Procedure for Estimating Orbital Debris Risks

James L. Crafts and James P. Lindberg
Procedure for Estimating Orbital Debris Risks

James L. Crafts and James P. Lindberg

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PAST ANALYSES</td>
<td>1</td>
</tr>
<tr>
<td>PROCEDURE FOR ESTIMATING RISKS FOR FUTURE MISSIONS</td>
<td>2</td>
</tr>
<tr>
<td>COMPARISON OF DATA BASE APPROACH AND DETAILED ANALYSES</td>
<td>2</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>2</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>3</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lethal Area Versus (WXLXD) with a Body Radius of 1 ft</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Probability of Casualty for 1 ft2 of Lethal Area Versus Orbital Inclination</td>
<td>5</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Summary of Lethal Areas and Probability of at Least One Casualty (Bodily Injury or Death) per Reentering Spent Stage or Payload</td>
<td>6</td>
</tr>
</tbody>
</table>
A procedure has been developed that will allow an estimation of risks associated with the eventual decay and reentry of spacecraft or upper stages left in orbit on future missions. A database of detailed analyses has been developed and a correlation parameter has been selected that will give a good estimate of the amount of debris (lethal area) that will survive the reentry heat and pose a threat to the Earth’s populace. The results obtained from this estimation procedure have been compared to detailed analyses that were performed over a number of years. The estimation technique appears valid for configurations ranging from small scientific payloads (ERTS-1B) to large orbital assemblies (Skylab).

INTRODUCTION

This Nation has been exploring space for more than 25 years. During these years, hundreds of payloads and spent stages have been placed in orbit. Many have been left there to eventually decay, reenter the Earth’s atmosphere, and have portions impact the Earth’s surface. In order for NASA to be able to assess the potential risk to the world’s populace for future spacecraft and missions, the procedure presented herein was developed. This approach provides a consistent, but simple, procedure to assess the risk due to random entry with an adequate accuracy level for making programmatic decisions on planned low Earth orbit missions.

PAST ANALYSES

For more than a decade the MSFC and Lockheed Missiles and Space Company worked together in developing techniques necessary to assess the risk associated with a stage or payload as it returned to the Earth’s surface. In the early days of this activity, the approach was to assess only those items that had a high probability of surviving the reentry heat, resulting in a low estimate of potential risk to the Earth’s inhabitants. This approach was necessary due to cost constraints and computer capability. With the development of larger and faster computer systems, the techniques used in the breakup, survival, and risk hazard analyses were greatly improved while maintaining a realistic cost per analysis. These improved techniques were first used on the Skylab program. Several other analyses, the ASTP Docking Module (DM) and Service Module (SM), ERTS-B, HEAO and Centaur, were performed using these same techniques so that any differences in results due to the analysis technique would be eliminated. Table 1 presents a summary of these analyses with detailed information contained in the references.
PROCEDURE FOR ESTIMATING RISKS FOR FUTURE MISSIONS

Based on information obtained from previous analyses, it seems reasonable that a "representative risk" associated with a future mission could be calculated without doing a detailed analysis. Various parameters have been investigated in an attempt to determine a method of correlating the resulting lethal area for a given configuration. The parameter (WXLXD), the product of the weight, length, and diameter of the configuration just prior to reentry, was found to give the best correlation for the different configurations analyzed to date. Using the most recent MSFC/LMSC analyses, along with four others performed by other agencies but with similar assumptions, a data base of information was compiled. Figure 1 presents the lethal area (LA) of the surviving debris from these analyses versus the correlation parameter (WXLXD). Figure 2 presents the probability of a casualty for one square foot of lethal area versus orbital inclination and reentry date.

Using Figures 1 and 2, a "representative risk" associated with a future mission can be calculated as follows:

1) Compute the parameter (WXLXD) for the configuration and obtain the lethal area from Figure 1.

2) Multiply the lethal area by the appropriate probability of casualty per square foot of lethal area from Figure 2.

3) Compare the calculated risk to those of previous analyses in Table 1.

COMPARISON OF DATA BASE APPROACH AND DETAILED ANALYSES

One of the largest differences in lethal area (and therefore risk) between the data base approach and the detailed analysis is for the ASTP Service Module (SM). The data base approach gives 480 square feet of lethal area compared to 800 square feet from the actual analysis. Much of this deviation is attributed to the unusual number of high pressure spheres/bottles and engines in this configuration. Twenty-six of the 57 parts predicted to survive fall into this category making up about 35 percent of the lethal area. From typical configurations (ERTS, Centaur, S-IVB and S-II) this contribution is on the order of 10 to 15 percent. Even for this "odd" configuration, a risk hazard of the same order of magnitude would be obtained by using either the data base or detailed analysis approach.

CONCLUSIONS

The resulting lethal area for a given configuration is a function of its weight, length, and diameter just prior to reentry. Using this predicted lethal area and the appropriate probability of a casualty for one square foot of lethal area, a "representative risk" can be calculated for the class of vehicles/payloads that NASA has launched and will launch in the future.
REFERENCES

Figure 1. Lethal area versus (WXLXD) with a body radius of 1 ft.
Figure 2. Probability of casualty for 1 ft2 of lethal arc. versus orbital inclination.
TABLE 1. SUMMARY OF LETHAL AREAS AND PROBABILITY OF AT LEAST ONE CASUALTY (BODILY INJURY OR DEATH) PER REENTERING SPENT STAGE OR PAYLOAD

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>LETHAL AREA (FT²)</th>
<th>PROBABILITY OF CASUALTY FOR RANDOM REENTRY</th>
<th>INCLINATION (DEGREES)</th>
<th>PREDICTED YEAR OF REENTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKYLAB ORBITAL ASSEMBLY</td>
<td>11125</td>
<td>.0105</td>
<td>50</td>
<td>1979</td>
</tr>
<tr>
<td>SKYLAB S-II STAGE</td>
<td>6723</td>
<td>.00640</td>
<td>50</td>
<td>1975</td>
</tr>
<tr>
<td>SKYLAB S-IVB/IU (3)</td>
<td>2919</td>
<td>** NOT AVAILABLE</td>
<td>50</td>
<td>DEORBITED BY COMMAND</td>
</tr>
<tr>
<td>ASTP DOCKING MODULE</td>
<td>228</td>
<td>.00020</td>
<td>51.8</td>
<td>1975</td>
</tr>
<tr>
<td>ERTS-B</td>
<td>122</td>
<td>.00011</td>
<td>51.8</td>
<td>1975</td>
</tr>
<tr>
<td>CENTAUR STAGE</td>
<td>316</td>
<td>.00025</td>
<td>27.8</td>
<td>1975</td>
</tr>
<tr>
<td>HEAO</td>
<td>180</td>
<td>.00013</td>
<td>22.5</td>
<td>1977</td>
</tr>
<tr>
<td>*ASTP SERVICE MODULE</td>
<td>800</td>
<td>.00069</td>
<td>51.8</td>
<td>1975</td>
</tr>
</tbody>
</table>

*ASSUMES A RANDOM DECAY – THE MISSION EMPLOYED A FORCED REENTRY TO A PLANNED RECOVERY AREA. REFERENCE 6 PRESENTS A PROBABILITY OF CASUALTY OF ZERO (0) BECAUSE THE DISPERSION FOOTPRINT DOESN'T ENCOMPASS ANY LAND MASSES.

**RISK CALCULATION IN REFERENCE 1 WAS FOR A SHORT LIFETIME.
1. REPORT NO.
NASA TP-2507

2. GOVERNMENT ACCESSION NO.

3. RECIPIENT'S CATALOG NO.

4. TITLE AND SUBTITLE
Procedure for Estimating Orbital Debris Risks

5. REPORT DATE
August 1985

6. PERFORMING ORGANIZATION REPORT NO.

7. AUTHOR(S)
James L. Crafts and James P. Lindberg

8. PERFORMING ORGANIZATION NAME AND ADDRESS
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

9. SPONSORING ORGANIZATION NAME AND ADDRESS
National Aeronautics and Space Administration
Washington, D.C. 20546

10. WORK UNIT NO.
M-495

11. CONTRACT OR GRANT NO.

12. TYPE OF REPORT & PERIOD COVERED
Technical Paper

13. SUPPLEMENTARY NOTES
Prepared by Systems Analysis and Integration Laboratory, Science and Engineering.

14. ABSTRACT

This report presents a procedure for estimating the potential orbital debris risk to the world's populace from payloads or spent stages left in orbit on future missions. This approach provides a consistent, but simple, procedure to assess the risk due to random reentry with an adequate accuracy level for making programmatic decisions on planned low Earth orbit missions.

15. KEY WORDS
Orbital Debris
Risk Hazard
Random Reentering Bodies

16. DISTRIBUTION STATEMENT
Unclassified — Unlimited

Subject Category 16

17. SECURITY CLASSIF. (OF REPORT)
Unclassified

18. SECURITY CLASSIF. (OF THIS PAGE)
Unclassified

19. NO. OF PAGES
12

20. PRICE
A02

For sale by National Technical Information Service, Springfield, Virginia 22161

NASA-Langley, 1985