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ABSTRACT

The study: (1) Investigates the effects of a uniform temperature change
on the stresses and deformations of composite tubes; (2) Determines the
accuracy of an approximate solution based on the principie of complementary
virtual work. Interest centers on tube response away from the ends and so a
planar elasticity approach is used. For the approximate solution a piecewise
1inear variation of stresses with the radial coordinate is assumed. The
raesuits from the approximate solution are compared with the elasticity
solution. The stress predictions agree well, particularly peak interlaminar
stresses. Suprisingly, the axial deformations also agree well. This despite
the fact that the deformations predicted by the approximate solution do not
satisfy the interface displacement continuity conditions required by the
elasticity solution. The siudy shows that the axial therwal expansion
coefficient of tubes with a specific number of axial and circumferential
layers depends on the stacking sequence. This is in contrast to classical
lamination theory which predicts the expansion to be independent of the
stacking arrangement. As expected, the sign and magnitude of the peak
interlaminar stresses depends on stacking sequence, For tubes with a specific
number of axial and circumferential layers, thermally-induced interlaminar

stresses can be controlled by altering stacking arrangement.



INTRODUCTION

Tubes are efficient structural elements for reacting bending,
axiat, and torsional loads. I[n addition, when using fiber-reinforced
materials, tubes can be efficiently made using filament winding or one
of several other automated techniques. Stiffness, strength, and thermal
expansion properties of the tube can be controlled by varying the number
of layers of fiber-reinforced material, and by varying the angle of the
fibers relative to the axial direction. However, for fiber-reinfaorced
materials 1ike graphite-epoxy, tubes are made by curing the epoxy at an
elevated temperature. Typical epoxies cure at 120-175°C {250-350°F)
while epoxies made for high temperature operation cure at 290-340°C
(550-650°F). Operating a graphite-epoxy tube below the cure temperature
of the material can result in high residual stresses. If the stresses
are too high, material failure can occur, resulting in a loss of
performance of the tube.

Graphite-epoxy tubes are currently being considered as a major
building block for large orbiting space structures. Ambient
temperatures as low as -156°C (-250°F) can occur in space. To use tubes
effectively, understanding their response in these thermal environments
is quite important. This paper reports on the calculation of the
response of layered tubes to a spatially uniform temperature change.

The change represents the difference between the tube fabrication
temperature and the temperature of its operating environment. The
responses of interest in this paper are the thermally induced stresses
and the axial thermal expansion characteristics. The latter response is
important for dimensional stability considerations, both during the

assembly of large structures, and during operation. Unless dimensional



changes are controlled, orbiting into and out of the earth's shadow can
cause problems, Of particular concern is the influence of layering
arrangement on stresses and axial expansion.

The tubes considered are of a constant inner and outer diameters.
The tubes are made of multiple layers, each layer having properties
which represent unidirectional graphite-epoxy. £ach layer will be
assumed to be homogeneous and either orthotropic or transversely
isotropic in a coordinate system aligned with the axis of the tube. In
terms of fiber-reinforced material, the study is restricted to what are
referred to as cross-ply tubes. A layer is said to be a 0° layer if the
stiff, or fiber, direction is axial. A layer is said to be a 90° Tayer
if the fiber direction is circumferential. Stacking sequence notation
common to the analysis of layered composite materials wilil be used. A
tube designated as a (90/0/90/0) tube is a cross-ply tube and has four
layers. The inner layer and the second layer from the outside have
their fibers aligned circumferentiaily (90°). The outside layer and the
second layer from the inside have their fibers aligned axfally (0°). A
(0/90/0/90) tube would have the fibers in the inner layer oriented
axially, etc. Interest centers on the portions of the tube away from
the ends. In practice, the end fittings used to connect the tubes
together will dictate to a large degree the stress state near the
ends. Since these regions on the end of the tube constitute such a
small percentage of the total tube length, the overall axial thermal
expansion characteristics, for example, could well be determined by the
large percentage of the length of the tube away from the ends.
Therefore, a generalized plane deformation elasticity solution is used

to determine the tube response. The solution assumes that the stresses
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are not a function of the axial coordinate of the tube. An elasticity
solution, as opposed to a shell-1ike approach, 1s used because some
tubes being considered for use have mean radius to wall thickness ratios
of less than 10. For such a small ratio, through-the-thickness effects
have to be accounted for. To account for these effects, a higher-order
shell theory could be used. However, an elasticity approach is felt to
be more direct,

With a spatially uniform temperature, the problem is assumed to be
axisymmetric. Thus, with no dependence of the stresses on the axial
coordinatz, and using the axisymmetry assumption, the equations
governing the tube response reduce to ordinary differential equations.
Interesting and useful engineering information is obtained from the
solutions, In addition, it is possible to see explicitly how the
assumption of transverse isotropy in a layer affects the differential
equations governing the behavior o that layer.

Loeoking beyond the axisymmetric problem, the solution to the
axisymmetric problem can serve as a guide for constructing approximate
solutions to problems having no closed-form solution. An example of
such a problem is the determination of the stresses in a layered tube
with temperature-dependent material properties and subjected to a
circumferential temperature gradient. Such a condition can exists with
a tube in space, with the one side heated by the sun and the other side
exposed to the cold of its own shadow. A significant circumferential
temperature gradient would exist within the tube. To address such a
problem, finite-elements, or some other numerical technique can be
used. Here the use of the principle of complementary virtual work, in

conjunction with a Ritz approach, is explored. However, here the



circumferential temperature gradient problem is not solved. The
axisymmetric problem is resolved in &n approximate sense, using simple
functional forms for the stresses. The stresses and deformations
determined by this approximate approach are compared with the elasticity
solutions in order to evaluate the use of this approximate approach for
more complicated problems,

The paper begins by deriving the governing equations for the
elasticity solution. Key assumptions and their effect on the governing
equations are emphasized. The second section presents numerical results
based on the elasticity solution. The effect of layering arrangement on
the residual stresses and the axial thermal expansion are 11lustrated.
The third section formulates the problem from the point of view of the
principle of complementary virtual work and a Ritz approximation to the
stress fields. The fourth section presents a comparison between
numerical results from the virtual work solution and the elasticity
soluticn. The weak and strong points of the approximate solution are
discussed. Though not directly related to the study of tubes, the fifth
section presents an interesting sidelight, namely the examination of the
residual stresses in a solid cylinder. It is demonstrated that the
theory predicts unbounded stresses at the center of the cylinder if the

material constants satisfy a certain rather general condition.



DERIVATION OF THE GOVERNING EQUATIONS

Figure 1 shows the coordinate system and nomenclature associated
with the layered tube. The inner radius is denoted as ry,» the outer
radius ro+ and the radii of the interfaces ry, ra, ete. The axial
coordinate is x and the displacement in that direction is u., The
circumferential coordinate is ¢ and v denotes circumferential
displacement. The radial displacement is w and r the radial
coordinate. The usual notation is used to identify the components of
stress and strain, 1.e., o is the normal stress in the radial
direction, Yes 1s the engineering shear strain in the x-8 plane, etc.
The temperature of the tube is AT above some reference temperature.
Here the reference temperature will be the cure temperature of the
material and aT will be negative. The equations governing a single
isolated layer will be derived. The solution to the equations will be
expressed in terms of unknown constants of integration and the layer
material properties. There wil? be one such solution for each layer.
The constants associated with each layer will be determined by enforcing
the stress-free boundary conditions on the inner and outer surface, ry
and r,, and by enforcing certain interface conditions at ry, r,, etc.
In addition, because of the planar nature of the solution, certain
integrated conditions will be used in the determination of the
constants.

Bacause the problem is axisymmetric and each layer is orthotropic
in the x-8-r coordinate system, the circumferential component of
displacement in each layer is zero. Because of axisymmetry, neither of
the other two components of displacement depend on the circumferential

coordinate. Furthermore, in the portion of the tubes away from the



ends, the radial displacement {s a function only of the radial
coordinate. With these assumptions, the displacements in each layer

take the form:

u = u(x,r)
v = 0, (1)
w = w(r)

The strain-displacement relations then simplify to

E = EH b E -1 E . [ = gﬂ
X 3ax ' & r'“r dr (2)
- . = EE * =
Yo =03 Yyp Tar b Yor = O

where the total derivative has been used where possibie.
Since each layer is orthotropic, or transversly isotropic, the
stress-strain relation for each layer can be expressed in the x-g-r

coordinate system as

Ux cll C12 C13 0 O 0 EX - 0 ﬁT

9 Clp Cop Cp3 O - agal

o Ci3 Gy T33 O - apdl (3)
3

Tor 0 0 0 Cag Yor

Txr 0 0 0 0 _55 Txr

Txo 0 0 0 0 ‘%6 Yxg

N _

In this coordinate system thermal expansion effects are purely

dilatatieral. The f1j's are elastic constants related to the Young's
moduli, the Poisson's ratios, and the shear moduli of the material.
The a's are the coefficients of thermal expansion. Here all properties

will be assumed to be temperature-independent but the methodology is



valid for the temperature-dependent situation. The material constants
are different for each layer and Appendix 1 gives expressions for

the 513 in terms of the more familiar engineering constants

(El‘ EZ' reer Vis weey Opy «».) in the principal material system.

By eq. 2 and the stress-strain relation,
1,, =0=1 . (4)

Since all stresses are independent of x and e, all the strains are
also., Using this fact, along with the definitions of €. and €q from eq.
2, four of the six compatibility equations are automatically

satisfied., The two that are not reduce to

dze
£ =0
> =
dr
) (5)
1 %x
rar -0 -
Integrating the first of these leads to
ex(r) =Ar+8 , (6)

A and B being constants. The second equation requires A to be zero.

Redefining B to be &°,
e (r) = €° (7)

and it is seen that the axial strain in a layer is not a function of any
of the coordinate variables.
Likewise, with the assumptions of the independence of the stresses

of x and @, and using eq. 4, the equilibrium equations simplify to



txr o, lxr
dr r

(8)

the third one being automatically satisfied. Integrating the second

equation results in

’ (9)

il

xXr

C being a constant.
The functional form of u(x,r) can be found from the above
results., Using eq. 7, the first strain-dicplacement relation {eq. 2)

integrates to

o

u(x,r) = e x + f(r) , (10)
f(r) being an arbitrary function of r. From eqs. 2, 3, and 9,
Jdu _df _Txr_C 1
xr dr dr Tg  TF v (11)
55 55
or
fF(r) =%~ nr+0D, (12)
Css
D being a constant. With this result
u(x,r) = % + & 1n v + 0. (13)

Cs5
By writing the stresses in terms of the displacements, the first

equilibrium equation leads to a differential equation for w(r), namely

where

+ L
r

(14)



Ie (313 - flz)ux + (f23 - Ezg)u9 + (333 - f23)ar]AT . (15)

With the solution to u(x,r) available and by solving for w(r), the
complete solution is availlable for application to either a single-layer

problem or to a multipie-layer problem,

SOLUTION FOR w(r)

Equation 14 has a solution of the form

(C Ciq) -
w(r) = Alr* + Azr‘* + —:lg——-:ll— r+Tr (16)
(Cg3 - C32)
with
-
=\ E (17)
C33

Many times it is assumed that a ‘ayer of fiber-reinforced material is
transversely isotropic in the plane perpendicular to the fibers. In the
nomenclature of Appendix 1, and in the nomenclature common to fiber-
reinforced materials, this is the 2-3 plane. While isotropy in that
plane may not be exactly satisfied, for lack of complete material
property data, transverse isotropy is often assumed. Referring to
Appendix 1 for nomencliature, the assumption of transverse isotropy
implies
E2

B3 = Bpi Vi3 = Vi S ST T ) F %2 T (18)

In this problem the assumption influences the equation governing the

behavior of a 0° layer. For a transversely isotropic 0° layer,

C33 = Cpp 3 Gyg = Lo ap =0y s (19)

and the equation for w{r), egq. 14, becomes homogeneous and not dependent



on material prope: ties. The equation becomes

d*w ., 1l dw W
+ - - e 0 0 (20)
E;? r dr -2
and has solution
Ay
W(r) = Alr + T (21)

To determine the constants Al. Apy €, D and a°, boundary,

interface, and an integral condition must be applied.

BOUNDARY CONDITIONS

Single Layer

The conditions for a single layer are that tractions vanish at the

inner and outer radii, namely,

o.(ry) =05 o (r)) =03 7, (ry) =03 x,.(r)) =0

rar(r1) = 03 rer(ro) = (22a~f)

and that the net axial force acting on the cross-section of the layer is
zero. This axial force condition can be expressed as

| o rdedr =0, (23)

A X

where A is the cross-sectional annular area of the layer. The integral

can be written more specifically as

"o
2n [ a (rir dr = 0. (24)
r
i
Other resultant equations, such as the net cross-sectional moment and

the net torsional moment being zero, can be written for the cross-
section. However, all except eq. 23 are automatically satisfied. As a

final condition, rigid body displacements of the layer must be

10



suppressed.
By eq. 4, eqs. 22e and f are automatically satisfied. Application
of egs. 22c and d requires C of eqs. 9 and 12 to be zero. Suppressing

rigld body axial motion forces D of eq. 13 to be zero. As a result
0
u{x,r) = ¢ x, (25)

Applying eqs. 22a and b, and eq. 24 leads to three equations for Al, A2,
and %, With these coefficients known, the stresses and displacements

in a single layar can be determined.

Multiple Layers

For multiple layers, the solutions for Txr(r)' u(x,r), and w(r) in
eqs. 9, 13 and 16 require a different set of constdnts for each layer.
Because the material constants for each layer can be different, the

vatue of A will be different for each layer. For the kth layer,

(k)
k
T)((r)=""r':_"o (26)
. k
U(k}(x.r) = oK)y 4 %ég} Inr+plk) (27)
J
and
w(k) _ w(k)
w(k)(r) = A(k)rx(k) + A(k)r"*(k) + (C12 C13 ) eo(k)r + L k)r
1 2 ik} _ (k) ’
(€33 - C32")
where
R R R
and
k) A/
R .



[f the layer is transversely isotropic,

a(k)
w(k)(r) = A{k)r + —%—— . (30)

For N layers, there are N eo's, NC's, ND's, N Al and N A2's, ar
SN unknown constants. These constants are determined by satisfying the
traction-free conditions on the inner and outer radii, satisfying
continuity of tractions at each interface, satisfying continuity of
displacements at each interface, suppressing rigid body motion, and by
applying an integrated condition on the cross-sectional area. These are
explained below.

Since layer 1 is the inner Tlayer and layer N is the outer layer,
the traction-free conditions at the inner and outer radii are

cil)(ri) =03 rii)(r1) =03 rgi)(ri) =0 (3a-c)

(N} =0« (M) =0 - (N( -
o (r‘o) 0 Ter (r‘o) =0 3 ™ (r ) = (31d-f)
By eq. 4, eqs. 31c and f are automatically satisfied. Equations 31b and
e lead to, from eq. 26,
¢l o M oy, (32)

Continuity of the interface fractions can be expressed as

o8Ny = o ey 5 By < (N ()

) = ey L ks L2 e, (33a-c)

Again by eq. 4, eq. 33c is automatically satisfed. Equation 33b, along

with eq. 32, leads to the conclusion that j
A S (34)

More will be said of eq. 33a shortly.

12




Continuity of the interface displacement can be written as

WKr ) u(k+1)(rk.x) s vty v(k+])(rk) ;
w(k)(rk) m w(k+1)(rk) voko=1,2,..0 N1, (35)
Obviously since v = 0 in all layers, continuity of the circumferentia)l

displacements is automatically satisfied. Substituting from eq. 27, and
using eq. 34, eq. 35a results in

Ok)y 4 plk) o Jo(ksl) | (k1) k= 1,2,0,001. (36)

This equation leads to the conclusion that the constant axial strain for

each layer is the same for all layers and so the tube-as-a

-whole has
strain ¢°.

This strain is given by

eo(k) = ¢° » k=1,N. (37)

Also frem eq. 36, a1l p(k) must be equal and

» 1f axial rigid body motion
is eliminated,

o) =g | k=1 (-8)
At this point
W (r %) = 69 (39)
and
(k) _ =(k)
(K py = a2 g ) T AT (k)..
W (r) = Ay + A2 r + (:rFT—_f:rET)E r+z (40}
G313’ - €3
or 2 (K)
Wk ey = alk)y Z_. (41)

These exprassions for u and w involve N A]'s, N Az‘s, and e°, or 2N + |

13



unknowns., The first and fourth of eq. 31, the first of eq. 33, and the
third of eq. 35 provide 2N equations. The remaining necessary equation
1s determined by the integral condition that there is no net axial force
acting on the cross section of the tube, i.e.,

[ o _rdedr, (42)
A X

where now A is the annular area of all N layers. Specifically this
condition is written as

N Tk

2z [ oFrar =0, (43)
k=1 r
k-1

The complete solution for the displacements, and hence the stresses, for
the N layers is now available, This whole process can be easily
automated for an arbitrary number of layers, each with arbitrary but

orthotropic or transversely isotropic material properties.

NUMERTCAL RESULTS

To illustrate some of the thermal effects that occur in layered
composite tubes, the numerical results for several specific problems
will be presented. Table 1 lists the material and geometric properties

used in these numerical examples.

Effect of Stacking Sequence on Residual Stresses

Figures 2 and 3 illustrate the residual axial, circumferential '
(hoop), and radial stresses in two four-layer graphite-epoxy tubes. The
tube in fig. 2 has a stacking sequence of (0/90/0/90) while the tube of
fig. 3 has a stacking sequence of (90/0/90/0). Each tube is at a
temperature 280°C (500° F) lower than its curing temperature. As far as

axial stiffness is concerned, these two tubes are practically identical,
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as are other combinations of two 0° layers and two 90° layers. (Axial
stiffness is an important desigr parameter in many space structures.)
In the figures the stresses are illustrated as a function of the
nondimensional radius o, p = (r - ri) / (ro - ri) .

By examining figs. 2 and 3 it can be seen that for both tube
configurations there are high tensile stresses perpendicular to the
fiber direction. Also, there are high compressive stresses in the fiber
direction. The magnitude of the tensile stresses are such that the
brittle epoxy could easily crack. These high stresses could be expected
and predicted to some degree of accuracy without resorting to elasticity
theory. However, it has beern found for these particular cross-ply
tdbes, the less refined theories, e.g., classical lamination theory,
underpredict the compressive stresses in the hoop direction. In
addition, figs. 2 and 3 show an interesting effect concerning the radial
stresses that can onily be predicted using the more refined theory.
Figure 2 shows that for the (0/90/0/90) tube the interface between the
outer 0° and 90° layers experiences a tensile radial stress. The value
of the tensile stress is not high compared to the axial and
circumferential stress components. However, the peak tensile stress
occurs at an interface between layers, a region that can be weaker in
tension than the other portions of the tube. Figure 3 shows that by
interchanging layer order, the interface with the peak stress now
experiences a compressive stress and the peak tensile stress, which is

now at another interface, is considerably less.

Effect of Stacking Sequence on the Coefficient of Thermal Expansion

As the temperature of the tube is reduced below its cure

temperature, the thermal expansion effects, coupled with the elastic
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properties, will produce a change in length of the tube. The

quantity ¢ 15 a measure of this axia) deformation. Recall that ¢° is
the same for all layers. The quantity formed by dividing e° by 4T 1is
the axial coefficient of thermal expansion (CTE) of the tube. For
dimensional stability studies, this axpansion coefficient is of great
interest. As will now be demonstrated, stacking segquence influences
this quantity to some degree.

If all combinations of four-layer tubes with the fibers in two
layers being axial and the fibers in the two other layers being
circumferential are considered, six different stacking sequences are
possible. Table 2 shows the axial CTE's of these six combinations.
Suprisingly enough, the coefficients vary by 7% among the six tubes.
While a 7% variation may seem low, there have been efforts to construct
tubes with a specific axial CTE. It would seem that stacking arrange-

ment, as well as fiber orientation, could be used to help achieve this.

Further Exampies

To provide motivation for the next portion of the paper, and to
provide other examples of residual effects, a (90/06/90) tube is
considered. Such a tube is a prime candidate for structural
applications. This tube has a high axial stiffness due to 80% of the
fibers being in the axial direction. The circumferential layers are
referred to as skins while the six axial layers are referred to as the
core. The skins serve to keep the axial layers together. However,
these circumferential layers contribute significantly to the thermail
stress state.

Figure 4 shows the three components of thermally induced stress for

this skin/core tube. In both the skin and the core the fibers are in
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compression. Que to the high axial stresses in the skins, the skins
probably will exhibit circumferential cracks. This does not degrade
their function of holding the core together. The core itself could wel)
have cracks in it also. The cracks would be radfal, running the length
of the tube. There is a tensile peak in the radial stress between the
outer skin and the core. The radial stress between the inner skin and
the core is compressive.

If the effects of temperature-dependent material properties are
important in a particular instance, the preceeding analysis can be
used. Temperature dependence of the 513'5 and the ao's does not affect
any of the derivation. However, as mentioned in the INTRODUCTION, the
effects of circumferential temperature gradients on the stresses could
be of interest. If the material properties are assumed to be
independent of temperature, closed-form solutions may be possible,
depending on the functional form of the gradient. However, if
temperature-dependent material properties are to be included with a
circumferential gradient, closed-form solutions are probably not
possible, except for some special cases. In general, an approximate
method would have to be used to determine the stresses. The next
section explores the use of the principle of complementary virtual work
in conjunction with a Ritz approximation to the stress fields to study
thermal stresses in layered tubes. Only the uniform temperature case
just considered will be studied. However, comparisons of the
complementary virtual work approach with the elasticity solution will

serve as a measure of the accuracy of the approximate approach.

APPROXIMATE METHOD BASED ON COMPLEMENTARY VIRTUAL WORK

For the problem here, if the volume V is considered as the volume

17



for all N layers, and the surface S 1s considered as the inner surface
plus the outer surface of the tube, the principle of complementary
virtual work can be written as

+ + + +
f(exéax e do epbo. + v, 6T ¥, .6

+
v 8°% orSTor * YxrbTxr * YxgSTxo) 4V

+ IS(UGTX *veT, + weT )dS =0 . (44)

For this problem the tractions on the surface, Tx, Te’ Tr, are known,
specifically they are zero. Therefore the surface integral is not
fnvolved, Implicit in the above equation is the fact that the stresses
being varied must satisfy the equilibrium equations and the traction
boundary and interface continuity conditions.

When using the complementary principle it is more convenient to

invert the stress-strain relation of eq. 2 and write (see Appendix 1)

e, ~ a,8T Si1 S;p 513 O 0 0 o,

€y - aaAT 512 522 §é3 0 0 0 o

e, - a AT _ §13 §é3 S33 O 0 0 o (45)
Yor 0 0 0 Sy 0 0 Tor
Yxr 0 0 0 0 S5 O Txr
Yy {* 0 0 0 0 0 565 o |*

Approximate solutions to the thermal stress state can be obtained
from eq. 44 by assuming that the stresses can be expressed in terms of
specific functional forms and unknown coefficients. Exp]ic1£1y
integrating the volume integral results in Euler equations, in the form
of linear algebraic equations, which can be solved for the unknown

coefficients. The nature of the stresses illustrated in figs. 2-4

18



provides a strong motivation for assuming a simple 1inear variation of
stresses within each layer. If circumferential temperature gradients
were involved 1t would make sense to assume the stresses couid be

approximated by the product of function of e and linear function of r.

Thus for an N-layer tube, the stresses are assumed to be of the form

ol = (k) 4 (k)
o{K) < b0l bkl a1, (46)
a&k) 2 aék) + a{k)r

all other stresses being zero. The superscript denotes layer number

k) are to-be-determined constants. Ffor a N-layer tube

and agk),....cg
there are 6N constants. However, to use these in the virtual work
statement the assumed stresses must satisfy the equations of equilibrium
and the traction boundary conditions. In addition, for this problem
there are two further conditions. The first one is that o, must be
continuous at the interfaces between layers. The second one is that the
axial stresses in the layers must be such that the net axial force is

zaro.

To satisfy the equilibrium equations, eq. 8,
(k) o (k) (k) - (k) -
a,"" = bo and 2al = by, k = 1,N ., (47)

Since the inner and outer layer (k = 1 and N) are traction free at r =

ryand r=rg, respectively, applying eqs. 3%a and d to eq. 46 leads to

1 1
ag ) 4 a{ )r1 =0 (48)

agN) + a{N)ro =0,

Because o is continuous at the interrace between the kth and (k + 1)st

19



layers,

a(()k) + dgk)l‘k = dc()k+.|) + aik”)r‘k » ko= 1N-1 . (49)

The remaining condition on the approximate stresses is the integrated

condition on the cross-section, eq. 42. This leads to

"1 N Tk-l
an{[ (c(l) + c(l)r)rdr + ¢ [ (cgk) + c{k)r)rdr
" k=2 "
"o
s L (€M v eMryrar) = 0 (50)
"N-1

For a two-layer tube, for example, the stresses that satisfy the above

conditions are given by

Tayer 1
o, = () v Dy
o, = alt(2r - ry) (51)
1
9, = al )(r - ry)
layer 2

o, = ciz)(r - B3) - 31c£ ) . B,C (1)

ry-r
a(l) ( 1 - lo)(Zr - ro) (52)

ry-r
o = a{t) (;%—:—%;)(r - )

The quantities Bir Bos and By are known constants involving the iube
geometry. They are defined in Appendix 2. There are four constants,
agl), cgl), cgl), ng)’ that determine the stress state. For a three

layer tube there are seven constants.
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Substituting the stresses into the strains and the strains into eq.
44, and also substituting the first variations of the strecses into eq.

44, 1integration of eq. 44 leads to an equation of the form

Fr(efY e, of), @l 4 D, oD, ef1), o2t

f3(a£1). cgl), c{l), c{z))scgl) + Fd(agl), cgl), c{l). cgz))scfz) = 0.

(53)

The equations

f1 =0 , 1=1,4 (54)
lead to solutions for agl), cgl), c{l) and c{z).

NUMERICAL EXAMPLES USING APPROXIMATE METHOD

Figures 5-7 show examples of the predictions of the approximate
method. The exact elasticity solution 1s included in each example - as
a comparison. The examples depict situations designed to t1lustrate the
level of accuracy of the approximate method rather than to i1lustrate
results of engineering significance.

Figure 5 shows the three components of stress for a (03/90) tube.
Though this really is a four-laver tube, it is modeled as a two-layer
tube, the 0° layer being three times thicker than the 90° layer.

Despite this lumping of the layers, the comparison between the
approximate approach and the exact solution is quite good. The
correlation seen here is about as good as has been observed in these
studies. As has been seen with the elasticity solution, the peak radial
stresses generally occur at the interface between layers of dissimiar

orientation. It has been found that the approximate method will accurately
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predict the peak value of radfal stress at the interfaces even though at other
locations the predictions for this same stress are not as good.

Figure 6 shows the results for a (903/0) tube. Again the three 90°
layers are lumped together and are represented as one layer. While the
axial stress and the peak radial interface stress are accurately
predicted, the circumferential stresses in the 90° layers are not
accurately predicted. Similarly, the predictions of the radial strass
in the 90° layers is poor, The correlation seen here is about as poor
as observed in this study. It has been found in these studies that the
thicker the grouping of layers with circumferential fibers, the less
accurate is the approximate method. The principle of compiementary
virtual work with Tinear stress approximattons tends to underpredict the
peak circumferential stress. For these residual stress states, with a
negative AT, the {naccurate circumferential stresses represent
compression in the fiber direction. Since compression in the fiber
direction is not a concern in these tubes, this error, at least in this
study, is tolerahle. Of course, when using the approximate method, a
further discretization of the grouped layers helps improve the
prediction. Figure 7 shows the effects of spiitting the one three-tayer
grouping in the (905/0) in half and representing it with two layers.

The tube is then represented by three layers. The principle of
complementary virtual work uses the extra degrees of freedom quite
efficiently. With just this refinement it is easy to predict the
results of addition discretization of the group of 90°'s.

Finally, fig. 8 shows the comparison between the approximate method
and the theory of elasticity for a tube of enginzering interest, the

(90/0g/90) tube examine. before. It is clear that the fairly crude
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approximation to the stress fields provides a good estimate of the
stress state. It 1s expected that when a circumferential temperature
gradient and temperature-dependent material prcperties are considered
for this type of tube, the lirmar approximation to the stress fields

should be sufficiently accurate for parameter studies.

DEFORMATIONS PREDICTED USING THE PRINCIPLE OF COMPLEMENTARY VIRTUAL WORK

While the principle of complementary virtual work 1s ideal if
concern is solely with the stress state, 1t is of interest to study the
deformations predicted by the principle and compare the results with the
predictions of elasticity.

By using the assumed stress fields in the stress-strain relation of

eq. 45, the strains for the kth layer can be written in the form
Eik) = A(k) + uﬁk)AT + B(k)r

k K K K
() = clk) 4 o{Khgr 4 plk)y (55)

e{K) = () 4 o (K1 4 p k),

There are no shear strains. In the above the quantities A(k),...,F(k)
are functions of the layer compliance, §1J' and the constants in the

k) ..., c{k), for that layer. Not

assumed form of the stresses, aé
surprisingly, the above form of the strains do not satisfy the
compatibility equations. Therefore any predictions regarding
deformations must be viewed with caution. However, it is instructive to
examine the predicted axial CTE for several of the cases shown in Table
1. Table 3 indicates the values of the axial CTE's for four of the six
tubes of Table 1. Only these four were examined because the approximate

analysis was limited to tubes with a maximum of three layers. The
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term a, in Table 3 is the free thermal expansion of each particular
layer in the axial direction, They are taken from Table 1. The term
labeled 'approximate zxial CTE' is the quantity ((A/aT) + ux) and from
eq. 55 1s the portion of cx(k) that does not vary with r. The terms
A/aT and B/aT represent the effect of the other layers on the free
axial expansion of the particular layer. It is clear that the B/aT term

k). This might be expected since the

contributes very little to ex(
elasticity solution predicts ex(k) to be independent of r. The fourth
column of Table 3 1s the axial CTE predicted by the theory of
elasticity. (Recall, the theory of elasticity predicts that the axfatl
CTE 1s the same in all layers.} The agreement between theory and the
approximate method is quite good., With the breakdown in Table 3 it is
interesting to see how A/aT contributes to the overall axial expansion
of a particular layer. For example, if oy 1s large, A/aT is negative.
This means that the other layers must restrain the large free thermal
expansion value so the deformation of the layer is, to some degree,
compatible with the deformations of the other layers. Since
compatibility is not satisfied, and since the approximate solution makes

no explicit statements regarding continuity of interface displacements,

the results of Table 3 are remarkable.

THERMAL STRESSES IN A SOLID CYLINDER

As a final note, consider thr case of a solid and unlayered
orthotropic cylinder. Equations 9, 13, and 16 govern the behavior of
the cylinder. In this case there is no inner radius at which to apply
the boundary conditions. Rather, statements must be made regarding
boundedness at the origin, as well as satisfying the bounrdary conditions

on the outer surface, and the integral condition. Specifically,
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or(ro) =0 ; Txr(ro) = 0, (56)
and w{r) and u(x,r) remain bounded as r + 0,
1.e., w(r), u(x,r} <o, r + 0, (57)
Also,

IA o, rdrde. (58)

Since » > 0, the boundedness condition on w(r) of eq. 16 requires
A, = 0. (59)
The condition on the shear stress Ter at r = ry and the suppression of
axia" rigid body translation requires
C =0 (eq. 9),
D =0 (eq. 13). (60)
The constants A; and e can be determined from the condition of the

vanishing of the normal stress at r = r_, and the inteqral condition, In

0
general, neither A; nor e¥ are zero.

For the solid cylinder the nonzero stresses are proportional to
r*”l. If EZE > 633, then » is greater than unity. At r = 0 all three

components of stress are zero. On the other hand, if C,, < C then

22 33
x» is less than unity and the stresses are unbounded at r = 0, The

case Eéz < 533 corresponds to the situaticn when the fibers in the
cylinder are oriented radially. It may be difficult to manufacture such
a cylinder and have the material properties remain constant with

radius. Nonetheless, for this case the tube would be much stiffer in
the radial direction than in the circumferential direction. Figure 9
shows the three componants of stress for the case of using the material
properties of Table 1 and assuming the fibers are oriented radially.

The value of A is 0.298. It should be mentioned that the value of A is

a material property and is independent of the fact that the probiem is a
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thermal stress problem. The stresses are proportional to r*"l

near the
origin for the case of mechanical loads, e.g., an axial load, being
appiied to the cylinder.

While the infinite stress is physically impussible, the coefficient
of the infinite stress is of interest. The coefficient is an indication
of the severity of the stress gradient near the centerline of the
cylinder., Unlike the numerical value of A, this coefficient is a
function of whether or not the cylinder is loaded thermally or
mechanically. The coefficient also depends on the radius of the
cylinder. In fracture mechanics this coefficient is related to the
stress intensity factor. Table 4 presents the stress intensity factors
for the three nonzero components of stress. It is clear from the table
that the radfal stress is the most intense as the centerline of the tube
is approached. Since the three intensity facters are positive, cooling
the tube results in high compressive stresses near the centerline. This
situation is more favorable than having high tensile stresses,

particularly in the matrix direc.ion.

CONCLUSIONS

From the resuits presented, it can be concluded that for cross-ply
compasite tubes cured at an elevated temperature, residual thermal
stresses can be of significant nagnitude. The peak stresses, as well as
the axial CTE, are influenced by the stacking arrangement. It appears
that the principle of complementary virtual work, in conjunction with a
Ritz approach, can be used to estimate the thermally-induced stresses.
The approach also can be used to predict the axial deformations with a
remarkable degree of accuracy. This, despite the lack of the

approximate solutions satisfying the compatibility equations. When
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considering approximate solutions to thermal stress problems it would
seem that stress-based approaches, such as the principle of
compiementary virtual work, are preferrable over displacement-based
approaches. For thermal stress problems, displacements need not be
considered and so there is no need to approximate variables which must
be differentiated to determine the real quantity of interest. Finally,
in the idealization of linear elasticity, it appears solid orthotropic

cylinders can experience high stress gradiants at their centers.
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TABLE 1

Material and Geometric Properties

El = 146.8 GPa; Ez = 9.929 GPa; Eq
0.3;

9,101 GPa psi

i
it

vip = 0.3; V13 0.49

V23

= 33.66 x 10°6/°C =

ay = -0.0774 x 10-6/°C; «o 3

2
ry = 6.35 mm, layer thickness = 0.127mm
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TABLE 2

Axial Coefficients of Thermal Expansion
For Cross-Ply Tubes

Tube axial CTE (per °C)
(90,/0,) 2.468 x 1076
(90/0/90/0) 2.538 x 1076
(0/90,/0) 2,601 x 1075
(90/0,/90) 2.612 x 1070
(0/90/0/90) 2.675 x 1070
(0,/90,) 2.740 x 107°
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TABLE 4
Stress Intensity Factors For Solid Cylinder

(T2 < C33)
Stress Component Coefficient of y*~1 *
o, 0.0848
o 0.1303
o, 0.4366

* units are such that stress is in MPa/°C increase in temperature
above the reference temperature.
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Appendix 1
Details of the Stress-Strain Relation

Figure Al shows a segment of a cylindrical lamina and the principal
material 1-2-3 and the cylindrical x-6-r coordinate systems. In the

1-2-3 system:

El - alﬁT Sll 512 513 0 0 0 01
82 - GZAT 512 522 323 0 0 0 02
53 - G3AT 513 523 333 0 0 0 03
Yo3 0 0 0 544 0 0 153
|
"3 0 0 0 0 S55 0 "13 !
12 0 0 0 0 0 566 2
L — "'i
(A-1)
1 V12 13
where Siy =53 Syp=-—14 Sy3°=-—=F" .
11 El 12 E1 13 El
1 V23 1 :
Sop =53 Spa=--F- 3 Sq7=F" (A-2) !
22 2 23 ? 33 E3 i
1 1 1
S =3 35 == 1 S = ==
44 G23 55 (513 66 G12
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The inverse of this relation is:

9) -;11 C12 €13 0

9y C12 Cz2 C23 0

o3 €13 C23 €33 0
< ]

t93 0 0 0 Cag
‘ T3 0 0 0 0
\ T, / 0 0 0 0

In the x-8-r system, eq. A-l transforms into

£ = axAT o,
€g ~ ueAT Ty
€ - urﬂT - 5] L
Yor Tor
Txr Txr
Yxg ~ %xglT *x8
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and eq. A-3 transforms into

In the

] [%1] w 1]
(3% ] — —
na (=)} w

|

(e

26

vl

33

vyl |l W
ey )
B o

L

55

!

66

o, €y ~ uxAT
% €g - ueAT
9, = [C] €p = urAT
Tor Tor

Txr Yxr

Tx0 Yxa = OxgbT
above

4 22 4
m'Syy +mn (2512 + 566) + 1Sy

321 = (m4 + nq)S12 + mznz(s11 + Sp5 = Sgg)

§31 = (nZS23 + m2513)

mn [n2(2S;, - 251, - Sgg) + n? (25, ~ 25,5 + Sgg)]
nqsll + m2n2(2512 + Sgg) + m4522

S = (n°Sp3 + nSpy)

an (n? (25, - 25,5 + Sgg) + M0 (251 - 2515 - Sgg)

$33

2 2
m 344 +n 555
S5q = MN(Sgg - Sgq)
n2s .+ mes
44 55

2 2 2 2,2
4m™n (Sll - 254, + 522) + Sgg (M - n )

m = COSé n = sing
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Also

= 4 2 2 4

2 2 4 4
= n"m (C11 + Cop - 4066) + {n +m )012

=~ 2 2
C13 i m Cl3 + n C23

i
p—
[at)

|

= 2 2

= _ 4 2 2 4
Cop =1 C11 + 2n"m (C12 + 2C66) + m'Cyy
- 2 2

Cp3 = nCp3 + mCyq

n 2 2
Crg = mnln (C11 - C12 - 2c66) +m (C12 - sz + 2C66)|

C33 = Cq3
C36 = mn(Cy3 - Cy3)
2 2

Caq = mCyq + n"Cgp

Cag = Mn{Cog - Cyy)
= n2C + mEC
55 a4 55

66 = MN2(C)) - 201, + Cpp) + Cegln® - nd)2

)
1
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Fig. A-1 Segment of cylindrical lamina.
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Appendix 2
Definition of Constants in Approximate Method

Bl = Fz/Hz; 52 = Hl/HZ: 83 = Ge/Hz
2
Fp= i = vz hy = (2 Dz 6, = (2 -y

Hy = (rg - r%)/2 .

inner tube radius
inner tube radius

radius to interface between layers,
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