STATISTICAL METHODS FOR EFFICIENT DESIGN
OF COMMUNITY SURVEYS OF RESPONSE TO NOISE:
RANDOM COEFFICIENTS REGRESSION MODELS

Thomas J. Tomberlin

THE BIONETICS CORPORATION
Hampton, Virginia

THOMAS J. TOMBERLIN, CONSULTANT (SUBCONTRACTOR)
Montreal, Quebec, Canada

Contract NAS1-16978
July 1985

NASA
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665
TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. MODELS WITH FIXED REGRESSION SLOPES 2

3. RANDOM COEFFICIENTS REGRESSION MODELS 3
 3.1 Model I: Two-stage Design, Parameters Random at the First Stage 4
 3.1.1 The Model and the design 4
 3.1.2 Estimating regression parameters, associated sampling variances, and optimal design 5
 3.1.3 Estimating ratios of regression parameters, associated sampling variances and optimal design 7
 3.1.4 Estimating variance components 8
 3.2 Model II: Three-stage Design, Parameters Random at the First Two Stages 9
 3.2.1 The model and the design 9
 3.2.2 Estimation, sampling variances, and optimal design 10
 3.2.3 Estimating variance components 13
 3.3 Model III: Three-stage Design, Slope, Parameters Random at the First Two Stages, Error Terms Nested, Individuals within SSU's within PSU's 14
 3.3.1 The model and the design 14
 3.3.2 The estimates, associated sampling variances, and optimal design 15
 3.3.3 Estimating variance components 19
 4. AN EXAMPLE ... 20
 5. SUMMARY AND CONCLUSIONS 22

REFERENCES ... 23
1. Introduction

Many social surveys have as their main purpose, the analysis of relationships between variables. In particular, studies of public reactions to aircraft noise generally have as a principal goal, the estimation of regression parameters for a model predicting annoyance as a function of various measures of noise exposure. For example, in studying the trade-off between noise levels and numbers of events, the following two-variable regression model is commonly employed:

\[y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + e_i \]

where, \(y_i \) is a measure of annoyance associated with the \(i \)th individual in the population, \(x_{1i} \) and \(x_{2i} \) are measures of the noise level and number of events, respectively, to which the \(i \)th individual is exposed, and the \(e_i \) are independent random disturbance terms.

For simple random sample designs, the model given in (1.1) is quite adequate. Discussion of design and analysis issues for such models appears in many standard texts on multiple regression. See for example, Draper and Smith (1981) or Neter, Wasserman and Kutner (1985).

More commonly, samples for social surveys are drawn using complex sampling schemes, usually stratified, multi-stage cluster sample designs. For example, studies of residents’ responses to noise most often consist of interviews with samples of individuals drawn from a number of different compact study areas, usually neighborhoods. In order to design such studies, it is necessary to determine the numbers of individuals and numbers of study areas to include in order to achieve specified research objectives. The statistical techniques developed in this report provide a basis for these sample design decisions.

Optimal design and estimation for means and totals using these designs is well understood. (Cochran, 1963) On the other hand, no such consensus exists for design and estimation for regression parameters using such samples. One approach to this problem is described by Kalton (1983) in an earlier NASA Contractor Report. His methodology is briefly described in Section 2, below. Kalton employed regression models which incorporate nested random intercepts associated with various stages of a multi-stage cluster sample design. For cases where there is little or no variability in
predictor variables within clusters, this approach provides useful results. However, when such variability does exist, it can lead to results which seem counter-intuitive.

In Section 3, we build on the models proposed by Kalton. Three regression models are presented for which the regression parameters themselves are considered random, with components of variability corresponding to the stages of a multi-stage cluster sample design. These models differ in the assumptions regarding variability of model parameters. For each, sampling variances and covariances are derived for estimates of linear regression parameters and ratios of parameters. Optimal allocation of sample resources across the stages of the design is derived for each situation. These allocations depend, in part, on estimates of variability at the various levels of the sample designs. Variance component estimates for this purpose are derived. These estimates could be obtained from existing data, contributing to the efficient design of future surveys. In Section 4, we apply some of these techniques in a simple example. Finally, the results of this research are summarized in Section 5.

2. Models with Fixed Regression Slopes.

The task of designing complex sample surveys for estimating regression parameters has been addressed elsewhere. Specifically, Kalton (1983) considered essentially the same problem in an earlier NASA Contractor Report. The simplest sampling situation considered by Kalton is that of a two-stage design. In the first stage, primary sampling units (PSU's) are selected. In the second, individuals are sampled within the selected PSU's. For example, for a survey around a single airport, PSU's might correspond to Census Tracts, and individuals within these PSU's might correspond to households within Census Tracts. The first multiple regression model for such a design considered by Kalton is a classical nested random effects model:

\[y_{ij} = B_{0i} + \beta_1 x_{1ij} + \beta_2 x_{2ij} + e_{ij} \]

where, \(B_{0i} \) and \(e_{ij} \) are random effects corresponding to PSU's and individuals within PSU's, respectively. (See equation (11) in Kalton.)

Note that the slope parameters in equation (2.1), \(\beta_1 \) and \(\beta_2 \), are constant. They do not vary from cluster to cluster. While this assumption is standard for such random effects analysis of covariance models, the design implications are somewhat counter-intuitive. As was noted by Kalton, assuming a standard cost model, if the within-cluster variability of
the x-variables is the same as that of the associated population variability, a sample of a single cluster can be the implied optimal design for estimating slope parameters or functions of slope parameters. This seems counter-intuitive because one suspects that the structure of the relationship (the slope parameters) is probably not constant across clusters. Under such circumstances, drawing a sample of a single cluster would not be considered a safe alternative. In the following sections, we consider models which incorporate this structural variability.

The principal difference between the models considered in this section and those employed by Kalton is that here, the slopes are allowed to vary from cluster to cluster. They are assumed to be random, with components of variability associated with the various stages in a multi-stage cluster sample design. Below, three model-design combinations are presented. In the first two of these, estimates of regression slopes and of variance components are functions of individual slope estimates associated with observations belonging to the same penultimate stage sampling units.

Model I is for a two-stage design as described in Section 2 above. For such designs, penultimate stage sampling units are PSU's. Model III incorporates structural variability at two levels for a three stage design. Such a sampling scheme might be used for a national or regional survey with cities or counties serving as PSU's, Census Tracts selected within PSU's as secondary sampling units (SSU's), and finally households within SSU's.

For some samples, an estimation strategy based on regression parameter estimates obtained within penultimate stage sampling units is feasible, however for many others, it is not. For example, in order to obtain slope estimates within a cluster, there must be variability in the predictor variables in that cluster. In the present case, that means variability in the noise exposure measurements within penultimate clusters. For many available studies, there is little or no variability in these predictors at the penultimate cluster level and the procedures described for Models I and II are not feasible.

Model III is also based on a three-stage design. It contains random effects which incorporate variability in regression slope parameters only at the first stage. Estimates depend on individual slope estimates associated with data from PSU's. Such a procedure could be applied to data from most available studies. It should be noted however that should substantial variability in regression slopes exist at the SSU level, conclusions obtained from analyses based on Model III should be limited to designs with similar
final stage characteristics. That is, in designing future studies, only
designs which have PSU's of size comparable to those associated with PSU's
in the studies used to obtain estimates of variance components should be
considered. Any variability in slope parameters associated with SSU's in
these studies will be included in the estimate of the variance component
associated with PSU's. However, the effect on the estimated component
will change depending on the number of SSU's per PSU.

3.1 Model I: Two-stage design, parameters random at the
first stage.

3.1.1 The model and the design.

First, we consider a two-stage sample design, together with a model
which incorporates variability in regression parameters at the first stage:

Design: Select n PSU's, and within the ith PSU, select n_i individuals
for a total sample size of \(\sum n_i = n \).

(3.1) \[y_{ij} = B_{0i} + B_{1i}x_{1ij} + B_{2i}x_{2ij} + e_{ij}, \text{ where} \]
\[B_{mi} = \beta_m + a_{mi}; m=0,1,2, \text{ and where} \]
\[E(a_{mi}) = 0; m=0,1,2 \]
\[E(a_{mi}a_{mi'}) = \sigma_{a_{mm'}}; m,m'=0,1,2 \]
\[E(e_{ij}) = 0; j=1,2,...,n_i; i=1,2,...,n \]
\[E(e_{ij}^2) = \sigma_e^2; j=1,2,...,n_i; i=1,2,...,n \]
\[E(e_{ij}e_{ij'}) = 0; i \neq i' \text{ or } j \neq j' \]
\[E(e_{ij}a_{mj}) = 0; m=0,1,2; j,j'=1,...,n_i; i=1,...,n \]

Here, for simplicity, the independent variables \(x_{1ij} \) and \(x_{2ij} \) are
corrected for within PSU means. That is,

(3.2) \[x_{mij} = x'_{mij} - \bar{x}'_{mi}; m=1,2; j=1,...,n_i; i=1,...,n \]
where \(x'_{mij} \) is the raw, uncorrected measurement, and where \(\bar{x}'_{mi} = \sum_i x'_{mij} / n_i \), is the mean of the uncorrected measurements for the \(i \)th PSU.

3.1.2 Estimating regression parameters, associated sampling variances, and optimal design.

Let \(b_{mi} \) be the usual least squares estimate for \(B_{mi} \), \(m=0,1,2 \), calculated within PSU's. That is,

\[
(3.3) \quad b_{0i} = \frac{\sum_j y_{ij}}{n_i} = \bar{y}_i,
\]

\[
\begin{align*}
 b_{1i} &= \frac{(\sum_j x_{2ij}^2)(\sum_j x_{1ij}y_{ij}) - (\sum_j x_{1ij}x_{2ij})(\sum_j x_{2ij}y_{ij})}{(\sum_j x_{1ij}^2)(\sum_j x_{2ij}^2) - (\sum_j x_{1ij}x_{2ij})^2}, \\
 b_{2i} &= \frac{(\sum_j x_{1ij}^2)(\sum_j x_{2ij}y_{ij}) - (\sum_j x_{1ij}x_{2ij})(\sum_j x_{1ij}y_{ij})}{(\sum_j x_{1ij}^2)(\sum_j x_{2ij}^2) - (\sum_j x_{1ij}x_{2ij})^2}.
\end{align*}
\]

Estimates of the \(\hat{\beta}_m \), \(m=0,1,2 \) are obtained by averaging the PSU estimates, i.e.,

\[
(3.4) \quad \hat{\beta}_m = \frac{\sum_i b_{mi}}{n}; m=0,1,2.
\]

Then, since the within PSU least squares estimates, the \(b_{mi} \), are unbiased for the associated \(B_{mi} \), the overall estimates, \(\hat{\beta}_m \) are unbiased for the parameters \(\beta_m \). That is,

\[
(3.5) \quad E(\hat{\beta}_m) = E_i [E_{jli} (\sum_i b_{mi}/n)]
\]

\[
= E_i [\sum_i B_{mi}/n]
\]

\[
= \sum_i \beta_m / n = \beta_m.
\]

Here, the notation, \(E_{jli} \) represents the conditional expectation taken over all samples of individuals (the \(j \)'s) for a fixed set of PSU's (the \(i \)'s).
The sampling variances of these estimates are determined as follows,

(3.6) \[\text{Var}(\hat{\psi}_0) = E_i \left[\text{Var}_{jii} (\hat{\psi}_0) \right] + \text{Var}_i \left[E_{jii} (\hat{\psi}_0) \right] \]

\[= E_i \left(\sigma_e^2/n_i \right) + \text{Var}_i \left(\sum B_{0i}/n \right) \]

\[= \left[\sigma_e^2 \left(\sum \left(1/n_i \right) \right) / n \right] + \left(\sigma_{a00}/n \right). \]

The conditional variance notation, \(\text{Var}_{jii} \), is defined in a manner analogous to that of the conditional expectation described above for equation (3.5). If there is a constant PSU size, \(n_i = \sum n_j/n = \bar{n} \), then (3.6) simplifies as follows,

(3.7) \[\text{Var}(\hat{\psi}_0) = (\sigma_e^2/n \bar{n}) + (\sigma_{a00}/n) \]

\[= (\sigma_e^2/n) + (\sigma_{a00}/n), \]

where, \(n = \sum_{i} n_i \) is the total sample size.

For \(\hat{\psi}_1 \), the sampling variance is developed as follows,

(3.8) \[\text{Var}(\hat{\psi}_1) = E_i \left[\text{Var}_{jii} (\hat{\psi}_1) \right] + \text{Var}_i \left[E_{jii} (\hat{\psi}_1) \right] \]

\[= E_i \left[(\sigma_e^2/n^2) \sum_{i} \sigma_{122}/n_i (\sigma_{111} \sigma_{122} - \sigma_{112}^2) \right] + \text{Var}_i \left(\sum_{i} B_{1i}/n \right) \]

\[= \left[(\sigma_e^2/n^2) \sum_{i} \Delta_{122}/n_i \right] \sigma_{a11}/n, \text{ where } \]

\[\Delta_{122} = \sigma_{122}/(\sigma_{111} \sigma_{122} - \sigma_{112}^2), \text{ and where } \]

\(\sigma_{111} = \) variance of \(x_{1ij} \) within the \(i \)th PSU,

\(\sigma_{122} = \) variance of \(x_{2ij} \) within the \(i \)th PSU, and

\(\sigma_{112} = \) covariance of \(x_{1ij} \) and \(x_{2ij} \) within the \(i \)th PSU.

Again, if \(n_i = \bar{n} \), this simplifies to
Similarly, for $\hat{\beta}_2$,

\begin{equation}
\text{Var}(\hat{\beta}_2) = \left(\frac{\sigma^2}{n^2} \sum \Delta_{i11}/n_i\right) + \sigma^2_{a22}/n, \quad \text{where}
\end{equation}

\[\Delta_{i11} = \sigma_{i11}/(\sigma_{i11}\sigma_{i22} - \sigma_{i12}^2), \quad \text{and if } n_i = \bar{n}.\]

\[\text{Var}(\hat{\beta}_2) = \sigma^2 \sum \Delta_{11}/n. \quad \text{where} \]

\[
\bar{\Delta}_{11} = \sum \Delta_{i11}/n.
\]

Under the simple cost model assumed by Kalton, $C = C_0 + nC_a + nC_b$, where C_0 is the fixed cost of the survey, C_a is the average cost of including a cluster in the sample, and C_b is the average cost of including an individual in the sample, the optimum cluster size for estimating β_1 is given by,

\begin{equation}
\bar{n}_{(\text{opt})} = \left[\sigma^2 \sum \Delta_{22}/\sigma_{a11}\right]^{1/2} \left[C_a/C_b\right]^{1/2}
\end{equation}

3.1.3 Estimating ratios of regression parameters, associated sampling variances and optimal design.

Finally, for designing a sample to estimate ratios of regression coefficients, one requires the sampling covariances of the estimates, $\hat{\beta}_1$ and $\hat{\beta}_2$.

\begin{equation}
\text{Cov}(\hat{\beta}_1, \hat{\beta}_2) = \left[\frac{\sigma^2}{n^2} \sum \Delta_{i12}/n_i\right] + \sigma^2_{a12}/n, \quad \text{where}
\end{equation}

\[\Delta_{i12} = \sigma_{i12}/(\sigma_{i11}\sigma_{i22} - \sigma_{i12}^2), \quad \text{and if } n_i = \bar{n}.\]

\[\text{Cov}(\hat{\beta}_1, \hat{\beta}_2) = -\sigma^2 \sum \Delta_{12}/n. \quad \text{where} \]

\[
\bar{\Delta}_{12} = \sum \Delta_{i12}/n.
\]

For estimating the ratio of the two regression coefficients, $R = (\beta_2/\beta_1)$, we propose to use $\hat{R} = (\hat{\beta}_2/\hat{\beta}_1)$. Then, we can use the Taylor
expansion method to obtain an approximation of the variance of this ratio estimate,

\[\text{Var}(\hat{R}) \approx \beta_1^{-2} \left[\text{Var}(\hat{\beta}_2) + R^2 \text{Var}(\hat{\beta}_1) - 2R \text{Cov}(\hat{\beta}_1, \hat{\beta}_2) \right]. \]

Again, if there is a constant cluster size of \(n_i = \bar{n}_i \), this simplifies to

\[\text{Var}(\hat{R}) \approx \beta_1^{-2} \left[(\sigma_e^2 \bar{\Delta}_{11}/n_i + \sigma_{a22}/n) + R^2 (\sigma_e^2 \bar{\Delta}_{22}/n_i + \sigma_{a11}/n) - 2R (-\sigma_e^2 \bar{\Delta}_{12}/n_i + \sigma_{a12}/n) \right] \]

\[= \beta_1^{-2} \left[\left(\sigma_e^2 (\bar{\Delta}_{11} + R^2 \bar{\Delta}_{22} + 2R \bar{\Delta}_{12}) / n_i \right) + \left(\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12} \right) / n \right]. \]

Under the cost model described above, the optimum PSU size for estimating the ratio is given by,

\[\bar{n}_i(\text{opt}) = \frac{(\sigma_e^2 (\bar{\Delta}_{11} + R^2 \bar{\Delta}_{22} + 2R \bar{\Delta}_{12})}{(\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12})} / \left(\bar{n}_i \right)^{1/2} \frac{C_a}{C_b} \left(\frac{C_a}{C_b} \right)^{1/2}. \]

3.1.4 Estimating variance components.

Thus, in order to determine the optimum PSU size for estimating regression coefficients and ratios of regression coefficients, one requires the following information, the average cost parameters, \(C_a \) and \(C_b \), the design characteristics, the variance and covariance components of the random parameters, and an approximation for the true ratio \(R \). The design characteristics describe the within PSU distribution of the \(x \) variables in terms of \(\bar{\Delta}_{11}, \bar{\Delta}_{22}, \) and \(\bar{\Delta}_{12} \). These in turn depend on \(\sigma_{111}, \sigma_{122}, \) and \(\sigma_{112} \) calculated within clusters. The variance components of the random parameters, \(\sigma_{a11}, \sigma_{a22}, \sigma_{a12}, \) and \(\sigma_e^2 \) can be estimated from previous surveys using the methods described below.

The residual variance, \(\sigma_e^2 \), is estimated in the usual manner as,
\[(3.16) \quad \hat{\sigma}_e^2 = \frac{\sum \sum (y_{ij} - \hat{y}_{ij})^2}{\sum (n_i - 3)} = \frac{\sum \sum (y_{ij} - \hat{y}_{ij})^2}{n - 3n}\]

The remaining components are estimated as follows:

\[(3.17) \quad \hat{\sigma}_{a11} = \sum_i (b_{1i} - \hat{\beta}_1)^2/(n-1) - \hat{\sigma}_e^2 (\sum \Delta_{i22}/n_i)/n\]

or for constant cluster size, \(n_i = \bar{n}\).

\[(3.18) \quad \hat{\sigma}_{a22} = \sum_i (b_{2i} - \hat{\beta}_2)^2/(n-1) - \hat{\sigma}_e^2 \bar{\Delta}_{22}/\bar{n}.
\]

\[(3.19) \quad \hat{\sigma}_{a12} = \sum_i (b_{1i} - \hat{\beta}_1)(b_{2i} - \hat{\beta}_2)/(n-1) + \hat{\sigma}_e^2 (\sum \Delta_{i12}/n_i)/n\]

or for constant cluster size, \(n_i = \bar{n}\).

\[\hat{\sigma}_{a12} = \sum_i (b_{1i} - \hat{\beta}_1)(b_{2i} - \hat{\beta}_2)/(n-1) - \hat{\sigma}_e^2 \bar{\Delta}_{12}/\bar{n}.
\]

3.2 Model II: Three-Stage Design, Parameters Random at the First Two Stages.

3.2.1 The model and the design.

Now, we consider a three-stage sample design, together with a model which incorporates variability in regression parameters at the first two stages:

Design: Select \(n\) PSU's, within the \(i\)th PSU, select \(n_i\) SSU's and within the \(ij\)th SSU, select \(n_{ij}\) individuals.
\((3.20) \quad Y_{ijk} = B_{0ij} + B_{1ij}X_{1ijk} + B_{2ij}X_{2ijk} + e_{ijk}, \) where

\[
B_{mij} = \beta_m + a_{mi} + c_{mij} ; m=0,1,2 ; j=1,...,n_i ; i=1,...,n .
\]

\[
E(e_{ijk}) = E(a_{mi}) = E(c_{mij}) = 0 ; m=0,1,2 ; k=1,...,n_j ; j=1,...,n_i ; i=1,...,n .
\]

\[
E(a_{mi}a_{m'i}) = \sigma_{amm'} ; m,m'=0,1,2 ; i=1,...,n .
\]

\[
E(c_{mij}c_{m'ij}) = \sigma_{cmm'} ; m,m'=0,1,2 ; j=1,...,n_i ; i=1,...,n ,
\]

The last four lines of (3.20) imply that the \(e_{ijk} \), \(a_{mi} \), and \(c_{mij} \) terms are independent of each other.

3.2.2 Estimation, sampling variances, and optimal design.

Here again, regressions are carried out within the penultimate stage sampling units, that is within SSU's. Let \(b_{mij} \) be the usual, within SSU least squares estimate of \(B_{mij} \), and let

\[
(3.21) \quad \hat{b}_{mi} = \frac{\sum b_{mij}}{n_{ij}} ,
\]

\[
\hat{\beta}_m = \frac{\sum \hat{b}_{mi}}{n} , \text{ and finally}
\]

\[
\hat{R} = \frac{\hat{\beta}_2}{\hat{\beta}_1} .
\]

Using an argument analogous to that used in section 3.1, it is easy to see that the regression parameter estimates, \(\hat{\beta}_m \), are unbiased for the parameters \(\beta_m \). Sampling variances and covariances are also derived in a similar manner,
\[
\begin{align*}
(3.22) \quad \text{Var}(b_{1ij}) &= \text{Var}_{ij} E_{klij}(b_{1ij}) + E_{ij} \text{Var}_{klij}(b_{1ij}) \\
&= \text{Var}_{ij} (a_{1i} + c_{1ij}) + E_{ij} [\sigma_e^2 a_{ij22} / n_{ij} (a_{ij11} a_{ij22} - a_{ij12}^2)] \\
&= \sigma_{a11} + \sigma_{c11} + \sigma_e^2 \Delta_{ij22} / n_{ij}. \quad \text{Further,} \\
(3.23) \quad \text{Cov}(b_{1ij}, b_{1ij}) &= \text{Cov}_{ij,ij'} E_{klij,ij'} (b_{1ij}, b_{1ij}) \\
&= \text{Cov}_{ij,ij'} (a_{1i} + c_{1ij}, a_{1i} + c_{1ij'}) + \sigma_{a11}. \quad \text{Therefore,} \\
(3.24) \quad \text{Var}(\hat{\beta}_1) &= n^{-2} \sum_i n_i^{-2} \sum_j (\sigma_{a11} + \sigma_{c11} + \sigma_e^2 \Delta_{ij22} / n_{ij}) \\
&+ n^{-2} \sum_i n_i^{-2} \sum_{ij} \Delta_{ij}/n_{ij} \sigma_{a11}. \\
&= (\sigma_{a11} + \sigma_{c11}) n^{-2} (\sum_i n_i^{-1}) + (\sigma_e^2/n^2) [\sum_i n_i^{-2} (\sum \Delta_{ij22}/n_{ij})] \\
&+ \sigma_{a11} n^{-2} \sum_i (n_i^{-1})/n_i. \\
&= (\sigma_{a11}/n) + (\sigma_{c11}/n^2) \sum_i n_i^{-1} + (\sigma_e^2/n^2) [\sum_i n_i^{-2} (\sum \Delta_{ij22}/n_{ij})].
\end{align*}
\]

In equations (3.22-24), \(\sigma_{ijmm'} \) and \(\Delta_{ijmm'} \) are defined to be the variances, covariances and functions of these, for predictor variables \(x_{1ij} \) and \(x_{2ij} \), calculated within the \(ij \)th SSU, analogous to the definitions of \(\sigma_{imm} \) and \(\Delta_{imm} \) given in equation (3.8).

Now, if we have a constant PSU and SSU size, \(n_i = \bar{n} \) and \(n_{ij} = \bar{n}_{ij} = \bar{n}_{..} \), and if the design characteristics \(\Delta_{ij22} \) are constant over SSU's at \(\bar{\Delta}_{22} \), then we have,

\[
(3.24) \quad \text{Var}(\hat{\beta}_1) = (\sigma_{a11}/n) + (\sigma_{c11}/n\bar{n}) + (\sigma_e^2\bar{\Delta}_{22}/n\bar{n}_{..}) \\
= (\sigma_{a11}/n) + (\sigma_{c11}/n) + (\sigma_e^2\bar{\Delta}_{22}/n_{..}).
\]

Under similar assumptions, the \(\text{Var}(\hat{\beta}_2) \) and \(\text{Cov}(\hat{\beta}_1, \hat{\beta}_2) \) are seen to be,
\[\text{(3.25)} \quad \text{Var}(\hat{\beta}_2) = (\sigma_{a22}/n) + (\sigma_{c22}/n) + (\sigma^2_e2\overline{\Delta}_{11}/n) , \text{ and} \]

\[\text{(3.26)} \quad \text{Cov}(\hat{\beta}_{1},\hat{\beta}_2) = (\sigma_{a12}/n) + (\sigma_{c12}/n) - (\sigma^2_e2\overline{\Delta}_{12}/n). \]

Therefore, for the estimate of the ratio between the two coefficients, \(\hat{R} = \hat{\beta}_2/\hat{\beta}_1 \).

\[\text{(3.27)} \quad \text{Var}(\hat{R}) = \beta_1^{-2} \left[\text{Var}(\hat{\beta}_2) + R^2 \text{Var}(\hat{\beta}_1) - 2R \text{Cov}(\hat{\beta}_1, \hat{\beta}_2) \right] \]

\[\quad = \beta_1^{-2} \left[(\sigma_{a22}/n) + (\sigma_{c22}/n) + (\sigma^2_e2\overline{\Delta}_{11}/n) \right] \]

\[\quad + R^2 \left[(\sigma_{a11}/n) + (\sigma_{c11}/n) + (\sigma^2_e2\overline{\Delta}_{22}/n) \right] \]

\[\quad - 2R \left[(\sigma_{a12}/n) + (\sigma_{c12}/n) - (\sigma^2_e2\overline{\Delta}_{12}/n) \right] \]

\[\quad = \beta_1^{-2} \left((\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12})/n \right) \]

\[\quad + (\sigma_{c22} + R^2 \sigma_{c11} - 2R \sigma_{c12})/n. \]

\[\quad + \sigma^2_e(\overline{\Delta}_{11} + R^2 \overline{\Delta}_{22} + 2R \overline{\Delta}_{12}/n. \) \]

Using these results, combined with a simple cost model for three-stage cluster sampling we can arrive at optimum sampling unit sizes in a manner similar to that used for Model I. Let,

\[\text{(3.28)} \quad C = C_0 + C_1 n + C_2 n. + C_3 n.. , \]

where, \(C_0 \) is the constant overhead cost of the survey, \(C_1 \) is the average cost of including a PSU in the sample, \(C_2 \) is the average cost of including an SSU in the sample, and \(C_3 \) is the average cost of including an individual in the sample. Then, using the Cauchy–Schwarz inequality, we have the following condition for optimum allocation for estimating the ratio \(R \):

\[\text{(3.29)} \quad (\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12})^{1/2} / (n C_1^{1/2}) \]

\[\quad = (\sigma_{c22} + R^2 \sigma_{c11} - 2R \sigma_{c12})^{1/2} / (n. C_2^{1/2}) \]

\[\quad = \sigma_e(\overline{\Delta}_{11} + R^2 \overline{\Delta}_{22} + 2R \overline{\Delta}_{12})^{1/2} / (n. C_3^{1/2}) \]

This relation translates into the following optimum sampling unit sizes:
\[(3.30) \quad \bar{n}_{., (\text{opt})} = \left((\sigma_{c_{22}} + R^2 \sigma_{c_{11}} - 2R \sigma_{c_{12}})C_1 \right) / \left((\sigma_{a_{22}} + R^2 \sigma_{a_{11}} - 2R \sigma_{a_{12}})C_2 \right)^{1/2} \]

\[(3.31) \quad \bar{n}_{., (\text{opt})} = \sigma_{\varepsilon} \left((\bar{\Delta}_{11} + R^2 \bar{\Delta}_{22} + 2R \bar{\Delta}_{12})C_2 \right) / \left((\sigma_{c_{22}} + R^2 \sigma_{c_{11}} - 2R \sigma_{c_{12}})C_3 \right)^{1/2} . \]

3.2.3 Estimating variance components.

In order to determine necessary sample sizes and optimum allocation, one needs some idea of cost parameters, design characteristics summarized by \(\bar{\Delta}_{11} \), \(\bar{\Delta}_{22} \), and \(\bar{\Delta}_{12} \), an approximation of the ratio \(R \) and its denominator \(\beta_1 \), and the variance components \(\sigma_{a_{11}}, \sigma_{a_{22}}, \sigma_{a_{12}}, \sigma_{c_{11}}, \sigma_{c_{22}}, \sigma_{c_{12}}, \) and \(\sigma_{\varepsilon}^2 \). These may be obtained from previous survey data using the following estimates:

\[(3.32) \quad \widehat{\sigma}_{\varepsilon}^2 = \frac{\sum \sum (y_{ijk} - \bar{y}_{ijk})^2}{(n_{.-} - 3n_{.})} \]

\[(3.33) \quad \widehat{\sigma}_{c_{11}} = \frac{\left(\sum \sum (b_{1jj} - \bar{b}_{1j.})^2 - \widehat{\sigma}_{\varepsilon}^2 \sum \left[\frac{(n_{ij} - 1)}{n_{ij}} \sum \Delta_{ij22}/n_{ij} \right] \right) / (n_{.-} - n_{.})}{\sum \sum (b_{1jj} - \bar{b}_{1j.})^2 / (n_{.-} - n_{.}) - \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{22}/\bar{n}_{..}} \]

which if \(n_{ij} = \bar{n} \) and \(n_{ij} = \bar{n}_{..} \), further simplifies to,

\[\frac{\sum \sum (b_{1jj} - \bar{b}_{1j.})^2 / (n_{.-} - n_{.}) - \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{22}/\bar{n}_{..}}{\sum \sum (b_{1jj} - \bar{b}_{1j.})^2 / (n_{.-} - n_{.}) - \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{22}/\bar{n}_{..}} \]

\[(3.34) \quad \widehat{\sigma}_{c_{22}} = \frac{\left(\sum \sum (b_{2jj} - \bar{b}_{2j.})^2 - \widehat{\sigma}_{\varepsilon}^2 \sum \left[\frac{(n_{ij} - 1)}{n_{ij}} \sum \Delta_{ij11}/n_{ij} \right] \right) / (n_{.-} - n_{.})}{\sum \sum (b_{2jj} - \bar{b}_{2j.})^2 / (n_{.-} - n_{.}) - \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{11}/\bar{n}_{..}} \]

which if \(n_{ij} = \bar{n} \) and \(n_{ij} = \bar{n}_{..} \), further simplifies to,

\[\frac{\sum \sum (b_{2jj} - \bar{b}_{2j.})^2 / (n_{.-} - n_{.}) - \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{11}/\bar{n}_{..}}{\sum \sum (b_{2jj} - \bar{b}_{2j.})^2 / (n_{.-} - n_{.}) - \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{11}/\bar{n}_{..}} \]

\[(3.35) \quad \widehat{\sigma}_{c_{12}} = \left(\sum \sum (b_{1jj} - \bar{b}_{1j.})(b_{2jj} - \bar{b}_{2j.}) \right) \]

\[+ \widehat{\sigma}_{\varepsilon}^2 \sum \left[\frac{(n_{ij} - 1)}{n_{ij}} \sum \Delta_{ij12}/n_{ij} \right] / (n_{.-} - n_{.}) \]

which if \(n_{ij} = \bar{n} \) and \(n_{ij} = \bar{n}_{..} \), further simplifies to,

\[\frac{\sum \sum (b_{1jj} - \bar{b}_{1j.})(b_{2jj} - \bar{b}_{2j.}) / (n_{.-} - n_{.}) + \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{12}/\bar{n}_{..}}{\sum \sum (b_{1jj} - \bar{b}_{1j.})(b_{2jj} - \bar{b}_{2j.}) / (n_{.-} - n_{.}) + \widehat{\sigma}_{\varepsilon}^2 \bar{\Delta}_{12}/\bar{n}_{..}} \]
\[
(3.36) \quad \hat{\sigma}_{a11} = \left(\frac{\sum_i (\hat{\beta}_{1i} - \hat{\beta}_1)^2}{n} \right) - \hat{\sigma}_e^2 \frac{(n-1)/n}{\sum_i \sum_j \Delta_{ij}/\tilde{r}_i \cdot \tilde{r}_j} \quad / (n-1),
\]

which if \(n_i = \tilde{r}_i \) and \(n_{ij} = \tilde{r}_{ij} \), further simplifies to,

\[
\sum_i (\hat{\beta}_{1i} - \hat{\beta}_1)^2 / (n-1) - \hat{\sigma}_{c11}/\tilde{r}_i - \hat{\sigma}_e^2 \Delta_{22}/\tilde{r}_{ij}.
\]

\[
(3.37) \quad \hat{\sigma}_{a22} = \left(\frac{\sum_i (\hat{\beta}_{2i} - \hat{\beta}_2)^2}{n} \right) - \hat{\sigma}_e^2 \frac{(n-1)/n}{\sum_i \sum_j \Delta_{ij}/\tilde{r}_i \cdot \tilde{r}_j} \quad / (n-1),
\]

which if \(n_i = \tilde{r}_i \) and \(n_{ij} = \tilde{r}_{ij} \), further simplifies to,

\[
\sum_i (\hat{\beta}_{2i} - \hat{\beta}_2)^2 / (n-1) - \hat{\sigma}_{c22}/\tilde{r}_i - \hat{\sigma}_e^2 \Delta_{11}/\tilde{r}_{ij}, \quad \text{and finally},
\]

\[
(3.38) \quad \hat{\sigma}_{a12} = \left(\frac{\sum_i (\hat{\beta}_{1i} - \hat{\beta}_1)(\hat{\beta}_{2i} - \hat{\beta}_2)}{n} \right) - \hat{\sigma}_{c12}/(n-1)/n \cdot \sum_i \tilde{r}_i
\]

\[
+ \hat{\sigma}_e^2 \frac{(n-1)/n}{\sum_i \sum_j \Delta_{ij}/\tilde{r}_i \cdot \tilde{r}_j} \quad / (n-1),
\]

which if \(n_i = \tilde{r}_i \) and \(n_{ij} = \tilde{r}_{ij} \), further simplifies to,

\[
\sum_i (\hat{\beta}_{1i} - \hat{\beta}_1)(\hat{\beta}_{2i} - \hat{\beta}_2) / (n-1) - \hat{\sigma}_{c12}/\tilde{r}_i + \hat{\sigma}_e^2 \Delta_{11}/\tilde{r}_{ij}.
\]

3.3 Model III: Three-stage design, slope parameters random at the first two stages, error terms nested, individuals within SSU's within PSU's.

3.3.1 The model and the design.

As stated earlier, it is not always possible to estimate regression parameters at the SSU level as required with Model II. For this reason, we introduce a model-design combination based on the same sampling scheme as that for Model II, but with a model which allows for variability of slope parameters among first stage units only.

Design: Select \(n \) PSU's, within the \(i \)th PSU, select \(n_i \) SSU's and within the \(ij \)th SSU, select \(n_{ij} \) individuals.
\[y_{ijk} = B_{0ij} + B_{1i}x_{1ijk} + B_{2i}x_{2ijk} + e_{ijk}, \text{ where} \]

\[B_{0ij} = \beta_0 + \alpha_{0i} + c_{0ij}; \quad j=1,\ldots,n_i; \quad i=1,\ldots,n. \]

\[B_{mi} = \beta_m + \alpha_{mi}; \quad m=1,2; \quad i=1,\ldots,n. \]

\[E(e_{ijk}) = E(a_{mi}) = E(c_{mij}) = 0; \quad m=0,1,2; \quad k=1,\ldots,n_{ij}; \quad j=1,\ldots,n_i; \quad i=1,\ldots,n. \]

\[E(c_{0ij}^2) = \sigma_{c00}, \]

\[E(a_{mi}a_{m1}) = \sigma_{amm'}; \quad m,m'=0,1,2; \quad i=1,\ldots,n. \]

\[E(a_{mi}a_{m1}) = 0; \quad m,m'=0,1,2; \quad i \neq i'. \]

\[E(c_{0ij}e_{0ij'}) = 0; \quad i \neq i \quad \text{or} \quad j \neq j'. \]

\[E(a_{mi}e_{0ij}) = 0; \quad m=0,1,2; \]

\[E(a_{mi}e_{0ij}) = E(c_{mij}e_{ij}) = 0; \quad m=0,1,2. \]

3.3.2 The estimates, associated sampling variances, and optimal design.

Consider the following estimates for the slope parameter β_{1i} associated with the ith PSU:

\[b_{1i} = \frac{(\sum_{j} x_{2ijk}^2)(\sum_{j} x_{1ijk}y_{ijk}) - (\sum_{j} x_{1ijk}x_{2ijk})(\sum_{j} x_{2ijk}y_{ijk})}{(\sum_{j} x_{1ijk}^2)(\sum_{j} x_{2ijk}^2) - (\sum_{j} x_{1ijk}x_{2ijk})^2} \]

\[= \frac{(\sum_{j} x_{2ijk}^2)(\sum_{j} x_{1ijk}y_{ijk}) - (\sum_{j} x_{1ijk}x_{2ijk})(\sum_{j} x_{2ijk}y_{ijk})}{d_i} \]

where, \[d_i = (\sum_{j} x_{1ijk}^2)(\sum_{j} x_{2ijk}^2) - (\sum_{j} x_{1ijk}x_{2ijk})^2 \]

\[= n_i^2(\sigma_{111}\sigma_{122} - \sigma_{112}^2). \]
Here, the x_{mijk} are mean corrected within PSU's as for Model I. Then for the estimate of the overall mean slope, β_1, consider

\[(3.41) \quad \hat{\beta}_1 = \frac{\sum b_{1i}}{n} .\]

It can be shown, using the following logic, that $\hat{\beta}_1$, as defined in equations (3.40) and (3.41) above, is unbiased for the mean slope β_1. First, notice that the observations y_{ijk} can be expressed as follows:

\[(3.42) \quad y_{ijk} = \beta_0 + a_{0i} + c_{0ij} + (\beta_1 + a_{1i})x_{1ijk} + (\beta_2 + a_{2i})x_{2ijk} + e_{ijk} .\]

Now, the conditional expectation of b_{1i} given that the ith PSU is in the sample is given by,

\[(3.43) \quad E_{jkli}(b_{1i}) = E_{jkli} d_i^{-1} \sum \sum \left((\sum_{j} x_{2ijk}^2)(\sum_{j} x_{1ijk}^2) x_{1ijk} - (\sum_{j} x_{1ijk} x_{2ijk}) x_{2ijk} \right) y_{ijk} .\]

\[= d_i^{-1} E_{jkli} (\sum_{j} x_{2ijk}^2) (\sum_{j} x_{1ijk} c_{0ij} + (\sum_{j} x_{1ijk}^2)(\beta_1 + a_{1i}) + (\sum_{j} x_{1ijk} x_{2ijk})(\beta_2 + a_{2i})] .\]

\[= \sum_{j} x_{1ijk}^2 (\beta_1 + a_{1i}) .\]

Thus, $E(\hat{\beta}_1) = E_i E_{jkli}(\hat{\beta}_1) = \beta_1$. That is, $\hat{\beta}_1$ is unbiased for β_1. Similarly, it can be shown that, $\hat{\beta}_2$, defined in an analogous fashion is unbiased for β_2.

Using a similar treatment, sampling variances and covariances can be derived for these estimates. For $\hat{\beta}_1$ we have,

\[(3.44) \quad \text{Var}(\hat{\beta}_1) = E_i \text{Var}_{jkli}(\hat{\beta}_1) + \text{Var}_i E_{jkli}(\hat{\beta}_1) .\]

Now,
(3.45) \(\text{Var}_i E_{jkl} (\hat{\beta}_1) = \text{Var}_i (\sum_a a_{1i}/n) = \sigma_{a1i}/n \), and

(3.46) \(\text{Var}_{jkl} (\hat{\beta}_1) = \sum_i \text{Var}_{jkl} (b_{1i}) / n^2 \). Now,

(3.47) \(\text{Var}_{jkl} (b_{1i}) = d_{i2} \text{Var}_{jkl} (\sum_{j,k} A_{1ijk} y_{ijk}) \), where

(3.48) \(A_{1ijk} = (\sum_{j,k} x_{2ijk}^2) x_{1ijk} - (\sum_{j,k} x_{1ijk} x_{2ijk}) x_{2ijk} \)

\(= n_i \sigma_{i22} x_{1ijk} - n_i \sigma_{i12} x_{2ijk} \). So,

(3.49) \(\text{Var}_{jkl} (b_{1i}) = d_{i2} (\sum_{j,k} A_{1ijk}^2 \sigma_x^2 + \sum_j (\sum_k A_{1ijk})^2 \sigma_c^2). \) Now,

(3.50) \(\sum_{j,k} A_{1ijk}^2 = n_i \sigma_{i22} \sum_{j,k} x_{1ijk}^2 + \sigma_{i12} \sum_{j,k} x_{2ijk}^2 \)

\(- 2\sigma_{i22} \sigma_{i12} \sum_{j,k} x_{1ijk} x_{2ijk} \).

\(= n_i \sigma_{i22} \sigma_{i12}^2 - 2\sigma_{i22} \sigma_{i12}^2 \)

\(= n_i \sigma_{i22} \sigma_{i12} - n_i \sigma_{i22} d_i \), and

(3.51) \(\sum_j (\sum_k A_{1ijk})^2 = n_i \sigma_{i22} \sum_j (\sum_k A_{1ijk})^2 - \sigma_{i12}^2 \sum_j (\sum_k A_{1ijk} x_{2ijk})^2 \)

\(= n_i \sigma_{i22} \sum_j (\sum_k A_{1ijk})^2 + \sigma_{i12}^2 \sum_j (\sum_k A_{1ijk} x_{2ijk})^2 \)

\(- 2\sigma_{i22} \sigma_{i12} \sum_j (\sum_k A_{1ijk} x_{2ijk}) \).

Now, if we have a constant SSU size, \(n_{ij}=n_i=n_i/n_i \), this simplifies to,

(3.52) \(n_i \sigma_{i22} \Omega_{i11} + \sigma_{i12}^2 \Omega_{i22} - 2 \sigma_{i22} \sigma_{i12} \Omega_{i12}, \)

where, for example,

(3.53) \(\Omega_{i11} = (\sum_j (\sum_k A_{1ijk})^2)/(\sum_j (\sum_k x_{ijk})^2) \)

is the proportion of within PSU variance "explained" by SSU's. Now if \(\Omega_{i11}=\Omega_{i22}=\Omega_{i12}=\Omega_i \), this further simplifies to,
(3.54) \[\sum_{j} (\sum_{k} A_{iijk})^2 = n_1^2 \bar{n}_1 \cdot \Omega_1 \sigma_{i22} (\sigma_{i22} \sigma_{i11} - \sigma_{i12}^2) \]
\[= (\bar{n}_1/n_1) \Omega_1 \sigma_{i22} d_i. \]

So, assuming that the SSU's are of constant size within the ith PSU, i.e. that \(n_{ij} = \bar{n}_i = n_1/n_1 \), and that the proportions of within ith PSU variances and covariance of the two predictor variables explained by SSU's are all equal to \(\Omega_1 \), we have,

(3.55) \[\text{Var}_{jkii} b_{1i} = d_i^{-2} (n_1 \sigma_{i22} d_i \sigma_e^2 + \sigma_{c11} \bar{n}_i \Omega_i \sigma_{i22} d_i) \]
\[= (n_1 \sigma_{i22} (\sigma_e^2 + \Omega_i \sigma_{c00}/n_1))/d_i. \]

Now, if we further assume constant number of individuals per PSU, and a constant number of SSU's per PSU, as well as constant within PSU design characteristics,

(3.56) \[n_i = \sum_{1} n_i/n = n_1/n = \bar{n}_1, \]
\[n_i = \sum_{1} n_i/n = n_1/n = \bar{n}_1, \]
\[\Omega_i = \Omega \text{ and } d_i = d, \text{ we have}, \]

(3.57) \[\text{Var} (\hat{\beta}_1) = n^{-2} \sum_{1} [n_1 \sigma_{i22} (\sigma_e^2 + \Omega_1 \sigma_{c00}/n_1) d_i + \sigma_{a11}/n] \]
\[= n^{-2} \sum_{1} [n_1/n] ([\sigma_{22} (\sigma_e^2 + \Omega_1 \sigma_{c00}/n_1) d] + \sigma_{a11}/n) \]
\[= (\Delta_{22}/n_1) (\sigma_e^2 + \Omega_1 \sigma_{c00}/n_1) + \sigma_{a11}/n \]
\[= (\sigma_{a11}/n) + \Delta_{22} ([\Omega_1 \sigma_{c00}/n_1] + \sigma_e^2/n_1). \]

Similarly for \(\hat{\beta}_2 \) and the covariance, we have

(3.58) \[\text{Var} (\hat{\beta}_2) = (\sigma_{a22}/n) + \Delta_{11} ([\Omega_1 \sigma_{c00}/n_1] + \sigma_e^2/n_1), \]

(3.59) \[\text{Cov} (\hat{\beta}_1, \hat{\beta}_2) = (\sigma_{a12}/n) - \Delta_{12} ([\Omega_1 \sigma_{c00}/n_1] + \sigma_e^2/n_1). \]
Thus, if we estimate the ratio of the expected values of the two slope parameters by the ratio of the individual parameter estimates, \(\hat{R} = \hat{\beta}_2 / \hat{\beta}_1 \), we have,

\[
\text{Var}(\hat{R}) = \beta_1^{-2} \left\{ (\sigma_{a22}/n) + \Delta_{11} \left[(\Omega \sigma_{c00}/n.) + \sigma_e^2/n. \right] \\
+ R^2(\sigma_{a11}/n) + \Delta_{22} \left[(\Omega \sigma_{c00}/n.) + \sigma_e^2/n. \right] \\
- 2R((\sigma_{a12}/n) - \Delta_{12} \left[(\Omega \sigma_{c00}/n.) + \sigma_e^2/n. \right] \right\}
\]

\[
= \beta_1^{-2} \left\{ (\sigma_{a22} + R^2\sigma_{a11} - 2R\sigma_{a12})/n \\
+ (\Delta_{11} + R^2\Delta_{22} - 2R\Delta_{12}) (\Omega \sigma_{c00}/n.) + \sigma_e^2/n. \right\}.
\]

Using the cost model described in Section 3.2.2, equation (3.28), for Model II, the Cauchy-Schwartz inequality yields the following optimum unit sizes for estimating \(R \):

\[
\bar{n}_i^{\text{(opt)}} = \frac{((\Delta_{11} + R^2\Delta_{22} + 2R\Delta_{12})\Omega \sigma_{c00}C_1}{(\sigma_{a22} + R^2\sigma_{a11} - 2R\sigma_{a12})C_2} \right)^{1/2}, \quad \text{and}
\]

\[
\bar{n}_i^{\text{(opt)}} = (\bar{\sigma}_e^2/\sigma_{c00}Q)^{1/2} (C_2/C_3)^{1/2}.
\]

3.3.3 Estimating variance components.

Again, estimates of variances and covariances of the random parameters are required for determining sample allocations. These can be obtained as follows:

\[
\hat{\sigma}_e^2 = \frac{\sum_j \sum_k \sum_{ijk} (y_{ijk} - \bar{y}_{ijk})^2}{\sum_i \sum_j (n_{ij} - 3)},
\]

\[
\hat{\sigma}_{c00} = \frac{\sum_i \sum_j (\bar{y}_{ij} - \bar{y}_{..})^2}{\sum_i (n_i - 1)} - \hat{\sigma}_e^2
\]

\[
\hat{\sigma}_{c00} = \frac{\sum_i (n_i - 1)}{n_{ij}}.
\]
4. An Example.

Fields and Walker (1982) describe a study of the effects of railway noise on residents based on a social survey of 1453 respondents in 75 areas in Great Britain. Among other things, estimates of 24 hour L_{eq} dB(A) and the difference between daytime 15 hour L_{eq} and nighttime L_{eq} were obtained for each individual surveyed using physical noise measurements. Several measurements of annoyance were obtained using an interviewer administered questionnaire. Here, we make use of the four category verbal scale of annoyance obtained from Question 17 of that study: "Does the noise of the trains bother or annoy you?" Possible responses ranged from (1) "Not at all," to (4) "Very much."

For purposes of illustration, we regress this annoyance variable (y_{ij}) on the two independent variables, 24 hour L_{eq} (x_{i1j}) and the daytime-nightime L_{eq} difference (x_{i2j}). An ordinary least squares regression yields the following parameter estimates:

\[(4.1) \quad b_0 = 0.0327, \quad se(b_0) = 0.132 \]
\[b_1 = 0.0287, \quad se(b_1) = 0.00229 \]
\[b_2 = -0.00110, \quad se(b_2) = 0.00500 \]
The standard errors in (4.1) are those obtained from the least squares analysis assuming simple random sampling, and are provided only as rough indications of sampling variability.

We now analyse these data assuming Model I as described in equation (3.1). In doing so, regression coefficients are estimated within PSU's, and then averaged over PSU's. As stated in Section 3, this requires an acceptable joint distribution of independent variables within PSU's. In particular, there must be reasonable variation in both x_{1ij} and x_{2ij} and the two independent variables must not be too highly correlated within PSU's.

The acceptability of these within PSU design characteristics can be determined by inspecting the design measures Δ_{11} and Δ_{22} as described in equation (3.8) above. After eliminating those PSU's with insufficient variability in independent variables, we are left with 44 PSU's for Model I analysis.

Least squares estimates of the regression slopes were calculated within each of the 44 PSU's, and overall estimates of the two slopes were obtained as the averages of these PSU estimates as described in equation (3.4). By treating each PSU as an independent replicate, estimates of standard errors of these estimates can be obtained based on the variability of the individual PSU estimates. The results of this analysis are given below:

\[
\hat{\beta}_1 = 0.0527 \quad \text{se}(\hat{\beta}_1) = 0.0169 \\
\hat{\beta}_2 = 0.689 \quad \text{se}(\hat{\beta}_2) = 0.725 \\
\hat{R} = 13.07 \quad \text{se}(\hat{R}) = 14.57
\]

Variance components estimates are obtained by using equations (3.16-19) as,

\[
\hat{\sigma}_e = 0.659 \\
\hat{\sigma}_{a11} = 0.00819 \\
\hat{\sigma}_{a22} = 4.331 \\
\hat{\sigma}_{a12} = 0.0331
\]
Using these estimates in the formulas developed in Section 3 for optimum sample design, equations (3.11) and (3.15) we get the following estimated optimum cluster sizes for estimating the three parameters, $\hat{\beta}_1$, $\hat{\beta}_2$ and R

\begin{align*}
\hat{n}(\text{opt}) \text{ for estimating } & \hat{\beta}_1 = 4.82(C_a/C_b)^{1/2} \\
\hat{n}(\text{opt}) \text{ for estimating } & \hat{\beta}_2 = 13.8(C_a/C_b)^{1/2} \\
\hat{n}(\text{opt}) \text{ for estimating } R & = 13.8(C_a/C_b)^{1/2}
\end{align*}

For example, for estimating the ratio R, optimum cluster sizes for various ratios of C_a/C_b are given below:

<table>
<thead>
<tr>
<th>C_a/C_b</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{n}(\text{opt})$</td>
<td>31</td>
<td>44</td>
<td>69</td>
<td>98</td>
</tr>
</tbody>
</table>

These calculations are only meant to be illustrative, and several qualifications concerning these estimates should be made. First, it should be noted that the estimate of β_2, and consequently that of the ratio R, is not very precise. It follows that the corresponding variance components and hence the optimum cluster sizes are not very precisely determined either. In addition, the actual design used in the Fields and Walker study does not correspond exactly to that described in Model I. A three-stage design rather than a two-stage design was employed. As a result, these calculations are relevant only for designs with PSU sizes similar to those observed in the study used here.

5. Summary and Conclusions

Interview studies of residents' response to noise are often based on two-stage sample designs. For these designs, samples of individuals are drawn within samples of compact study areas. In a typical survey, such a compact study area could consist of a neighborhood or a set of adjacent households. If the variability of the noise exposure variables within these compact study areas is not large, then the techniques described by Kalton (1983) can be used to determine optimal cluster design. On the other hand, if there is substantial within area variation in noise exposure, then the possibility of variability in the structural relationships (the "true" regression coefficients) over clusters should be considered. In such situations, the methods described for Model I in Section 3 can be used to assist in sample design.
Other noise studies have been based on a more complex design, a three-stage design. In such a design, samples of individuals are drawn from samples of compact study areas, which in turn are drawn from a sample of larger areas. For example, for a multi-airport study, these larger areas might correspond to cities. If there is substantial variability in noise exposure within compact study areas, the techniques based on Model III described in Section 3 can be used to assist in sample design. On the other hand, if there is substantial variability in noise exposure within compact study areas, then the methods described for Model II should be employed. These methods allow for the possibility of variability in the "true" regression coefficients among compact areas.

The statistical techniques described in this report can be used to provide assistance in designing noise surveys. It should also be noted that these techniques are more generally useful in a broad range of sample survey applications. Indeed, the conclusions regarding multi-stage sample design are applicable for any two-variable linear regression model of the form given in equation (1.1).

REFERENCES

Research studies of residents' responses to noise consist of interviews with samples of individuals who are drawn from a number of different compact study areas (usually neighborhoods). In order to design such studies, it is necessary to determine the numbers of individuals and numbers of study areas which must be included to achieve the research objectives. The statistical techniques developed in this report provide a basis for those sample design decisions. These techniques are suitable for a wide range of sample survey applications. A sample may consist of a random sample of residents selected from a sample of compact study areas, or in a more complex design, of a sample of residents selected from a sample of compact study areas which has in turn been selected from a sample of larger areas (e.g. cities). The techniques may be applied to estimates of the effects on annoyance of noise level, numbers of noise events, the time-of-day of the events, ambient noise levels, or other factors. Methods are provided for determining, in advance, how accurately these effects can be estimated for different sample sizes and study designs. Using a simple cost function, they also provide for optimum allocation of the sample across the stages of the design for estimating these effects. These techniques are developed via a regression model in which the regression coefficients are assumed to be random, with components of variance associated with the various stages of a multi-stage sample design.
End of Document