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Chapter 1

INTRODUCTION

1.1 Structural Dynamics

Today, every airplane, booster, and spacecraft 1n production

has been subjected to a very thorough dynamic analysis. However, it is

not only the aerospace Industry that is interested in structural

dynamics. The Interest has spread through a range of Industries which

manufacture everything from automobiles to typewriters, and construc-

tion companies which build everything from bridges to high-rise office

buildings.

The reason for wanting a dynamic analysis may vary from company

to company, but certain requirements of the analysis remain constant.

It must be accurate, it must be low cost, and it must be completed

quickly. Today's structural dynamldsts are addressing each of these

requirements.

One of the most popular approaches to satisfying these require-

ments Involves the use of substructures.

1.2 Reasons for Substructurfng

Structural systems have become so complex today that no single

engineer, and often no single company, is capable of efficiently

designing and analyzing the entire structure alone. The structures are

too large and too complex to handle on the system level, and are

therefore broken down Into smaller structures (I.e. substructures).

The three primary reasons for substructurfng are:

1



2

1. Different groups or companies specialize in one particular part o*

a structure, and are the most qualified to design that part.

Therefore the structure is separated into substructures, and each

substructure is given to the group which specializes in its design.

2. When a single group or company is given responsibility for the

entire structure, the project is often more easily managed if the

structure is separated into substructures. Each substructure may

then be designed and verified independently before assembling all

the substructures to verify the superstructure.

3. From a computational point of view, it is often the case that a

coupled substructure analysis will yield a more efficient analysis

of the structure than will a single analysis of the entire struc-

ture. *

Having discussed the reasons for substructuring, the actual

dynamic analysis will now be considered. General analysis techniques

will be discussed first, and substructure analysis techniques will be

discussed subsequently.

1.3 Current Response Analyses

The dynamic analysis of a structure may Include several analy-

ses including a modal analysis, a shock spectrum analysis, or a re-

sponse analysis to a particular dynamic load. The primary focus of

this paper will be on the latter.
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Currently, there are two basic types of analyses used to obtain

the system response to dynamic load. They may be classified as

(1) time-domain analyses, and (2) frequency-domain analyses.

Time-domain analysis techniques commonly attempt to uncouple

the system equations and then Integrate them directly. This uncoupling

of the equations of motion is accomplished by using a modal transforma-

tion. Since the transformation matrix must be orthogonal with respect

to the mass, stiffness, and damping matrices, it is often found by

solving the eigenvalue problem which arises from the free vibration

problem and subsequently assuming a form of damping which leaves the

modes uncoupled.

Frequency-domain analysis techniques use either Laplace or

Fourier transformations to transform the differential eouations of

motion to the frequency domain, where they become algebraic equations.

The system of linear algebraic equations may then be solved for the

system response. This frequency-domain response may then be inverse

transformed to obtain the response in the time domain.

1.4 Substructure Coupling 1n the Frequency Domain

When utilizing a frequency-domain procedure for coupling

substructures, only the dynamic stiffness matrices for each substruc-

ture are required. The system equations are then obtained by using a

direct stiffness approach to couple the substructure dynamic stiffness

matrices. This set of linear equations may then be solved for the

system response.
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There are some instances where the frequency-domain techniques

are more efficient than time-domain techniques. However, there are

some instances where this is reversed. Since each of these methods is

capable of giving either exact or approximate solutions, this paper

will frequently compare the efficiency of the two procedures, and

consequently will often discuss the cost of a particular operation.

This cost is most accurately defined as the amount of standardized

computer time required for that particular operation.

1.5 Current Frequency Domain Analysis

The best-known frequency-domain analysis is the harmonic or

steady-state analysis. This frequency-domain technique has been used

for many years to determine the steady-state response of structures

subjected to periodic loads, and has been implemented in several of the

large general purpose finite element packages (Ref. 1, 2). An equally

well-known frequency-domain analysis is the determination of the

spectral response of a structure to random loads (Ref. 3, 4).

Little work has been done in the area of determining the

transient response of structures using frequency-domain techniques. It

1s surmised that this is because of the problems encountered when

transforming problems between the discrete time and frequency domains,

and because of the expense of frequency-domain analysis of a large

unreduced system. Each of these topics will be addressed 1n subsequent

chapters of this thesis.

An area of frequency-domain analysts which is becoming popular

among analysts is the representation of substructures by frequency-
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dependent matrices. These methods are often denoted as impedance

methods, and various papers have been published on the topic by Chopra,

Poelart, Payne, GeeHng, and Williams and Wittrick (Ref. 3, 5, 6, 7,

8).

Chopra uses frequency-domain methods to perform earthquake

analyses of concrete dams. He uses frequency-domain representations of

the soil and the dam which are derived from finite element models to

obtain his system equations of motion. He reduces the number of

degrees of freedom through the use of Ritz vectors.

Poelart presents a distributed-element approach to the fre-

quency-domain method, where an element is represented by its exact

impedance matrix. His paper also presents a discussion of the problems

associated with using finite elements in a dynamic analysis, as he

compares the distributed element -approach to the finite element ap-

proach.

The paper by Payne presents an approach by which two finite

element substructure models may be coupled using the impedance matrix

of each substructure. He uses modal expansions of each substructure to

determine the respective impedance matrices. His paper gives parti-

cular emphasis to problems with statically-determinate interfaces.

Payne also provides for a reduction in the computational effort when

structural modifications are performed on one of the substructures.

The work by Geering is primarily concerned with the coupling of

substructures represented by frequency-dependent matrices, and the

reduction in the number of degrees of freedom required for an analysis.
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Each of these topics 1s discussed 1n subsequent chapters, as much of

this paper 1s based on the work of Geering.

The computation of natural frequencies using frequency-domain

techniques has been Investigated by Will lams and Wlttrick. In their

work, each of the elements of a structure Is represented by Its dynamic

stiffness matrix. Their procedure for determining natural frequencies

is discussed in subsequent chapters also.

Using these papers to establish the current state of the art 1n

frequency-domain analysis, the research goals for this thesis were then

determined.

1.6 Research Goals

The primary goal of this research project was to obtain a clear

understanding of the strengths and weaknesses of substructure coupling

in the frequency domain. These qualities were then to be evaluated and

used to determine where the method is particularly applicable, and

where it 1s not.

The secondary goal was to determine the generality of the

method. This was to be accomplished by determining If a substructured

model which had been created in the frequency domain could be used to

obtain the system natural frequencies.

It 1s not the purpose of the research project to demonstrate

new analytical techniques, although some have been presented. The

purpose of the paper is to provide an analyst with sufficient informa-

tion about the strengths and weaknesses of substructure coupling in the

frequency domain. The analyst should then be able to make a decision
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regarding the usefulness of the method for a particular application.

An attempt has also been made to provide sufficient detail to permit

Implerientation of the Geerfng method if so desired.

1.7 Organization of the Thesis

This thesis has been organized into eight chapters. The first

chapter provides justification and background for the work presented in

subsequent chapters.

Chapter 2 describes the system equations of motion, and the

analytical tools necessary to transform the equations to the frequency

domain. The chapter discusses both steady state and transient analy-

sis. Chapter 3 proceeds with a discussion of the implementation of

frequency-domain analysis on a digital computer, and Chapter 4 dis-

cusses Geering's method of coupling substructures in the frequency

domain (Ref. 3). Chapters 2, 3 and 4 are included as support for the

primary research goal.

The support for the secondary research goal is included in

Chapters 5 and 6, which outline procedures which may be used to deter-

mine the natural frequencies of undamped and damped structures respec-

tively. Chapter 5 is based on work by Williams and Wittrick (Ref. 6)

in their search for natural frequencies of continuous systems, while

Chapter 6 presents some original work on determining the natural

frequencies of damped systems.

Chapter 7 presents examples to support the equations of Chap-

ters 2 through 6, and Chapter 8 is the final chapter which includes
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some general comments on substructure coupling 1n the frequency domain.

Directions for further research are also presented in Chapter 8.



Chapter ?.

FREQUENCY-DOMAIN ANALYSIS

2.1 Equations of Motion

Consider a finite element model of a structure with n active

degrees of freedom. The model may be formed using either lumped mass

matrices or consistent mass matrices. The damping may be proportional,

nonproportlonal, hysteretic, or any other linear form. In other words,

the analyst 1s free to model the structure in various ways, as long as

the equations of motion for the system may be written as

[m] (x(t)> + [c] (x(t)> + [k] <x(t)} = {f(t)> (2.1)

[m], [c], and Tk] are time-Invariant matrices commonly denoted

as the mass, damping, and stiffness matrices respectively. The

(x(t)} , (x(t)) , and (x(t)} vectors represent the acceleration,

velocity, and displacement of each of the n degrees of freedom.

Likewise, the (f(t)} vector represents the load applied at each of

the n degrees of freedom. The Initial displacement and Initial

velocity vectors will be written as

(x(t=0)> = {XQ} (2.2a)

and
{x(t=0)> = (x > (2.2b)

Equations throughout this thesis will include only active degrees of
freedom, which are those degrees of freedom which have not been
constrained to have zero displacement.
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Equation (2.1) represents e system of n linear second order

differential equations. However, by applying carefully selected

transformations, the equations may be transformed into a system of n

linear algebraic equations.

This chapter will examine three such transform pairs which

allow the equations to be transformed to the new domain, and the

solution to be Inverse transformed back to the time domain. Each

transformation will be examined to determine (1) whether it gives a

steady state or transient solution, (2) whether there are restrictions

on the type of excitation, and (3) whether the system is permitted to

be damped or undamped.

2.2 Fourier Integral Transforms

The Fourier Integral transform is one of the most popular

transformations because of the ease with which it may be discretlzed

and implemented on a digital computer. The unilateral Fourier Integral

transform will be used in this paper, since all excitation and re-

sponses will be assumed to be Identically zero before some instant in

time (t=0 for this paper).

Given a general function y(t) , the unilateral Fourier

Integral transform pair may be written

Y(u>) = f y(t) e"j(ot dt (2.3a)
Jo

y(t) = J- f Y(co)eja>t dw (2.3b)
1 _eo

where to 1s a real variable, often denoted as the frequency variable.
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The equation of motion 1n the frequency domain may be obtained

by applying the transformation given by Eq. (2.3a) to Eq. (2.1).

Appendix A.I gives the details of the transformation which yields

[-<o2 [m] + j» [c] + [k]]{X(«)>
J (2.4)

- {F(«)> + [m] {XQ} + [jw [m] + [c]]{x0>

or in shorthand notation,

[GU)] {X(»)> - (FU)} (2.5)

where the dynamic stiffness matrix, [G(o>)] , is given by

[G(to)] = -w2 [m] + JM [c] + [k] (2.6)

and

CPU)] - (F(u)} + [m] {x0} + [jo, fm] + [c]]{xQ} (2.7)

where {F(o>)} is the unilateral Fourier integral transform of the

forcing function (f(t)} , and {XQ} and {XQ} are the initial

displacement and velocity vectors respectively.

The response spectrum may then be obtained by solving the

system of linear equations in Eq. (2.5). Thus,

)> (2.8)

where the dynamic flexibility matrix, [H(u)] , is given by

[HU)] = [GU)]"1 (2.9)
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The time-domain response may then be obtained by inverse transforming

{X(u)} using Eq. (2.3b).

Careful consideration must be given to the restrictions and

assumptions made in Appendix A.I, as they determine the class of

problems which may be solved using the Fourier integral transform

approach. In short, they may be stated:

- The forcing function (f(t)} must be of
finite duration, and therefore nonperfodic.

- The system must be damped.

If these conditions are satisfied, the inverse transform of the

spectrum given by Eq. (2.8) will yield the exact, or as 1t 1s often

called, the transient solution to Eq. (2.1).

In summary, the unilateral Fourier integral transform approach

may be used to solve for the transient response of damped systems

subjected to finite duration excitation.

2.3 Fourier Integral Transforms with Convergence Functions

An investigation of the Fourier transformability conditions in

Appendix A.I reveals that the class of problems which may be worked

using the Fourier integral transform approach 1s limited because of the

condition that the Integral,

f |y(t)| dt (2.10)
Jn

must converge. This convergence condition necessitated the restriction

of finite-duration excitation and response.
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Therefore, 1n order that the Fourier integral transform ap-

proach nay be used for systems not satisfying the convergence condi-

tion, Eq. (2.1) will be multiplied by a yet unknown function, b(t) ,

b(t) [Cm] (x> + [c] {x} + [k]{x}] = b(t) (f(t)> (2.11)

where b(t) is any function which will cause Eq. (2.11) to satisfy the

convergence conditions when transformed. The unilateral Fourier

integral transform may now be applied to Eq. (2.11) and written

b(t) [[m] {x} + [c] {J} + [k] {x}] e-jut dt =

(2.12)

f b(t) Cf(t)> e-jut dt
J0

Now assume that the convergence function, b(t) , is given by

b(t) • e'at (2.13)

where the convergence factor, a , is any value which will cause

Eq. (2.11) to satisfy the convergence conditions when transformed.

Equation (2.13) may now be substituted into equation (2.12) to

yield

"at 'u dt =f [Cm] (x> + [c] {x} + [k] {x}l e
Jo J

(2.14)

fJn
dt
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An examination of the transfomability of Eq. (2.14) reveals that the

integrals

[[m] {x} + [c] {x} -f. [k] {x}]e'at dt (2.15)
/

and

f {f(t)> e'at dt (2.16)
Jo

must converge. It has been shown that for forcing functions of

exponential order aQ , (I.e. for those functions which have the

property that there is a real number, o , such that

L["! <f(t)> e"ot " ° when o > <»„ (2.17)u '*** O

and with the limit not existing when o < aQ ;) Eq. (2.16) will

converge for a > aQ . (Ref. 9). It has also been shown that since

the response of stable linear systems 1s at least of exponential order

0, Eq. (2.15) will always converge for a > 0 , and will converge for

a s 0 when the system and excitation is of the type described 1n

Section 2.2.

In light of these guarantees for convergence, the restrictions

which required the excitation and response to be of finite duration may

be lifted. It 1s Interesting to note, however, that the selection of a

'large1 convergence factor will cause the integrands of Eq. (2.12) to

approach zero 'very fast,1 simulating a finite duration excitation and

response.
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Equation (2.14) may now be simplified and written

f [W (x) + [c] (x) + [k] {x}]e~s t dt *
JQ u J

(2.18)

f

'
e"st dt

where the complex frequency variable, $ , is given by

s » a + j<a (2.19)

At this point, Eq. (2.18) may be integrated by parts as de

tailed in Appendix A, 2, and written

s* + [c] s + fk] CX(s}} •

(2*20)

+ IVJ Cxo} *[[•] s + [c]]{x0>

or in shorthand notation as

C6(s)] {X(s)} * (F(s)} (2.21)

where

[fi(s)] * W $2 + [cl s + [kj f2.22)

and

* tcj] {XQ} (2.23)

It has been shown in Appendix A. 2 that



or

16

F(s) = f f(t) e'st dt (2.24)
/ Q

F(s) = f f(t) e'at e-ja)t dt (2.25)
J0

which is simply the unilateral Fourier integral transform of (f(t)} ,

where

(f(t)} = (f(t)} e'at (2.26)

As 1n the previous section, Eq. (2.1) may be solved for

(X(s)} , yielding

(X(s)> = [H(s)1 (F(s)} (2.27)

where

[H(s)] = [G(s)]"1 (2.28)

Referencing Appendix A.2 once again, reveals that

(X(s)} = f {x} e"st dt (2.29)
Jn

or

(X(s)> = f {x} eat ejo)t dt (2.30)
J0

which is simply the unilateral Fourier integral transform of {x} ,

where
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{x} = {x} e'at (2.31)

Therefore, the Inverse unilateral Fourier integral transforn of (X(s)}

does not yield {x} , but instead yields {x} . However, {x} may be

recovered using the relationship

{x> = {x> eat. (2.32)

At this point, it should be clear that when the convergence

function, e , is used in conjunction with the unilateral Fourier

integral transformation, the transform is equivalent to the Laplace

transformation, where the complex frequency variable, s , is simply

the Laplace variable. The detailed discussion of the convergence

function was undertaken in this section, (1) to emphasize why the

Laplace transform removes some of the restrictions of the Fourier

transform, (2) to emphasize that unilateral Fourier integral transfor-

mations may be used to perform forward and inverse Laplace transforms

once a convergence factor has been selected, and (3) to give some

physical insight into what exactly the convergence function does, in

order to aid in the selection of the convergence factor.

Therefore, the unilateral Fourier integral transformation, used

in conjunction with a convergence function, e , may be used to

solve for the transient response of a damped or undamped system sub-

jected to any excitation of exponential order.
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2.4 Complex Fourier Series

In the previous sections, methods of obtaining the transient

response of a system were discussed. However, there are instances when

only the steady-state response to a periodic excitation is desired.

For this class of problems, the equations of motion may be

transformed to the frequency domain using the complex Fourier series

transform pair,

,
y(t) = yi E Y((o.) e K (2.33)

rl k=-- K

T+T.

where

Y((oJ - y(t) e * dt (2.34)
* JT

k L (2.35)
V'l/

and Tj 1s the fundamental period of y(t) .

The details of the transformation are presented 1n Appendix

A. 3. The frequency domain equations of motion are

[m] + jU|( [c] +

(2.36)

where {F(uk)} 1s the forcing spectrum determined by a complex Fourier

analysis of (f(t)> . As in the previous sections, Eq. (2.36) may be

simplified and solved for {X(u. )}
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[G(u)k)] {X(uk)> = {F(u,k)} k= -«,...,« (2.37)

{X(u>k)> = rH(a>k)1 {F(o)k)} k = —,...,- (2.38)

where

[H(tok)] = [G(o)k)r k = -,...,- (2.39)

The time-domain response may then be obtained using the inverse trans-

form relation given in Eq. (2.33).

An examination of the transformation detailed in Appendix A. 3

will reveal that the time-domain solution obtained is only a particu-

lar, or steady-state, solution to the equations of motion given by Eq.

(2.1).

Therefore, Chapter 2 has presented two transformations which

may be used to obtain the transient response to a limited class of

problems. The chapter has also presented a well-known method of

obtaining the steady-state response of a system. Now, Chapter 3 will

investigate the computational considerations in the implementation of

these procedures.



Chapter 3

COMPUTATIONAL CONSIDERATIONS

3.1 D1scret1zing the Problem

In Chapter 2, three different sets of frequency domain equa-

tions of motion were presented. Those presented in Eqs. (2.4) and

(2.20) were functions of the continuous variables u> and s respec-

tively, and the equations of motion presented in Eq. (2.36) were

functions of the discrete variable u^ . It is the purpose of this

section to consolidate the three sets of equations into one set of

discretized equations to be used in the discussion of the frequency-

domain computational model.

The first step in the consolidation is to recognize that Eq.

(2.4) 1s identical to Eq. (2.20) when the convergence factor is identi-

cally zero. Therefore, since Eq. (2.4) is contained within Eq. (2.20),

the latter equation will be used henceforth.

It has been shown by several authors, that the Fourier integral

transform and the inverse Fourier integral transform, such as those

required in the evaluation of Eq. (2.20), may be approximated by the

discrete Fourier transform (DFT) pair (Ref. 4, 10, 11).

Therefore, the discretization of Eq. (2.20) will begin by using

the DFT to evaluate (F(s)} at k discrete frequencies. The

transformation and the resulting force spectrum may be written as

({F.} ; k=0,...,K-l) = DFT ({f(t)>* e'at) (3.1)

20
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where {Fk> is equivalent to (F(sk)} . The { } notation Indicates

that only discrete values of (f(t)} are used as required by the DFT

algorithm.

Since the force spectrum, as given by Eq. (3.1), is only

defined at K discrete frequencies, Eq. (2.20) may only be evaluated

at those K frequencies. Thus

[c] sk + [k]
(3.2)

k) + [m] {XQ} + [[m] sk + CC]]{XQ}Q

k=0,...,K-l

Equation (3.2) represents K sets of simultaneous equations

which must be solved 1n order to obtain the discrete response spectrum

((Xk> ; k=0 ..... K-l) .

This discrete response spectrum may then be inverse transformed

to obtain the discrete function, (x(t)> e , and Eq. (2.31) may be

used to determine (x(t)} . Thus,

(x(t)>* » eat [IDFT ({X> ; k=0,...,K-l)] (3.3)

where the { } notation again represents a discrete time function.

Having discretized Eq. (2.20), the consolidation of Eqs. (3.2)

and (2.36) into a single set of equations will continue. The next step

in the consolidation 1s to recognize the fact that functions of the

variable . o>k may be represented as functions of sk with a
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convergence factor of zero. Equation (2.36) may therefore be written

as

[Cm] s£ + [c] sk + [k]] (Xk) = {Fk> k— ,...,- (3.4)k

Since It has been shown that the DFT may also be used to

approximate the complex Fourier series (Ref. 4), the transformation of

the periodic forcing function (f(t)> may be written as

({Fk> ; k=0,...,K-l) = DFT ((f(t)}*) (3.5)

which is equivalent to Eq. (3.1) when the convergence factor is zero.

Again, since the force spectrum is only defined at K discrete

frequencies, Eq. (3.4) may only be evaluated at those frequencies.

Thus,

[[m] sj + [c] s + Tk]] (Xk) = {F> k=0,...K-l (3.6)

Now, Eqs. (3.2) and (3.6) may both be written in shorthand

notation as

[Gk] {Xk} = {Fk> k=0,...,K-l (3.7)

where

[G] = [m] $2 -f [c] s + [k] k=0,...,K-l (3.8)

{Fk} = {^k> + M {i0> +[rm] sk + [c]] {XQ} k=0,...,K-l (3.9)k

and
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= DFT ({f(t)}* e"at) (3.10)

The frequency-domain response spectrun nay be found using the relation-

ships

{Xk> = [Hk] {Fk> k=0,...,K-l (3.11)

where

[Hk] - [Ĝ "1 k=0,...,K-l (3.12)

and finally, the time-domain response may be found at discrete values

of t from

(x(t)}* = eat [IDFT ({Xk} ; k=0,...,K-l)] (3.13)

Subject to the following modifications, Eqs. (3.7) through

(3.13) represent the single computational model which may be imple-

mented to obtain the response of the systems described in Sections 2.2,

2.3, and 2.4.

- To determine the transient response of damped systems to

finite duration excitation

' Set a = 0

- To determine the transient response of either damped or

undamped systems

' Select a proper value for the convergence factor (Ref.

Section 3.3)
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- To determine the steady-state response of either damped or

undamped systems to a period input

• Set a H 0

• Set {XQ} = (XQ} = {0} (This is simply a method of

getting the algorithm to ignore the initial conditions,

since they are not used in steady-state analysis).

Therefore, the solution procedures have been consolidated into

a single set of equations which is easily adapted for each desired

response analysis. In an attempt to ease the burden of notation in the

remainder of this paper, Eqs. (3.7) and (3.11) will be written as

[G] {X} = (F> (3.14)

and

(X) = [H] {F} (3.15)

where their discreteness is implicit.

The next section will discuss the Inherent problems in using

the DFT to approximate the Fourier integral transform and the complex

Fourier series.

3.2 The Discrete Fourier Transform

When the DFT was introduced in the previous section, it was

said to approximate the Fourier integral transform and the complex

Fourier series. The Interested reader not familiar with the derivation

of the DFT and the nature of the approximations made is referred to

several books which have been written on the subject (Ref. 10, 4). The
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discussion of the DFT Included in this paper will be limited to the

selection of sampling parameters which will avoid frequency and

time-domain aliasing.

When utilizing the DFT, there are many sampling parameters

which may be varied, including the sampling frequency, Nyquist frequen-

cy, frequency resolution, length of the time record, time resolution,

and the number of digital samples. However, using the relationships

given in Appendix B, the specification of any two of these parameters

will uniquely define the remaining parameters. Therefore, the two

parameters will be chosen such that aliasing does not occur.

In order to avoid frequency-domain aliasing, the Nyquist

frequency 1s selected in accordance with the following guidelines:

* For band-limited functions - Select fN such that it 1s

greater than or equal to the highest frequency contained in

the exponentially-windowed forcing function.

" For functions whose spectrum is not band limited - Examine a

typical system transfer function and determine the

frequency, f , where the function effectively decays to
C

zero, (I.e. H (f>fc) = 0) . Since (X (f>fc)>
 s (0>

in accordance with Eq. (3.15), a value for f.. is then

selected such that the exponentially-windowed force spectrum

below f is represented accurately. Example 1 in Chapter
C

7 demonstrates this procedure.
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Once the Nyquist frequency has been determined, the resolution

in the time domain may then be found from

Tnax

The time resolution is denoted as a maximum resolution since it may be

desired to select a smaller value of T in order that the system

response may be obtained with a greater resolution.

Now, in order to avoid time-domain aliasing, the length of the

time record, TQ , will be chosen such that both the exponentially-
A

windowed excitation, (F(t)} , and exponentially-windowed response,
A

{x} , have 'effectively decayed to zero1 before the end of the time

record. The author has found that time-domain aliasing will not be

significant if 'effectively zero' is said to mean that the response at

the end of the time record Is at least two orders of magnitude less

than the response at the beginning of the time record.

The remaining sampling parameters may now be determined by

using the equations 1n Appendix B in conjunction with the values of f»

and T selected to prevent aliasing. The most important of these

parameters is the number of digital samples, K , since It was seen in

Eq. (3.2) that the value of K determines how many sets of frequency-

domain equations must be solved. Thus, the minimum value of K may be

determined from

"•in
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Once a suitable Integer value of K has been chosen, either T or

fN must he recalculated since only two parameters may be independently

specified.

The DFT is often implemented on the digital computer using the

Fast Fourier Transform (FFT) algorithm (Ref. 10, 12) which has a higher

computational efficiency than the DFT algorithm. Therefore, the

following chapters will use DFT and FFT synonymously, since they differ

only in implementation.

It must be noted, however, that in a radix-2 implementation of

the FFT, K is required to be an integer power of two. Therefore, if

the minimum value of K was determined to be 550, it would be neces-

sary to use a K of 1024. For problems where n is 'large', the cost

of the solution of 474 extra sets of equations may be greater than the

savings achieved by using the FFT algorithm.

Before performing a DFT on a periodic signal, one additional

topic requires discussion. That topic is leakage. In order to prevent

leakage, there must be an integer number of fundamental periods of the

signal within the time record. This condition can be difficult to

satisfy if one is trying to keep f^ and TQ within a certain range

to obtain a suitable value of K . A windowing function such as the

Manning or Tukey window may be applied to the function in an attempt to

reduce leakage (Ref. 4, 10).

In summary, the selection of the sampling parameters is very

important when using the DFT. The following section will discuss the

selection of the convergence factor.and its influence on the problem of

time-domain aliasing.
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3.3 The Selection of a Convergence Factor

To prevent time-domain aliasing it is required that both
A A

(f(t)} and {x} decay to 'effectively zero1 by the end of the time

record, or window as it is often called. In the previous section it

was noted that T could be chosen such that this criterion would be

satisfied for any value of a . However, it is often more efficient to

chose T to be the maximum time at which the response is desired.

Since this value of TQ is often less than the T required to

prevent time-domain aliasing for an arbitrary a , the value of K .

will be reduced in accordance with Eq. (3.17).

Therefore, if TQ is selected without regard for the aliasing

problem, the value of the convergence factor must be selected such that

the functions (f(t)} and {x} decay to 'effectively zero1 by the end

of the window. An examination of Eqs. (2.26) and (2.31) reveals that

an increased value of the convergence factor will cause the functions

to decay faster and will further reduce the chances of time-domain

aliasing. Therefore, it appears that the convergence factor should be

chosen to be 'very large.'

Although there is no limit on the maximum value of the conver-

gence factor from an analytical standpoint, there is a limit imposed

from a computational standpoint. The problem occurs when large values

of a are used such that the order of magnitude of the functions at

opposite ends of the window are vastly different. This large variation

in magnitude causes the computational model to be ill-conditioned in a

finite word length computer, and therefore causes roundoff errors.
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In a limited number of tests, this author concluded that the

convergence function should not cause the original function to change

more than two or three orders of magnitude within the window. A good

rule of thumb for the maximum value of the convergence factor was found

to be

where o is the exponential order of the forcing function. This

convergence factor causes the function to change two orders of magni-

tude within the window.

In summary, the value of the convergence factor must be greater

than zero as determined in Chapter 2, and it must be large enough to

prevent time-domain aliasing, while remaining small enough to prevent

ill-conditioning of the computational model.

This concludes the discussion of parameter selection to obtain

an efficient and well-conditioned frequency-domain model. The

remainder of this chapter will give a synopsis of frequency-domain

analysis and will discuss additional computational enhancements.

3.4 A Synopsis of Frequency Domain Analysis

At this point, the frequency-domain solution to steady-state

and transient problems may be outlined as shown in Figure 3.1. The

outline emphasizes the fact that [Ĝ ] , an n x n complex matrix,

must be formed and inverted for each of the K discrete values of s .

For a general loading condition where K=128 or 256. These
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inversions may drive the cost of the analysis prohibitively high. This

is the most fundamental computational problem to overcome when using

frequency-domain analysis techniques.

In an attempt to bring the cost of the analysis down, the

following suggestions to improve computational efficiency will be

considered:

* The reduction of K

* The formation of [Ĥ ] directly (i.e. without calculating

[GjJ and inverting it to obtain [Ĥ ])

* The movement of as many calculations as possible outside of

the frequency loop

* The reduction of the size of the matrices within the

frequency loop

The first suggestion may be evaluated by studying the prop-

erties of the DFT of a real function. The study reveals that when a

real function 1s transformed using the DFT, the real part of the

frequency spectrum has even symmetry about the Nyquist frequency, and

the imaginary part of the spectrum has odd symmetry about the Nyquist

frequency. Therefore, only the first K' points of the response

function need to be calculated, where

K' = 4 + 1 (3.19)
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The remainder of the response spectrum may be determined from

I"Y 1 = ftf 1 t = K'+1 K_1 (1 7fi}\"ifl K-lr ~1,...,N~1 V<5.tw

*where {X» ̂ } is the complex conjugate of (XK_.) • Therefore, the

effective K has been reduced to approximately half of its original

value.

The second and third suggestions will be evaluated in the

following section, and the fourth suggestion will be evaluated in

Section 3.6.

3.5 Forming the Dynamic Flexibility Matrix Directly

Forming the dynamic flexibility matrix directly can lead to a

more efficient solution by allowing more computations- to be placed

outside the frequency loop. It also eliminates the inversion of the

complex dynamic stiffness matrix. While the procedure described in

this section still requires a matrix Inversion, the equations forming

the matrix are uncoupled yielding a diagonal matrix whose inversion is

trivial.

The direct formulation of the dynamic elasticity matrix will

begin by writing the elgenproblem for the undamped structures,

[-w* [m] + [k]] (x(w)} = {0} (3.21)

A nontrivial solution of Eq. (3.21) may be obtained by setting

det |-w* [m] + [k]| = 0 (3.22)
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and finding the roots. The roots obtained are the n eigenvalues of

the system of equations in Eq. (3.21), which have n eigenvectors

associated with them. The eigenvectors, * , are stored columnwise in

a matrix which is denoted as « .

[*] - [*!» *2,...,<frn] (3.23)

Equation (3.7) can now be transformed from physical space to

modal space by using the transformation

(Xk> = [*] (nk> (3.24)

Substituting this into an expanded form of Eq. (3.7) and premultiplying

by [*] > the equations of motion in modal coordinates can be written

as

[IXJ s£ + [C] sk + [K]] (nk> = [*?
T {Fk> (3.25)

where [M] and [Kl are n x n diagonal matrices commonly denoted as

the generalized mass and stiffness matrices. The n x n matrix [C]

will only be a diagonal matrix for special types of damping, where it

can be shown that

[c] [mj-1 [k] = [k] [m]'1 [c] (3.26)

(Ref. 13).

If Eq. (3.26) is satisfied, the equations of motion are un-

coupled for each modal degree of freedom. At this point, Eq. (3.25)

may be written in simplified form as
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[A] (T,> = r*]T {F} (3.27)

where

PA i = diag + C1sk + K^ (3.28)

Equation (3.27) may then be solved for (nk> using the following

equation

[*]T {F> (3.29)

However, since [AkJ 1s a diagonal matrix, its inverse consists simply

of the reciprocal of the diagonal terms.

The equations may then be transformed back to physical space

using the transformation 1n Eq. (3.24)

(Xk> - [*] [Dk] [*]
T {Fk} (3.30)

where

[DJ • [AJ -1 - *ja« ( 5 ) (3.31)
' H1SS + C1sk + K1

Upon comparing Eqs. (3.11) and (3.30), it 1s realized that

[HJ may be calculated directly by

[Hk] = [*] [Dk] [*]
T (3.32)

Since the eigensolution and the formulation of the generalized

mass, stiffness, and damping matrices are clearly frequency-Indepen-

dent; those operations may be placed outside of the frequency loop. It
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should be noted, however, that the modal formulation of [Ĥ ] did not

come without considerable expense. The major disadvantages of the

modal formulation are:

' An n x n eigensolution must be performed.

' The class of problems has been restricted to those whose

damping matrix is diagonalized by the eigenvectors.

However, the advantage of the modal formulation is:

' An n x n inverse is no longer required at each discrete

frequency.

These advantages and disadvantages must be weighed against each

other for a particular problem. It is clear that if the equations need

to be evaluated at only a single discrete frequency, the single inverse

of [G.1 would be more efficient than the eigensolution and subsequent

matrix multiplications.

3.6 Reducing the Problem

The next suggestion to improve computational efficiency is the

reduction of the size of the matrices in the frequency loop. Recall

that n is the number of degrees of freedom of the finite element

model, and it cannot be reduced without reducing the accuracy of the

solution. However, if the system response is desired at only a limited

number of points, the number of system equations can be reduced without

reducing the accuracy of the solution.
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The reduction process 1s initiated by partitioning the response

vector into those degrees of freedom which are desired, R , and those

which are not desired, I . The R-set will be denoted as the relevant

set, and the I-set will be denoted as the irrelevant set (I.e. irrele-

vant in the sense that the response is not desired at those degrees of

freedom).

The partitioning yields

{X} =

Equation (3.15) may now be partitioned and written as

(3.33)

V
XI

a

m •

HRR HRI

HIR HII
• m

V
FI (3.34)

The response of the relevant degrees of freedom may be obtained by

expanding the top equation, and writing it as

{XR} = [HRR] (FR> + [HRI] (3.35)

The problem may be simplified further by requiring all forces to be in

the R-set. This will cause the {F.} vector to be a null vector, and

will allow Eq. (3.35) to be written as

or

<XR> ' &W {FR>

{X} = [H] {F}

(3.36)

(3.37)
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or

[6] {X} = {F} (3.38)

where the (~) notation Indicates a matrix which has been reduced to

its relevant degrees of freedom. The relevant part of the dynamic

elasticity matrix, often called the dynamic elasticity transfer matrix,

is a submatrix of the dynamic elasticity matrix, whereas the relevant

part of the dynamic stiffness matrix, or dynamic stiffness transfer

matrix, is not a submatrix of the dynamic stiffness matrix.

For problems where the number of relevant degrees of freedom,

p, is much less than the total number of system degrees of freedom,

n , the use of Eq. (3.37) will be considerably more efficient than the

use of Eq. C3.ll) . The efficiency would be even higher, if [H]

could be found directly (I.e. without forming [H] and removing the

relevant portion).

Geering presents the direct formulation of [H] which utilizes

a projection scheme (Ref 3). However, by expanding Eq. (3.32), it may

be shown that each element 1n the [H] , as well as [Hi , matrix may

be obtained from

*1r*jrDr (3'39)

where Dr is the r diagonal element of [Dk] defined in Eq.

(3.31) and $1r (or <(>. ) represents the value at the 1* (or j )

row, and r column of the modal matrix [*] .

It should be noted at this point that Eq. (3.37) yields an

exact solution to Eq. (3.15) at the relevant degrees of freedom. It is
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also an exact solution to Eq. (2.1) If the forward transform of the

dynamic load and the inverse transform of the dynamic response spectrum

are exact. There 1s, however, an additional reduction which can be

made with an acceptable loss of accuracy.

3.7 Further Reduction of the Problem

The final reduction scheme presented in this chapter is the

well-known modal approximation (Ref. 14, 15). It is important to note

that this is an approximation to the exact solution given by Eq.

(3.37). The loss of accuracy, however, is generally considered to be

acceptable.

Modal approximation occurs when only N of the n system

modes are retained 1n the modal expansion of the displacement field

(where N < n). Equation (3.39) may then be written as

<3'40'

It 1s Important to remember that if a system is reduced to p

relevant degrees of freedom, then a minimum of p modes must be

retained in the expansion to guarantee the invertlbllity of [H] .

If a modal approximation is used, it is suggested that the

residual modes also be Included in the analysis in order to reduce the

loss of accuracy (Ref. 14, 16).

3.8 A Synopsis of Efficient Frequency-Domain Analysis

At this point, the computational improvements may be Incor-

porated into the outline of Figure 3.1. Recall, however, that these
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computational improvements are only improvements for a problem which

must be evaluated at a large number of discrete frequencies, sk . The

new outline is shown in Figure 3.2

It is clear that the improvements will help reduce the cost of

many analyses. The greatest computational concern now is the poten-

tially large eigenvalue problem which must be solved in Step 2. The

following chapter on substructure coupling will address this problem.
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1. Determine the spectrum of the exponentially-

windowed forcing functions at K discrete

frequencies (Eq. (3.9))

2. Execute the following frequency loop K times

(k index):

a. Form [Gk] (Eq. (3.8)).

b. Invert [Gk] to obtain [Hk]

c. Solve for {Xk> (Eq. (3.11))

» *
3. Inverse transform {X} to obtain {x} and remove

the exponential window to obtain {x} (Eq. (3.13))

Figure 3.1 Outline for frequency-domain analysis
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1. Determine the spectrum of the relevant exponentially-

windowed forcing functions, {F> , at K discrete

frequencies (Eq. (3.9)).

2. Perform an eigenvalue analysis of the structure in

order to obtain the modal matrix ft] .

3. Form the [M] , [C] , and [K] matrices.

4. Execute the following frequency loop K1 times

(k index):

a. Form [Hk] (Eq. (3.38))

b. Solve for {Xk> (Eq. (3.37))

5. Inverse transform (X> to obtain the relevant part

of {x} and remove the exponential window to obtain

the relevant part of {x} (Eq. (3.13)).

Figure 3.2 Outline of efficient frequency-domain analysis.



Chapter 4

SUBSTRUCTURE COUPLING IN THE FREQUENCY DOMAIN

4.1 Equations of Motion for the Substructure

Consider a superstructure that has been separated Into two or

more substructures. For Illustration purposes, consider the super-

structure and Its substructures shown 1n Figure 4.1.

Note that each substructure retains the same boundary condi-

tions and external forces which It had as a part of the superstructure.

In addition, each substructure has coupling forces at Its Interfaces

with other substructures. These coupling forces represent the forces

transmitted by adjacent substructures.

The equations of motion may be written Independently for each

substructure as

[G1] (X1) = (F1) (4.1)
and

[62] (X2> = {F2> (4.2)

The set of physical degrees of freedom for each substructure will now

be divided Into a set of Interface or juncture degrees of freedom, J ,

and a set of external degrees of freedom, E , which will encompass

the remaining active degrees of freedom of the substructure. The

substructure equations of motion may be written 1n partitioned form as

1 This paper will denote the entire structural system either as the
superstructure, or as substructure 0 .

41
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Pl P2

Substructure 0 (Superstructure)

Pl fl Fc

•0 ci-
Substructure 1 Substructure 2

Figure 4.1 Typical substructure model.



G1

G1
JJ

EJ

G1

G1
JE

EE

vl*
vl

and

G2

.G'EJ

62JE

6X

X°J

X*E

F°
F°

where the following notation applies to the i substructure

Interface DOFs

External DOFs

Interface forces due to adjacent substructures

External forces at Interface DOFs

External forces at external DOFs
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(4.3)

(4.4)

The frequency-domain equations for each substructure may now be

coupled together to form the superstructure eouations of motion. This

coupling is accomplished by enforcing the displacement and force

compatibility at the substructure interfaces.

The displacement compatibility at the interface may be ex-

pressed as

(4.5)

Equation (4.5) ensures that the interface displacements of adjacent

substructures are identical and are equivalent to the displacement of
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the same degrees of freedom on substructure 0 (i.e. the superstruc-

ture). Force compatibility at the interface may he written as

-<Fc> (4.6)

At this point, Eqs. (4.3) and (4.4) may be reordered and

combined to yield

r-1 rlGEE GEJ

rl rlGJE GJJ
2 2

GOJ GJE

P2 r2GEJ GEE .

fx1

X1

X2

X2

rl

*
(4.7)

By adding the second and third equations together, and enforcing the

displacement compatibility condition, the system may be reduced to

a
'EE
,1
ME

1

EJ

3JE
,2
3EE

(|

<S
,2

(4.8)

Now the force compatibility condition may be enforced to yield the

equations in their final form (Ref. 3).
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,1
3EE
a
3JE

EJ

(GJJ

EJ

"
r2
GJE

r2
GEE

X1

X°XJ

X2
XE

(4.9)

This process of enforcing compatibility of the forces and

displacements at the substructure interfaces is analogous to the direct

stiffness approach used 1n static analysis. The only difference In

this dynamic formulation is that the stiffness matrix, displacement

vector, and force vector are not constants, but are, instead, functions

of frequency.

Extending the analogy of the direct stiffness method, the

element stiffness matrix, or the substructure dynamic stiffness matrix,

will be defined as

[G1] • [m1] s* + re1] s + [k1] (4.10)

where [m ] , fc 1 , and [k ] are the free-interface mass, damping
th ?

and stiffness matrices of the 1 substructure . Similarly, the

element elasticity matrix, or the substructure dynamic elasticity

matrix, will be defined as

Recall from Chapter 2 that only active degrees of freedom are
included in the equations of this paper.
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[HJ1 = r*1'! [DJ[] [*1] T (4.11)

where [* ] is the substructure free-Interface modal matrix, and [D̂ J

may be found by substituting the substructure's generalized mass,

damping, and stiffness matrices Into Eq. (3.31). As demonstrated in

Chapter 3, Eq. (4.11) may be expanded and each term of the dynamic

elasticity matrix may be expressed as

The number of equations represented by Eq. (4.9) may be cal-

culated by adding together the degrees of freedom of each substructure,

m , and subtracting the total number of Interface degrees of freedom,
or

M i
r m1 - p? (4.13)
1=1 l

where M is the total number of substructures.

At this point, 1t should be noted that Eq. (4.9) 1s simply a

partitioned representation of Eq. (3.14). Therefore, the same solution

procedures and modifications described in Chapter 3 are applicable here

as well.

4.2 A Synopsis of Substructure Coupling

As in Chapter 3, the above procedure has been outlined 1n order

to determine where the method could be improved upon. An evaluation of
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the outline shown in Figure 4.2 again reveals that a reduction in the

amount of computation within the frequency loop will yield a more

efficient solution to the problem.

The same computational improvements made at the system level

apply equally well here, at the substructure level. However, the

Interface degrees of freedom must now be included in the relevant set

in order to provide the coupling to adjacent substructures. Therefore,

the relevant set will now consist of interface degrees of freedom as

well as forced degrees of freedom and other degrees of freedom where

the response is desired.

The substructure coupling outline with the improvements from

Chapter 3 is shown in Figure 4.3. An examination of the outline shows

that the use of substructures has required additional matrices to be
•

inverted in step 3.a.2. Since the number of calculations required to

perform a matrix inversion is on the order of b3 (where b is the

order of the matrix), it is essential that the size of those matrices

be reduced.

Recall that [H ] 1s a p x p1 matrix, where p1 is the

number of relevant degrees of freedom of the 1 substructure. It has

already been stated that Interface degrees of freedom must be included

in the relevant set. Therefore, in order to minimize the number of

degrees of freedom in the R-set, one must transform all loads to the

interface and request the response at only the interface deqrees of

freedom.

However, requesting the response at the interface degrees of

freedom only, is not an acceptable solution, unless the response can be
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1. Determine the spectrum of the exponentially-
windowed forcing functions at K discrete
frequencies (Eq. (3.9)).

2. Execute the following frequency loop K times
(k index):

a. Execute the following substructure loop
M times (i index):

1) Form [Gj] Eq. (4.10)

2) Using direct stiffness methods, sum the

[GJJ] matrices to form [GJJ] , the
superstructure dynamic stiffness matrix.

b. Invert [GJJ] to obtain [HJJ]

c. Solve for (Xk> (Eq. (3.11))

3. Inverse transform {X} to obtain {x} and*
remove the exponential window to obtain {x}
(Eq. (3.13)).

Figure 4.2 Outline of substructure coupling in the
frequency domain.
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1. Determine the spectrun of the relevant
exponentially-windowed forcing functions at
K discrete frequencies (Eq. (3.9)).

2. Execute the following substructure loop M
times (i index):
a. Perform a free-interface eigenvalue

analysis of each substructure in order
to obtain f>1] .

b. Form the [M1] , [C1"! , and [K1]
matrices.

3. Execute the following frequency loop K1

times (k index):
a. Execute the following substructure loop

M tines (i index):

1) Form [Hj] (Eq. (4.12))

2) Invert [HJ[] to obtain [Gj]

3) Using direct methods, sum the fGu

matrices to form [G£] , the super-

structure dynamic stiffness matrix.

b. Invert [GJJ] to obtain [HJJ]

c. Solve for (Xk> (Eq. (3.11))

A *
4. Inverse transform (X) to obtain tx> and

remove the exponential window to obtain (x)
(Eq. (3.13))

Figure 4.3 Outline of efficient substructure coupling.
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recovered subsequently at the irrelevant degrees of freedom. This

topic is discussed in the following section. Reducing the loads to

interface degrees of freedom is then discussed in section 4.4.

4.3 Recovery of the Response at Irrelevant Degrees of Freedom

Recovery of the irrelevant degrees of freedom may be accom-

plished by first writing the substructure eouations of motion parti-

tioned into their relevant and irrelevant sets

JRR

•IR

'RI

'II
(4.14)

The bottom equation may then be expanded and solved for the response at

the irrelevant degrees of freedom.

[G] {X} + [G]IR n

({FT} - [GTO] {XD})r IR

(4.15)

(4.16)

For the special case where all loaded degrees of freedom have

been placed in the R-set, {Fj} is a null vector and the response of

the irrelevant degrees of freedom nay be determined using the simpli-

fied equation

(4.17)

where the {XR} vector was determined previously by the evaluation of

the superstructure response.
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For many problems, this method of calculating response is more

efficient than including the desired response points in the system

relevant set. As an example, consider two 50 degrees-of-freedom

substructures attached at 10 interface degrees of freedom. If the

response is desired at each of the 90 system degrees of freedom, and

all degrees of freedom were retained in the relevant set, the inversion

required in step 3.b of Figure 4.3 would require on the order of 903 or

729,000 operations. However, if only the interface degrees of freedom

were retained as relevant degrees of freedom, the inversion in step 3.b

would be on the order of 103 or 1,000 operations. Of course, the

subsequent postprocessing required in order to obtain the response at

the remaining 80 degrees of freedom would require the inversion of two

40 degree of freedom matrices increasing the cost by another 128,000

operations. However, the total processing cost of the latter method is

still considerably less than including all degrees of freedom in the

relevant set. However, if the cost of determining the response were to

be examined for the same substructures attached at 40 degrees of

freedom, one would find that is was more efficient to retain all

degrees of freedom in the relevant set.

Although the efficiency of the two methods is problem depen-

dent, the more efficient one may be determined a priori by examining

the cost of the inversions required by each of the two methods.

4.4 Transfer of Substructure Loads to the Interface Degrees of
Freedom

This final reduction scheme in Chapter 4 will allow all of the

substructure's external loads to be transformed into equivalent inter-
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face loads. This reduction 1s very valuable for the class of problems

with a large number of external forces (e.g. acoustics, distributed

loads, etc.).

This procedure will require another matrix Inversion, therefore

the system should be reduced so that only interface and loaded degrees

of freedom are in the relevant set prior to beginning this reduction.

The Interface degrees of freedom will again ^orm the J-set, and the

remaining degrees of freedom will form the E-set. The substructure

equation of motion may then be partitioned and written as

(4.18)

Since the interface degrees of freedom will make up the R-set,

and the external degrees of freedom will make up the I-set, Eq. (4.18)

may be written as

'G,, G,C"jj jt
SEJ %_

XJ

XE

3 <

'RR

'IR

'RI

'II

V
XI

s
V

FI
(4.19)

The bottom equation may be expanded and solved for {X,}

- CSIR] {XR» (4.20)

At this point, the top equation is expanded using the substitution for

{X} derived above.
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[GRR] (XR> + [GRJ] [Gjj]"
1 ({Fj} - [GIR] (XR» = {FR} (4.21)

Simplifying the notation,

[G] {X} = {F} (4.22)

where

{X} = {XR} (4.23)

and

[G] * [GRR] - [GRI] [Gjj]'
1 [GIR] (4.24)

and

(F) = {FR} - [GRI] [Gjj]"
1 {Fj} (4.25)

When this reduction scheme is applied to static (i.e. constant)

matrices, it 1s called 'static condensation.1 Since the reduction

shown above uses dynamic (I.e. not constant) matrices, 1t is appropri-

ate to call it a 'dynamic condensation.'

It is interesting to note the similarity between Eq. (4.22) and

Eq. (3.38). The fact is, they are not only similar, but they are

Identical. Therefore, the direct formulation of [H] may also be

viewed as a dynamic condensation of [G] to obtain [6] , and an

Inversion to obtain [H] . This fact will prove useful when deter-

mining the natural frequencies of a system which has been reduced to

Its relevant degrees of freedom.



Chapter 5

DETERMINING THE NATURAL FREQUENCIES OF UNDAMPED STRUCTURES

5.1 The Undamped Free Vibration Problem

The natural frequencies of an undamped structure may be found

by examining the free-vibration equations of notion for that structure,

[m] {x} + [kl (x> = {0} (5.1)

This equation may be transformed to the frequency domain using the

methods described 1n Chapter 2. The free-vibration problem may then be

described by the continuous frequency-domain equation

[G(s)] U(s)} = {0} (5.2)

where

[6(5)1 = [m] 52 + [k] (5.3)

It has been shown that a nontrivial solution to Eq. (5.2) must satisfy

the relationship

det |[G(s)]| = 0 (5.4)

where |*| is the determinant operator.

An expansion of Eq. (5.4) will yield an n -order polynomial

equation 1n the complex frequency variable, s2 . It has been shown

(Ref. 17) that if [kl and [m] are real, symmetric matrices, where [ml

is positive definite and [k] is either positive definite or

54
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positive semi -definite, then the roots of Eq. (5.4) will be purely

Imaginary. Thus the substitution

s = jo (5.5)

may be used 1n Eqs. (5.2) and (5.3). However, since s (and therefore

ju) appears in Eq. (5.3) as a squared term only, the equations become

purely real and may be written 1n terms of the real variable to . Thus

(«)] {X(co)} - {0} (5.6)

where

CG(«)] = -a,2 [m] + [k] (5.7)

Finally, Eq. (5.4) may be written as

det |[G(«)]| « 0 (5.8)

Either Eq. (5.6) or Eq. (5.8) may be used as the basis for obtaining

the natural frequencies .of the system as will be shown in the following

discussion.

The first approach Is to expand Eq. (5.6) and write 1t 1n the

form of the generalized eigenvalue problem,

[k] M - Cm] [•] C(u2J (5.9)

The square roots of the n real eigenvalues of this equation are the

natural frequencies of the system. There are many algorithms which may

be used to solve this generalized eigenvalue problem (Ref. 17, 18).

Although a discussion of these algorithms is beyond the scope
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of this thesis, -the problems associated with obtaining the [m] and

[k] matrices will be discussed.

The second approach will address the solution of Eq. (5.8).

The algorithms discussed in this paper do not employ the [m] and [k]

matrices directly. Instead, the algorithms evaluate the determinant of

[6(u))] at discrete numerical values of u . The n positive real

values of o> which satisfy Eq. (5.8) are the natural frequencies of

the system.

The next section will discuss how the [m] and [k] matrices

nay be recovered for unreduced frequency-domain problems, and Section

5.3 will explain why the recovery is not practical for a reduced

problem. The remaining sections will then discuss the second approach

mentioned above.

5.2 Recovering the System Mass and Stiffness Matrices

When using the substructure coupling technique outlined in

Section 4.1, the [m] and [k] matrices were not calculated for the

superstructure. Only [G] and [Hi were known at the system level.

It is reasonably simple, however, to recover the system [m] and [k]

matrices for this class of frequency-domain problems where the system

has not been reduced.

The first step taken to recover the [m] and [k] matrices is

to write the equations which define [G] for the undamped system at

two distinct frequencies u>, and to^ *

)1 = -0̂ 2 [m] + [k] (5.10)
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[k] (5.11)

Since the mass and stiffness matrices are invariant, they are identical

in each of the equations above. Therefore, Eq. (5.11) may be solved

for [k] ,

[k] = [6(«2)] + o>22 [m] (5.12)

which may then be substituted into Eq. (5.10) to yield

[Gfu.j)] = -BI* [m] + [6(«2)] + u>22 [m] (5.13)

Finally, Eq. (5.13) may be solved for [m] and written as

Cm] = CĜ )] - [G(o»2)1 (5<14)

(U2
Z - ttj*)

The [m] and [k] matrices obtained from Eqs. (5.14) and

(5.12) may then be used in any suitable eigensolution to obtain the

system natural frequencies. It must be noted that although Eqs. (5.12)

and (5.14) are algorithmically correct, their stability is not guaran-

teed for any arbitrary pair of u which might be chosen.

5.3 Effects of Reduction on the Natural Frequencies

Up to this point, methods of obtaining the natural frequencies

have only been considered for systems where all degrees of freedom have

been in the relevant set. However, to utilize frequency-domain sub-

structuring techniques effectively, only a minimum number of degrees of

freedom are retained in the relevant set.
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In Chapter 3, 1t was determined that the system could be

reduced by keeping only the rows and columns of the dynamic elasticity

matrix which correspond to the relevant degrees of freedom. It was

also shown in Chapter 3 that this reduction scheme is equivalent to a

dynamic condensation of the dynamic stiffness matrix.

Since each of the reduction techniques is exact (i.e. no

approximations are made), it is reasonable to assume that all of the

dynamic characteristics are retained in the dynamic stiffness transfer

matrix.

Consider the expansion of [6] , given by Eq. (4.24), in terms

of the relevant and irrelevant partitions of the [m] and [k]

matrices,

[G(«k):i - (-<ok
2 [mRR] + [kRR]) - Uk

2 [mRI] + [kRI]) -
(5.15)

(-o>k
2 [•„] + On])'1 (-tok

2 [mIR] + [kIR])

Although each of the partitions which make up the system [m]

and [k] matrices are included in the equations, it is not immediately

clear how they could be recovered for use in Eq. (5.9). Furthermore,

even if the system [m] and [k] matrices were recovered, an n x n

eigensolution would then be required to obtain the system natural

frequencies and the computational advantages of substructuring would be

lost.

Therefore, the remainder of the chapter will discuss an alter-

nate solution procedure for determining system natural frequencies

which can be extended to handle reduced systems.
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5.4 Determining the System Natural Frequencies

Consider Eq. (5.8) upon which this procedure for determining

natural frequencies will be based. The expansion of this equation

yields an n -order polynomial in u>2 . The n positive roots of this

polynomial (which is often called the characteristic equation)

correspond to the n natural frequencies of the system. A plot of a

typical characteristic equation is shown in Figure 5.1.

One of the most popular methods for determining the natural

frequencies of a system described by its characteristic equation is the

determinant search method (Ref. 18). A pure determinant search method

searches for zero crossings of the characteristic polynomial by noting

where the determinant of [G] changes sign. Once a root is bracketed

(i.e. the determinant is positive on one side of the root and negative

on the other side), it is relatively easy to determine its value using

a bisection scheme.

There are, however, problems which arise when using a pure

determinant search method. They are:

It is Impossible to locate repeated natural frequencies.

It is difficult to locate closely-spaced natural
frequencies.

It is not possible to determine how many natural
frequencies lie within a given frequency range.

From a computational point of view, the method is not very

efficient either. The outline for the procedure, shown in Figure 5.2,

reveals that the incremental search procedure requires a large number
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2.40

Figure 5.1 Plot of a typical characteristic equation.
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1. Initialize DELTA , TOL , co , o> .max mm
DELTA = frequency step
TOL = tolerance to which natural frequencies

are to be determined
"max = maximum search frequency
<o . = minimum search frequency

"A "min

3. Form [6(0̂)]

4. Evaluate D. » det |G(co.)|*t ii

5. Repeat the following loop to locate roots:

a. to,, = to, + DELTA
U Jt

b. Form
c. Evaluate Dy = det |G(<ou)|
d. If sign (D.) = sign (D)

Jb U

- Then execute the bisection block
A. Repeat the following bisection loop:

1) to s i (ft)fl + to )

2) Form [G(<o)]
3) Evaluate D = det |G(to)|

4) If sign (D) = sign (D£)

-then UA = to ; DA = D

-else tou = to ; DU = D

5) DEL = |toQld - col

6) to , . = <o

B. Until DEL < TOL

C. Report natural frequency found at to

6. Until «o4 = tomax

Figure 5.2 Outline of the pure determinant search method.
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of determinants to be evaluated for problems where the search bandwidth

Is large, but the frequency increment Is small in order to be able to

bracket closely-spaced natural frequencies. Therefore, the key to

reducing the number of determinant evaluations is to come up with a

better technique for bracketing the roots.

The following section discusses an enhancement to the determi-

nant search method which solves both the bracketing problem, and the

problem the pure method has with locating all of the roots of the

characteristic equation.

*•

5.5 Utilizing Sturm Sequence Checks

One of the most popular means of enhancing the determinant
**

search method is by incorporating Sturm sequence checks into the
••

determinant search algorithm. The Sturm sequence check allows each of

the problems noted in the previous section to be overcome by deter-

mining the number of natural frequencies below a specified frequency.
••

This number, denoted as the Sturm sequence count, S , may then be

used in conjunction with a bisection scheme to bracket each zero of the

characteristic equation.
»•

A detailed discussion of the Sturm sequence check is beyond the

scope of this thesis, and thus the interested reader is referred to the

work of Bathe and Wilson (Ref. 18). At this point, it. will suffice to
•*

know that the Sturm sequence count is equal to the number of negative

elements on the diagonal of [D] , where [D] is obtained from the

[L][D][L]T decomposition of [6] . (Note that the explicit frequency

dependency notation has been dropped to simplify the notation.) Thus,
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n
S = z c. (5.16)

1=1 1

where

1 if d4, < 0
ci

0 if d * 0

where d.. represents the i term on the dianonal of [D] .

The determinant search method utilizing Sturm sequence checks

outlined in Figure 5.3 will now be able to located all roots of the

characteristic eouation, and it will do so with a much higher effi-

ciency than before.

5.6 Determining the Natural Frequencies of Reduced Systems

Up to this point, the determinant search method has only been

discussed for unreduced frequency-domain models. However, in order to

take full advantage of the computational efficiency of using reduced

models, the following extension of the determinant search method is

presented.

First, consider the free vibration equations of motion for the

undamped system reduced to its relevant degrees of freedom

[6? {X} = {0} (5.17)

In general, a nontrivial solution to this problem must satisfy

det |G| = 0 (5.18)
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1. Initialize TOL ,

'"max

3. Execute the following search loop n times (r index)

a. Repeat the following bisection loop

A. u = i (<ou + u^)

B. Form [G(w)]

C. Decompose [G(u)] and determine S

D. If S < r

- then (a. = a)
£

- else o>u = a)

E. DEL = |«old - o>|

F. oold = u

b. Until DEL < TOL

c. Report the r natural frequency

d. to

Figure 5.3 Outline for determining the natural frequencies
utilizing Sturm sequence checks
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An expansion of Eq. (5.17) and an examination of Figure 5.4 will reveal

that the characteristic equation now has poles as well as zeros and is

not a simple n -order polynomial in o>2 as before. This may be

explained by examining Eq. (4.24), which reveals that the poles occur

at frequencies where [Gjj] is singular, and therefore its inverse

approaches infinity causing the determinant of ffi] to approach

Infinity also. These frequencies may be thought of as the natural

frequencies of the system which has all of its relevant degrees of

freedom constrained.

It 1s obvious that a pure determinant search method would find

this environment difficult to work in, since the characteristic equa-

tion may now change sign via Infinity, as well as via zero. Further-
••

more, the standard Sturm sequence check -will not locate all of the

roots either, due to reasons which are detailed in the following

discussion.

Since It 1s the natural frequencies of structures composed of

substructures which is of primary interest in this thesis, consider a

superstructure which has been reduced such that only the Interface

degrees of freedom are in the relevant set. The equation of motion

describing this system has been stated previously 1n Eq. (5.17).

As 1n the previous section, the Pj° x Pj° dynamic stiffness

transfer matrix, [G] , may be factored using an CL][D][L]

decomposition. By taking into account that the forcing function is a

null vector, the decomposed equation of motion may be simplified and

written as
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2.40

Figure 5.4 Plot of a typical characteristic equation
of an undamped system reduced to its relevant
degrees of freedom.
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where
[in {X} = {0}

[0] = [6] [if

(5.19)

(5.20)

and [0] 1s an upper triangular matrix.
••

The Sturm seouence count of the reduced system may now be

obtained by counting the number of negative elements on the diagonal of

[D] . Thus

1=1
(5.21)

where

1 1f dlM < 0

0 if <L, 2 0

:thand d.. represents the 1 diagonal element of [D] . It should be
••

clear at this point, that the maximum attainable Sturm sequence count

for this reduced system is p,0 since there are not more than Pj°

diagonal elements on the diagonal of a p»° x p,0 matrix.
••

In order to determine the significance of the Sturm sequence

count calculated in Eq. (5.21), write the equations of motion of the

unreduced system partitioned into Its relevant and irrelevant parts.

(5.22)

Gn G IR"

. GRI GRR .

XI
.V

=
0

0
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Equation (5.22) may now be decomposed and written in Its upper diagonal

form,

(5.23)

Since [U] is an upper triangular matrix, [URj] = [0] and the

bottom equation may be written as

'"H V

.URI URR.

V

V
s

0

0

[URR] {XR} = {0} (5.24)

Recalling that {XR} = {X} , the comparison of Eqs. (5.19) and

(5.24) reveals that

CD] - [URR] (5.25)

Therefore, the Sturm sequence count of the relevant degrees of freedom
*•

in Eq. (5.24) is equivalent to the Sturm sequence count of the reduced

system In Eq. (5.19) (Ref. 6). Now, only the significance of the Sturm

sequence count of the irrelevant degrees of freedom needs to be

discussed.
••

Consider the definition of the Sturm sequence count for the

(n - PJ°) degrees of freedom in the Irrelevant set.

The Sturm sequence count for the (n - Pj°) degrees

of freedom 1s equivalent to the total number of

fixed-Interface substructural natural frequencies

which are less than the specified frequency.
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Thus, the count for the irrelevant degrees of freedom may be written as

where

E c^ (5.26)
r=l r

1 if o> <r

.0 if a" s to

v,. »
and co^ represents the r fixed-interface natural frequency of the

j* substructure, and u is the freouency at which the count is to be

determined.
*•

In summary, the effective Sturm sequence count, S , may be

determined by

M
S + E S* (5.27)

SB

This effective Sturm sequence count is equivalent to the Sturm sequence

count obtained by Eq. (5.16) for the unreduced system, and it may be

used in conjunction with a bisection scheme to determine the natural

frequencies of the superstructure.

5.7 Conclusions

This method of determining the natural frequencies of a super-

structure using frequency-domain substructure models has both advan-

tages and disadvantages over the time-domain methods.
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The advantages are:

There are no large superstructure elgensolutions to

perform.

The method allows for the calculation of only a specified

number of natural frequencies (e.g. the first 10 natural

frequencies) or the natural frequencies within a given

frequency range.

and the primary disadvantage is:

The fixed-interface natural frequencies must be determined

for each of the substructures using an eigensolution or

other suitable method.

It must be remembered however, that the number of calculations

involved in an eigensolution is greater than n3 . Therefore, the cost

of several small elgensolutions plus the cost of the frequency-domain

search described in this section is often less than that required to

perform the superstructure eigensolution. As illustrated in Section

4.3, the cost of the analysis is dependent upon the number of interface

degrees of freedom and other problem-dependent parameters.



Chapter 6

DETERMINING THE NATURAL FREQUENCIES OF DAMPED STRUCTURES

6.1 The Damped Free Vibration Problem

The natural frequencies of damped structures may be found using

a frequency-domain technique similar to the one discussed in Chapter 5.

The development of the technique will follow a path similar to that in

Chapter 5 and begins by first writing the free-vibration equations of

motion for a damped structure in the time domain,

[m] (x> + [c] (x) + [k] {x} = {0} (6.1)

and in the frequency domain,

[G(sJ] (X(s)} = {0} (6.2)

where

[G(s)J - [m] 52 + [c] s + [k] (6.3)

As in Chapter 5, a nontrivial solution to this equation must satisfy

det |G(s)| - 0 (6.4)

This equation may also be expanded to yield an n -order

polynomial equation in s2 having 2n roots. However, with the

inclusion of the damping matrix, the roots may be complex as well as

real.

Either Eq. (6.2) or Eq. (6.4) may be used to obtain the damped

natural frequencies of the system. However, the solution of Eq. (6.2)

71
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is subject to the same problems of obtaining the system mass and

stiffness matrices of reduced systems as seen in Chapter 5. Therefore,

this chapter will concentrate on the solution of Eq. (6.4) which is

more applicable to frequency-domain models.

6.2 Determining the Damped Natural Frequencies of Reduced Systems

Since it is the determination of natural frequencies of reduced

systems which is of primary interest in this thesis, this discussion

will begin by considering the reduced frequency-domain equations of

motion for a damped system

[G] {X} = {0} (6.5)

Although this equation appears identical to Eq. (5.17), the Pj° x Pj°

dynamic stiffness transfer matrix is now complex Instead of real as it

was in Chapter 5. Since the transfer matrix 1s complex, a general

nontrivial solution must now satisfy

det |G(s)| = 0 (6.6)

where both the real and Imaginary parts of the determinant are zero.

This chapter will also employ a determinant search technique to

solve Eq. (6.6). However, the search for the roots must now be made 1n

the complex s-plane, whereas in Chapter 5, it was made only along the

imaginary axis of the s-plane.

The search for the 2n complex roots may be restricted to the

positive Imaginary half-plane by noting that 1f a complex root is a

solution to Eq. (6.6), then the complex conjugate of the root is also a
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solution. Therefore, the search may be restricted to quadrants I and

II of Figure 6.1. The search may be restricted further by noting that

for conservative systems, the real part, of the natural frequency must

be less than zero, and therefore, the search may be restricted to

quadrant II.

A pure determinant search method for locating the roots of Eq.

(6.4) 1n the complex plane is subject to the same problems with identi-

fying repeated roots and closely-spaced roots as before. It 1s also

possible that the determinant will change signs via Infinity as before,

as shown 1n Figure 6.2. Therefore an Index-checking scheme similar to
»*

the Sturm sequence checks used in Chapter 5 1s also desirable when

searching for roots 1n the complex plane.

••

6.3 Extending Sturm Sequence Checks to the Complex Plane

An examination of the derivation of the Sturm sequence check

reveals that one of the most fundamental properties upon which the

method Is based 1s the eigenvalue separation property of undamped

systems. The property may be stated as (Ref. 18)

ft. 7\
- - (6.7)

k = 0, 1, 2 ... n-2

In essence, the property says that applying an additional constraint to

the system will cause the eigenvalues of the constrained system to fall

between those of the system without the additional constraint.
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II

(search quadrant)

III IV

Re(s)

Figure 6.1 Quadrants of the complex plane.
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-Re(s

(a)

Figure 6.2 Three dimensional plots and contours of the
(a) real and (b) imaginary parts of a typical
characteristic equation of a damped system
reduced to its relevant degrees of freedom.
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Although the separation property was derived for an undamped

system, it will be assumed that it can be extended to damped systems by

the following

(Re (s<k>)| s |Re (sjk+1>)[ s |Re(s<k>)! ... (6.8)

and

|Im(sJk>)| * |Im(sf+1>)| s |Im(s<k>)| ... (6.9)

where sr is the r damped natural frequency (I.e. sr = ar - joy) .

A mathematical proof of Eqs. (6.8) and (6.9) is beyond the scope of

this thesis; therefore, the equations are presented without proof.

However, an example will be presented in Chapter 7 which will demon-

strate the applicability of the equations to one particular system.

Recall that for the undamped system, the dynamic stiffness

matrix [G] is real, and that the Sturm sequence check was used to

locate the imaginary parts of the roots (the real parts were known to

be zero). Although [G] is complex for the damped system, Eq. (6.9)
••

will permit the Sturm sequence check to be used to determine the

imaginary part of the root from the real part of the triangularized
•*

[G] matrix. Likewise, Eq. (6.8) will permit the Sturm sequence count

of the imaginary part of the triangularized [G] to be used to obtain

the real part of the root. The above statements may be expressed as

S1 = z c. (6.10)
1=1 1
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where

1* Re (d..) < 0

0 If Re

and

where

z b.

1 if In (d̂ .) < 0

0 if Im

(6.11)

,t.hwhere d^ is the i term of the diagonal matrix resulting from the

CUCD][L]T decomposition of [6] .

Reduction of the system and substfucturing presents the same

problems for the damped system as for the undamped. An argument
••

similar to the one used in Section 5.6 may be used to derive the Sturm

sequence counts for the damped system with substructures. For the sake

of brevity, only the final equations are presented here.
••

The Sturm sequence count which will be used to determine the

imaginary part of the root may be written as

S1 = S1

where

-I PIS1 = I1 c.
1=1 ]

j
(6.12)

(6.13)
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1 if Re (d̂ ) < 0

0 if Re (d̂ ) 2 0
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(6.14)

1 if Im (sp) < 0

0 if Im (sr) * 0

Similarly, the Sturm sequence count which will be used to determine the

real part of the root may be written

where

p _R " D J
SK = SK + E (SJR)J-l SB (6.15)

SR
1-1

(6.16)

and

1 if Im (d1f) < 0

0 if Im (d̂ ) 2 0

A b- (6.17)
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1 if Re (sr) < 0

0 if Re (sr) * 0

The next section describes an algorithm which has been imple-

mented to demonstrate the applicability of Eqs. (6.8) and (6.9) in
••

finding complex natural frequencies. The algorithm utilizes the Sturm

sequence counts obtained in Eqs. (6.12) and (6.15).

6.4 Bisection in the Complex Plane

The damped natural frequencies nay now be determined using the

Sturm sequence indices given by Eqs. (6.12) and (6.15). However, a

simple bisection scheme will no longer suffice for determining the

roots, since the bisection of a plane is not unique. One relatively

simple method of determining the roots is to combine a bilinear search

algorithm with a bisection algorithm.

The objective of the search is to find the value of s in the
R Icomplex plane where both S and S change from (r-1) to (r)

when looking for the r root. This frequency, s , corresponds to

the r natural frequency of the system. Figure (6.3) has been
••

included to demonstrate how the Sturm sequence counts vary in the

search quadrant of the complex plane.

In short, as the bilinear search algorithm is looking for the

r root, it holds the real part of s constant and then uses bisec-

tion to obtain an estimate of the imaginary real part of the r root.

It then holds the imaginary part of s constant and uses bisection to

obtain an estimate of the real part of the root. This procedure 1s
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(a)

'Re(s)

(b)

-*Re(s)

R IFigure 6.3 Sturm sequence counts, (a) S and (b) S
plotted in the complex plane.
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then repeated until both searches satisfy the tolerances specified.

The value of s at which both tolerances are satisfied is the r

damped natural frequency of the superstructure.

6.5 Conclusions

From a computational standpoint, the advantages and disadvan-

tages of using frequency-domain techniques instead of time-domain

techniques to determine the damped natural frequencies of a system are

similar to those listed in Section 5.7 for an undamped system. The

only significant difference 1s that the damped natural frequencies are

now required for each fixed interface substructure.

From a practical standpoint, the primary concern with using

this frequency-domain method is that Eqs. (6.8) and (6.9) have not been

proven explicitly. The numerous examples which have been examined by

the author have been successful. However, this is not a proof that the

equations are valid for all systems.



Chapter 7

EXAMPLES

7.1 Introduction

This chapter has been Included to demonstrate some of the

frequency-domain techniques discussed in previous chapters. The

examples do not detail the computations involved in the analysis of a

problem, but instead they outline the major steps in each of the

frequency domain analysis techniques and demonstrate the selection of

proper analysis parameters.

The following examples are included:

Example 1 - This example demonstrates how the

transient response may be determined using frequency-

domain techniques, and the importance of selecting

the proper sampling parameters.

Example 2 - This example demonstrates the coupling

of substructures in the frequency domain and provides

additional details on the selection of sampling

parameters.

Example 3 - This example demonstrates how the natural

frequencies of undamped superstructures may be ob-

tained using frequency domain substructure models.
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Example 4 - This example demonstrates the applica-

bility of Eqs. (6.8) and (6.9) for determining the

damped natural frequencies of a superstructure using

frequency domain substructure models.

Example 1

The first example will demonstrate the importance of careful

selection of the sampling parameters as discussed in Chapter 3. The

structure to be used in this example is the simple 1-DOF mass-spring

oscillator
x(t)

21—\/VV- m p(t)

with the following system parameters:

m = 1.0 Ibs2/in

k = 987.0 Ib/in

31.42 rads/sec

5.0 Hz

The transient response of the system to two different dynamic loadings

will be determined using the procedures outlined in Chapters 2 and 3.

A. Selecting the Nyqulst Frequencies

In order to demonstrate the selection of a proper Nyqulst

frequency, the structure will be subjected to the cosine pulse loading,

P(t) - 987 cos(lOirt)

0

t < 0

0 s t s 0.05

t > 0.05
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A pulse such as this 1s not band-linlted, and therefore the Nyqulst

frequency cannot be selected as the highest frequency in the

exponentially-windowed pulse. Therefore, the alternate method of

determining f.j described in Chapter 3 will be used.

Before proceeding, however, a convergence factor will be

selected as the maximum value allowed by Eq. (3.18). Therefore,

assuming a 1.0 second response window,

TQ = 1.0

and

a = 4.605

Now, in accordance with the procedure outlined in Chapter 3, a

value of f is selected by examining the system transfer function

shown in Figure 7.1. The transfer function is effectively zero for

frequencies greater than 50 Hz, thus

f c » 50 Hz

Figure 7.2 shows the exponentially-windowed force spectra at

frequencies less than f for several Nyquist frequencies. An exami-

nation of the spectra reveals that as the Nyquist frequency increases,

the spectra begin to converge to what is assumed to be an exact repre-

sentation of the exponentially-windowed force spectrum for frequencies

less than f . For the exponentially-windowed force spectra shown in

Figure 7.2, the convergence is good for Nyquist frequencies greater

than 512 Hz. Thus,
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Figure 7.1 System transfer function (a = 7.675)
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Figure 7.2 Exponentially-windowed force spectra for various
Nyquist frequencies.
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fN = 512 Hz

Therefore, having selected T and f.. , the renaining

sampling parameters may be determined using Eqs. (B.I) through (B.4) in

Appendix B,

K = 1024 fs = 1024 Hz

T = 9.7656 * 10'" sec fQ = 1.0 Hz

The system response may now be determined using Eqs. (3.7)

through (3.13). The exact solution and the frequency-domain solution

have been plotted in Figure 7.3a using the sampling parameters deter-

mined above. The two solutions are nearly identical for f.. = 512 Hz .

However, Figure 7.3b reveals that selecting a Nyquist frequency which

is less than that required causes the frequency-domain solution to have

a significant error.

B. Selecting a Convergence Factor

In order to demonstrate the selection of a proper convergence

factor, the structure used in part A will be subjected to a 1 Hz cosine

forcing function. Thus,

p(t) = 987.0 * cos(?irt)

The system response is desired for t less than 0.6 seconds, thus

T = 0.6

Selecting the convergence factor to be the maximum allowed by Eq.

(3.18) yields
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1.00 1.20

t(sec)

= 512 Hz

£. 8

Frequency Domain
Exact

(b) fN = 64 Hz

Figure 7.3 System response to cosine pulse excitation.
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a = 7.675

As in the previous example, the spectrum of the exponentially-

windowed forcing function shown in Figure 7.4 is examined to determine

a suitable Nyquist frequency. Using the same criteria as in the

previous example, the Nyquist frequency is chosen to be

f = 426.7 Hz

The remaining sampling parameters may now be determined and the

response calculated.

An examination of the exponentially-windowed response, in

Figure 7.5a, reveals that the convergence factor selected above has

caused the response to decay to 'effectively zero' by the end of the

window. Therefore, the frequency-domain response will not be time-

aliased. The comparison of the exact and frequency-domain solutions

shown in Figure 7.5 supports the statement above, as the solutions are

nearly identical.

In order to demonstrate the effectiveness of the convergence

factor in preventing time-domain aliasing, the response will be deter-

mined using

a = 1.0

An examination of the exponentially-windowed response in Figure

7.6a reveals that the convergence factor has not caused the windowed

response to be 'effectively zero' by the end of the response window.

Therefore, as expected, the comparison of the exact and frequency-
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Figure 7.4 Exponentially-windowed force spectra for various
Nyqufst frequencies.



91

3

8
a

00

*» 3

(a)

Frequency Domain
Exact

0. 50 8. «0

t(sec)

A
00 0.10 \ 0.20 / 0.30

(b)

Figure 7.5 (a) Exponentially-windowed response and (b) the
response with the window removed (a = 7.675).
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Figure 7.6 (a) Exponentially-windowed response and (b) the
response with the window removed (a = 1.0).
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(a)

O.M O.N

t(sec)

«.« O.M O.M

t(sec)

(b)

(c)

t(sec)

Figure 7.7 (a) Exponentially-windowed response, (b) the
response with the window removed, and (c) the
first 0.8 seconds of the response (a = 30.0).
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domain solutions in Figure 7.6b is not good, as the frequency-donain

solution is time-aliased.

There is, however, a problem with selecting a convergence

factor which is too large, and which causes the windowed response to be

'effectively zero1 too early in the window. In order to demonstrate

the problem, let

a = 30.0

and let the response window be 1.0 seconds long. Thus,

TQ = 1.0 .

The exponentially-windowed response shown in Figure 7.7a

reveals that the windowed response is 'effectively zero' at t = 0.2

seconds. Therefore, it is clear that the solution will not be

time-aliased. However, an examination of Figure 7.7b reveals that the

frequency-domain solution of the response is not stable near the end of

the window. Figure 7.7c shows the response for the first 0.8 seconds

of the window, and it can be seen that the response prior to the region

of instability compares well with the exact solution.

Example 2

This example will demonstrate the substructure coupling proce-

dures discussed in Chapter 4. The superstructure to be used in this

example is an 18 degree-of-freedom beam clamped at. each end.
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2 4 , 6 8 10 ,,12,14, 16 ,,18

Substructure 0

The beam will be analyzed using the two substructures,

,2 34 6 , 8 g 10

-

Substructure 1
2 3 4 5 6 7 8 9 10

Substructure 2

The structure will be loaded at the trans!ational degree of

freedom of the interface with the following load,

P(t)

20

.01 t(sec)
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Assuming the response is desired at only the loaded degree of

freedom, the relevant set nay be determined by taking the union of the

following sets:

Interface DOF 9,10

Loaded DOF 9

Response DOF 9

Therefore, the relevant set consists of

Relevant DOF 9,10

Note that even though the response is not desired at system degree-

of-freedom 10, it must be determined, since interface degrees of

freedom are required to be in the relevant set.

Assuming the first 0.1 second of the response is desired,

TQ = 0.1 sec

and the maximum value of the convergence factor is

a = 46.05

An examination of a typical transfer function for the system shown in

Figure 7.8 reveals that the transfer function is not 'effectively

zero,' even at frequencies greater than 2000 Hz. However, Figure 7.9

reveals that the exponentially-windowed force spectra is 'effectively

zero1 by 200 Hz, therefore,

fc = 200 Hz
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Figure 7.8 System transfer function (a = 46.05).
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Figure 7.9 Exponentially-windowed force spectra (0-500 Hz).
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Figure 7.10 Exponentially-windowed force spectra for various
Nyquist frequencies (0-200 Hz).
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Figure 7.11 System response to a step-to-ramp input.



101

An examination of Figure 7.10 reveals that the spectra have nearly

converged for a Nyqulst frequency of 2560 Hz. Thus, let

fN = 2560 Hz

This Nyquist frequency may now be used to obtain the remaining sampling

parameters and the exponentially-windowed force spectrum.

An elgensolution may now be performed on each of the substruc-

tures to obtain the generalized mass, stiffness and modal matrices,

which are required for the modal formation of the dynamic stiffness

transfer matrix. The frequency loop and the Inverse transformation

outlined In Figure 4.3 may now be executed to obtain the time-domain

response of the desired system degree of freedom.

The response obtained using the frequency-domain substructurlng

procedure described above is plotted in Figure 7.11 along with an

accepted time-domain solution. The solutions compare very well, and

thus the substructurlng technique has been verified.

Example 3

This example will demonstrate the recovery of superstructure

natural frequencies from frequency-domain substructure models. The

superstructure chosen for the example Is the six degree-of-freedom mass

spring oscillator,

m

Substructure 0
m = 1.0 k = 1.0
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which will be analyzed using the two substructures,

m m

Substructure 1

Substructure 2

The two substructures are joined by one common interface degree of

freedom. Thus,

PT a 1

In order to determine the superstructure natural frequencies,

the fixed interface natural frequencies of each substructure must be

obtained. They have been determined and tabulated below.

Substructure Natural Frequencies
(rads/sec)

Substructure 1

0.4450
1.2470
1.8019

Substructure 2

0.6180
1.6180

The search parameters will be chosen such that the natural

frequencies will be calculated to within 0.001 rads/sec and the search

range will be from 0-100 rads/sec. Thus,



103

TOL = 0.001 (rads/sec)

Um1n " °'000 (rads/sec)

(rads/sec)

The system natural frequencies nay now be obtained using the

above information and the dynamic stiffness transfer matrices of the

substructures, as directed by the outline in Figure 5.3.

After an average of 10 polynomial evaluations (i.e. 10 times

through the bisection loop) per natural frequency, the system natural

frequencies were determined to be

Substructure 0 Natural Frequencies
(rads/sec)

0.000
0.518
1.000
1.414
1.733
1.933

The characteristic equation of the reduced system is shown in
••

Figure 7.12. The figure also illustrates how each of the Sturm se-

quence indices changes as a function of frequency. Note that the value

of S is never greater than one, since pj° is equal to one. From

the figure, it can be seen that S is the sum of S and SSB° , and

that the r natural frequency is located at the frequency where S

changes from r-1 to r .
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2.40

SB

Note: r/j = r* natural frequency of the j substructure

Figure 7.12 Characteristic equation and Sturm sequence
indices of a 6 degree of freedom system.
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Example 4

This final example 1s Included to demonstrate the applicability

of Eqs. (6.8) and (6.9) for determining the damped natural frequencies

of the damped mass-spring oscillator below.

m 1.0
Substructure 0

k = 1.0 0.05

The natural frequencies will be determined using the two substructures,

m m

Substructure 1 Substructure 2

which have one common Interface degree of freedom, and thus

•>! •
The fixed-interface natural frequency of both substructure 1

and substructure 2 1s (-0.05 + jl.413), since each of the substruc-

tures are Identical. In order to use the bilinear search procedure

described in Chapter 6, the range of the imaginary part of the natural

frequencies has been chosen to be 0-2 rads/sec, and the tolerance as

0.00001 rads/sec.
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After an average of 60 polynomial evaluations per root, the

damped natural frequencies of the superstructure were determined to be

Superstructure Damped Natural Frequencies

-.0095 + jO.618
-.5000 + jl.413
-.65̂ 5 -i- jl.617

These natural frequencies match precisely the damped natural frequen-

cies obtained from an exact solution of the equations of motion de-

scribing the system.

As noted in Chapter 6, a single example does not explicitly

prove that Eqs. (6.8) and (6.9) are valid for all systems; however, it

does demonstrate their applicability in obtaining the damped natural

frequencies of at least one particular problem.



Chapter 8

CONCLUSIONS

8.1 Solving the Response Problen

Frequency-domain analysis has been found to be an efficient

method for finding the frequency response of a structure and has been

used by structural analysts for many years. The research completed for

this thesis has also found it to be a suitable method for determining

the transient response of systems subjected to a wide variety of loads.

However, since a large number of calculations are performed within the

discrete frequency loop, the method loses its computational efficiency

if the load must be represented by a large number of discrete frequen-

cies.

It has also been discovered that substructure coupling in the

frequency domain works particularly well for analyzing structural

systems with a small number of interface and loaded degrees of freedom.

A system with these restrictions will have relatively small matrices

within the frequency loop, which Increases the efficiency of the

frequency-domain procedure.

The ability to describe large complex substructures by the

dynamic stiffness and loads at only the interface degrees of freedom

makes substructure coupling in the frequency domain very attractive for

structural modification problems as well.
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8.2 Determining the Natural Frequencies

In an attempt to determine the generality of frequency-domain

analysis, it was discovered that substructure coupling in the frequency

domain can lead to an efficient method of obtaining natural frequencies

of undamped structures. The efficiency, however, decreases as the

number of interface degrees of freedom increases.

It has also been found that the damped natural frequencies of a

system may be determined using frequency-domain techniques. However,

the algorithm used to determine these natural frequencies has not been

proven explicitly.

8.3 Directions for Future Research

Over the past two decades substructure coupling in the time

domain has played an important role 1n the analysis and design of

structures. In order for substructure coupling in the frequency domain

to play a similar role, it will be necessary for the following items to

be investigated:

- A more in-depth study on the effects of using

a convergence factor in transient response

analyses.

- A solution procedure for analyzing response

to random excitation.

- The effects which modal truncation at the

substructure level has on the system response

and natural frequencies.
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- A proof of Eqs. (6.8) and (6.9), which were

used to determine the damped natural fre-

quencies of the superstructure.

With these topics clarified, substructure coupling in the

frequency domain could play an important role in the design and analy-

sis of future structural systems.



APPENDIX A. TRANSFORMING THE EQUATIONS OF MOTION

A.I Unilateral Fourier Integral Transform

The unilateral Fourier transforn pair chosen for this thesis

may be written as

YU) • f y(t) e-jwt dt (A.I)
Jo

y(t) = -£ f YU)
t n J

eJWL do, (A.2)

In order for the unilateral Fourier Integral transform of y(t) to

exist, and for y(t) to be recoverable from Its transform, the

following conditions must be satisfied:

a) In every finite Interval, y(t) must be bounded and have a

finite number of maxima and minima, and a finite number of

discontinuities.

b) The integral

f'0
11m
A-** f |y(t)| dt = f |y(t)| dt (A.3)

Jo Jo

converges (I.e. the Integral approaches some finite limit

as A approaches infinity).

Since both the system excitation and response will be

transformed to the frequency domain, each must satisfy the conditions
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in
stated above. The first condition will be satisfied for any stable

system subjected to a physically-realizable excitation. The second

condition nay be satisfied by many functions. However, this discussion

will assume the excitation and response are identically zero beyond

some finite value of t . This assumption will ensure convergence of

the Integral given by Eq. (A. 3) (Ref. LePage).

Therefore, with the transformability conditions satisfied, the

system equation of motion, Eq. (2.1), may now be transformed to the

frequency domain using Eq. (A.I).

fJ

f (f(t)>
J

dt

(A.4)

e-jwt dt

The integration of the first two terms by parts yields

f
J

dt =
' o

(A.5)

dt

f [c]{x> e-jwt dt
Jo (A.6)

{x}eJMt dt
'0

and combining terms yields

j«[c] f {x} ej(ot dt
in
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j«[c] + Tk] 1 f {x} e-jut dt
J J

f ( f ( t )> e-jwt dt - [m]<x> e-
Jn

jtot (A.7)
'0

Cc]](x} I OS0

The evaluation of the last two terms on the right hand side of

Eq. (A.7) at the lower limit is accomplished by using the identity

a-JNt I _ 0 _ . /. Q\
't=0 e * (A.8;

Although e"^ is not defined at t = » , 1t is known that

|e"J(l>aB| 5 1 , and therefore the terms may be evaluated at. their upper

limit by recalling the assumption of finite-duration response. That is

to say,

<x}|taeo - (0} (A.10)

Therefore, Eq. (A.7) may be simplified and written

[-o)2[m] + J«[c] + [k]]{X(«)) • (F(»)> + [m]{x0> (A.ll)

where
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X(u>) = f {x} e'Jwt dt (A.12)
J

FU) = f {f(t)> e'jwt dt (A.13)
Jo

{XQ} = (x(t-O)} (A.14)

{XQ> = (x(t=0)} (A.15)

Eq. (A.11) represents the system equations of motion 1n the frequency

domain, and is subject to the restriction that the excitation be

nonperiodic and of finite duration. It is also restricted to those

systems which are damped, in order that the response will also be of

finite duration.

A.2 Unilateral Fourier Integral Transform with Convergence
Functions

The unilateral Fourier integral transform pair with convergence

functions may be written as

f y(t)Jo
e"jo)t

y(t) = Ij | Y(«) ejwt du (A.17)

where

y(t) = y(t)
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In order for the unilateral Fourier Integral transform of y(t) to

exist, and for y(t) to be recoverable from its transform, the

following conditions must be satisfied.
A

a) In every finite interval, y(t) nust be bounded and have a

finite number of maxima and minima, and a finite number of

discontinuities.

b) The integral

f |y(t)|e-atdt (A.19)
in

converges.

As in Appendix A.I, both the system excitation and response

must satisfy the conditions stated above, and the first condition is

satisfied for any stable system subjected to a physically-realizable

excitation. However, the second condition will not restrict the class

of problems which can be worked, so long as a value of the convergence

factor, a , may be found which is greater than zero and causes Eq.

(A.19) to converge.

The equation of motion, Eq. (2.1), may now be transformed using

Eq. (A.16). Thus,

fJn e'at e- dt
0

(A.20)

f
Jn

e'at e-d1 dt

and simplifying yields
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x} + [c]{x> + [k]{x}] e"st dt = f (f(t)} e'st dt (A.21)

where the complex frequency variable, s , is given by

s = a + jo> (A.22)

The integration by parts of the first two terms yields

[Ms* + [c]s + [k]] f {x> e'st dt
0 (A.23)

'st |°°
o

f (f(t)> e'st dt - [m]{x> e'str - [ MS + TC]] {x} e
Jo o L " "J

Now, the last two terms on the right hand side of Eq. (A.23) may be

evaluated at the lower Hm1t using the Identity

e"st|t=0 = e° = 1 (A.24)

and, at the upper limit, since a > 0

e"Stlt=» = e'm = 0 (A.25)

Therefore, Eq. (A.23) may be simplified and written

[[m] s2 + [c] s 4- [k]]{X(s)>
(A.26)

= (F(s)} + [m] {x0> + [[m] s + Tel] {XQ}

where
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{X(s)> = f {x} e"st dt (A.27)
0

(F(s)} = f (f(t)} e'st dt (A.28)
Jn

(x0> = (x (t=0)} (A.29)

{XQ} = {x (t=0)} (A.30)

Equation (A.26) represents the system equations of motion in the

complex frequency domain. The only restriction on the system, is that

a convergence factor exists such that Eq. (A.19) converges.

A.3 Complex Fourier Series

Assume that the system described by Eq. (2.1) is subjected to a

periodic excitation which may be represented by

{f(t)> = m ejct (A.31)

Now, assume the response will be represented in a similar form

(x(t)} = {X} ejnt (A.32)

Equation (A.31), along with Eq. (A.32) and its derivatives may now be

substituted into Eq. (2.1) to yield

-n* [m] * jn [c] + [k]] (X) ejnt = {F> ejnt (A.33)
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or in a simplified form as

[G(fl)] (X) = (F> (A.34)

Equation (A.34) may now be solved for {X} , which is then substituted

into Eq. (A. 32) to obtain the steady-state response of the system to

the periodic excitation (f(t)}

"1 jnt= [G(fl)]" (F> e (A.35)

For physically-realizable periodic excitations which are

composed of more than one frequency, the excitation can be represented

by the complex Fourier series transform pair

(f(t)} = - I (Ffo). )} e (A.36)
Tl k=-« K

rr+T. -jw.t
<FK)} = l (f(t)} e * dt (A.37)

* JT

where

and T. is the fundamental period of the excitation.

For linear systems, the principal of superposition may be

Invoked to obtain the total response

(x(t)> - U Z [G(o. )r! (POO) e Uk (A.39)
rl k=-« K K
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where

[6(o)k)] = -o>k* [m] + J»k [c] + [k] (A.40)

In order that a frequency-domain equation may be written 1n a

form similar to those 1n Appendices A.I and A.2, Eq. (A.39) will be

transformed to the frequency domain and written

[-u>k
2 [m] + jo>k [c] + [k]] {X(u>k)} = {F(«k)> (A.41)

where

T+T. -J0).t
l (x(t)} e K dt (A.42)

and {F(uk)} 1s given 1n Eq. (A.37).

Therefore, Eq. (A.41) represents the equation of motion 1n the

frequency domain which describes the steady-state response of a system

subjected to periodic excitation.



APPENDIX B. DISCRETE FOURIER TRANSFORM

In the discussion of the Discrete Fourier Transform (DFT) and

the Fast Fourier Transform (FFT) in Chapter 3, the following notation,

parameter relationships and terminology are often utilized.

Notation

f - sampling frequency

^N - Nyqulst frequency

f - frequency resolution

TQ - length of the time record

T - time resolution

K - number of discrete samples

Relationships

fN = (B.I)

Terminology

fs = 2fN (B.2)

TQ - ^ (B.3)

T = 2. (B.4)

Frequency-Domain Aliasing - Frequency-domain aliasing occurs when the

sampling frequency is less than twice the highest frequency contained
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in the continuous function being transformed. It is characterized by

the energy of the frequencies which are greater than fN , folding

back into the lower frequencies. This increased energy in the lower

frequencies of the force spectrum will cause the response spectrum to

also have higher energies in the low frequencies.

Time-Domain Aliasing - Time-domain aliasing occurs when the frequency

resolution is not fine enough to allow the inverse transform of a

frequency function to be effectively zero by the end of the time record

T . It is characterized by the nonzero part of the function extending

beyond T , adding back into the function at the beginning of the

time record.

Leakage - Leakage occurs when the time record does not contain an

integer number of fundamental periods of a periodic function. It is

characterized by energy from the fundamental frequency showing up In

frequencies adjacent to the fundamental frequency.
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