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ABSTRACT	 I,

The study: (1) Investigates the effects of a uniform temperature change

on the stresses and deformations of composite tubes; 	 (2) Determines the

accuracy of an approximate solution based on the principle of complementary

virtual work. Interest centers on tube response away from the ends and so a

planar elasticity approach is used. For the approximate solution a piecewise

linear variation of stresses with the radial coordinate is assumed. 	 The

results from the approximate solution are compared with the elasticity

solution.	 The stress predictions agree well, particularly peak interlaminar

stresses. Suprisingly, the axial deformations also agree well. This despite

the fact that the deformations predicted by the approximate solution do not

satisfy the interface displacement continuity conditions required by the

elasticity solution.	 The study shows that the axial theraal expansion

coefficient of tubes with a specific number of axial and circumferential

layers depends on the stacking sequence. 	 This is in contrast to classical

lamination theory which predicts the expansion to be independent of the

stacking arrangement. 	 As expected, the sign and magnitude of the peak

interlaminar stresses depends on stacking sequence. For tubes with a specific

number of axial and circumferential layers, thermally-induced interlaminar

stresses can be controlled by altering stacking arrangement.
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INTRODUCTION

Tubes are efficient structural elements for reacting bending,

axial, and torsional loads. In addition, when using fiber-reinforced

materials, tubes can be efficiently made using filament winding or one

of several other automated techniques. Stiffness, strength, and thermal

expansion properties of the tube can be controlled by varying the number

of layers of fiber-reinforced material, and by varying the angle of the
i

fibers relative to the axial direction. However, for fiber-reinforced

materials like graphite-epoxy, tubes are made by curing the epoxy at an

elevated temperature. Typical epoxies cure at 120-175°C (250-350°F) 	 j

while epoxies made for high temperature operation cure at 290-340°C

(550-650°F). Operating a graphite-epoxy tube below the cure temperature

of the material can result in high residual stresses. If the stresses 	 j

are too high, material failure can occur, resulting in a loss of 	 1

performance of the tube.

Graphite-epoxy tubes are currently being considered as a major
i	 z

building block for large orbiting space structures. Ambient

temperatures as low as -156°C (-250°F) can occur in space. To use tubes

effectively, understanding their response in these thermal environments

is quite important. This paper reports on the calculation of the

response of layered tubes to a spatially uniform temperature change.

t
The change represents the difference between the tube fabrication 	 4

temperature and the temperature of its operating environment. The 	 y

responses of interest in this paper are the thermally induced stresses

and the axial thermal expansion characteristics. The latter response is

important for dimensional stability considerations, both during the

assembly of large structures, and during operation. Unless dimensional

i
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changes are controlled, orbiting into and out of the earth's shadow can

cause problems. Of particular concern is the influence of layering

arrangement on stresses and axial expansion.

The tubes considered are of a constant inner and outer diameters.

The tubes are made of multiple layers, each layer having properties

which represent unidirectional graphite-epoxy. Each layer will be

assumed to be homogeneous and either orthotropic or transversely

isotropic in a coordinate system aligned with the axis of the tube. In

terms of fiber-reinforced material, the study is restricted to what are

referred to as cross-ply tubes. A layer is said to be a 0° layer if the

stiff, or fiber, direction is axial. A layer is said to be a 90° layer

if the fiber direction is circumferential. Stacking sequence notation

common to the analysis of layered composite materials will be used. A

tube designated as a (90/0/90/0) tube is a cross-ply tube and has four

layers. The inner layer and the second layer from the outside have

their fibers aligned circumferentially (90 0 ). The outside layer and the

second layer from the inside have their fibers aligned axially (0 0 ). A

(0/90/0/90) tube would have the fibers in the inner layer oriented

axially, etc. Interest centers on the portions of the tube away from

the ends. In practice, the end fittings used to connect the tubes

together will dictate to a large degree the stress state near the

ends. Since these regions on the end of the tube constitute such a

small percentage of the total tube length, the overall axial thermal

expansion characteristics, for example, could well be determined by the

large percentage of the length of the tube away from the ends.

Therefore, a generalized plane deformation elasticity solution is used

to determine the tube response. The solution assumes that the stresses

t^
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are not a function of the axial coordinate of the tube. An elasticity

solution, as opposed to a shell-like approach, is used because some

tubes being considered for use have mean radius to wall thickness ratios

of less than 10. For such a small ratio, through-the-thickness effects
i

have to be accounted for. To account for these effects, a higher-order

shell theory could be used. However, an elasticity approach is felt to 	 i

be more direct.

With a spatially uniform temperature, the problem is assumed to be

axisymmetric. Thus, with no dependence of the stresses on the axial

coordinate, and using the axisymmetry assumption, the equations 	 p

governing the tube response reduce to ordinary differential equations.

Interesting and useful engineering information is obtained from the 	 ry
a

solutions. In addition, it is possible to see explicitly how the	 d

assumption of transverse isotropy in a layer affects the differential

equations governing the behavior c,T that layer.

Looking beyond the axisymmetric problem, the solution to the

axisymmetric problem can serve as a guide for constructing approximate

solutions to problems having no closed-form solution. An example of

such a problem is the determination of the stresses in a layered tube 	 j
ti

with temperature -dependent material properties and subjected to a

circumferential temperature gradient. Such a condition can exists with 	 !J

a tube in space, with the one side heated by the sun and the other side

exposed to the cold of its own shadow. A significant circumferential

temperature gradient would exist within the tube. To address such a	 E

problem, finite-elements, or some other numerical technique can be

used. Here the use of the principle of complementary virtual work, in

conjunction with a Ritz approach, is explored. However, here the

3



circumferential temperature gradient problem is not solved. The

axisymmetric problem is resolved in an approximate sense, using simple

functional forms for the stresses. The stresses and deformations

determined by this approximate approach are compared with the elasticity

solutions in order to evaluate the use of this approximate approach for

more complicated problems.

The paper begins by deriving the governing equations for the

elasticity solution. Key assumptions and their effect on the governing

equations are emphasized. The second section presents numerical results

based on the elasticity solution. The effect of layering arrangement on

the residual stresses and the axial thermal expansion are illustrated.

The third section formulates the problem from the point of view of the

principle of complementary virtual work and a Ritz approximation to the

stress fields. The fourth section presents a comparison between

numerical results from the virtual work solution and the elasticity

solution. The weak and strong points of the approximate solution are
f

discussed. Though not directly related to the study of tubes, the fifth

section presents an interesting sidelight, namely the examination of the

residual stresses in a solid cylinder. It is demonstrated that the

theory predicts unbounded stresses at the center of the cylinder if the

material constants satisfy a certain rather general condition.

4
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DERIVATION OF THE GOVERNING EQUATIONS

Figure 1 shows the coordinate system and nomenclature associated

with the layered tube. The inner radius is denoted as r i , the outer

radius ro , and the radii of the interfaces r l , r2 , etc. The axial

coordinate is x and the displacement in that direction is u. The

circumferential coordinate is a and v denotes circumferential

displacement. The radial displacement is w and r the radial

coordinate. The usual notation is used to identify the components of

stress and strain, i.e., or is the normal stress in the radial

direction, 
Yxe 

is the engineering shear strain in the x-e plane, etc.

The temperature of the tube is AT above some reference temperature.

Here the reference temperature will be the cure temperature of the

material and AT will be negative. The equations governing a single

isolated layer will be derived. The solution to the equations will be

expressed in terms of unknown constants of integration and the layer

material properties. There will be one such solution for each layer.

The constants associated with each layer will be determined by enforcing

the stress-free boundary conditions on the inner and outer surface, ri
i

and ro , and by enforcing certain interface conditions at r l , r2 , etc.

In addition, because of the planar nature of the solution, certain 	 j

integrated conditions will be used in the determination of the

constants.

Because the problem is axisymmetric and each layer is orthotropic

in the x-e-r coordinate system, the circumferential component of
1

displacement in each layer is zero. Because of axisymmetry, neither of	 j

the other two components of displacement depend on the circumferential 	 i

coordinate. Furthermore, in the portion of the tubes away from the

5
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ends, the radial displacement is a function only of the radial

coordinate. With these assumptions, the displacements in each layer

take the form:

u	 u(x,r)

	

v = 0.	 (1)

w = w(r)

The strain-displacement relations then simplify to

au	 w	 dw
e x = ax	 e e = r' e r = dr	 (2)

=0	 =au	 =0
YxO	 ' Y xr	 or ' Yer	 '

where the total derivative has been used where possible.

Since each layer is orthotropic, or transversly isotropic, the

stress-strain relation for each layer can be expressed in the x-e-r

coordinate system as

°x	 011	 0 12	 X13	
0	 0	 0	 ex - axAT

°e	 012	 0 22	 023	
0	 0	 0	 e  - a0AT

a 	 013 023 X33 0
	 0	 0	 C  - arAT

_	 (3)
T er	 0	 0	 0	

C44 0	 0	 Yer

T xr	 0	 0	 0	 0	
055 0	 Yxr

T Xe	 0	 0	 0	 0	 0	
066	 NO

In this coordinate system thermal expansion effects are purely

dilatational. The C ij 's are elastic constants related to the Young's

moduli, the Poisson's ratios, and the shear moduli of the material.

The a's are the coefficients of thermal expansion. Here all properties

will be assumed to be temperature-independent but the methodology is

6



valid for the temperature-dependent situation. The material constants

are different for each layer and Appendix 1 gives expressions for

the C ij in terms of the more familiar engineering constants

(E 1 , E 2 ,	 vl, ..., a 1 , ...) in the principal material system.

By eq. 2 and the stress-strain relation,

T xo — 0
	

Tor
	

(4)

Since all stresses are independent of x and o, all the strains are

also. Using this fact, along with the definitions of e  and e 0 from eq.

2, four of the six compatibility equations are automatically

satisfied. The two that are not reduce to

d2ex
c Q

dr2

1 dex
r dr =

Integrating the first of these leads to

e x (r) = Ar + B

A and B being constants. The second equation requires A to be zero.

Redefining B to be eo,

	

ex(r) = c
	 	

(7)

and it is seen that the axial strain in a layer is not a function of any

of the coordinate variables.

Likewise, with the assumptions of the independence of the stresses

of x and 0, and using eq. 4, the equilibrium equations simplify to

7

(5)

(6)
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dor o r - o0+	 r	 ° 0

ddrr +rr 
0 .	 (8)

the third one being automatically satisfied. Integrating the second

equation results in

.xr = r	 (9)

C being a constant.

The functional form of u(x,r) can be found from the above

results. Using eq. 7, the first strain-di s placement relation (eq. 2)

integrates to

u(x,r) = e°x + f(r) ,	 (10)

f(r) being an arbitrary function of r. From eqs. 2, 3, and 9,

du	 df _ ` xr = C	 1	 11
Y xr = dr = dr C	 C r	 ( )

55	 55

or

f(r) = C In r + D,	 (12)

C55

D being a constant. With this result

u(x,r) = c
ox + C	 In r + D.	 (13)

C55

By writing the stresses in terms of the displacements, the first

equilibrium equation leads to a differential equation for w(r), namely

C
d w + l d w- 

C	
w	

1 ( C	 - C ) e° + E ,	 (14 )
33 
dr2 

r dr	 22 r2 - r 12	 13	 r

where

9
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E - (7	 T7
	- C

12 )ox + (C23 - C 22 )ae + (C33 - C23 )ar )eT 	 (15)

With the solution to u(x,r) available and by solving for w(r), the

complete solution is available for application to either a single-layer

problem or to a multiple- g ayer problem.

SOLUTION FOR w(r)

Equation 14 has a solution of the form

	

w(r) = A 1 r X + A 2r-X + 
C

12	 13 Eor + c r	 (16)

(C33 - C22)
with

	

422	 (17)
C33

Many times it is assumed that a l ayer of fiber-reinforced material is

transversely isotropic in the plane perpendicular to the fibers. In the

nomenclature of Appendix 1, and in the nomenclature common to fiber-

reinforced materials, this is the 2-3 plane. While isotropy in that

plane may not be exactly satisf i ed, for lack of complete material

property data, transverse -isotropy is often assumed. Referring to

Appendix 1 for nomenclature, the assumption of transverse isotropy

implies

E2

	

E 3 = E2' 'J 13 - v 12 ; G 23 = 2	 - X23 ; a 2 = a 3	 (18)

In this problem the assumption influences the equation governing the

behavior of a 0 0 layer. For a transversely isotropic 0 0 layer,

C 33 = C22 ; C13 = C 12 , ar = a e	 (19)

and the equation for w(r), eq. 14, becomes homogeneous and not dependent

9



on material prope;,0es. The equation becomes

d2w + 1 dww = 0	 (20)
dr
	 r Tr - 72-

and has solution

A
w(r) - A1  + r2	 (21)

To determine the constants A 1 , A2 , f„ D and c o , boundary,

interface, and an integral condition must be applied.

BOUNDARY CONDITIONS

Single Layer

The conditions for a single layer are that tractions vanish at the

inner and outer radii, namely,

a r ( r i ) = 0 ; or( ro ) = 0; Txr(ri) = 0 ; T xr (ro ) = 0

Ter 
(r 1) = 0; T er (ro ) - 0	 (22a-f)	 I l

and that the net axial force acting on the cross-section of the layer is

zero. This axial force condition can be expressed as

J a rdedr = 0	 (23)	
w

A

where A is the cross-sectional annular area of the layer. The integral

can be written more specifically as

2n fro ox (r)r dr = 0.	 (24)

r 

Other resultant equations, such as the net cross-sectional moment and

the net torsional moment being zero, can be written for the cross-

section. However, all except eq. 23 are automatically satisfied. As a

final condition, rigid body displacements of the layer must be

Y

10R t4

T:



suppressed.

By eq. 4, eqs. 22e and f are automatically satisfied. Application

of eqs. 22c and d requires C of eqs. 9 and 13 to be zero. Suppressing

rigid body axial motion forces 0 of eq. 13 to be zero. As a result

u(x,r) = e°x.	 (25)

Applying eqs. 22a and b, and eq. 24 leads to three equations for Al, A2,

and a°. With these coefficients known, the stresses and displacements

in a single layer can be determined.

Multiple Layers

For multiple layers, the solutions for c xr (r), u(x,r), and w(r) in

eqs. 9, 13 and 16 require a different set of constants for each layer.

Because the material constants for each layer can be different, the

value of a will be different for each layer. For the kth layer,

	

(k) = C M	
(26)

	

` xr	 r

	

u(k) ( x , r ) = e° (k) x + C
-	

In r + D(k) ,	 (27)

and
,s

w(k) ( r ) = A(k)rx(k)	
(C

	

+ A (k) r
—a(k) 

+	 1k) - C13)) 
e° (k) r + F(k)r,

k
(C33 - C22 )

where

	

E(k) = ((C 13 ) - C12)
).( k ) , (C13)-	

C22 )),, (k) + (C 33 ) - 
C23))ark))eT,

and

	

a(k) -
	 C	 e

(29)

33

11



If the layer is transversely isotropic,

A(k)

	

w(k) ( r ) - A (k) r + r
	

(30)

For N layers, there are N c o 's, N C's, N D's, N Al and N A2's, or

5N unknown constants. These constants are determined by satisfying the

traction-free conditions on the inner and outer radii, satisfying

continuity of tractions at each interface, satisfying continuity of

displacements at each interface, suppressing rigid body motion, and by

applying an integrated condition on the cross-sectional area. These are

explained below.

Since layer 1 is the inner layer and layer N is the outer layer,

the traction-free conditions at the inner and outer radii are

c(l)(r i ) - 0 ' T(l)(r i ) = 0	 T(1)(ri)	
0	 (3la-c)

or

	

cy rN) ( ro ) - 0 ; T( N)(r o ) - 0 , T(N((ro) = 0.	 (3ld-f)

By eq. 4, eqs. 31c and f ara automatically satisfied. Equations 31b and

e lead to, from eq. 26,

	

C(1) = C (N) = 0.	 (32)

Continuity of the interface tractions can be expressed as

	

oYk)(rkl = ask+1)(rk)
	 Txr)(rk) = TKk+1)(rk) t

T er )(r k ) - Ter+l)(rk)	
k	 1,2,...,N-1.	 (33a-c)	 Y

Again by eq. 4, eq. 33c is automatically satisfed. Equation 33b, along

with eq. 32, leads to the conclusion: that

	

C (k) = 0	 k = 1,N.	 (34)

More will be said of eq. 33a shortly.

12

x
i

r



(-8)
D(k) = 0 , k = 1,N

Continuity of the interface disp lacement can be written as

	

u (k) (rk ,x) = u(k+l)(rk$x)	 v(k)
( rk ) = v(k+l) ( rk ) ;

	w (k) (rk ) = w(k+l)(rk)
	 ,	 k = 1,2,...,N-1.	 (35)

Obviously since v = 0 in all layers, continuity of the circumferential

displacements is automatically satisfied. Substituting from eq. 27, and

using eq. 34, eq. 35a results in

eo(k) x + D (k) = Eo(k+1)x + D(k+l)	
, k = 1 9 2, .... N-1.	 (36)

This equation leads to the conclusion that the constant axial strain for

each layer is the same for all layers and so the tube-as-a-whole has

strain co. This strain is given by

E° (k) = e° k = 1,N	 f171

Also frcm eq. 36, all D( k ) must be equal and, if axial rigid body motion

is eliminated,

At this point

u(k) ( r , x ) = c ox	 (39)

and

w(k) ( r ) = A (k) rx(k) 
+ AZk)r-x(k) + (Clk) - 

Clk))e
°r + s (k) r	 (40)

33	 22
or

A(k)
w(k) (r) = Ai k) r + r — .

These expressions for u and w involve N A
l 's, N A2 1 s, and e°, or 2N + 1

13
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unknowns. The first and fourth of eq. 31, the first of eq. 33, and the

third of eq. 35 provide 2N equations. The remaining necessary equation

is determined by the integral condition that there is no net axial force

acting on the cross section of the tube, i.e.,

f
A 

axrdedr,
	

(42)

where now A is the annular area of all N layers. Specifically this

condition is written as

N	 r 
2n E

k=1 rk-1
ox k) rdr = 0 . (43)

The complete solution for the displacements, and hence the stresses, for

the N layers is now available. This whole process can be easily

automated for an arbitrary number of layers, each with arbitrary but

orthotropic or transversely isotropic material properties.

NUMERICAL RESULTS

To illustrate some of the thermal effects that occur in layered

composite tubes, the numerical results for several specific problems

will be presented. Table i lists the material and geometric properties

used in these numerical examples.

Effect of Stacking Sequence on Residual Stresses

Figures 2 and 3 illustrate the residual axial, circumferential

(hoop), and radial stresses in two four-layer graphite-epoxy tubes. The

tube in fig. 2 has a stacking sequence of (0/90/0/90) while the tube of

fig. 3 has a stacking sequence of (90/0/90/0). Each tube is at a

temperature 280°C (500° F) lower than its curing temperature. As far as

axial stiffness is concerned, these two tubes are practically identical,

14
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as are other combinations of two 0 0 layers and two 90 0 layers. (Axial

stiffness is an important design, parameter in many space structures.)

In the figures the stresses are illustrated as a function of the

nondimensional radius o, o = (r - r i ) / (ro - r i ) .

By examining figs. 2 and 3 it can be seen that for both tube 	 u

configurations there are high tensile stresses perpendicular to the 	
N

fiber direction. Also, there are high compressive stresses in the fiber

direction. The magnitude of the tensile stresses are such that the

brittle epoxy could easily crack. These high stresses could be expected

and predicted to some degree of accuracy without resorting to elasticity

theory. However, it has been found for these particular cross-ply

tubes, the less refined theories, e.g., classical lamination theory,

underpredict the compressive stresses in the hoop direction. In

addition, figs. 2 and 3 show an interesting effect concerning the radial

stresses that can only be predicted using the more refined theory.

Figure 2 shows that for the (0/90/0/90) tube the interface between the

outer 0 0 and 90 0 layers experiences a tensile radial stress. The value

of the tensile stress is not high compared to the axial and

circumferential stress components. However, the peak tensile stress

occurs at an interface between layers, a region that can be weaker in

tension than the other portions of the tube. Figure 3 shows that by 	
A

interchanging layer order, the interface with the peak stress now

experiences a compressive stress and the peak tensile stress, which is

now at another interface, is considerably less.

i

s
Effect of Stacking Sequence on the Coefficient of Thermal Expansion

As the temperature of the tube is reduced below its cure

temperature, the thermal expansion effects, coupled with the elastic

15	 ^ `^^'
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properties, will produce a change in length of the tube. The

quantity c o is a measure of this axial deformation. Recall that c o is

the same for all layers. The quantity formed by dividing e° by AT is

the axial coefficient of thermal expansion (CTE) of the tube. For

dimensional stability studies, this expansion coefficient is of great

interest. As will now be demonstrated, stacking sequence influences

this quantity to some degree.

If all combinations of four-layer tubes with the fibers in two

layers being axial and the fibers in the two other layers being

circumferential are considered, six different stacking sequences are

possible. Table 2 shows the axial CTE's of these six combinations.

Suprisingly enough, the coefficients vary by 7% among the six tubes.

While a 7% variation may seem low, there have been efforts to construct

tubes with a specific axial CTE. It would seem that stacking arrange-

ment, as well as fiber orientation, could be used to help achieve this.

Further Examp les

To provide motivation for the next portion of the paper, and to

provide other examples of residual effects, a (90/0 6/90) tube is

considered. Such a tube is a prime candidate for structural

applications. This tube has a high axial stiffness due to 80% of the

fibers being in the axial direction. The circumferential layers are

referred to as skins while the six axial layers are referred to as the

core. The skins serve to keep the axial layers together. However,

these circumferential layers contribute significantly to the thermal

stress state.

Figure 4 shows the three components of thermally induced stress for

this skin/core tube. In both the skin and the core the fibers are in
S
^h
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compression. Due to the high axial stresses in the skins, the skins

probably will exhibit circumferential cracks. This does not degrade

their function of holding the core together. The core itself could well

have cracks in it also. The cracks would be radial, running the length

of the tube. There is a tensile peak in the radial stress between the

outer skin and the core. The radial stress between the inner skin and

the core is compressive.

[f the effects of temperature-dependent material properties are

important in a particular instance, the preceeding analysis can be

used. Temperature dependence of the Q ij 's and the a's does not affect

any of the derivation. However, as mentioned in the INTRODUCTION, the

effects of circumferential temperature gradients on the stresses could

be of interest. If the material properties are assumed to be

independent of temperature, closed-form solutions may be possible,

depending on the functional form of the gradient. However, if

temperature-dependent material properties are to be included with a

circumferential gradient, closed-form solutions are probably not

possible, except for some special cases. In general, an approximate

method would have to be used to determine the stresses. The next

section explores the use of the principle of complementary virtual work

In conjunction with a Ritz approximation to the stress fields to study

thermal stresses in layered tubes. Only the uniform temperature case

just considered will be studied. However, comparisons of the

complementary virtual work approach with the elasticity solution will

serve as a measure of the accuracy of the approximate approach.

APPROXIMATE METHOD BASED ON COMPLEMENTARY VIRTUAL WORK

For the problem here, if the volume V is considered as the volume

17



for all N layers, and the surface S is considered as the inner surface

plus the outer surface of the tube, the principle of complementary

virtual work can be written as

f
V 
(Ex6ox + e e 60 0 + er6o r + Yor6Tor + 

Yxr6Txr 
+ YXe6Txo)dV

+ f (u6Tx + v6T e + w6Tr )dS = 0	 (44)
S

For this problem the tractions on the surface, Tx , T o , Tr , are known,

specifically they are zero. Therefore the surface integral is not

involved. Implicit in the above equation is the fact that the stresses

being varied must satisfy the equilibrium equations and the traction 1
^i

	

boundary and interface continuity conditions. 	 + i

When using the complementary principle it is more convenient to

invert the stress-strain relation of eq. 3 and write (see Appendix 1)

l^

Ex - 
axAT	

S11	 S12	 S13	
0	 0	 0	 ax

e e - aeAT
S12 	 S22	 323	

0	 0	 0	 ae

C  - arAT	
S13	 S23	 333	

0	 0	 0	 ar	

Y.

_	 (45)

Yer	 0	 0	 0	 S 44	 0	 0	
Ter	 -

Yxr	 0	 0	 0	 0	
S55	 0	 Txr

Yxe	
0	 0	 0	 0	 0	 S

66	 Txe
y

Approximate solutions to the thermal stress state can be obtained

from eq. 44 by assuming that the stresses can be expressed in terms of

specific functional forms and unknown coefficients. Explicitly

integrating the volume integral results in Euler equations, in the form

of linear algebraic equations, which can be solved for the unknown

coefficients. The nature of the stresses illustrated in figs. 2-4

I
18



provides a strong motivation for assuming a simple linear variation of

stresses within each layer. If circumferential temperature gradients

were involved it would make sense to assume the stresses could be

approximated by the product of function of a and linear function of r.

Thus for an N-layer tube, the stresses are assumed to be of the form

Cy 
(k)

= cok) + c(k)r

o (k) = bok) + b (k) r	 k - 1,N ,	 (46)

a rk) = ao k) + a(k)r

all other stresses being zero. The superscript denotes layer number

	

and a(k),...,c(k) are to-be-determined constants. for a N-layer tube 	
6

there are 6N constants. However, to use these in the virtual work

statement the assumed stresses must satisfy the equations of equilibrium

and the traction boundary conditions. In addition, for this problem e

there are two further conditions. The first one is that o r must be

continuous at the interfaces between layers. The second one is that the

axial stresses in the layers must be such that the net axial force is

zero.

To satisfy the equilibrium equations, eq. 8,

a (k) = b (k) and 2a (k) = b (k) , k = 1,N	 (47)0	 0	 1	 1

Since the inner and outer layer (k = 1 and N) are traction free at r =

r i and r = ro , respectively, applying eqs. 31a and d to eq. 46 leads to

a (1) + a (1) r = 00	 1	 i	
(48)

a (N) + a (N) ro = 0

Because or is continuous at the interface between the kth and (k + 1)st

19
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layers,

aok) + a i k) r k = a ((k+l) + a
� k+1)rk	

k - 1,N-1	 (49)

The remaining condition on the approximate stresses is the integrated

condition on the cross-section, eq. 42. This leads to

2n{fr1 (c m + c (l) r)rdr + E 
frk-1 

(C
o

(k) 
+ c(k)r)rdr

r	 o	 l	 k.2 r 	
i

i	 k
ro

1	

+ f	 (c (N) + c ( ' ) r)rdr} = 0	 (50)

rN-1

For a two-layer tube, for example, the stresses that satisfy the above

conditions are given by

layer 1

o = c (l) + c(1)rx	 1	 1

ae = a( 1) (2r - r i )	 (51)

ar = ai l) (r - ri)

layer 2

ax = ci 2) (r - e 3 ) - a 1 ci 1) - a2col)

a e = a(1l) (ri _ rro )(2r - ro )	 (52)

- r
or = ai l) (rr1	

r 
)(r - ri)

1 - o

The quantities s 1 , a 2 , and 
e3 

are known constants involving the Lube

geometry. They are defined in Appendix 2. There are four constants,

ai l) , co l) , ci l) , ci2) , that determine the stress state. For a three

layer tube there are seven constants.

20
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1 1	 Substituting the stresses into the strains and the strains into eq.

,,'	
44, and also substituting the first variations of the stresses into eq.

44, integration of eq. 44 leads to an equation of the form

f l (ai l) , co l) , c (l) , c (2) )6ai l) + f2 (ai l) , co l) . c(l),
 c(2)l) +

f3 (ai l) , co l) . ci l) , ci 2) )aci l) + f4 (a (l) , co l) , c i l) , c i 2) )6c (2) = 0.

(53)

The equations

f  ° 0	 i	 1,4	 (54)

lead to solutions for ai l) , ca l) , ci l) and c(2).
1

NUMERICAL EXAMPLES USING APPROXIMATE METHOD

Figures 5-7 show examples of the predictions of the approximate

method. The exact elasticity solution is included in each example - as

a comparison. The examples depict situations designed to illustrate the

level of accuracy of the approximate method rather than to illustrate
	 }

results of engineering significance.

	

Figure 5 shows the three components of stress for a (0 3/90) tube.
	 i

Though this really is a four-laver tube, it is modeled as a two-layer

tube, the 0 0 layer being three times thicker than the 90° layer.

Despite this lumping of the layers, the comparison between the

approximate approach and the exact solution is quite good. The

correlation seen here is about as good as has been observed in these

studies. As has been seen with the elasticity solution, the peak radial

stresses generally occur at the interface between layers of dissimi"ar

orientation. It has been found that the a pproximate method will accurately
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predict the peak value of radial stress at the interfaces even though at other

locations the predictions for this same stress are not as good.

Figure 6 shows the results for a (903/0) tube. Again the three 900

layers are lumped together and arc represented as one layer. While the

axial stress and the peak radial interface stress are accurately

predicted, the circumferential stresses in the 90° layers are not

accurately predicted. Similarly, the predictions of the radial stress

in the 90° layers is poor. The correlation seen here is about as poor

as observ ad in this study. It has been found in these studies that the

thicker the grouping of layers with circumferential fibers, the less

accurate is the approximate method. The principle of complementary

virtual work with linear stress approximrt'ons tends to underpredict the

peak circumferential stress. For these residual stress states, with a

negative AT, the inaccurate circumferential stresses represent

compression in the fiber direction. Since compression in the fiber

direction is not a concern in these tubes, this error, at least in this

study, is tolerable. Of course, when using the approximate method, a

further discretization of the grouped layers helps improve the

prediction. Figure 7 shows the effects of splitting the one three-layer

grouping in the (90 3/0) in half and representing it with two layers.

The tube is then represented by three layers. The principle of

complementary virtual work uses the extra degrees of freedom quite

efficiently. With ,just this refinement it is easy to predict the

results of addition discretization of the group of 90 0's.

Finally, fig. B shows the comparison between the approximate method

and the theory of elasticity for a tube of engineering interest, the
r

(90/06/90) tube examine„ before. It is clear that the fairly crude
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approximation to the stress fields provides a good estimate of the

stress state. It 1s expected that when a circumferential temperature

gradient and temperature-dependent material properties are considered

for this type of tube, the linear approximation to the stress fields

should be sufficiently accurate for parameter studies.

DEFORMATIONS PREDICTED USING THE PRINCIPLE OF COMPLEMENTARY VIRTUAL WORK

While the principle of complementary virtual work is ideal if

concern is solely with the stress state, it is of interest to study the

deformations predicted by the principle and compare the results with the

predictions of elasticity.

By using the assumed stress fields in the stress-strain relation of

eq. 45, the strains for the kth layer can be written in the form

E (k) = A (k) + 0 (k) 6T + B(k)r
x	 x

E (k) = C (k) + a (k) aT + D (k) r	 (55)
e	 a

e (k)= E (k) + 0(k)AT + F(k)r
r	 r

There are no shear strains. In the above the quantities A(k),...,F(k)

are functions of the layer compliance, S ij , and the constants in the

assumed form of the stresses, a o k) , ..., c (k) , for that layer. Not

surprisingly, the above form of the strains do not satisfy the

compatibility equations. Therefore any predictions regarding

deformations must be viewed with caution. However, it is instructive to

examine the predicted axial CTE for several of the cases shown in Table

1. Table 3 indicates the values of the axial CTE's for four of the six

tubes of Table 1. Only these four were examined because the approximate

analysis was limited to tubes with a maximum of three layers. The
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term a x in Table 3 is the free thermal expansion of each particular

layer in the axial direction. They are taken from Table 1. The term

labeled 'approximate axial CTE' is the quantity ((A/AT) + a x ) and from

eq. 55 is the portion of c x (k) that does not vary with r. The terms

A/aT and B/aT represent the effect of the other layers on the free

axial expansion of the particular layer. It is clear that the B/aT term

contributes very little to c x (k) . This might be expected since the

elasticity solution predicts c x (k) to be independent of r. The fourth

column of Table 3 is the axial CTE predicted by the theory of

elasticity. (Recall, the theory of elasticity predicts that the axial

CTE is the same in all layers.) The agreement between theory and the

approximate method is quite good. With the breakdown in Table 3 it is

Interesting to see how A/aT contributes to the overall axial expansion

of a particular layer. For example, if a x is large, A/aT is negative.

This means that the other layers must restrain the large free thermal

expansion value so the deformation of the layer is, to some degree,

compatible with the deformations of the other layers. Since

compatibility is not satisfied, and since the approximate solution makes

no explicit statements regarding continuity of interface displacements,

the results of Table 3 are remarkable.

THERMAL STRESSES IN A SOLID CYLINDER

As a final note., consider thr case of a solid and unlayered

orthotropic cylinder. Equations 9, 13, and 16 govern the behavior of

the cylinder. In this case there is no inner radius at which to apply

the boundary conditions. Rather, statements must be made regarding

boundedness at the origin, as well as satisfying the boundary conditions

on the outer surface, and the integral condition. Specifically,
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o r (ro )	 0	 Txr(r0)	 0,	 (56)

and w(r) and u(x,r) remain bounded as r - 0,

I.e., w(r), u(x,r) < m, r ^ 0. 	 (57)

Also,

f axrdrdo.
A

Since x > 0, the boundedness condition on w(r) of eq. 16 requires

A2 = 0	 (59)

The condition on the shear stress 
`xr 

at r = ro and the suppression of

axia) rigid body translation requires

C	 0 (eq. 9),

	

D = 0 (eq. 13).	 (60)

The constants A I and c
o
 can be determined from the condition of the	

1

vanishing of the normal stress at r = r o and the integral condition. In	 s

general, neither A I nor e 0 are zero.

For the solid cylinder the nonzero stresses are proportional to

ra-I . If C22 > C33' then xis greater than unity. At r = 0 all three

components of stress are zero. On the other hand, if C 22 < C 33 , then

x is less than unity and the stresses are unbounded at r = 0. The

case C22 < C33 corresponds to the situation when the fibers in the

cylinder are oriented radially. It may be difficult to manufacture such

a cylinder and have the material properties remain constant with

radius. Nonetheless, for this case the tube would be much stiffer in

the radial direction than in the circumferential direction. Figure 9

shows the three components of stress for the case of using the material

properties of Table 1 and assuming the fibers are oriented radially.

The value of x is 0.298. It should be mentioned that the value of x is

a material property and is independent of the fact that the problem is a

(58)

l
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thermal stress problem. The stresses are proportional to r x-I near the

origin for the case of mechanical loads, e.g., an axial load, being

applied to the cylinder.

While the infinite stress is physically impossible, the coefficient

of the infinite stress is of interest. The coefficient is an indication

of the severity of the stress gradient near the centerline of the

cylinder. Unlike the numerical value of a, this coefficient is a

function of whether or not the cylinder is loaded thermally or

mechanically. The coefficient also depends on the radius of the

cylinder. In fracture mechanics this coefficient is related to the 1
j

stress intensity factor. Table 4 presents the stress intensity factors

for the three nonzero components of stress. It is clear from the table

that the radial stress is the most intense as the centerline of the tube

is approached. Since the three intensity factors are positive, cooling

the tube results in high compressive stresses near the centerline. This

situation is more favorable than having high tensile stresses,

particularly in the matrix dire^.ion.

CONCLUSIONS

From the results presented, It can be concluded that for cross-ply

composite tubes cured at an elevated temperature, residual thermal

stresses can be of significant nagiitude. The peak stresses, as well as

the axial CTE, are influenced by the stacking arrangement. It appears

that the principle of complementary virtual work, in conjunction with a

Ritz approach, can be used to estimate the thermally-induced stresses. 	 j

The approach also can be used to predict the axial deformations with a

remarkable degree of accuracy. This, despite the lack of the

approximate solutions satisfying the compatibility equations. When
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considering approximate solutions to thermal stress problems it would

seem that stress-based approaches, such as the principle of

complementary virtual work, are preferrable over displacement-based

approaches. For thermal stress problems, displacements need not be

considered and so there is no need to approximate variables which must

be differentiated to determine the real quantity of interest. Finally, 	 f

in the idealization of linear elasticity, it appears solid orthotropic

cylinders can experience high stress gradiants at their centers.

ACKNOWLEDGEMENTS

The work reported on here was supported by the NASA - Virginia Tech

Composites Program, NASA Coorporative Agreement NAG-1-343. S. S.

Tompkins of the NASA-Langley Research Center monitored the work.

27



TABLE 1

Material and Geometric Properties

E 1 = 146.8 GPa; E2 - 9.929 GPa; E 3 = 9.101 GPa psi

v 12 = 0.3; v 13 = 0.3; v23 = 0.49

a 1 = -0.0774 x 10-6/°C; a2 = 33.66 x 10 -6/ , C = a3

r i = 6.35 mm, layer thickness = 0.127mm
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TABLE 2

Axial Coefficients of Thermal Expansion
For Cross-Ply Tubes

Tube axial CTE (per "C)

(902102 ) 2.468 x 10-6

(90/0/90/0) 2.538 x 10-6

(0/902/0) 2.601 x 10-6

(90/02/90) 2.612 x 10-6

(0/90/0/90) 2.675 x 10-6

(02/902 ) 2.740 x 10-6

29

1'



m
C U
o toO•r
N L-
c CL
10 Q
a
x y
w ++

^

_ rtf
E

a

ml<	 L

L°.•
m h a

Q
J p

~ C N
w .0

1' h aQla,^ L
Ca
D	 I

a
U

U 'AN
O

b L•r t..l

X L
Q O

4-

W,U U
4J	 o
U r
to b L
r N
10 0.
10 u

OJ
N w
EhU
E CJr a

o
X co m S-
S-  •r U!axatob

V
0

X
tl L

Ql
CLv

L
G1
ro
J

O O O
N ..-1 N

x x x

9 t 8
N N N

t0
I

t0
I

0

O O
I
O

•-i N N

x x x
0 o O
LO 0 W

N N N

O to U'!
N

I
. r

O
I
o

I
0

x x x

N N 000
N

I
c>•

I
.-^

1

LO t0 tD
1
O

I
O

I
O

x x x
^p
tD O

pppptD
N - N

M
I

tD tO
t

O
1

O 
O

x xx
n

to iD0O tD O
O M O

1 M I

O O O
N ri •--1

x x x
to
t0

tot0 tDw
N N N

t0 w
1 LO

O O O
.-1 r-1 H

x x x
•-•1 N
U)

to
^ tD

N N N

kD to
N

10 0 0

x x x
to o rnn v 0
M

I
c to

D to tD
1
O

I
O

I
O

x x x
lJ'1 al LDO tD O

NM M
I

t0
l0

O
t0

O O
xx x
I) tO

tO
w

O tD
M O Cl)m I Cl)

to to
O O
N .-1

X x

c c
N N

LD to
1	 1
O O
r-1	 e-1

x x
I\ ^c er
N N

o
1•
o I.-1 0
x x
N
m v

N N
I	 I

to t0
O 0
ri H

x x
CY,	

l r

N
Cl)

I

to

O
N

X x
tO I^
l0 O

M O
M	 I

N N

M o

to w to

N
0 0 0

rn

tD LD tD

N
m o m

to to
O O
N N

x x
a' vn r`
N N

tO t0
I	 I
O O
N	 •--1

x x
c v
n ^
N N

t0	 I^
N r-1

I	 10 0

x x
0 CAo rn
1 l 	 In

D to
O O

x x
N N
00 rn
N O

MI

t0
I	 lI
O 10

x
x

n
1-. 	 t0
O tp

O M
I M

N NCD rn

r

I

f
i

°k

N
.O

h
O

IN
\ N

O
O

ca% o

N
Orn
N
Ov

30



TABLE 4

Stress Intensity Factors For Solid Cylinder

22 ` C33)

Stress Component	 Coefficient of rX-1

ox	 0.0848

a e	 0.1303

ar	 0.4366

' units are such that stress is in MPa/°C increase in temperature
above the reference temperature.
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Appendix 1

Details of the Stress-Strain Relation

Figure Al shows a segment of a cylindrical lamina and the principal

material 1-2-3 and the cylindrical x-e-r coordinate systems. In the

I	

1-2-3 system:

S11 S12 S13 0 0 0 01

S 12 S22 S23 0 0 0 02

S 13 S23 S33 0 0 0 03

0 0 0 S44 0 0 123

0 0 0 0 S55 0 T13

0 0 0 0 0 S66
T12 I

^i•

(A-1)

1	 "12	 "13

E1where	 S11 -	 S12 - - E 1	 S 13 = - E1

1	 "23	 1
S 22 = E 2	 S23 = - E 2	 S 33 - E3

1	 1	 1
S 44 = X23 S 55 = 613 S66 =

12

(A-2)

1^^
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The inverse of this relation	 is:

01	 C11 C12 C13 0 0 0 e1 -alAT

0 2	 C12 C22 C23 0 0 0
c2 -Q2 AT

0 3	 C13 C23 C33 0 0 0 e3-a3AT

I

T23	
0 0 0 C44 0 0

Y23

T 13	 0 0 0 0 C55 0
Y13

T 12	 I	 0 0 0 0 0 C66 1	 Y12

( A- 3 ) ^.

In the x-o-r system, eq. A-1 transforms into

e X - a XAT
ox i

c  - a 6 AT ae !,

E	 - a AT
r	 r

a

r

(A-4)

=	 ISI j

Y or T or

Yxr Txr

YX9 - a
xe AT

TXB

^h
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ii

B

I

and eq. A-3 transforms into

ox	ex - aXAT

0o	 eo - aeAT

a r	= [cJ	 e  - arOT

T or	 Yor

T xr	 YXr

T xo	 Yxe - QXO
°T

In the above

311 
= m4S11 + m

2 n2 (2S 12 + S 66 ) + n4S22

S 12 = S21 = (m4 + n4)S 12 + m2n2(S 11 + S22 - S66)

313 = 531 = (n 
2 
S23 + m 2S13)

516 = mn [m2 (2S 11 - 2S 12 - S66 ) + n2 (2S 12 - 2S22 + S66)1

S22 = n4S 11 + m2 n2 (2S 12 + S66 ) + m4S22

2	 2
S23 = S 32 = (m S23 + n S13)

S26 = mn [m2 (2S 12 - 2S22 + S66 ) + n2 (25 11 - 2S 12 - 566)1

S33 = S33

	

S 36 = S63 = 2mn(S13	 S23)

544	
2

= m S44 + n 2S55

S45 = S 54 = mn(S
55
 - S44)

S 55 = n 
2 
S 44 + m 2S55

S 6 = 4m2n 2 (S 11 - 2S 12 + S22 ) + S66 
(m2 _ n2)2

M = cosm	 n = sino
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and

Cil = m4 C 11 + 2m2n2 (C 12 + 2C66 ) + n4C22

C 12 = n2m2(C 11 + C22 - 4C66 ) + (n4 + m4)C12

C13
2	 2

= m C 13 + n C23

C16 = mn [ m2 ( C 11 - C 12 - 2C66 ) + n2(C12 - C22 + 2C66)1

C22 = n 4C 11 + 2n2m2 (C 12 + 2C66 ) +
m4C22

C23
2	 2= n C 13 + m C23

C26 = mn[n2(C11 - C 12 - 2C66 ) + m2 (C 12 - C22 + 2C 66
)]

C 33 = C33

C36 = mn(C 13 - C23)

C44 = m2C44 + n2C55

C45 = mn(C 55 - C44)

C55 =
2	 2n C44 + m C55

C66 =
2 2

m n (C 11 - 2C12 + C22 ) 
+ C66(m

2 -
n 2

) 2

Also

ax = m 
2 
a l + n 2 a2 ;	 a e = n 2a l + m2 021ar = a3

aer = 0 = axr;	 aXe = 2mn(a l - a2) f

^h
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Fig. A-1 Segment of cylindrical lamina.
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Appendix 2

Definition of Constants in Approximate Method

e 1 = F2/H2 ; 92 = H1/H2; e3 = G2/H-9

F2 ` (rl3 - r i
3 
)/3 ; H L = (r2 - r{)/2 ; G2 = (ro - ri) /3

H2 = ( ro - ri)/2

r i = inner tube radius

ro = inner tube radius

r l = radius to interface between layers.
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