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SUMMARY 

Equations of large-order structures problems are often intractable on 

current sequential computers due to memory and execution time limitations. 

The introduction of a new generation of Multiple Instruction Multiple Data 

(MIMD) computers provides an opportunity for significant gains in computing 

speed and can make tractable the solution to large-order problems. One such 

problem class is heat transfer analysis which is important to many aerospace 

applications. To exploit this opportunity, concurrent methods for solution to 

heat transfer analysis problems need to be investigated. This paper describes 

two alternate implicit methods for time integration of the heat transfer 

equations on a concurrent processing computer; the first is an iterative 

technique and the second is a direct technique. The paper also discusses how 

these methods were implemented on a specific experimental MIMD computer, and 

gives timing and response results for the solution to an example transient test 

problem. Execution times of the direct technique are approximately one half 
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those of the iterative technique. However, results indicate that as the number 

of iterations per time increment decreases, it becomes more attractive to use 

the iterative solution technique. This decrease in execution time per time 

increment implies that, in a concurrent environment, an analyst may want to 

solve a heat transfer problem initially using a direct method and subsequently, 

switch to an iterative technique when the temperature gradients are more 

predictable. 

INTRODUCTION 

The solution of the system of equations resulting from discretization of 

large-order heat transfer problems is often very demanding in both execution 

time and memory on sequential computers. The introduction of a new generation 

of computers based on concurrent processing offers an alternative that promises 

to alleviate these limitations. A concurrent processing computer contains 

multiple processors which may operate simultaneously to share the computational 

load and the memory requirements. Development of appropriate algorithms for 

these computers can reduce computation time and can make tractable the solution 

of large complex problems. The near-term introduction of a new series of 

multi-processor computers termed Multiple Instruction Multiple Data (MIMD) 

computers promises to provide a significant advantage in high-speed compu

tational scientific capability. Simple implementation of existing sequential 

algorithms will not take full advantage of the capability provided by MIMD 

computers. To utilize this opportunity for heat transfer, concurrent compu

tational methods appropriate to heat transfer analysis problems need to be 

investigated. There are a number of solution techniques for solving such 

problems and the proper choice of technique can be critical for the efficient 

solution on MIMD computers. This paper explores two alternate implicit methods 



for the solution of the heat transfer equation, one based on an iterative 

method and the other on a direct method. The paper discusses their Implemen-

tation and gives results for the solution of an example transient test problem. 

This study was carried out using a research MIMD computer called the Finite 

Element Machine (FEM) at NASA Langley Research Center. 

DESCRIPTION OF TEST PROBLEM 

The test problem is to determine the subsequent temperature values 

throughout a uniform rod when given the initial temperature distribution and 

the history of the end conditions. The rod and boundary conditions are shown 

in Figure 1. Distance along the rod is denoted by x, time by t, and the 

temperature of the rod by T(x,t). The rod is insulated on the left end and 

initially has a uniform unit temperature along the length except at the right 

end where the temperature has been instantaneously reduced to zero. At the 

right end, the temperature is taken to be one half initially and zero after-

wards. The temperature gradient at the left end is zero. 

DESCRIPTION OF NUMERICAL METHOD 

The general one dimensional heat conduction equation is 

where 

and K is the thermal conductivity, p is the mass density, c is the 
p 

(1) 

specific heat, and a is the thermal diffusivity. Finite difference approxi-

3 

mations are written for this expression. The rectangular finite difference grid 
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is shown in Figure 2. The spacing in the x direction is h and that in the t 

direction is k. The mesh numbers in the x and t directions are i and j, 

respectively. The first derivative with respect to time is approximated by 

central half station differences and the second derivative with respect to x by 

central whole station differences. The implicit Crank-Nicolson method (Ref. 1) 

was chosen in this study because it is stable, has error of order h2 and k2, 

and appears to be well-adapted to concurrent processing. The method uses an 

average of approximations in the j and j+l rows and results in the solution 

of tridiagonal sets of simultaneous equations •. Using the notation of Figure 2, 

the heat-conduction equation for pOint (i, j + 1/2) reduces to 

T i,j+l T, + kCt [Txx , + T ] (2) 1,j 2 xx j +1 J 

or 

T, , 1 T. + B [{T. 1 . - 2T .. + T'+1 .} 1,J+ l,j 1- , J 1,J 1 , J 

(3 ) 

+ {T i -1 ,j + 1 - 2T i , j + 1 + T i + 1 , j + 1 } ] 

where B 

and T. . is the temperature of the ith degree of freedom at the jth time 
1,J 

increment and subscript x denotes differentation with respect to the 

coordinate x. 



Two methods for determining the second derivative approximation in the 

j+1 row are: 1) by assuming it initially and iterating; or 2) by moving the 

term to the left hand side of the equation and solving directly. These two 

methods are denoted "iterative" and "direct" in the text. For the iterative 

scheme, equation (2) can be written with superscripts to denote the iteration 

number, 1"', as follows 

1"'+1 
Ti ,j+1 

For the first iteration, T is assumed 
xXj +1 

(4) 

to be equal to T and 
XXj 

computation proceeds until Tr +1 and Tr are within a given convergence 
xXj +1 xXj +1 

criterion. For the direct scheme, equation (3) can be written as 

-aT'_1 '+1 + {1+2a}T, '+1 -·aTi +1 '+1 1 , J 1, J , J 
(5) 

Equation (5) results in a set of tridiagonal equations required to !be solved 

in moving from station j to j+1 as follows 

1+2a - 2a 

-8 1 +28 -a 

-a 1 +28 

T1 ,j+1 

T2,j+1 

.Tn,j+1 

1-28 +2a 

+8 1-2a +8 
= 

+a 1-2a 

T1 ' ,J 
T2 ' ,J 

T , n,J 

(6) 

5 
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In this case all the unknowns at j+1 can be obtained through solution of the 

tridiagonal system of equations. 

CONCURRENT PROCESSING IMPLEMENTATION 

On a concurrent computer (Refs. 2~5), one may distribute, over different 

processors, the solution of specific nodal point equations. Communication 

between the processors is accomplished by the interprocessor communications 

capability of the concurrent computer. For the MIMD computer used for these 

studies, the user can invoke either direct nearest~neighbor communications or 

global bus communications for distant processors. In addition, on concurrent 

processors" one must consider issues such as how much of the computation can be 

performed concurrently, how this computation should be distributed, how many 

processors should be used, and how much communication should occur between 

processors. At some pOint, communication may become too time consuming, in 

which case a trade--off must be made between sequential and concurrent computing. 

These implementation issues are dependent on the architecture of each concurrent 

computer; a brief summary of the FEM hardware and software is given below. 

Concurrent Processing Hardware 

The concurrent processing hardware used in this study is the NASA, Langley 

Finite Element Machine (FEM) shown schematically in Figure 3. FEM consists of 

1 an array of 16 processors which can communicate with each other over local 

links or global bus paths. The controller uses the global bus as indicated in 

Figure 3. FEMts flexible communication structure provides twelve nearest~ 

neighbor links of which eight are shown in Figure 3. The global communications 

bus allows communication from one processor to any or all other processors. The 

1 
When this research was carried out, FEM had 12 processors. 
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hardware contains a global flag network that can be used to signal the 

completion of a process. 

Software 
I I 

The controller is the user interface to the Finite Element Machine. The 

software on the controller for FEM is an extended version of the menu-driven 

minicomputer operating system. In addition, software termed PASLIB (Ref. 6) was 

written to support a set of companion commands residing on each processor of the 

FEM. A user constructs a concurrent algorithm on the controller and invokes a 

command to transfer the program and associated data to each processor or a sub-

set of processors. Communication is accomplished by including the appropriate 

calls to PASLIB procedures (SEND and RECEIVE) in the concurrent algorithm. 

CONCURRENT ITERATIVE TECHNIQUE APPROACH 

For this concurrent implementation, m thermal equations are distributed 

and solved on n processors. A typical distribution of computation is shown 

below for the solution of n equations on n/2 processors. 

T1,j+1 T 1 . 
kCt. {T + T } + --

,J 2 xX 1 . XX1,j+1 ,J 

> Processor 1 (7) 

T T2 . 
kCt. {T + T + --2,j+1 , J 2 xX 2 . XX2,j+1 ,J 

T3,j+1 T3 . + ~g {T + T } 
, J 2 xX3 . XX3,j+1 > ,J 

Processor 2 

T T4 . + ~g {T + T } 
4, j+1 ,J 2 xX 4 . XX 4,j+1 ,J 
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T + g~ {T + T } 
n-1,j 2 XX n_1,j XXn- 1,j+1 

> Processor n/2 

T + g~ {T + T } 
n,j 2 xx. xx n,J n,j+1 

All processors perform the same. functions. The computation flow for one 

degree of freedom per processor is shown in Figure 5. Each column of the 

figure represents the computation flow for the assigned degree of freedom. 

The procedure can be readily extended to multiple degrees of freedom per 

processor. Moving from time j to j+1 begins with an assumed second 

derivative T for each assigned degree of freedom, the corresponding 
xx j+l 

temperatures are calculated using equation (4). The computation is inter-

rupted so each processor can communicate results for its assigned degrees of 

freedom to its neighboring processors. The second derivative is then computed 

by standard central difference approximations and compared to the assumed 

second derivatives. If a given convergence criterion for the degrees of 

freedom is met, local convergence is achieved. The FEM flag network is used 

to check for convergence of all processors (i.e., global convergence). If 

either the local or the global convergence test fails, each processor uses the 

current calculated values of the second derivatives as the assumed values and 

repeats the computation. When global convergence is achieved, all processors 

simultaneously proceed to the next time step. 

CONCURRENT DIRECT TECHNIQUE APPROACH 

Approximation of the second derivatives by central differences results 

in a tridiagonal system of equations. Therefore, a tridiagonal equation 



solver was chosen as the direct solution technique. The cyclic reduction 

method was chosen because' it appeared to lend itself best to concurrent 

computations (Ref. 7). The resulting tridiagonal system of equations is 

distributed evenly over n processors. A typical distribution of the n 

rows of the tridiagonal matrix on n/2 processors is as follows 

b c 
~ a b c Processor 

a b c 
~ a b c Processor 2 

(8) 

a b c 

----------
a b Processor n/2 

where a, b, and c are coefficients of the j+1 matrix shown in equation 

(6). Equati~m (6) is used to solve for the unknowns at the j+1 increment in 

time directly.' Computation begins with the coefficients a, b, and c of the 

original system of equations stored in an array denoted P shown in Figure 6. 

Each column of the figure represents the computation flow for the assigned 

rows of the matrix of coefficients in equation (8) where q is the cycle 

number in the cyclic reduction algorithm. Computation is interrupted for each 

processor to communicate these coefficients to its neighboring processors. 

New coefficients are then calculated by row operations on the matrix to 

eliminate variables. If there have been enough cycles to sufficiently reduce 

the original matrix, the temperatures are calculated. Otherwise, each 

processor repeats the computation until the matrix has been reduced 

sufficiently, after which the temperatures are calculated. Each 

9 
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processor then simultaneously proceeds to the next time step and communicates 

its temperature results in order to calculate a new right hand side of 

equation (6). The cyclic reduction is redone with each time increment which 

is required if a is a function of time, t, or space, x. 

RESULTS 

Results were obtained for a transient thermal test problem by an 

iterative method and a direct method for solving tridiagonal systems of 

equations. Temperature versus time results are shown in Figure 1. 

The primary results are the computational times needed to calculate the 

temperature distribution on a varied number of processors. The computational 

speedup (the computation time required to calculate results on one processor 

divided by the computation time required to calculate the same results on n 

processors) derived from the concurrent approach can then be computed. The 

computational speedup versus the number of processors for the iterative and 

direct techniques are shown in Figures 8 and 9, respectively. The theoretical 

maximum speedups would be the speedups if there were no overhead for concur~ 

rent processing and therefore, are equal to the number of processors used. 

For a system of 24 equations, the speedup for the iterative technique is 6.9 

on 12 processors. The speedup for the same system of equations using the 

direct technique is 5.6 on 12 processors. The speedup values show that the 

potential for decreasing the computational speed of the iterative technique is 

greater than that of the direct method. However, the execution times for the 

direct method are approximately half those of the iterative technique. The 

speedups fall short of the theoretical limit because the amount of communi

cation required is relatively large compared to the amount of computation for 

this problem size. 



The speedup of the iterative technique relative to the direct technique 

is called the relative speedup. It is defined as the execution time of the 

direct technique for one time increment on one processor divided by the 

execution times of the iterative technique for one time increment on n 

processors. This ratio may be used to compare the execution times of the 

direct and iterative techniques by assuming convergence of the iterative 

technique after a given number of iterations. The relative speedups for a 

varied number a iterations are shown in Table 1. The corresponding curves for 

the relative speedups in the table are shown in Figure 10. The solid curve is 

the relative speedups of the direct technique for one time increment and the 

dashed curves are the relative speedups of the iterative technique for one 

time increment. The iterative technique is faster than the direct technique 

when its relative speedups are greater than those of the direct technique. 

The timing results for the example problem indicate that when the number 

of iterations per time increment is less than five, the iterative technique is 

faster than the direct technique as shown in Figure 10. For the example 

problem, the number of iterations per time increment varied from 14 iterations 

to 4 iterations. The decrease in execution time per time increment implies 

that in a concurrent environment an analyst may want to consider using the 

direct technique initially and then switching to the iterative solution 

technique when the number of iterations is known to be small. Although an 

iterative technique is generally not used for the solution of a linear heat 

transfer problem, interchanging algorithms may be an effective way to reduce 

further the computational speed of heat transfer problem solutions. 

11 
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EXTENSION TO NONLINEAR .PROBLEMS 

The extension of the concepts discussed herein to the solution of 

problems with nonlinear effects, such as surface radiation, creates added 

complexities. One example of such a nonlinear problem is the one dimensional 

heat-conduction equation with surface radiation 

aT a
2
T 4 = a. + EaT 

at ax2 
(9 ) 

where E is the surface emissivity parameter and a is the universal 

physical constant. 

Application of the Crank-Nicolson method to the nonlinear heat transfer 

problem and using the average value for the nonlinear term leads to 

T. . 1 1,J+ 
+ ~ { T } + !if..!! {T T } 4 Ti,j 2 TXXj + xX

j
+

1 
16 i,j + i,j+1 

The iterative solution becomes 

Tr +1 
i, j +1 

+ ka. { + Tr } kE a {T Tr } 4 
T i, j 2 T xx j xx j + 1 + 16 i, j + i, j + 1 

and the concurrent solution method proceeds as discussed for the linear 

problem. 

( 10) 

( 11) 

The nonlinear direct method can be solved using a Newton-Raphson method 

which leads to tridiagonal equations that can be solved as follows 

Tr +1 = Tr 15T i,j+1 i,j+l + i,j+l ( 12) 

and the sequence of direct calculations within a time increment take the form of 



(1+28)-Y - 28 

-8 (1+28)-Y -8 

-8 (1+28)-Y 

1 +28 - 28 

-8 1+28 -8 

-81+2B 

where Y 

r 

oT, ,j+1 

oT2,j+1 

T1,j+1 

T2 ,j+1 

T . 1 n, J+ 

r 

i 

1-28 +28 

+8 1-28 +8 

+ ke:o 
16 

1 • • • n 

(T 1 . ,J 

(T 2 . ,J 

T . n,J 

+ T1,j+1)4 

+ T2,j+1)4 

(T . + T ) 4 
n,J n,j+1 

(13) 

The coefficients of the tridiagonal matrix on the left hand side of equation 

(13) change with each iteration, therefore the cyclic reduction must be redone 

with each iteration. Thus, for each increment in time, a sequence of direct 

calculations must be carried out to obtain a changed result at j+1. 

Therefore, the iterative approach would appear more attractive for the 

solution of nonlinear heat transfer problems on a concurrent processing 

computer. 

CONCLUDING REMARKS 

An iterative technique and a direct solution technique were used to 

solve a transient heat transfer problem on a varied number of processors of a 

13 
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MIMD computer and the performance results were compared. A description of 

both methods, their implementation, and results are discussed. Both methods 

provided significant speedup in computations as the number of processors 

increased indicating that parallel computers can be beneficial in $olving 

complex heat transfer problems. Results show that the iterative technique 

would benefit more than the direct technique if the number of processors were 

increased. The results also show that although the direct technique is the 

faster of the two for sequential calculations, the iterative technique is 

faster on a concurrent processing computer when the number of iterations per 

time increment is known to be small. 

For nonlinear problems, the formulation of the iterative technique 

remains basically the same as for linear problems. The direct technique, 

however, is reformulated such that it requires several Newton-Raphson cycles 

per time increment to .obtain a result at a given finite difference station. 

Therefore, the advantage of the iterative technique increases significantly 

for concurrent computers. 

Many future computers for large-scale engineering analysis will be 

multiple instruction multiple data systems. While further algorithmic studies 

are needed in several problem areas to help refine solution strategies, the 

results of this study suggest'that heat transfer analysis problems are well 

suited for implementation on future.parallel computers. 
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TABLE 1 - RELATIVE SPEEDUPS FOR THE ITERATIVE TECHNIQUE 

Speedup 

2 3 4 5 
Processors iteration iterations iterations iterations iterations 

3.51 1. 76 1.17 0.88 0.70 

2 5.71 2.90 1 .90 1.43 1.14 

4 10.14 5.07 3.38 2.54 2.03 

6 14.02 7.01 4.67 3.51 2.80 

8 17.50 8.75 5.83 4.38 3.50 

12 23.26 11. 63 7.75 5.82 4.65 
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