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SIMULA TION OF COMPLEX THREE-DIMENSIONAL FLOWS

GEORGE S. DEIWERT.! HERBERT J. ROTHMUND? AND KAZUHIRO NAKAHASHI®

ABSTRACT

Thne concept of splitting is used extensively to simulate complex three-dimensional flows
on modern computer architectures. Used in all aspects. from initial grid generation to the
determination of the final converged solution. splitting is used to enhance code vectorization.
to permit solution-driven grid adaption and grid enrichment, to permit the use of concurrent
processing. and to enhance data flow through hierarchal memory systems. Three examples
are used to illustrate these concepts to complex three-dimensional flow fields: 1) interactive
flow over a bump. 2) supersonic flow past a blunt-based conical afterbody at incidence to a
free stream and containing a centered propulsive jet. and 3) supersonic flow past a sharp-
leading-edge delta wing at incidence to the free stream.

INTRODUCTION

In this paper a general approach is described for constructing efficient flow codes for modern
computer architectures which are capable of treating a wide variety of complex geometries
and of describing a wide varietv of flowfield features. Emphasis is placed on a data construct
that permits the effective use of multivector processing and permits the treatment of a variety
of flows without the need for major recoding. The concept of splitting. defined here to be
the use of a sequence of one-dimensional operations 1o compute a multi-dimensional flow, is
relied on to effect these goals.

The simulation of complex three-dimensional flows on digital computers involves two major
processes. One is to define the appropriate equation set and solution algorithm so that the
solution can be found in an efficient manner and the other is to adequately :discretize the
computational space so that pertinent flow features can be resolved efficiently. These two
processes should be considered concurrently so that the best possible solution procedure is
developed.

For more than 20 vears it has been recognized that, for large data bases, directional splitting
can be used to achieve computational efficiency. For example. Douglas and Gunn {1} in 1964
described an alternating direction implicit method for solving flow-field equations.; MacCor-
mack {2 in 1969 used splitting in conjunction with his explicit method, and Yanenko |3] in
1971 published an excellent volume on “The Method of Fractional Steps.” Beam and Warming
|4 used approximate factorization to enhance their now widely used implicit method, and, in
this meeting, Kovenya {5; again addresses the advantages of splitting.

During this same period there has been continued improvement both in the efficiency of
numerical methods and in the speed of digital computers. These improvements permit us
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todav 10 realistically simulate many complex flows of practical interest. The speed of digita!
computers has been realized both by improved hardware and by improved architecture. The
architecture improvement that has been most dramatic is the vector processor concept. This
concept permits orders of magnitude improvements in computer speeds. Modern algorithms
should be designed. as much as possible. to take advantage of these vector processing archi-
tectures and. when this is done. the single most crucial item in the vector process is the design
of the data base (Rizzi 16 i.

Three-dimensional flowfields can be considered complex when either the geometryv is com-
plex {1.e.. the computational space contains holes and corners) or the flowfield itself is complex
(1.e.. there are regions of sirong viscous:inviscid interaction. separated shear lavers. oblique
shocks. etc.). or both. The problem of discretization (grid generation) i1s an important consid-
eration in both cases. with the first case (geometry) emphasizing initial grid generation and
the other emphasizing a solution-adaptiv e and;or grid-enrichment procedure. In both cases
it is important to consider the solution algorithm. the computer architecture, and the design
of the data base. simultaneously. in order to maintain an efficient solution method.

One procedure used to discretize complex three-dimensional flowfields is the zonal approach
{(e.g.. Lee 7 and Holst et al. & ). In these procedures the computational space is divided
into separate and distinct zones. each of which, being simpler than the complete space. is
discretized separately. The equation set and solution algorithm can be different for each
zone. Inherent in these methods is a scheme to interface the solutions in the different zones
to one another. Another procedure used to discretize complex flowfields is the embedded
grid approach (e.g.. Atta and Vadvak !9 and Benek et al. {10). In these methods a grid
of one type (say a high-resolution. body-oriented. near-surface grid) is completely embedded
in a grid of another type (say a coarse grid for the external flow). Again. it is necessary to
interface the solutions on the different grids to one another.

A third procedure.which takes advantage of the concept of splitting. is the block/pencil
data base approach (e.g.. Lomax and Pulliam {11: and Deiwert and Rothmund |12}). Here
the topological space is subdivided into blocks which interface one another exactly. These
methods are capable of treating complex geometries and flow fields and DO NOT INVQLVE
INTERFACING. They are highly vectorizable and are readily amenable to concurrent pro-
cessing. another architectual enhancement of modern computers.

It is the purpose of this paper to describe a general approach for efficiently simulating com-
plex three-dimensional flows. Emphasis is placed on data structures compatible with modern
multivector processors. The concept of splitting (or fractional steps) is used extensively in all
aspects of the approach. including grid generation, grid adaption. the solution algorithm, and
the data flow. The concepts are general and are relevant to a variety of numerical methods
and schemes.

GRID GENERATION

Recently an adaptive grid method was described 113,14} that is based on variational princi-
ples and is suitable for multidimensional steady and unsteady flows. The concept of splitting
is used to make the method practical. efficient. and robust. In ref. 13 it was shown that by
beginning with a uniform grid in a topological box (or system of topological boxes) functions
describing the geometry of the bodv of interest can be used to stretch and cluster grid points
and thus generate a suitable starting grid for complex, three-dimensional, flowfield computa-



tion. Subsequently this grid can be further refined. using the same scheme used in the initial
generation. by adapting the grid points to the developing solution itsel. and by enriching the
grid in regions where even more detail is desired. The highdights of this scheme are outlined
here.

Beginning with a uniform grid distribution in each of the three directions, the points are
redistributed in one direction at a time. along grid lines. such that

/ ‘ w(s)ds =  const (1)

for all i. where s, is the arc length to the 7" gridpoint and w(s) is a positive weighting function
that defines the stretching and clustering. For distributions across wall-bounded shear lavers.
a geomeltric (exponential) function would be used. For distributions around curved surfaces.
the local curvature would be used.

To maintain a uniform grid in £-space (i.e., computational space), Eq. (1) implies that
sew(€) = const (2)

where s is the metric coefficient and corresponds to the ratio of arc lengths in physical and
computational space. Equation (2) is the Euler-Lagrange equation for the minimization of
the integral

1
I, = f w(€)s? df (3)

The minimization of this integral is analogous 1o minimizing the energy of a system of springs
with constants w(£) between each pair of grid points.

Additional contraints to control orthogonality (or skewness) and smoothness can be imposed
similarlv which results in minimizing the energy of a svstem of torsion springs. between grid
lines. Jocated at each node point. (For further details see ref. 14.) By considering these torsion
forces from one side only (e.g., upwind) the concept of splitting is maintained, and simple
marching procedures can be used in the secondary adapting directions (from one grid line to
the next). In the principal adapting direction (along the grid line), the resulting equations
are one-dimensionally elliptic and form a simple tridiagonal set.

The application of the scheme to three-dimensional grid generation is illustrated by con-
sidering the supersonic flow past a bump. Initially a rectangular grid (49 x 29 x 40) is
generated with uniform spacing on each side of a rectangular parallelepip ed. One surface of
the rectangular parallelepip ed is deformed to describe a bump by shortening the z-coordinate
in a prescribed manner. fig. 1(a). The shape of the bump is defined by

.25 Isin (47 (x — .5) — .57) + 1] jcos (47y) + 1]

2(z,y) = for 53<zr<1land 0<y<.25 (4)

0, forr <. 50or1<zor.25<y

This grid is then redistributed successively in each coordinate direction. Considering the
7-direction first, the function, w, is given by an equation

Wy = 291,75,k — 2zz,j,k T 2441,5.k (5)
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This expression for u clusters the grid points to regions of large curvature in the z-z plane. The
end-point mesh spacings Az ;6 = To 4 = T15.0 804 DZimazr— 15k = Tamaz,j.k — Limaz-1,5.k
arc specified. In the j-direction. w is specified by the similar expression to Eq. (5) in the y-z
plane. Again. end spacings are specified. In the k-direction an exponential function is used
to cluster points near the wall surface in order to resolve the wall-bounded shear laver.

The inclination of grid lines are controlled by using torsion springs to make the grid qua-
siorthogonal. This orthogonalit v is enhanced near the bump on the wall by increasing the
torsion spring coeflicients. As shown in fig. 1(b}. the grid spacings and grid line inclinations
are generically clustered in all three directions. It 1s generally easier to control the grid by
using this scheme than by using elliptic methods. and the generality available is greater than
with algebraic methods.

During the course of reaching a steady state. the resulting initial grid is subsequently
adapted to the solution. The function w. used initially to generate the grid, is replaced by
the computed density gradient. The solution is redistributed onto the newly distributed grid
points by using simple one-dimensional interpolation schemes after each directional adaption.
For unsteady flows, grid speeds can be determined and used in the conservation equations
themselves (see ref. 14).

Figure 1(c) shows computed density contours before grid adaptation. Grid points are then
twice adapted in both the j- and k-directions, fig. 1(d). before obtaining the final solution,
which is shown in fig. 1{e). This final solution shows a crisper three-dimensional shock surface
in front of the bump and separated shear laver behind the bump.

This consistent procedure of grid generation and flow-field computation. coupled with
solution-adaptiv e rediscretization. considerably reduces the computational effort for the three-
dimensional grid generation and flow-field computation and provides accurate solutions with
a minimal number of points. This approach can be used with anv of a wide variety of algo-
rithms. one of which is described briefly in the next section.

ALGORITHM

The equations used to describe three-dimensional interacting flows are the Reynolds-aver-
aged Navier-Stokes equations for compressible flow. To numerically solve these efficiently
on present-day computers for systems described with large data bases requires the use of
directional splitting. This splitting can be achieved quite naturally with explicit methods
where communication between grid points is only with near neighbors (e.g., refs. 2 - 3).
Implicit methods, however. require approximate factorization of the sequence of difference
operators to realize directional splitting (e.g., ref. 4). This method was used for the computed
examples presented herein and is also used here to illustrate the data flow for a split algorithm.

The Navier-Stokes equations can be written in strong conservative form in generalized
coordinates as

9:Q + ¢ (F-g%) - 9,(F-§") = 8 (F-§*) = 0 (6)

where
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(7. (. and ¢ are the Cartesian unit vectors. ¢*. ¢”.and ¢ are the contravariant base vectors.

and J is the Jacobian of the transformation.
Tne stress tensor. 7. i« written in terms of the transiormed coordinates. £. n. and ¢ and.

in keeping with the thin-laver approximation. only those terms are retained which will not

result in cross derivatives. (Le.. ug¢e, vee, etc.. terms are retained but. uey,, v¢y,. elc.. are not.)

This permits the consideration of shear lavers coaligned with each of the principal coordinate

directions, 1s consistent with thin shear layer theory. and does not inhibit code vectorization.
The corresponding difference equation for Eq. 6. written in operator notation is

Lyl LeAi@ = Re~ Ry~ R (8)
where the operators are defined by
Le=(1+At6cA™ —¢;J7 VAT
L,=(1+Até,B" — ¢;J 'V, A, J)

(1= A16.CT =, 7'V AT

=
I

I

Re= A6 (JF-§9)" = epd 7 (VAP IQ™ = ep I (VeAep)(VeA)IQT
Ry = —Atéy (JF-g")" —epJ NV, A,)20Q" — ep 71 (V,A,p) (VAL IQT
R.=-Até (JF-§) —epJ (VAN IQ" —epd 1 (V APV A)IQT

and the é;. é,,. and 6. are central-difference operators; A, A,, and A. are forward-difference
operators: and V., V,. and V. are backward-difference operators in the {-, n-, and ¢-
directions. respectively. The A; term is a forward-difference operator in time. For example,

AtQ — Qn+1 _ QYI
The Jacobian matrices are
A = 8g(Fy-g*)~J '8q(Fp-g*)J
B = aQ(FH g"fl) + J”’&Q(Fp~§"’).]
C = 8q(Fu-g°)~J '8q(Fp-§)J

where Fpy contains only the convective-like terms of the flux vector F. and Fp contains only
the gradient diffusive terms of F. A combination of fourth-order (¢g) and second-order (ep)
explicit smoothing terms and second-order (¢;) implicit smoothing terms have been added to



contro) nonliner instabilities. Variable time stepping. based on local Mach number and on
the local Jacobian. can be used 1o increase the convergence rate to steady state.

Lquation & is solved in successive sweeps of the data base. with each sweep inverting one
of the operators on the left-hand side. The solution is advanced in time by adding A,Q to Q
after the third sweep.

In general the data are operated on four times for each 1ime step advance. First the right-
hand side of Eq. & is formed by passing through the data base for each direction. one at &
ume. and then the left-hand-side operators are inverted one by one. For two of the directions
(first and third in the operator inversion sequence). both the right-side operator and left-side
inversion can be determnined in-the same step. Typically the data base will be organized
for efficient vector operation in one direction only. Depending on the computer architecture.
either vector operations emploving wide strides or gather;scatter data inversions must be used
1o realize efficient vector operations in the other two directions. 1i neither of these constructs
are available. then arithemetic inversions, while more costly. should be used

Most modern vector processors are currentlv available with sufficient high-speed memory
that hierarchal memory storage is not a serious problem in the development of efficient codes
for most problems. Earlier processors having less. say. than two million words of high-speed
memory. however, posed serious constraints on algorithm development for three-dimensional
flows. Treatment of some of these problems is discussed in some length in refs. 11 and 12.

DATA STRUCTURE

Geometries for realistic three-dimensional flow problems are not simple. Yet we must have
a way 10 solve a variety of flows without having to recode for every problem. Furthermore.
application of boundary conditions should not have a significant eflect on the efficiency of
the vectorization or on the use of concurrent processing. And finallv we must be able to
redistribute grid points to achieve adequate resolution at minimal cost.

One way to effect these goals is to map the physical space containing our flow field into a
topological box (or group of boxes) in computational space. This permits the use of a general-
solution algorithm for a variety of physical geometries. By using body-oriented coordinates
in phyvsical space. all boundary conditions can be mapped to planar surfaces in computa-
tional space. For algorithms employing the splitting concept, the boundary conditions can
be imposed one-dimensionally at the ends of the topological box. and highly efficient vector
operations can be used to operate in between. The data can be subdivided into blocks that
interface their neighbors in a one-to-one manner. These blocks can be combined to form
“pencils” of data in each coordinate direction. Concurrent processing can be used to operate
on more than one pencil in each direction simultaneously. There need be no special interfac-
ing between these blocks when the splitting concept is emploved. The redistribution of grid
points during the course of the solution process can be realized in a straightforward manner
by remapping between the physical and computational space. using the variational principles
discussed in a previous section. with the concept of splitting used to maintain efficiency. Two
examples are chosen to illustrate these concepts: 1) flow past a blunt-based conical afterbody
at incidence to a free stream and containing a centered propulsive jet, and 2) flow past a
sharp-leading-edge delta wing at incidence to the free stream.

Consider first the afterbody geometry. Shown in fig. 2a is a cone-cvlinder forbody with
a conical afterbody containing a centered conical nozzle. A physical space control volume
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containing this body and the flow field about it is a hemispherical (upstream) cylindrica!
(downstream) shape. In computational space the control volume can be described by &
topological box with a notch cut out to fit the body geometry. This is a convenient way to
treat geometries with corners and holes. This topological box can be subdivided into blocks
which can be matched 1o specific regions of the phvsical space and can be stacked together in
pencils for efficient vector operations. Shown in fig. 2d is an example of a computational space
for the forebody/afterb ody geometry. Here the computational space has been subdivided into
14 blocks. which are numbered in the figure. Biock 1 has one side coincident with the jet
exit plane and blunt-base boundary. and one side coincident with the downstream contro
volume centerline. Block 2 extends further downstream and has one side coincident with
the downstream control volume centerhine and another side coincident with the downstream
exit plane. These two blocks are stacked together to form a pencil in the £-direction., with
boundary conditions imposed on the jet exit plane and blunt base and on the downstream
exit plane. Block 3 has one side coincident with the upstream centerline and one coincident
with the cone/cvlinder forebody. Block 4 lies on the cvlindrical forebody and on the conical
afterbody. These are followed in the £-direction by blocks 5 and 6. where block 6 has one side
coincident with the downstream exit plane. Blocks 3 through 6 are joined to form a pencil in
the f-direction with boundarv conditions on the upstreamn centerline and on the downstream
exit plane. Blocks 7 through 10 are coaligned with blocks 3 through 6 as are blocks 11 through
14. Blocks 7 and 11 have one side coincident with the upstream centerline. blocks 10 and 12
have one side coincident with the downstream exit plane. and blocks 11 through 14 have one
side coincident with the far-field lateral boundary. Each of the 14 blocks has opposing sides
coincident with the leeward and windward planes of bilateral symmetry. All remaining sides
are adjacent to a neighbor block with a one-to-one correspondence. and no special interfacings
are necessary. In the n-direction the blocks are stacked together to form pencils such that
blocks 3-7-11 form one pencil with boundary conditions on the forbody surface and at the
far field. blocks 4-8-12 form a second pencil with boundary conditions on the cylinder and
afterbody surface and at the far field, and blocks 1-5-9-13 and 2-6-10-14 form pencils with
boundaryv conditions on the downstream centerline and far field. In the ¢-direction the pencil
lengths are just one block long. The blocks can, however, be grouped together to form broader
based pencils such as blocks 1 and 2, blocks 3-4-7-8-11-12, and blocks 5-6-9-10-13-14. It is the
pencil base dimensions that define the vector length used for vectorized operations. In the
present example the block dimensions are each 40 in the £-direction, 40 in the n-direction for
boxes 1 and 2. 20 for boxes 3 through 14. and 20 in the ¢-direction for all blocks. The block
boundaries are shown in physical space in fig. 2b and 2¢. With the blocks in computational
space remaining fixed. the grid in physical space is solution adapted to density and pressure
gradients. The computed density and pressure contours and final adapted grid are shown in
fig 3 in the vicinity of the afterbody only.

The computed results shown in fig. 3 are for a Mach 2 flow past a blunt-based. 8°, half-
angle. conical afterbodv containing a Mach 2.5 centered propulsive jet emanating from a 20°
half-angle. conical nozzle. The jet-to-free stream static pressure ratio is 2:1, and the body is at
a 6° incidence to the oncoming free stream. Plotted in fig. 3a are computed density contours
in the bilateral plane of symmetry with the windward in the lower portion and the leeward
in the upper: Figure 3b shows computed pressure contours. Flow-field features obvious in
these displays include: 1) the boundary layer on the afterbody surface; 2) a lower-density gas
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on the leeward compared with the windward: 3) a rapid expansion around the nozzle lip: 4)
an oblique shock. weaker on the leeward than the windward. that radiates at an angle about
30° 10 the body axis and emanating just ofl the annular base: 5) the plume boundary (slip
surface) which extends radiallv downstream of the base just outside the high-density jet flow:
6) a barrel shock that extends downstream of the base inside the plume boundary: and 7) a
rapid expansion in the central part of the jet from the high-density. high-pressure exit plane
10 & low=density. low-pressure core some 1.5 calibers downstream.

Consider next the flow past a sharp-leading-edge delta wing at incidence to the free stream:.
Shown in fig. 4 is an exploded view of a suggested block structure in both phyvsical and
computational space. Blocks 1 through 3 correspond to the windward with the top surface
of block 1 coinciding with the lower surface of the wing. Blocks 2 and 3 correspond to the
regions downstream of the trailing edge and away from the leading edge. respectively. Blocks
4 through 6 correspond to the leeward. with blocks 5 and 6 corresponding to the downstream
and lateral regions, respectively. The bottom surface of block 4 corresponds to the lee surface
of the wing and is coincident with the top surface of block 1. This topology is mapped
to describe the Dillner delta wing configurationi15 which has a 6% biconvex circular arc
profile. Two E-pencils arc formed by blocks 1-2-3 and 4-5-6. respectively. similarly for two
¢-pencils. Four g;-pencils are formed by block 1. block 4. blocks 2 and 5. and blocks 4 and
6. respectively. Boundary conditions for the ¢-pencils are supersonic inflow at the upstream
boundary and outflow at the downstream. For the ¢-pencils symmetry is imposed on one
plane and free-stream conditions on the other. For the n-pencils free stream is imposed on
the bottom and top surfaces. For the two pencils formed by blocks 1 and 4. though, the wing
surface boundary conditions are used on the planes that are coincident with the wing. Initially
the block dimensions in the £.7,c-directions are (18x30x18). (12x30x18). (30.30,12). As the
solution develops in time the grid is enriched such that these dimensions become (36x35x36).
(24x35x36), (30.35,24), (36x55x36). (24x55x36). and (30.55,24), respectively. This grid is also
solution-adapted to computed density gradients. Shown in fig. 5a are static surface pressure
contours which show a low-pressure region just underneath the leading-edge vortex. In fig.
5b are computed density contours for selected streamwise planes. These contours indicate the
low-density fluid in the leading-edge vortex. In fig. 5c are computed particle paths showing
the leading edge vortex and surface streamlines. '

CONCLUDING REMARKS

The concept of directional splitting in conjunction with a block/pencil data structure has
been described for efficiently computing complex three-dimensional flow fields, requiring large
data bases. on modern multivector processors. The block data structure permits discretization
of complex geometries (i.e., topologies containing holes and corners) while at the same time
permitting concurrent vector processing. The concept of splitting is used in grid generation
and grid adaption to effect optimal discretizations with a minimal number of points. Splitting
is also used to simplify the application of boundary conditions for vectorized algorithms and
to eliminate any need for special interfacing of data blocks. Two illustrative examples have
been given to show how these concepts are applied. With a little imagination a wide variety
of flowfields can be eflectivly treated in a similar manner, without any recoding of the general
solution procedure.
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Fig. 5. Computed delta wing flowfield: (a)
Lee surface isobars, (b) Leeward isopycnics,
(b) B’ (c) Leading edge vortex and surface stream-
(a) lines. Mo, = 1.5, a = 15°.

Fig. 4. Delta wing block structure:
Physical space, (b) Computational space.
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