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SUMMARY 

The goal of the present work is to develop a technique via a hairpin 

vortex model of the turbulent boundary layer, which would lead to the 

estimation of the aerodynamic input for use in trailing edge noise prediction 

theories. The work described herein represents an initial step in reaching 

this goal. The hairpin vortex is considered as the underlying structure of the 

wall turbulence and the turbulent boundary layer is viewed as an ensemble of 

typical hairpin vortices of different sizes. A synthesis technique is examined 

which links the mean flow and various turbulence quantities via these typical 

vortices. The distribution of turbulence quantities among vortices of 

different scales follows directly from the probability distribution needed to 

give the measured mean flow vorticity. The main features of individual 

representative hairpin vortices are discussed in detail and a preliminary 

assessment of the synthesis approach is made. 
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LIST OF SYMBOLS 

Strength factor of vortices or the effective centerline of 
a vortex filament 

Distance between a point and the effective centerline of a 
vortex filament 

Average streamwise spacing between representative vortices 
of the same hierarchy 

General functional representations 

Height of a vortex 

Streamwise extent of the domain of significant influence of 
a hairpin vortex 

Static pressure 

Normalized probability distribution function of hierarchy 
of vortices 

Convection velocity of a vortex 

Linear correlation coefficient 

Reynolds number based on momentum thickness 

Decision point of the linear correlation 

Effective radius of viscous core of a vortex filament 

Position vector 

Position vector of the effective centerline of a vortex 
filament 

Time 

Measured mean velocity 

Cartesian velocity components 

Velocity vector 

Cartesian coordinates 

Averaged contribution due to the fluctuation field of a 
representative hairpin vortex 
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Greek Symbols 

£ 

r 

K 

A 
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v 

p 

p(h) 

Subscripts 

i 

] 

m 

Superscripts 

+ 

LIST OF SYMBOLS (Continued) 

Small parameter or error 

Circulation 

Von Karman constant 

Average spanwise spacing of a hairpin vortex 

Characteristic angle of vortex 

Kinematic viscosity 

Density 

Probability density function of h 

Associated with the ith representative hairpin vortex 
or associated with the ith hierarchy of hairpin vortices 

Associated with the jth vertical point 

Measured mean value 

Values evaluated in wall unit 

Values measured in a coordinate system attached to the 
vortex 

Expected mean value due to an ensemble of vortices 
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INTRODUCTION 

Sound is produced when the wing or blade interacts with the unsteady flow 

structures generated by the wing's or blade's own motion. The noise production 

away from the trailing edge is due only to the evolution of these structures, 

and it is not an effective acoustic source. However, when these turbulent 

structures pass the trailing edge, the edge scatters the essentially nonpropa­

gating flow fluctuations into a propagating sound field of dipole character. 

Thus, the noise due to the interactions between incident turbulence and 

trailing edge, i.e., the trailing edge noise, can make a significant contribu­

tion to the broadband sound field [1]. Recent experimental works in trailing 

edge noise have been focused upon the study of two-dimensional low Mach number 

turbulent flow over an airfoil (see e.g. [2] and [3]). A theoretical approach 

for predicting the far-field trailing edge noise characteristics is provided by 

evanescent wave theory (see e.g. [4]), or a related method due to Amiet (see, 

e.g. [5]). The required input to these methods is the incident surface 

pressure data obtained close to but sufficiently upstream of the edge and in 

the form of either the cross spectrum or the equivalent wave number spectrum. 

At the present time, these data are obtained mainly by extensive measurements. 

Thus, it is highly desirable to develop analytical techniques to provide these 

pertinent statistical quantities with a considerable saving in the amount of 

experimental works needed. 

Determination of statistical characteristics of fluctuating surface 

pressure from first-principles fluid dynamic theory is not currently 

practical. The purpose of the present work is to investigate possible ways to 

relate the statistical properties of wall pressure fluctuations beneath 

turbulent boundary layers to the overall gross properties of the mean flows 

such that practically useful estimations of these statistical quantities can be 

obtained with a minimum amount of measurements. Pivotal to the achievement of 

such an objective is the use of a pertinent wall turbulence model to obtain a 

link between the mean flow and statistical properties of the wall pressure 

fluctuations. In the following, previous works about the models of wall 

turbulence structure will be briefly reviewed in the context of the estimation 

of certain statistical quantities of wall pressure. 
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Virtually all the published theoretical works on the subject of the 

statistical properties of the wall pressure fluctuations have been based upon 

the solution of the Poisson equation of pressure with non-linear fluctuating 

stress terms and terms involving interaction with the mean shear considered as 

source terms. Several assumptions about the form of these source terms are 

made and experimental information in regard to the fluctuating velocity field 

is used to estimate the root-mean-square wall pressure and, in some cases, the 

power spectrum of the wall pressure as well (see e.g. [6]). An alternate 

approach was suggested in [7] which represented shear flow turbulence as a 

random superposition of appropriate characteristic waves. More specifically, 

an attempt was made to relate the fluctuating pressures to the stability 

problem for the mean turbulent flow such that the cross-spectral density of the 

wall pressure might be estimated from the one-point power spectrum and the mean 

velocity distribution. This goal was partly reached. The possibility of 

modelling wall turbulence with waves also had been investigated in [8]. 

The present approach is different from previous efforts. In this approach 

the hairpin vortex is considered as the underlying structure of the wall 

turbulence and is used to link the mean flow wlth various statistical 

quantities of the fluctuating velocity and pressure fields. The present report 

focuses upon a preliminary assessment of the feasibility of using the 

hairpin-vortex concept to construct pertinent statistical quantities of 

turbulent boundary layer flows. In the following, various aspects associated 

with the application of hairpin-vortex concept to study the properties of 

turbulent boundary layer flows are discussed. 
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ANALYSIS 

Hairpin Vortex as Structure of Wall Turbulence 

The concept of modelling the turbulent boundary layer with a random array 

of hairpin vortices was first suggested by Theodorsen [9] in 1955 and has 

subsequently been considered by many other workers (see, e.g. [10]). These 

earlier proposals tended to be rather in the nature of intuitively appealing 

hypotheses, supported only indirectly by experimental evidence. However, very 

convincing evidence for the existence of these vortices has been reported over 

the past five years by a large number of investigators using different 

techniques to study various features associated with the underlying structures 

of wall turbulence. A comprehensive account of these results will not be given 

here, nevertheless, selected works are cited to indicate the current status of 

the knowledge of the structure of turbulent boundary layer. 

Experiments of Head and Bandyopadhyay [II) have provided very strong 

support for the hairpin vortices as the dominant structures in turbulent 

boundary layers. Flow visualization studies of the zero pressure gradient 

turbulent boundary layer at Reynolds numbers up to Rea ~ 10 4 have shown that 

a turbulent boundary layer consists of a forest of hairpin vortices which are 

undergoing a stretch motion under the influences of the self-induced field as 

well as the pre-existing mean shear field, these stretched hairpin vortices are 

substantially straight over a large portion of their length and inclined in the 

downstream direction at a characteristic angle of approximately 45° to the 

wall. The lateral dimensions of these vortices are suggested to follow the 

Kline scaling, while their length appears to be limited only by the thickness 

of the layer. There is considerable evidence that these vortices originate 

from the longitudinal vortex motions in, or very close to, the viscous 

sublayer. 

Combining anemometry and flow visualization, Falco [12] established that 

all of the structural features of turbulent boundary layers, e.g., the sweep 

and ejection events, identified before by other investigators can be associated 

with the evolution of a so-called pocket flow module, in which a hairpin vortex 

is formed and then dominates the flow behavior over a time duration extending 

over at least half of the flow module's life time. In Ref. [13] Dinkelacker 

evaluated results compiled from several measurements of wall pressure 

fluctuations and suggested that an important part of the observed wall pressure 
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patterns might be manifestations of the existence of hairpin vortices in the 

turbulent boundary layer flow. Viets and his coworkers [14], motivated by the 

potential application of forced, unsteady vortex generation for the improvement 

of efficiency and performance of various aerodynamic devices, artificially 

generated vortex structures with scales greater than the scales of the boundary 

layer near the wall and experimentally investigated the evolution of these 

structures. It is interesting to note that, although the scales involved are 

entirely different from those occurring in previously mentioned works, the 

general geometry and deformation of the structures are quite similar to those 

of hairpin vortices. 

The above experimental studies provide strong evidence for the existence 

of hairpin vortices as one of the dominant structures in wall-bounded turbulent 

flows, however, as limited by the nature of their sampling and identification 

techniques, a hairpin vortex has only been indirectly observed in a turbulent 

boundary layer; i.e., the response of the visual indicators to the velocity 

field is observed. In addition, the probe data are limited by the number of 

spatial points at which correlations are obtained and by the small number of 

different quantities that have been measured. These deficiencies have largely 

been eliminated by a very recent investigation conducted by Moin and Kim [15] 

using a data base generated by the large-eddy simulation calculations. 

Two-point correlations of velocity and vorticity fluctuations strongly support 

a flow model consisting of vortical structures inclined at 45° to the wall. 

The instantaneous vorticity vectors plotted in these inclined planes show that 

the flow contains a large number of hairpin vortices, and vortex lines are used 

to display the three-dimensional structure of hairpins. 

In another investigation Landahl [16] modelled the dominant coherent 

structure near the wall with a flat eddy, which can be regarded as a first 

approximation to the hairpin vortex, and then examined the fundamental 

assumptions behind Prandtl's mixing length theory. The validity of two of the 

main hypotheses underlying the mixing length theory has been positively 

confirmed. Thus, this work provides an encouraging indication of the 

consistency of over all fluid dynamics according to the conventional mixing 

length model and that due to the hairpin vortex. 

As mentioned before, early turbulence models based on the concept of 

hairpin vortex tended to be in the nature of intuitively appealing hypotheses 

and were mainly aimed at providing a kinematic description of the wall 
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turbulence, as well as an explanation of some of the underlying dynamics. In 

the light of recent findings from experimental research on turbulent structures 

in the near wall region and also by using Townsend's attached-eddy 

hypothesis [17}, Perry and his coworkers ([18), [19]) proposed a more refined 

hairpin vortex model for wall turbulence. The turbulent boundary layers are 

viewed as an ensemble of groups (or hierarchies) of hairpin vortices which 

originate from and are attached to the wall. These vortices are geometrically 

similar and have the same characteristic velocity scale being the wall shear 

velocity. The length scales of the hierarchies range from the smallest eddies 

having the Kline scaling to the largest eddies being of the order of the 

boundary layer thickness. The probability distribution for hierarchies 1S 

inversely proportional to the length scales of the hierarchies, and all the 

vortices lean 45° in the downstream direction. It is found that such a model 

gives the correct mean flow vorticity distribution. Further, by using the 

velocity signatures generated by hairpin vortex with the aid of the Biot-Savart 

law, turbulence spectral distributions are derived and, when compared with 

experimental results, the predicted turbulence spectra appear to have correct 

properties. Thus, in spite of the fact that there still exists uncertainties 

about the details of the formation, shape and subsequent evolution of the 

hierarchies of vortices, the works of Perry and his coworkers demonstrated that 

the use of hairpin vortices in obtaining a quantitative link between the mean 

flow, Reynolds shear stress, turbulence intensities and spectra as well as 

other statistical properties of wall turbulence looks quite promising. 

Aspects of the Application of Hairpin Vortex Model of Turbulence 

Under the prem1se that a mathematically operational model of hairpin 

vortex can be constructed (see e.g. the following section), the hairpin vortex 

can be used in different contexts to study various aspects associated with 

turbulent boundary layer flows. For example, the turbulent boundary layer 

might be simulated by an appropriate ensemble of hairpin vortices, then the 

dynamics of these vortices could be tracked either in Lagrangian reference 

frames by methods described in [20] or 1n an Eulerian reference frame by uS1ng 

continuity and momentum equations. However, at the present stage of the 

development of the hairpin vortex concept, it is felt that more fruitful 

insights could be obtained by pursuing in the directions of two distinct but 
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related approaches, namely, (i) the investigation of the dynamics of one or 

several separated representative hairpin vortices submerged in various 

background boundary layer flows which can be laminar or turbulent, with or 

without pressure gradients, and (ii) the construction of useful statistical 

models using hairpin vortices to provide a quantitative link between mean flow 

properties and turbulence properties. The latter approach is a synthesis 

approach and therefore is inherently kinematic in its nature, the dynamic 

informations are indirectly included through the specifications of the 

structural parameters of the modelling vortices. Obviously, these two 

approaches are complementary with each other, the experiences gained in one 

approach can be used to advance the other's development. 

The present work focuses upon the construction of a model of 

hairpin vortices as well as the development of a statistical approach using 

a synthesis of these hairpin vortices to obtain estimations of turbulence 

transport properties. These items will be discussed in later sections. 

Here, some comments about the forms of the governing equations appropriate to 

the investigation of the evolution of hairpin vortices will be made. 

Although the background flows can be considered as nominally steady and 

two-dimensional, the flow field associated with the evolving hairpin vortex is 

unsteady and three-dimensional, i.e., they are accompanied by negative cross 

flows and possible streamwise reverse flows. Thus, governing equations derived 

from conventional boundary layer theory are not suitable for the purpose of 

studying the dynamics of hairpin vortex. An approximate form of the unsteady 

three-dimensional Navier-Stokes equations has been used to solve the 

three-dimensional time-dependent viscous flows over airfoil sections [21]. 

These equations are more general than the conventional boundary layer 

equations, notably in the inclusion of spanwise and streamwise diffusion terms, 

and the major assumption is that there is no pressure gradient in the direction 

normal to the wall. The solution of this set of governing equations is less 

demanding in computer resources than the solution of the full Navier-Stokes 

equations. Unfortunately, the assumption of zero normal pressure gradient 

which is inherent in this extended boundary layer approach makes it 

inapplicable to the present investigation. In this regard it should be noted 

that, associated with the presence of a hairpin vortex, there exists a 

corresponding three-dimensional pressure field. Further, in the proximity of 
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the vortex, the pressure variations Ln all directions must be significant, 

unless the strength of the vortex LS infinitesimal. In this sense, the 

existence of a hairpin vortex can be thought of as being sustained by a 

pressure field containing localized regions of significant gradients in all 

directions. The assumption that the normal pressure gradient is negligibly 

small throughout the entire flow field is thus contradictory to the presence of 

the hairpin vortex. In the following, the governing equations for the leading 

behavior of a vortex point in a background rotational flow field is derived 

by using the procedure described in [22]. This serves the dual purpose of 

demonstrating the role of pressure gradients as well as some dominant factors 

to be expected in the investigation of vortex dynamics. 

Considering an initial vorticity distribution ~(x,y,o) which consists of 

two parts: 

fILS the initial vorticity of the background rotational flow. It is 

distributed with the characteristic length scale L and its magnitude is of the 

order of U/L, where U is the characteristic velocity of the background flow. 

The portion f2 represents a concentrated distribution near a point C(X(O),Y(O») 

and it is of compact support or decays exponentially in r where r is the 

distance from C on a small length scale ~L. Note that f2 is a function of the 

stretched variables x and y with 

(2) 

where (X(t), yet»~ is the location of the vortex center and ~ is a small 

parameter to be chosen. The total strength of f2 is assumed to be of the order 

of UL, i.e. 

OG 

ff f2 dxdy = r = O(uL) (3) 
-00 
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TIlere fore 

(4 ) 

l • e . (5 ) 

To take into account the VlSCOUS effects inside the core, £ lS chosen as 

€ = 1 

~ =H «I (6 ) 

where Re is the Reynolds number, v the kinematic viscosity and r the 

circulation. The assumption that r=O(UL) is consistent with the hairpin vortex 

being a nonlinear, large scale structure in the wall region of the boundary 

layer flow. L is considered here as the boundary layer thickness and U being 

the wall frictional velocity. 

Solutions of the unsteady Navier-Stokes equations with large Reynolds 

number subjected to the initial condition of Eq. (5) and appropriate boundary 

conditions are to be sought. The form of the initial data suggests that the 

solution is a composite of multiple length scales solutions: 

(7) 

such that at t=O 

Accordingly, the velocity and pressure are expressed as 

(8) 

( t) ( ) + -I '" ('" '" ) V x,y, jE = vI X,y,tjE E V2 X,y,1jE (9) 

11 



Substituting Eqs. (8)-(10) into the continuity and Navier-Stokes equations, it 

can be shown that the vorticity of the background flow is redistributed by the 

presence of the vortical structure while the dynamics of the vortical spot LS 

controlled by several mechanisms. The most dominant mechanism is the 

self-induction, followed by the relative yet coupled motion between the vortex 

center and the local background flow; the effects of the temporal change of the 

structure and viscous diffusion are the least dominant ones. More 

specifically, with respect to an observer moving with the vortex center, the 

leading behavior of the evolution of the vortical spot is governed by the 

following equations: 

au(O} 
_.;2=-- + 
ax 

av (O) 
2 

ay 

a ",(O} 
",(O} U2 v2 ---ay 

= 0 

a"'(O) 

= -~ ax 

ap(O) 
= ___ 2_ 

ay 

where ~2(0), ~2(0) and ~2(0) are the leading term of U2, v2 and P2 when 

expanded into a power serLes of E. 

(11) 

(12) 

( 13) 

In view of equations (11)-(13), it LS obvious that any flow simulation 

technique based on the assumption of zero normal pressure gradient throughout 

the entire flow field will immediately force a disintegration of the vortical 

structure, consequently, the general behavior of this structure cannot be 

properly studied. Based on this asymptotic analysis as well as the previously 

discussed physical manifestation of the existence of a concentrated vortical 

structure in terms of its associated pressure field, it is concluded here that 

Navier-Stokes equations should be used in the investigation of the dynamics of 
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hairpin vortices. Numerical techniques for the solution of unsteady, 

three-dimensional Navier-Stokes equations are currently available (see e.g. 

[23], [24]). 

The above analysis indicates that the dominant behavior of the evolution 

of a vortical spot is governed by steady, Euler equations written in a 

coordinate system attached to the vortex center. Obviously, information about 

the motion of the vortex center, the interactions be-tween the vortical spot and 

the surrounding background flow as well as the inner strucure of the vortical 

spot cannot be determined by these set of leading order equations. Such 

information must be obtained by investigating higher order equations derived in 

the asymptotic analysis. Generally speaking, the motion of the center of a 

two-dimensional vortical spot depends on its inner structure and the local 

background flow situation. For the three-dimensional case, the motion of the 

centerline of a vortex filament further depends on the geometrical properties 

of the centerline. 

Another interesting consequence of ~he above asymptotic analysis is that 

the frequently employed Taylor's hypothesis of frozen eddies is a valid 

approximation to the leading order. Hence, if the position and the associated 

induced velocity field of a vortical structure is known at some instant, then 

the dominant part of the associated pressure field can be obtained by 

considering the steady, Euler equations. Subsequently, these velocity and 

pressure patterns may be considered as frozen over a certain time interval 

while convected by the background flow field. This frozen-eddy approximation 

will be used later for estimating the pressure field associated with a 

representative hairpin vortex and for the construction of a statistical model 

of turbulent boundary layer with the aid of hairpin vortices. 

A Model of the Hairpin Vortex 

As shown in Ref. [15], a hairpin vortex is an agglomeration of vortex 

lines in a compact region that have a hairpin or horseshoe shape (Fig. 1). 

Equivalently, a hairpin vortex is considered here as a slender tube-like region 

in which the bulk of vorticity is concentrated. Over each cross-section of 
+ 

this tube-like region, a mean direction, e s ' as well as the strength, r, of 

the concentrated vorticity can be determined. Further, inside of this compact 
+ 

region, a spatial curve c~n be found such that its tangent is parallel to e s 
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boundary layer will not he included in the model. Thus, the present work 

focuses upon a hairpin vortex model most pertinent to the flow in the 

logarithmic law region. In addition, it is assumed that the hairpin vortices 

appear mostly in the form of an array in the spanwise direction, and members of 

the same array of vortices have identical properties. Such an assumption 

implies that the hairpin vortices are produced by the evolution of an initially 

spanwise-oriented two-dimensional vortex line into a three-dimensional wavy 

structure which is periodic in the spanwise direction. 

Based on the above discussions, the fundamental hairpin vortex model used 

in the present work consists of a spanwise array of identical vortices. The 

effective centerline of these vortices forms an array of interconnecting 

isosceles triangles which are periodic in the spanwise direction. The strength 

of these vortices does not vary along the effective centerline which inclines 

to the wall at an angle of 45°. In order to maintain the attachment of these 

vortices to the rigid wall, their wall images are also included. The effects 

of the inner core structure of these vortices are accounted for by introducing 

a diffusive factor into the evaluation of the associated induced velocity 

field. A schematic of the present model is sh0wn in Fig. 2, where hi is the 

height of the i-th array of hairpin vortices, Ai the spanwise distance 

between the feet of the vortices, ~i = ~ = 45° the characteristic angle and 

roi the radius of the effective core. The signature or the induced velocity 
+ 

field of the i-th array of hairpin vortices at a point P with position vector r 

is then given by 

(l6) 

with 

d~ + r ~ 
1 01 

(l7) 
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where Ci is the effective centerline of the vortices together with their wall 

images, and di = I~Ci - ;1. The corresponding vorticity distribution is 

ohtained from 

(8) 

Obviously, when the array contains a sufficiently large number of vortices, the 

induced velocity field ~i and hence ni are periodic functions with spatial 

period ~i. Therefore the induced field due to such an array of vortices is 

completely defined by the flow field within the spanwise domain of anyone 

member of the vortices. Henceforth, the term 'representative' hairpin vortex 

will be used to indicate some particular member of the vortex array such that 

the point P happens to locate within the spanwise domain of this particular 

vortex (see Fig. 2). It should be noted that the induced flow field within a 

representative hairpin vortex contains not only the contribution of this vortex 

but also contains the contributions of all the other vortices in the same 

array. 

The flow patterns within a representative hairpin vortex are shown from 

Fig. 3 to Fig. 6. These results are obtained by placing 31 vortices on each 

side of the representative vortex. This number of vortices gives an excellent 

approximation to the spanwise periodicity required by an infinite number of 

spanwise vortices. The velocity vector field und the region of spanwise 

vorticity concentration in planes parallel to the mean flow direction are given 

in Figs. 3 and 4. Figure 3 depicts the flow pattern at one foot of the 

representative hairpin vortex while Fig. 4 illustrates the pattern occurring at 

the tip of the vortex. The velocity vector field and the concentration region 

of normal vorticity component are shown in Figs. 5 and 6. Figure 5 indicates 

the pattern in a plane parallel to the flat wall and this plane is near the tip 

of the vortex. There apparently exists a pair of counter-rotating vortices of 

equal strengths. Similar pattern occurs at a plane closer to the wall, as 

illustrated by Fig. 6. In addition, Figs. 3 and 4 indicate that the induced 

field falls off rapidly in regions relatively away from the representative 

vortex. The vertical extent of the domain of significant influence of the 

representative vortex is approximately equal to hi, its strearnwise extent is 

of the order of li = hi cot ~i' while its spanwise extent remains to be 

of the order of ~i. 
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Scaling and Main Features of the 

Hairpin Vortex Model 

In the preVlOUS section, the general configuration and structure of a 

representative hairpin vortex have been presented. Since the turbulent 

boundary layer IS viewed as an ensemble of representative hairpin vortices of 

different scales, it is necessary to provide a relationship between these 

representative vortices. Following the suggestions given in [18], it is 

assumed here that these representative hairpin vortices are geometrically 

similar and have the same characteristic veloicty scale. Consequently, the 

circulation of these vortices is proportional to their length scale, and the 

information regarding some 'baseline' representative vortex is needed for 

constructing an ensemble of vortices. 

In the wall region, the properties of the vortices should scale with the 

wall unit. Let Tw, UT and v be the wall shear stress, frictional velocity 

and kinematic viscosity of the local mean flow, then the characteristic length, 

velocity, pressure and time of the vortex in the near wall region scale with 

the local V/UT, UT, Twand V/UT2 respectively. In addition, the 

circulation is scaled with V. It has been experimentally observed that the 

large scale structures in the near wall region have an averaged spanwise 

spacing of the order of 100 v/UT [11] and an averaged streamwise spacing of 

the order of 440 V/UT [26]. Based on these experimentally observed values 

and also by following the suggestions g1ven in [18], the baseline vortex used 

in the present work has the following configurational and structural 

parameters: 

A + = 100 

= 1.. A + = 50 
2 

18 

(19) 

(20) 

(21) 



= _1->..+ = 5 
20 

400 

c·IOOO 

(22 ) 

(23) 

( 24) 

where the superscript '+' indicates that the quantities are evaluated in terms 

of wall unit and K is the von Karman constant (K=O.40). The strength factor C 

is a constant for a given ensemble of vortices; its specific value 1S 

determined along with the probability distribution of the vortices 1n a given 

ensemble (see the following section). Generally speaking, C is of the order of 

I and is assumed to be I at the present stage. 

With this proposed baseline vortex as well as the assumed geometrical 

similarity between vortices, the induced velocity field associated with each 

member of the ensemble of representative vortices can be determined by first 

specifying its height and then applying Eq. (16). Since the present vortex 

model is expected to be most pertinent to the flow in the logarithmic law 

region, the heights of the vortices considered range from 100 v/uT to 0.140 

where 0 is the local boundary layer thickness. 

The above analysis links the kinematic aspect of the hairpin vortices to 

the local mean flow properties. So far as their dynamic aspect is concerned, 

the present work for this initial effort assumes that, as a vortex passes by a 

local ground fixed point, its configuration as well as its structure are 

temporarily frozen and it is carried by the environment with a constant mean 

convection velocity in the downstream direction. This assumption implies that 

fluctuations observed at a local ground fixed point are due primarily to the 

passage of a vortex rather than the time rate of change of the vortex itself. 

Obviously, the mean convection velocity of the vortex cannot be completely 

determined by its own kinematic properties, a way to obtain the mean convection 

velocity of the hairpin vortex will be discussed later in this section. It is 

noted here that consideration of vortex decay and distortion effects could be 

included at a later date. These could be based upon experimental correlations 

or based upon Navier-Stokes calculations of the vortex distortion process. 
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Similarly, vortex convection velocity also could be estimated based upon a 

Nav ier-Stokes simu lation. In the following, the ma.in features of the frozen 

hairpin vortices are discussed. Let (x,y,z) be a coordinate system 

fixed on the ground and (x,y,z) be a coordinate system attached to some nominal 

center of the vortex under consideration. With respect to the ground fixed 

system and at some instant considered as t=O, the nominal vortex center is 

located at (xo,o,zo) and is translating in the x direction with a constant 

velocity q. Since the induced velocity field of the vortex is obtained with 

Biot-Savart integral, this field is evaluated with respect to the coordinate 
-

system (x,y,z). Let (u,v,w,p) denote the Cartesian velocity components and the 

pressure observed in (x,y,z) system and (u,v,w,p) the corresponding quantities 

evaluated in (x,y,z) system, the frozen vortex assumption yields 

u(x, y, z, t) = 'Uri', y, z) + q (25) 

v (x, y, z, t) = 'V(x, y,z) (26) 

w (x, y, z, t) = w(x1y,z) (27 ) 

(28) 

with 

x = x + qt + Xo (29) 

Y = Y (30) 

z = z+ Zo (31) 
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As mentioned above, the induced velocity components u, v and ware obtained 

with Biot-Savart integral, the determination of the associated pressure field 

is now discussed. Although the pressure is usually obtained by solving a 

Poisson equation subject to Neumann type boundary conditions, it is noted here 

that the assumption of frozen vortex convecting at a constant velocity leads to 

the following form of the normal momentum equation: 

Accordingly, 

r-J a-v + V av + W a'V 
u ax ay az 

p(X1Y,z) = Poo\x1Zl + pI~~; +v ~; + Vi ~~ - vV2
.v]dY 

y 

(32) 

(33) 

Since the effect of the induced field falls off rapidly in regions outside the 

-
domain of significant influence of the vortex (see Fig. 4), p~(x,z) is 

considered here as uniformly and negligibly small. 

The above discussions deal with the characteristics of the fluctuating 

velocity and pressure fields associated with the hairpin vortex model used in 

the present work. In this model, the configuration and structure of some 

baseline vortex is specified. With the assumption that representative vortices 

are geometrically similar, the configuration apd structure of any other vortex 

can be determined by knowing its height. Consequently, its induced velocity 

field is obtained from evaluating the Biot-Savart integral in a coordinate 

system attached to the nominal center of the vortex. The additional assumption 

that the vortex is frozen while convecting at a constant velocity allows the 

induced pressure field to be determined by integrating the normal momentum 

equation written in a coordinate system attached to the nominal vortex center. 

This assumption also provides a connection between the apparent fluctuating 

flow field detected by a ground fixed observer and the induced flow field 

associated with a convecting vortex. The parameters involved in this mapping 

procedure are the relative position between the ground fixed observer and the 
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translating vortex center. When vortices are ensembled to represent a 

turbulent boundary layer, the heights of the vortices as well as the relative 

positions of the vortex centers with respect to a ground fixed observer are 

considered as random variables so that a statistical model of wall turbulence 

can be constructed. At this point, it becomes necessary to investigate the 

features of the mean flow field associated with the proposed hairpin vortex 

mode 1. 

Let < u(y) > denote the contribution of one representative vortex to the 

total mean flow velocity measured by an observer located at fixed x and z. By 

virtue of Eqs. (25) and (29)-(31), the time-average of u-signals is transformed 
-

into the streamwise-average of u. In addition, with respect to the center of a 

representative vortex, the lateral position of the observer is a random point, 

it is assumed here that the probabilities of the observer being in the interval 

- ~/2 < z < ~/2 are equally likely, thus 

(34) 

where ~ is the spanw1se spac1ng of the vortices, e 1S the streamwise spaC1ng of 

the vortices and the vortex center is at (x,y,z)=(O,O,O). Similar 

consideration yields 

(35 ) 

where f represents v, w, or p. 

In the following, the fluctuation as well as the mean field of the 

baseline hairpin vortex are presented. The structural parameters are given 1n 

Eqs. (19)-(24) with C=l.O. Note that the streamwise velocity component u+, 

the normal velocity component v+ and the pressure p+ are symmetrical about 

the center plane z+=O while the spanwise velocity component w+ is 

antisymmetric about z+=O. Therefore, it is sufficient to illustrate their 

spanwLse variations by presenting the distributions on one side of the center 

plan~. The variations in the normal direction are illustated by comparing the 
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distributions plotted at three horizontal planes with y+/h+ = 0.4, O.B 

and 1.6 respectively (Figs. 7-10). It is noted here that, when the pressure 

fluctuations are evaluated, the induced pressure at y+ = 400 = Bh+ is 

considered as zero. Fig. 10(c) shows that the induced pressure practically 

falls off to zero at y+ = 1.6h+. The results presented in Figs. 7-10 

indicate that, depending upon the relative position between a ground fixed 

probe and some particular representative vortex which is passing by, the probe 

can pick up apparently different signals originating from the same vortex, 

these signals can be different in shape, in magnitude and in sign. Thus, when 

their relative positions become random, a ground fixed probe will then pick up 

an ensemble of apparently random fluctuating signals as a train of 

representative hairpin vortices passing by, even if these representative 

vortices are identical in their configuration and structure. 

The mean flow field associated with the baseline hairpin vortex is 

illustrated in Fig. 11. It is noted that < w+ > = 0 and < v+ > is one 

order of magnitude smaller than < u+ >-q+ which is the averaged value of 

the induced streamwise velocity of the vortex (see Eq. (34)). Figure 11(d) 

shows that the magnitude of the averaged fluctuating wall pressure due to the 

baseline representative vortex is about 2.3Tw. Previous investigations on the 

rms wall pressure (see e.g. [6] and [27]) suggested that most of the 

wall-pres sure-producing disturbances arise in the constant Reynolds shear 

stress region and the ratio of rms wall pressure to wall shear stress is 

between 1.7 and 3. Thus, the averaged wall pressure associated with the 

baseline vortex which locates fairly close to the constant Reynolds shear 

stress region seems to be in the right range of magnitude. 
+ Figure 11(a) indicates that there exists a point y* at which the averaged 

value of the induced streamwise velocity vanishes. This point is slightly 

lower than, but quite close to the tip of the vortex. Obviously, for a ground 
+ fixed probe located at y , the measured mean flow velocity does not contain the 

* contribution of the representative vortex under consideration. Whatever the 

measured mean value may be, it is due entirely to the environment which carries 

this particular vortex. Accordingly, the mean convection velocity of a 

representative hairpin vortex is defined here as the total mean flow velocity 

measured by a ground fixed probe placed at some particular point, at which the 

averaged value of the induced streamwise velocity of the hairpin vortex under 
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consideration vanishes. The averaged effects of a representative hairpin 

vortex on its surroundings are also illustrated by Fig. ll(a). In the region 

below the tip of the vortex, the presence of a train of representative vortices 

introduces a velocity defect to the pre-existing mean flow of the surroundings, 

while in the region above the tip of the vortex, they apparently introduce a 

velocity surplus to the surrounding mean flow. This can be viewed as an energy 

exchange between the hairpin vortices and their environment, namely, in the 

region characterized by y+ ~ h+, the vortices draw energy from the local, 

pre-existing mean flow, while in the region y+ > h+, the pre-existing mean 

flow velocity is increased due to the presence of these vortices. 

The averaged streamwise induced velocity due to hairpin vortices of 

different sizes are shown in Fig. 12. Without the existence of a turbulent 

boundary layer, i.e., an ensemble of these hairpin vortices, the flow over a 

flat plate would be uniform everywhere, and is termed as the background flow in 

the following discussion. The presence of anyone of these vortices will 

slightly increase the background flow velocity in a region which is above the 

vortex, this is equivalent to the entrainment effect. On the other hand, due 

to the vortex of h+ = 500, an apparent velocity defect of the background flow 

is induced in the region y+ < 500. This is interpreted here as a part of the 

background flow energy being consumed to sustain the existence of the vortex of 

h+ = 500 so that a modified, new mean velocity profile now exists for the 

region y+ < 500. Further, such a mean velocity profile again will be changed 

in the region y+ < 300 to sustain the existence of a vortex of h+ = 300. 

This cascade process is then continued for successively smaller vortices to 

produce successively reduced mean flow velocity as the wall is approached. 

Figure 13 shows the averaged streamwise induced velocity of a 

representative hairpin vortex (h+ = 300) in the semi-logarithmic form. It is 

clear that < u+ >-q+ is proportional to In y+ over a substantial region 

of the vortex (120 ~ y+ ~ 280). This indicates that the present hairpin 

vortex model is consistent with the observed mean flow behavior in the 

logarithmic law region. The averaged spanwise induced vorticities of various 

representative hairpin vortices are presented in Fig. ll(b) and Fig. 14. The 

following formula may be used to approximate the calculated a<u+>/ay+: 
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w+ 
o 

o 

where w+ is a function of h+ only and dw+/dh+ < O. 
o 0 

These results also indicate that the contribution of a representative 

(36) 

hairpin vortex to the mean flow vorticity diminishes quickly in the region 

beyond the height of the vortex and the contribution of larger vortices to the 

mean flow vorticity in the near wall region is far less significant than the 

contribution of smaller vortices (Fig. 14). Generally speaking, at a given 

level y+, the vortices of significance with respect to the mean vorticity 

distribution are those of height h+ ~ O(y+). It is interesting to note 

that, in Ref. [18], a functional form of 3<u+>/3y+ has been suggested, and 

it is based upon an analysis in which hairpin vortices are assumed to undergo 

plane 

final 

+ straining while growing from some initial height (0.5 0 ) to a supposed 
+ 0 

height (0). Without actually invoking the Biot-Savart integral to 
o 

calculate the associated induced field, the conjectured 3<u+>/3y+ has the 

following form: 

K ---s+ o 

= I I I -(---) 
K y+ Sci 

o 

(37) 

where K is the von Karman constant and 0+ is a constant for the vortex under 
o 

consideration. The distribution given by Eq. (37) looks quite similar in its 

general behavior to the distribution depicted in Fig. ll(b) which may be 

approximated by Eq. (36). 
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The ma1n features of the proposed hairpin vortex model have been discussed 

1n detail. The representative vortices of various sizes are assumed to be 

geometrically similar and have the same characteristic velocity scale. In 

addition, these vortices are considered as temporarily frozen while being 

convected toward downstream at constant mean velocities. The convection 

velocity of a representative vortex is defined as the mean flow velocity 

measured at some particular ground fixed point, at which the averaged 

contribution of this vortex to the mean flow velocity vanishes. This point 1S 

quite close to the tip of the vortex, consequer.tly, larger vortices have higher 

mean convection velocity. In other words, the smaller vortices are convected 

back relative to the larger vortices and the largest vortices are convected 

back relative to the free stream. Based on this model of hairpin vortices, a 

statistical model of wall turbulence can be constructed. 
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A STATISTICAL MODEL OF TURBULENT BOUNDARY LAYER 

Aspects of the Statistical Model 

The wall reg10n of the turbulent boundary layer is considered as 

consisting of trains of arrays of slanted hairpin vortices which are attached 

to the wall and convected toward the downstream. As indicated before, the 

effects of an array of vortices can be represented by those of a representative 

hairpin vortex. The representative vortex is inclined to the wall at an angle 

of 45° toward downstream direction. The effective centerline of the 

representative vortex has the shape of an isosceles triangle and it also has a 

slender viscous core. The representative vortex is considered at the present 

time as temporarily frozen while carried by its surroundings with a constant 

mean convection velocity. Representative vortices of the same size have the 

same structure and they are spaced, in average, with constant distance in the 

streamwise direction, but their lateral positions are random with respect to 

each other. Representative vortices of different sizes are assumed to be 

geometrically similar yet have the same characteristic velocity scale. The 
I 

geometrical similarity applies to all length scales including the streamwise 

spac1ng. However, in addition to the randomness of their relative positions 1n 

the lateral direction, the streamwise positions of the representative vortices 

of different sizes also are random with respect to each other. It is noted 

here that the baseline vortex, i.e., the smallest hairpin vortex arises in the 

logarithmic law region, has length scales comparable with the Kline scalings. 

It is also clear that, in the present model of hairpin vortices, the height of 

a representative vortex determines all its other length scales, therefore, it 

is chosen as the primary parameter for describing the characteristics of the 

vortices. 

It is assumed here that all the representative vortices are statistically 

independent and they do not interact strongly with each other. Consequently, 

any effects due to the interactions between representative vortices are 

neglected when compared with the self induction effects of individual vortices, 

and the instantaneous total flow field is simply a superposition of the induced 

flow fields associated with individual vortices whose relative arrangement is 

random. It is on this basis that the height of the vortices can be considered 

as the independent, random variable so that various statistical quantities of 

the wall turbulence are obtained from properly combining the contributions due 

to individual, representative hairpin vortices. 
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The Synthesis Approach 

Imagine that there exists a sampling plane slanting at an angle of 45°, 

and over a sufficiently long period of time, an ensemble of representative 

hairpin vortices of various heights have been collected. Let the range of the 

height be [hmin' hmax] and P(h) be the probability density function of the 

independent random variable h. Then, for any real single-valued continuous 

function g(h), its expected mean value is given by [28] 

hmax 

= J g(h) p(h) dh 

hmin 

where g can be velocity, pressure or any derived quantities such as the 

Reynolds stresses and other correlations. 

(38) 

This ensemble of representative hairpin vortices are now classified into N 

hierarchies or groups according to the vortex height. A representative vortex 

is considered to be in the ith hierarchy, if its height h falls inside the 

range hi - ~h/2 ~ h ~ hi + ~h/2, where hi LS the characteristic scale of 

the ith hierarchy and ~h is the range of the hierarchy. Consequently 

= 
N hi +.c..h/2 

I J g(h)p(h)dh 

i:1 hi -6h/2 

where hi hmin + (i-l/2)~h and ~h 

For each hierarchy 

hi +6h/2 ! g(h) p(h) dh 

hi - .c..h/2 

hi +6h/2 

= gSi! p(h)dh = 9 Si P
j 

hi -6h/2 

28 

(39) 

(40) 



where gsi is on averaged contribution of vortices within the ith hierarchy to 

the expected mean value and Pi is the probability distribution function of 

the ith hierarchy, i.e., it 1S the probability that a vortex will have its 

height falling inside the range hi - ~h/2 ~ h < hi + ~h/2. For 

sufficiently small ~h, gsi is approximated here by the averaged contribution 

of a typical vortex (h = hi) to the expected mean value, i.e. 

N 

= I < g(hi» Pi 
i=1 

In particular, if g 1S evaluated at different vertical locations, the above 

equation has the following form: 

N 

g(y) = L <g(y; hi» Pi 
i=1 

(41) 

(42) 

since the averaged contribution to any flow quantity due to a typical 

vortex of height hi can be evaluated (see, e.g. Eqs. (34) and (35», the 

expected mean value due to an ensemble of hierarchies of vortices can be 

obtained, if the probability distribution among the hierarchies is known. In 

the present work, Pi is determined by matching the measured mean flow 

vorticity to the expected mean value of spanwise vorticity as obtained by the 

above synthesis procedure. The match is carried out in the least-squares 

sense. Subsequently, the distribution of any other statistical quantity among 

the hierarchies of representative hairpin vortices follows directly from the 

probability distribution needed to give the measured mean flow vorticity. 

Thus, the turbulent boundary layer is considered as consisting of an 

ensemble of hierarchies of representative hairpin vortices. Each hierarchy of 

vortices 1S further approximated by a typical vortex whose height is the 

characteristic scale of the hierarchy under consideration. As indicated 1n the 

preV10US section (see Eq. (24», the specific value of the strength factor C 

needs to be determined. This factor 1S a constant for a gLven ensemble of 

hierarchies of vortices and it yields the absolute strength of the typical 

vortices involved in a given ensemble of vortex hierarchies used to represent 
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the turbulent boundary layer. This factor C is easily determined by applying a 

fundamental property of Pi, namely, 

N 

~ fi = (43) 

Another important quantity involved in the present statistical model is 

the convection velocity of the typical vortex. It is presumed to be the mean 

flow velocity measured at some particular ground fixed point, at which the 

averaged contribution of the typical vortex under consideration to the mean 

flow vanishes. However, when this presumed convection velocity is reciprocally 

used in the proposed synthesis procedure to determine the expected mean flow 

velocities at other points, there is no guarantee that the expected mean 

profile will automatically match the measured mean profile. Thus, such a 

presumed convection velocity needs to be validated by comparing the expected 

mean flow velocity profile with the actually measured mean velocity profile. 

Obviously, the application of the present procedure requires the knowledge 

of the measured mean flow velocity Um(y). By simulating the wall turbulence 

with an ensemble of N typical, representative hairpin vortices of different 

heights, the expected mean vorticity is given by 

ali = 
ay 

N 
2: p. 
i=1 1 

At first, a tentative probability distribution is obtained by minimizing 

(M ~ N) 

where 

t. = 
J 

30 

(44) 

(45) 

(46) 



Then, the normalized probability distribution Pi and the strength factor C 

are simultaneously determined by imposing the condition given by Eq. (43). On 

the other hand, the vertical point y*i, at which the averaged streamwise 

induced velocity of the ith vortex vanishes (see Fig. 11(a», can be 

independently located, and the convection velocity of the ith vortex is given 

by 

= 

As mentioned above, qi must be validated by comparing Um(y) with ~(y), 

where 

N 
u(y) = L p. < u(y». 

i:1 I I 

(47) 

(48) 

and <u(y» is defined in Eq. (34) which, among other quantities, includes q. 

The probability distribution among hierarchies and the factor needed to 

determine the absolute strength of vortices are now available. After the 

validation of the presumed convection velocities, various statistical 

quantities of the wall turbulence can be predicted by using Eq. (42). This 

implies that the distribution of any statistical quantity among the hierarchy 

scales follows directly from the probability distribution needed to give the 

measured mean flow vorticity. It is certainly possible to determine Pi by 

considering other statistical quantities, however, the mean flow velocity, or 

equivalently, the mean flow vorticity is the most convenient one to be measured 

or calculated, therefore, it is chosen for this initial effort. 

Preliminary Assessment of the Statistical Model 

At the present stage of development, the proposed hairpin vortex model is 

considered as most pertinent to the logarithmic law region of the turbulent 

boundary layer. Therefore, a preliminary assessment of the general behavior of 

this model is carried out for this region. The mean velocity profile in this 

region is given by (see e.g. [29]) 

-'- In y+ + 5.0, 0.4 
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Different ensembles of representative hairpin vortices are used to 

simulate the wall turbulence in this region. Their heights fall inside the 

range 100 ~ h+ ~ 500. The probability distribution among vortices of each 

ensemble is determined by matching the expected mean vorticity obtained with 

Eq. (43) and Eq. (44) to the known mean vorticity derived from Eq. (49). The 

matching procedure is carried out for N vortices and M vertical points in the 

least-squares sense. Before specific results are presented, several comments 

on the matching procedure need to be made. 

When 6h the difference of height between the typical vortices becomes 

smaller, the solution matrix associated with the matching procedure tends to be 

singular. This is not surprising, because nearly identical vortices are used 

so that the differences of the coefficients between neighboring rows of the 

solution matrix are quite small. Thus, there exists a practical lower limit 

of 6h. On the other hand, if 6h becomes sufficiently large, important length 

scales which are physically occurring in the region of interest cannot be 

satisfactorily accounted for by these vortices. Apparently, in practice there 

exists an optimum range of 6h. Further, as mentioned in the previous section 

(also see Fig. 14), at level y, the vortices of significance with respect to 

the mean vorticity distribution are those of height h = O(y). Consequently, 

the absence of the vortices of h+ < 100 or those of h+ > 500 will not 

significantly affect the probability distributions of vortices whose heights 

fall between, say, 100 ~ y+ ~ 400. However, the absence of vortices of 

heights h+ > 500 will significantly affect the probability distributions of 

the vortices whose heights are close to y+ ~ sao. In other words, the 

effects of those absent larger vortices are expected to be accounted for by 

increased probability distributions of the vortices of h+ = 0(500). 

Therefore, the solution of probability distributions of vortices whose heights 

are larger than y+ = 400 should be interpreted carefully. In addition, the 

points, at which the matching procedure is carried out, are chosen to be in the 

range 100 ~ y+ ~ 400. 

The results obtained for four different ensembles of typical hairpin 

vortices are now presented. In all of these cases, the matching procedure is 

performed at 37 points (M=37), their positions range from y+ = 97 to 

y+ = 395 with 6y+ = 8.1. The arrangement of these ensembles of vortices as 

well as the calculated strength factor C are given in Table I. 
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Tab Ie I - Demonstration Cases 

CASE N + 
h min 

+ 
h max l'1 h + C 

9 100 500 50 2.835 

2 8 125 475 50 2.572 

3 6 125 500 75 2.667 

4 6 100 475 75 2.846 

The probability distribution among hierarchies of vortices LS illustrated Ln 

Fig. 15. As discussed before, the predicted probability distributions of 

vortices with h+ ) 400 should be considered here as larger than their true 

values, because the effects of absent larger vort ices on the mean· flow 

vorticity in the region of y+ ~ 400 are mainly accounted for by those 

introduced vortices of 400 < h+ < 500. A correlation analysis indicates 

that, for vortices of heights between y+ = 100 and y+ = 350, there is a 

strong linear correlation between height and probability distribution of 

vortices (Fig. 15). The linear correlation is expressed as 

p = 0.01 mh+ + b (50) 

The values of m, bare gLven Ln Table II, in which r is the linear correlation 

coefficient and rd is the decision point for the strength of the linear 

correlation. A linear correlation is considered as existing if Irl ~ rd. 

Table II - The Linear Correlation Between P and h+ 

CASE m b r rd 

-0.049 0.198 -0.952 0.811 

2 -0.051 0.213 -0.926 0.811 

3 -0.056 0.257 -0.971 0.95 

4 -0.080 0.295 -0.960 0.95 
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Obviously, in the region of lOO ~ y+ ~ 350, the probability distribution of a 

typical hairpin vortex decreases when its height increases. This is consistent 

with the general behavior of the probability distribution of hierarchies 

discussed in Ref. [l8]. 

Figure l6 shows the convection velocity as a function of the vortex 

height, it indicates that larger vortices are convected at higher velocities • 
. -+ 

The free stream velocity u 
e 

is usually of the order of 30, therefore, the mean 
+ -+ 

convection velocities of these vortices are in the range 0.55 < q /u < 0.68. 
- e-

They are consistent with observed values associated with the large scale 

structures in the wall region. As mentioned b~fore, these presumed convection 

velocities must be validated by comparing the expected values of mean flow 

velocity profile predicted by Eq. (48) with the known distribution given by 

Eq. (49). The comparisons indicate that, for the four cases considered, the 

relative errors are uniformly less than 6%. In addition, from Tables I, II as 

well as Fig. l5, it can be seen that the results are relatively insensitive to 

the number of hierarchies used in simulating the wall turbulence. 

The main features of the fluctuating as well as averaged flow fields 

associated with individual representative hairpin vortices have been discussed 

in the previous section, the general behavior of the probability distributions 

and the convection velocities of typical vortices in an ensemble of 

hairpin vortices simulating the wall turbulence are briefly assessed in the 

present section. These results suggest that the use of hairpin vortex in 

obtaining a quantitative link between the mean flow, Reynolds stresses and 

other correlations in wall turbulence looks promising. The ultimate 

justification of applying the proposed model of wall turbulence to turbulent 

boundary layer flows depends on the success with which it can be used to 

predict various turbulence quantities. Such a detailed assessment should be 

carried out in the future. 
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CONCLUDING REMARKS 

Predictions of the far-field trailing edge nOlse requlre as input the 

space-time correlations of incident surface pressure fluctuations, which are 

obtained to date mainly by extensive measurements. The goal of the present 

effort is to develop a theoretical technique to estimate these pertinent data 

by considering the hairpin vortex as the underlying structure of the wall 

turbulence and by using the hairpin vortex to provide a quantitative link 

between the mean flow and various turbulence quantities. A mathematically 

operational model of the hairpin vortex is developed, and the main features of 

such a model has been discussed in detail. The turbulent boundary layer is 

considered as consisting of an ensemble of representative hairpin vortices of 

different length scales, l.e., hierarchies of typical hairpin vortices. A 

synthesis technique is developed to determine the strengths, convection 

velocities as well as the probability distributions of these typical vortices. 

Further, the distribution of any turbulence quantity (including the space-time 

correlation of the fluctuating pressure field) among the hierarchies of typical 

vortices follows directly from the probability distribution needed to give the 

measured mean vorticity profile. At the present stage of the development of 

the synthesis technique, the proposed hairpin vortex model of wall turbulence 

is considered as most pertinent to the logarithmic law region of the turbulent 

boundary layer. Preliminary results obtained in this region indicate that the 

application of the synthesis technique to estimate the aerodynamic input via 

hairpin vortex model of turbulent boundary layer for use in trailing edge noise 

prediction theories is quite feasible. 

It is obvious that the applicability of the present approach should be 

assessed in a more detailed fashion. For example, the predicted Reynolds shear 

stress as well as the turbulence intensities should be compared with measured 

data. The model of hairpin vortex should also be modified to properly simulate 

the flow structures occurrlng in the viscous sublayer, buffer zone as well as 

the outer wake region. For a decelerated turbulent boundary layer flow, the 

effects of adverse pressure gradient should also be included by suitably 

modelling the structures arising in the half power law region. Finally, it lS 

of great interest to develop the capability for investigating the dynamic 

behavior of hairpin vortices submerged in various background flows by numerical 

simulation through the solution of unsteady, three-dimensional Navier-Stokes 
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equations. The dynamic information obtained will greatly enhance the 

understanding of the deterministic turbulent structures per se and, therefore, 

can be used to construct improved vorteK model of turbulent boundary layer 

flows. 
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Rgure I. A set of vortex lines (vortex filament) resembling a hairpin - like structure. (a) 3-D view; 
(b) end-view; (c) side-view. The spanwlse, l, extent of the figure Is 70.0 u/u ... , the 
streamwlse, x, extent of the figure is 1380 u/u.... (From ref. 15) 
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Figure 2.. A schematic of an array of hairpin vortices and the representative vortex. 
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Figure 3. Flow pattern within a representative hairpin vortex in a plane parallel to the mean flow 

direction. The plane is at one foot of the vortex. 
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Figure 4. Flow pattern within a representative hairpin vortex in a plane parallel to the mean flow 

direction. The plane is at the tip of the vortex. 
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Figure 5. Row pattern within a representative hairpin vortex in a plane parallel to the flat wall. 

The plane is close to the ti p of the vortex. 
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Figure 6. Flow pattern within a representative hairpin vortex in a plane parallel to the flat wall. 

The plane is close to the wall. 
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