q)
s...
:;:}
0)

u-

Theoretical limit

Speedup

6

4

2

2 4 6 8 10 12
Number of processors

Figure 8.- Computation speedup of iterative method versus number of processors.

N
~

12

10
Theoretical limit

8

Speedup
6

4

2

2 4 6 8 10 12
Number of processors

Figure 9.- Computation speedup of direct method versus number of processors.

N
U'1

12 ..".
/

10 l- /'
/

.." ./
8 /

/
~A Relative / • ". speedup ". / ",

6 / A""
"" " ~ /~~ .",ll

41- /

" ./
A

/
/

2
~

2 4 6 8 10 12
Nu mber of processors

Figure 10.- Relative speedup versus number of processors.

o Direct methoo

Iterative methoo

• 2 iterations
A 3 iterations
o 4 :iterations
~ 5 iterations

N
0'\

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA TM-86448

4. Title and Subtitle

Concurrent Implementation of the Crank-Nicolson Method
for Heat Transfer Analysis

5. Report Date
June 1985

6. Performing Organization Code

505-33-53-15
7. Author(s) 8. Performing Organization Report No.

Jonathan B. Ransom and Robert E. Fulton
I----------------------------i 10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665 11. Contract or Grant No.

I----------------------------i 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronauti~s and Space Admintstration
Wa~hington, DC 20546

15. Supplementary Notes

Technical Memorandum
14. Sponsoring Agency Code

Jonathan B. Ransom, NASA Langley Research Center, Hampton, Virginia.
Robert E. Fulton, George Washington University, NASA Langley Research Center,

Hampton, Virginia.
16. Abstract

To exploit the significant gains i'n computi'ng speed provtded by Multiple Instruction
Multiple Data CMIMD) computers, concurrent methods for practical problems need to be
investigated and test problems implemented on actual hardware. One such problem
class is heat transfer ana1ysis whi'ch i's important in many aerospace appl ications.
This paper compares the efficiency of two alternate implementations of heat transfer
analysis on an experi'mental MIMD computer called the Finite Element Machine (FEM).
The implicit Crank-Nicolson method ts used to solve concurrently the heat transfer
equations by both iterative and direct methods. Comparison of actual timing results
achieved for the two methods and their significance relative to more complex problems
are discussed.

17. Key Words ISuggested by Authorls))

Finite Element Machine (FEM)
concurrent processing

18. Distribution Statement

Unclassified - Unlimited
Subject Category 62

19. Security Classif. lof this report)

Unclassified
20. Security Classif. lof this page)

Unclassified
21. No. of Pages

27
22. Price

A03

N-305 For sale by the National Technical Information Service, Springfield. Virginia 22161

End of Document

