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Chapter 1

INTRODUCTION

Rising fuel costs have encouraged weight reductions of commercial
transport aircraft. Weight reductions of approximately 20-30 percent
may occur with the replacement of existing aluminum construction with
advanced composite materials. Composite materials offer both high
strength- and stiffness-to-weight ratios. Also, the directionality of
these composite materials allows designers to tailor the properties of a
structure and, thus, design more efficiently. Composite materials have
additional advantages over metallic materials in their tension-tension
fatigue and corrosion properties.

Although composites offer many inherent advantages over metals,
there are still many problems which must be solved before they can be
used for primary load carrying structure. Past research has uncovered
shortcomings of composites which are not found in metals such as delam-
ination, free edge effects, and poor impact damage tolerance. Much work
has been done on the response and failure of composite materials sub-
jected to in-plane loadings. However, little experimental work has been
done on composite materials under combined membrane and bending loads.

A combined stress state occurs in the skin of a fuselage which is inter-
nally pressurized. This internal pressure could be carried most effi-
ciently in a uniform memhrane state of stress if the skin were free to
expand uniformly in the radial direction. Iuternal stiffeners necessary

to support mechanical loads applied to a fuselage restrain the skin



locally and prevent uniform radial expansion consistent with a membrane
state. The pressure-i-duced deformation of the skin in a typical bay of
a stiffened fuselage is illustrated in Figure 1 and is often referred to
as "pillowing.”

The product of the large pressure-generated membrane tension and
change in slope of the skin's reference surface, which results from non-
uniform radial expansion, produces a geometrically nonlinear pressure
response. This nonlinearity is included in this study and is essential
for accurate response prediction. The degree of radial constraint also
introduces bending strains which occur in the skin adjacent to the
stiffeners. The bending strains, which are a maximum at the panel's
edge, combine with the membrane tension strains to initiate failure in
the skin.

The primary structural configurations of composite pressure vessel
research are thick unstiffened shells which carry very high pressures.
Much literature has been published on this research area due to the
development of high strengcth fibers and filament winding techniques.
Analysis of these structures using geometrically linear membrane theory
is sufficiently accurate for design. Thin stiffened shells such as a
fuselage require a different procedure. Bending in addition to membrane
action must be included in the analysis of these structures. Refer-
ences 1-7 report on studies of fuselage-type structures under internal
pressure. Portions of the material presented in this thesis are docu-

mented in Reference 8.
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Reference |1 reports on a one-dimensional nonlinear elastic memhrane
analysis for long flat or slightly curved metal panels. This work
1llustrates the nonlinear nature of the precblem but does not address the
severe bending gradients which occur in the fuselage skin at the stiff-
ener support.

Flugge (Ref. 2) addresses a number of problems which arise in the
internal pressurization of an airplane fuselage. The importance of
the nonlinear response is illustrated by a membrane example similar to
that described in Reference 1. Local bending stresses induced by the
restraint of the stiffeners on the fuselage skin are not predicted with
the membrane approximation of Flugge. Neither can these local bending
stresses be correctly examined with a linear axisymmetric approximation
of the pressurized fuselage as used by Flugge. In this approximation
the skin and longerons are lumped together to obtain an equivalent
"smeared” orthotropic shell with the individual rings modeled dis-
cretely. Skin bending adjacent to a ring will not be properly predicted
with this approach and bending adjacent to a longeron is not allowed by
the analysis.

Additional axisymmetric analyses are included in References 3
and 4. Williams (Ref. 4) included in his analysis the important geo-
metric nonlinear term which accounts for the product of the in-plane
axia! load and slope in the radial equilibrium equation. However, the
importance of the nonlinear effect of this term is lost when "smeared”
longeron theory is used which makes the skin effectively very thick and

the contributions of the nonlinear term small. This approach therefore



does not accurately address the "pillowing” which results in local skin
bending.

Wang (Ref. 5) modeled the fuselage as a shell connected to discrete
internal rings and stringers. The analysis was linear; and it was
assumed that the interaction between elements consisted only of normal
stresses, thus excluding shear. Series solutions were used to satisfy
the equilibrium equations for each individual component. Displacement
compatibility between the individual elements couples these elements and
allows for the determination of the interaction forces. This analysis
for isotropic materials does address “"pillowing” effects but geomet-
rically linear behavior is assumed. Linear behavior would become more
appropriate as the skin thickness increases or as the stiffnesses of the
frames and longerons decrease.

Formulas are given in Reference 6 for stresses in an isotropic skin
adjacent to individual frames and longerons. Although the details of
the derivation are not discussed nor a reference given, nonlinear terms
are apparent in the formulas given.

Reference 7 reported axial and circumferential strain distributions
for a typical bay of a composite stiffened circular cylindrical shell
under internal pressure. These results were generated from a Lockheed
in-house computer program. The analysis developed by Wang (Reference 5)
has been extended to include composite skins. The analysis is again
linear with numerical results given for a fuselage skin laminate at an

ultimate ground test condition of 17.63 psi.



References 1-7 all deal with pressurization of a fuselage but none
show how the geometric nonlinearities effect the severity of the bending
gradients in a composite skin adjacent to a stiffener. Only Reference 6
has experimental pressurization results. This work is on large scale
stiffened adhesively bonded aluminum fuselage structures and does not as
such focus on the response of the skin. For panels with longitudinal
cracks in the center of the bay, the crack propagated until it met a
frame and turned and ran parallel to the frame along its intersection
with the skin. For aluminum pressurized panels, the high stresses which
occurs in the local bending gradient are relieved by material yielding.
For composite panels, strain relief must come primarily from other
sources such as transverse matrix cracking, local fiber failure, and
delamination.

In the edge bending gradient region, interlaminar stresses become
large and must be examined because of inherent transverse strength
weaknesses of compocites. The majority of references on interlaminar
stresses is directed towards the free edge problem of a composite
laminate. References 9 and 10 examine the distribution of interlaminar
stresses near the supported edges of composite circular cylinders under
internal pressure. Linear shell analysis was used on a layer-by-layer
basis to determine the axial distribution of interlaminar stresses for
clamped or simply supported axial boundary conditions. Because linear
theory was used in the above studies, the same response characteristics
would be found at any pressure. The response character will vary with

pressure when geometrically nonlinear behavior is considered.



A one-dimensional approach is used in the present study to concen-
trate on the nonlinearities and local skin bending important in a pres-
surized fuselage skin. The skin is approximated by an infinitely long
sha.iow cylindrical panel. This geometry approximates typical fuselage
skin bays which are long in the axial direction relative to their cir-
cumferential arc length. In addition to the in-plane circumferential
stresses, interlaminar stress distributions are examined. Nonlinear
equations of =2lasticity, which include geometric shallowness and
Donnell's approximations, are integrated to determine the interlaminar
stresses. Past research has not esamined these stresses with geometric
nonlinearities considered.

Experiments were conducted to verify the analysis and identify the
ultimate failure pressures and modes. Comparison between analysis and
experiment points out the range of applicability of the analysis. The
test article is a shallow cylindrical panel of the same approximate
dimensions as a typical fuselage skin panel. Under internal pressure
the radial deflections of the fuselage skin are symmetrically dis-
tributed along lines perpendicular to the.frames and longerons as shown
in Figure l. Because of this symmetry the slope of the deflection curve
normal to the boundary is zero. To approximate this slope condition,
curved graphite—epoxy and aluminum panels were tested in a fixtur> with
clamped edges. The outward radial deflections at the stiffeners of an
actual fuselage were not Juplicated in the experiment. The panels were
constructed of 4, 5, 8, or 16 plies of unidirectional graphite—epoxy

tape to illustrate a range of responses and failures.



Chapter 2
EXPERIMENTAL PROGRAM

2.1 Test Specimens

The materials used in this study include 2024-T3 aluminum and
commercially available 0.005-inch-thick unidirectional Thornel 300
graphite fiber tapes preimpregnated with 350°F cure Narmco 5208 thermo-
setting epoxy resin referred to as T300-5208 graphite—epoxy. The
aluminum panels were cut to size from flat sheets which had nominal
thicknesses of 0.020 and 0.040 inches. Unidirectional preimpregnanted
tape was layed up on a smooth cylindrical surface with a 60 inch radius
at specified orientations to form uncured laminates. These nanels were
cured in an autoclave following the resin manufacturer's recommendations
and then inspected with ultrasonic C-scan. Typical lamina pruperties
are 19.0 msi fer the longitudinal Young's modulus Ell’ 1.89 msi for the
transverse Young's modulus Eyo 0.93 msi for the in-plane and shearing
deformation moduli G,;, and Gi3» 0.60 msi for the shearing deformation
modulus G,3, and 0.38 for the major Poisson's ratio vi2+ The panels
and their stacking sequence are shown in Table l. The aluminum
specimens are designated specimens Al and A2 and the graphite-epoxy
specimens are designated Gl through Gll.

After trimming the panels to an approximate size of 23 inches by
11 inches, bolt holes were drilled around the panel's edge for securing
the panel to the fixture as shown in Figure 2. A special drill fix-

ture was used for drilling thirty-two 0.25-inch holes into each panel.



Table 1. Test Specimens

Number Thickness, Laminate Stacking

Specimen of Plies in. Sequence
Al 1 6.0203 2024-T3 Aluminum
A2 1 0.0389 2024-T3 Aluminum
Gl 4 0.0206 [245]
G2 4 0.0207 [45]
G3 5 0.0251 [:45/56]5
G4 5 0.0247 [£45/90]
G5 8 0.0387 [90/£45/0]
G6 8 0.0397 [90/0/245]
G7 8 0.0400 [90/G/+45]
G8 8 0.0912 [+45],
G9 16 0.0901 [£45/445/90,/0,1
Glo 16 0.0880 [90,/245/245/0,]
G11 16

0.0893 [902/02/245/14.‘.]S
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The drill fixture consists of a top and bottom part. The trimmed panels
were placed between the two curved surfaces of the drill fixture for
drilling the holes. Force was applied to the top and bottom parts of
the drill fixture with C-clamps to force the panel into an untwisted

60 inch radius configuration and to prevent any movement during the
drilling operation.

The drill fixture design had an important effect on the circumfer-
ential distance between bolt holes of different thickness panels. The
drill fixture design provided for constant opening angles between the
arc-wise position of the bolt holes drilled in all the panels. However,
it did not compensate for the various panel thicknesses. Thus differ-
ences occur in the middle surface arc lengths between the bolt holes
used in clamping the :traight edge. The middle surface arc length dif-
ference between the thickest panel (0.080 in. nominal) and the thinnest
panel (0.020 in. nominal) was predicted to be approximateiy 0.004 in.
Although this difference may seem like a minor variation in the middle
surface arc length, it will be shown later that small changes in the arc
length for shallow panels can result in very large changes in the middle
surface radius.

Fiberglass tabs of uniform thickness (approximately 0.1 in.) were
used to reinforce the bolt holes against bearing failure along the
straight edges of the panels. These flat tabs measured l.5 in. in width
and 20 in. in length and were drilled separately and bonded onto the

convex surface of the predrilled composite panels.
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To measure the bending gradient away from the clamped edges, the
panels were inctrumented with strain gages. Back-to-back strain gages
were bonded to the panels from the edges to the center along the circum—
ferential and axial center lines of the panel. Because of the rapid
strain variation at the panel's edge, strain gages with short gage
lengths were located as close as possible to the clamped boundary to
determine the best pointwise estimate of the edge strains. Gages with
an effective gage length of 0.015 inches were used close to the edge.
Since the strains were almost constant outside the edge bending boundary
layer, larger gages could be used away from the edge. These strain

gages had an effective gage length of 0.187 inches.

2,2 Test Apparatus

The test apparatus consisted of the test fixture, pressure source,
and instrumentation. A cross secticnal drawing of the assembled test
fixture is shown in Figure 3. The test fixture consists of .three compo-
nents: test frame, strain gage lead feed-through panel, and top clamp-
ing bars. The test frame was machined from a solid steel block and has
a 60-inch radius machined surface around the edges where the curved
panels were clamped. The strain gage lead feed-through panel allows
recording a maximum of 16 strain gages bonded to the panel concave sur-
face. The feed-through panel allows the strain gage signals to be
transmitted out of the pressurized interior of the test fixture. The
feed-through panel also has an inlet port for the pressurizing media, a

bleed valve, and a pressure transducer port. Six bars were used for
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clamping the specimen to the fixture. These include two straight bars
and two curved bars, rectangular in cross section, which were used to
clamp the panel to the tect f.ame. Thirty-two 0.25-inch bolts secured
these bars and the test panel to the tesv frame. These bolts were
torqued to 100 in-1b. Two larger bars, L-shaped in cross section,
allowed application of very large normal forces to the straight edges of
the panel in an attempt to minimize in-plane slippage of the panels in
the clamped support. The bolts which passed through the flange of the
larger bars are tightened down on the smaller bar as shown in Figure 3.
A photograph of a failed test specimen assembled in the test fixture is
shown in Figure 4. The L-shaped bars are not shown in the photngraph.

During the course of the experimental program various methods were
used to pressurize the curved panels. Pressure sourceg include the use
of low pressure shop air (to 50 psi), city water (to 60 psi), an
1800 psi bottled nitrogen source, and a hydrostatic tester. A pressure
reg: lator between the pressure source and the interior of the test panel
was used to control the pressure.

After the manufacturing and drilling of the composite curved pan-
els, tueir shapes deviated from the desired 60-inch radius right cir-
cular cylinder. Therefore, geometric imperfection equipment was used to
measure the initial shape of the curved panels. A DCDT (direct-current
displacement transducer) was fixed to a trolley which rolled on
straight, flat rails. Scans of the panels were made in the two direc-
tions parallel to the supports to determine the true geometry of the

panels.
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The test procedure consisted of the following steps. A panel was
placed in the test fixture and the clamping bars were torqued symmetri-
cally. Next, the panels were surveyed with the geometric imperfection
measuring equipment. The imperfection measuring equipment was removed
and DCDT's were positioned normal to the panels surface at selected
points along the axial and circumferential centerlines to monitor dis-
placenents of the panels to the applied pressure. Pressure was
increased until failure of the panels occurred. Digital strain,
displacement, and pressurec data were recorded on a data acquisition

system.



Chapter 3
ANALYSIS

In this chapter the energy methed is used to derive two sets of
geometrically nonlinear equilibrium equations for the response of
cvlindrical panels to intcrnal pressurizaticn. For a set of nonlinear
strain-displacement equations, elasticity equations are derived in
Section 3.1. Using the same set of nonlinear strain-displacement equa-
tions and explicit assumptions for the displacement variation as a
function of the thickness coordinate 2z, shell equations are derived in
Section 3.2 which account for through-the-thickness shearing deforma-
tions. In Section 3.3 rhe two-dimensional shell equations are reduced
to a one-dimensional s2t of ordinary differential equations in the
circumferential coordinate by assuming that the stress resultants are
independent of the axial coordinate. The reduction to a onc—dimensional
set of equations is appropriate for the response of a panel which is
long in the axial direction. Closed form solutions to the nonlinear
ordinary differential equatiouns are obtained which include transverse
shear defc¢rmation effects and twist-curvature coupling of laminated
composite panels. The one~dimensional solution provides details of the
bending gradient response near the straight edge of the panel. 1In
Section 3.4 through-the-thickness shear and nurmal stresses are obtained
in this bending boundary layer that contains the bending gradient.
These stresses are determined by substituting the in-plane stresses and

radial deflection from the one-~dimensional shell sclution into the
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elasticity equations derived in Section 3.1l. The stresses in the
elasticity equations are also assumed independent of the &xial
coordinate to be consistent with the one-dimensional shell solution.
Finally, in Section 3.5 a strength of materials solution is presented
for the nonlinear response of an internally pressurized cylindrical

membrane which is long in the axial direction.

3.1 Three-Dimensional Elasticity Equations

Elasticity equilibrium equations will be used to determine the
transverse stresses in Section 3.4 after the shell solution is obtained
in Section 3.3. However, these equations are developed before the shell
equations since an elasticity formulation has fewer assumptions, and
hence, is less restrictive than a shell formulation.

Figure 5 shows the middle surface or reference surface of the
circular cylindrical panel, The shell coordinates shown are the axial
coordinate x, circumferential coordinate 6, and the thickness
coordinate 2z. The origin is at the center of the middle surface such
that =L < X <L, -a <6< a and =t/2 < z < t/2, where 2L 1is the
length of the panel, a 1is the semi-opening angle, and t 1s the
thickness. The radius of the circular arc on the middle surface is
designated by a.

Let u, v, and w designate displacements in the axial, circum-
ferential, and thickness directions, respectively, of a material point

in the panel. The normal strains are denoted by ¢ Egge and ¢

xx* z2?

and the engineering shear strains are denoted by Yorr  Yxz® and Yxo°
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The strains are assumed to be small, and the rotations are assumed to be
moderately small. On a surface parallel to the middle surface, the
rotations of the axial and circumferential line elements out of the
tangent plane are assumed to be larger than the rotations about the
normal, such that rotations about the normal are neglected. Since the
panel is shallow, the contribution of the circumferential displacement
to the rotation of the circumferential line element out of the tangent
plane is neglected (Donnell-Mushtari-Vlasov approximation). Sanders
(Ref. 11) presents kinematic relations for the surface strains in
general curvilinear coordinates under these assumptions. Specialized to

cylindrical coordina%es Sanders kinematic relations are

2
v, 1w
€x " & T 2\ax)
Jlow w11 o )
€0 " T 36 ' T  2\r 06’ L
v, iBu owlodw
Yx6  2x r 88 oxr 0@

where r =a + z 1is the radius of a surface parallel to the middle

surface. The transverse kinematic relations are assumed to be given by



™ .
Yez T ox | 2z fited)

The panel is thin, such that a >> t > |z|. Thus in equations (3.1) and
(3.2) the radius r 1is replaced by the radius a of the middle

surface.

The potential energy for the panel is

V = U = \n', (3-3)

where U 1is the strain energy and W 1is the work of the prescribed

surface tractions. Body forces are neglected. Let g

- 099’ and

- denote the normal stress components in the panel, and let 192,

T and 1xe denote the shear stress components. The strain energy

for a linear elastic thin shell is

t/2 a L
U-%J’ f f[e o] +eeecee+e o]
Le)2 Jog Jo XX XX zz 22

+ Yo, Tez + Yo T + Yxe Txe] dx ad6 dz (3.4)

The prescribed surface traction components at x = tL are denoted

o , T . and T _. The overbar notation is also used for the pre-
XX x0 Xz

scribed surface traction components at 6 = ta and z = tt/2. The pre-

scribed tractions are treated as dead loads in the energy .ormulation.
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Although hydrostatic pressure is not a dead load, it is conservative,
and may be approximated by a dead load potential (Ref. 12) for a shallow

panel. Thus, the work done by the prescribed tractions is

L a z=t /2
w=J’ f( G+ T, v+ ) 2d6 dx
Xz 0z zz
=L, =

z==t/2
-[-tlz IL f=a
A\
<+ <1 u+ o v+ T w dxdz
/2 L, x8 00 &z ) -

£/ a I x=L
+ f f <B - w) add dz  (3.5)
/2 - XX x0 Xz

where the internal hydrostatic pressure p 1is equal to g at
z =t/2.

Equilibrium equations and boundary conditions for cthe thin shallow
cylindrical panel are obtéined from stationarity of the potential
energy, i.e., &V = 0. Combining equations (3.3), (3.4), and (3.5) with

the approximate kinematic relations (3.1) and (3.2), the first variation

in the potential energy, after integrating by parts, is



adf dx = 0 (3.6)
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Since the variations 6u, 6v, and &w are completely arbitrary, equa-
tion (3.6) can vanish only if the coefficients of each variation vanish
individually. From this reasoning the three equations of elasticity

for equilibrium in the x, 6, and 2z direction are

dg ol ot

xx 1 av  _xz 0

ox a 06 oz
btxe L1 boee . btez &

8

xooae = (3.7)
btxz L1 azez P bozz 1 . Lo . E)

ox a 06 0z a 66 ox \ xx dx

|

2 <i’e_ez>+a_<3_e

3 )+1g_<, LA
90\ a 86 ox a d a 86 \ x8 ™

The nonlinearities appear in the z-direction equilibrium equation only,

o |
@

which is tae third equation in (3.7).

The vanishing of the first variation also leads to boundary condi-
tions on the surfaces of the panel. Since the equilibrium equations are
used to estimate the transverse stress components, only the conditions
on the upper and lower surfaces are needed. Thus, conditions on the
surfaces at x = 4L and 6 = +a are omitted. At 2z = +t/2 the

following are prescribed

Tyz OT U,
Tg, OF Vs (3.8)
o or w.

zzZ
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3.2 Two-Dimensional Shell Equations

3.2.1 Kinematic Relations

The assumptions of geometric shallowness, small strains, and moder-
ate rotations were used in the derivation of the elasticity equations.
In this section a shell theory will be derived from the variational
principle (3.6) by assuming the z-direction dependence of the displace-
ments. Normals to the reference surface before deformation are assumed
to remain straight and unchanged in length but not necessarily normal to
the deformed reference surface. This assumption allows thrcugh-the-
thickness shear deformation of the Mindlin type (Ref. 14) to occur which
is important for composite materials where the ratio of shearing defor-
mation modulus to in-plane extensional modulus is low (1/20-1/30). This
assumption implies that the in-plane displacements u and v vary
linearly through the thickness. Let u° and v° represent the dis-
placements u and v on the middle surface (z = 0), and let ¥_ and

X

Y designate the rotations of the middle surface normal about the

8

@-axis and x-axis, respectively. Then the displacement field for the

shell theory has the form

u(x, 8,z) = u%x,0) + z Y, (x, 6)

v(x, 8,z) = v(x,0) + z We(x,e) (3.9)

w(x,0,z) = wo(x,0)
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Substituting the displacements (3.9) into the strain-displacement

relations (3.1) and (3.2) results in the following expressions

E_ = cc + iz I
XX XX XX
0
06 ~ €00 T Z Top
(o]
Yxo = Yxe . pr
(3.10)
0
Yo = Yz
_ .0
Yxz Yxz
(3 = eo = 0,
zZ 22z
in which the middle surface strain-displacement relations are
i
o L2, 1(a)
Exx ox 2 \dx /
0 o 0 :
o Lla W0 1(1a0)
6" 20260 '@ +2<a 26 (3.1
o _ o’ 1a’ w1 aw’
Y + = + . ’
x6  ox 06 ox a 06
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and where the transverse st-ains and rot. tion gradients are

0
0 1 ow
Yo " ¥ *3 20
A
0
YO - g!— + ¥
Xz oxX X
oy
roa X (3.12)
XX  Ox
80 a 026
oY oY
r 9,1 _x

x0 " 3x | a 08

3.2.2 Shell Equilibrium Equations

The assumptions for the displacements (3.9) are substituted into
the first variation of the potential enmergy (3.6) and explicit integra-
tion in the thickness coordinate 2z from -t/2 to +t/2 1is carried
out. In this process weighted integrals of the stresses in 2z occur.
These integrals are interpreted as stress resultants and stress couples
in shell theory. The stress resultants and couples, defined per unit

arc length on the reference surface, are



t/2

(N_,No,N_,) = j’ (o0.,0,, 7. ,) dz
’ e’ e » ’
X X -t/2 x’ 70’ 'x8

/2
(Qx‘Qe) = [t/z (txz,tez) dz 3:13)

t/2

(Mx’Me’Mx 6) = j

- (ox.ce.rxe) z dz.

After performing the integration through the thickness, and using the
stress resultant definitions (3.13), the vanishing of the first varia-

tion of the potential energy leads to the equilibrium equations



aNx )| a{xe
> * a bx‘ * [txz(*t/z) - sz(_t/Z)] =0
aN_ N
1~ 8 x6 2y - - =
A T e (D - s ) o
2 (x Q\_ﬂulb_(ﬂ?Q)‘,iiQ (3.14)
™\ x dx a a 36 '\a 026 ad ’
fox 1B ([ ), 2 (Lo o)
abO(xG ox o\ a 26
lo,,(+t/2) = o, (-t/2)] = 0
a”r ] aMx6 t
B A Tee C G taln, D+ n ) =0
oM oM
J 6 x 6 t - =
a 06 * ox QG * 2“92(”2) * 1&( t/2)) o

The shell boundary conditions, which result from the integrated form of

the first variation of the potential en

along each edge. At x = +L

ergy, consist of five conditinns

the following are prescribed



x6 x0 ’ (3.15)
Meoa=Mig oF ¥g= T
ow Nxe [o 2~ o _ -o
Q, *+ N, =" "a 86" Q, or w =w.
at © = ta the following are prescribed
= o _ -o
Nxe hxe or u u ,
Mxe = Mxe or Y = TX,
= o _-o
Ne = Ne or v v, (3.16)

The shell equilibrium equations (3.14) can be obtained from the
elasticity equilibrium equations (3.7) by integrating the latter equa-

tions through the thickness. For example, if the last ‘uation in
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equations (3.7) is first integrated ir 2z from -t/2 to t/2, and
secondly it is multipiied by 2z and integrated from -t/2 to t/2,
then the first and fourth equations in equations (3.14) are obtained
when the resultant definition in equations (3.13) are used. This fact
is significant for the estimations of the through-the-thickness stress
components T ., Tg., and c, from equations (3.7) when stress com-

Xz

ponents O

x*

g Tox? and deflection w are assumed to be given by

the shell theory.

3.2.3 Shell Constitutive Equations

The panels in this study are fabricated by laminating plies of a
unidirectional fiber-reinforced composite material. It is assumed each
ply is homogeneous, linear elastic, and orthotropic with respect to the
fiter (1), transverse (2), and through-the-thickness (3) directions.
The fiber direction with respect to the positive x—axis in each lamina
is given by the angle ¢ shown in Figure 5. Thus, in the shell coordi-
nates X, 6, and 2z, the material appears to be monoclinic with a plane
of symmetry perpendicular to the z-axis. In addition it is assumed that
the through-the-thickness stress o, is negligible with respect to the
in-plane stresses Oys ce, and Ty such that o, is set to zero in
the constitutive equations. Since the strain €, also vanishes (see
equations (3.10)), the constitutive equation for the z-direction normal
stress and strain is neglected. For the in-plane stresses and strains,

the lamina constitutive equations are



32

) 13, &, G, [

% Qr Q2 Qe 1%

9 >= Q22 Q26 €g . (3.17)
I

foe Léymm. QbQJ Yx8

in which the elements 611, ceey 666 are the transformed reduced
stiffnesses determined by the elastic moduli E,, Ez, Vig» and GlZ’
and the angle ¢. (See Ref. 13, pp. 46-51.) The lamina constitutive

equations for the through-the-thickness shear stresses and strains are

ft&l Cas  Cus Yez\l
) = _ _ . (3.18)
]szJ CAS CSS Yxz
where
c,, = 2 M G.. % gin® 46
44 = COE @ Loy T 8iR i Gy
Chg = sin ¢ cos ¢ (G23 - G13) (3.19)

- 2 2
C55 = sin ¢ G23 + cos % Gl3’

and G5 and G,3 are the shear moduli in the 1-3 and 2-3 planes,
respectively.

The shell constitutive equations are obtained by substituting the
strains (3.10) into equations (3.17) and (3.18), and then substituting

these results into the definitions for the stress resultants (3.13).
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Since the panels tested are balanced and symmetric laminztes, the shell

constitutive equations for this important class of laminates are

CY — ] OW
N A, A, O 0 0 0 (}xxi
) (o)
Ng A, Ay, O 0 0 0 €
)
O
T e T T P AT 5 (3.20)
M 0 0 6 Db, D, D| (T,
|
M 0 0 0 D, D, DI |Ty
M o o o Db, D, r
X6 16 P26 tse X6
L x8) L g 2
and
) 2 e}
J % kihyy, # Yoz
\ ; 2 o (3.21)
& SR Lsz,

where the laminate extensional stiffness (Aij) and the laminate bending
stiffness (Dij) are determined from the individual lamina stiffness and

the stacking configuration

h/2
- 2
(Aij’Dij) = j:h/z Qij(l'z )dz (i,j = 1,2,6)

h/2
A, = J. ; . dz (1,5 = 4,5)
B Jpy Y



34

In equation (3.21) k? and kg are shear correction factors, which are
introduced to account for the nonuniformity of the through-the-thickness
shearing stress distribution.

Frrmulas for the shear correction factors are given by Whitney
(Refs. 15 and 16) for laminated anisotropic plates under static lcading.
For homogeneous isotropic plates various values of the shear correction
factors have been used (e.g., 5/6, n2/12, and 2/3; see Ref. 17). The
shear correction factor serves to change the effective value of the
laminate shearing deformation modulus. It is assumed that the shear
correction factors are unity in this analysis, since the values of

shearing deformation moduli are difficult to measure and are not well

known.

3.3 One-Dimensional Shell Equations

The solution of the two-dimensional shell equations is very diffi-
cult and requires the use of a numerical computer code. In transport
aircraft design the axial lengths of fuselage panels are usually greater
than the circumferential arc lengths or widths. A simpler analysis is
possible for the central section in long panels if it is assumed that
the static response to internal pressure is independent of x. Thus
stresses and strains depend only on 6. The solution to the shell
equations based on this assumption is developed in this section.

As reported in Reference 1, W. D. Douglas in 1918 argued that the
end effects associated with the curved-end boundaries for internally

pressurized fabric panels are confined to approximately a half panel
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width in the axial direction from each curved edge. On this basis an
analysis which is independent of the axial coordinate x 1is applicable
for |[x| <L - aa. The axial length of the central region where a one-
dimensional analysis is applicable is examined in more detail in

Section 4.1.

3.3.1 Shell Equations
Assuming the stress resultants and couples are independent of the

x-coordinate the shell equilibrium equations (3.14) simplify to

-
R [1xz(t/2; - sz(_t/“)] L
| g
===+ L1, (8/2) = 7 (~£/2)] = 0
N
N azw__e+ia_<bg«v_> L1
x 2 a a 906 \a 06 a dé
ox
N . .2
12 (o Qj “x8 3%w_
+ 2 00 (“xe x! *Ta oxoe il
+ (o (£/2) = o0 (-t/2)] =0
- 5 zzZ
1 dee t
230 - % tolng /D) - r (/)] =0
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3.3.2 General Displacement Field

The assumption that the stress resultants and couples are indepen-
dent of the x-coordinate implies the strains and rotation gradients are
independent of the x-coordinate as well, since the two sets of variables
are linearly related by the constitutive equations (3.20) and (3.21).
For this general case, however, the displacements and rotations are not
independent of the x-coordinate. To determine the explicit dependence
of the displacements and rotations on x, the strain-displacement
equations (3.11) and (3.12) are integrated with respect to x under the
restriction that the strains are functions of 6 only. Integrating

equations (3.12) gives

o 1 2
w (x,8) = f3(9) = E-Clx + C2x9 + C3x

¥ (x,08) = f,(8) + C.x (3.27)
X 4

1

1
We(x,e) fs(e) . sz,
in which C], C2, and C3 are arbitrary constants, and f3, fA’ and
¢ are arbitrary functions of 6. Using the functional form of

w%(x,8) in the first of equations (3.23) in the process of integrating

equations (3.11) gives
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3

o 1 2 1
u (x,0) = fl(e) + C1f3(8) x - E-Clx + 7-c1c2x G}
1 2 1 2 1 ~2
i aCle x + 5 C1C3x o (Cli C2C3) x6 + (CS 3 C3) X

1 1 3
v (x,8) = £,(8) - = C,f5(8) x + 7= C Cpx

1 .2 2 1 2 1 2
+ (Cl -3 C2\ X 6 - 7 C2X9 Ja C4x C3x9 + C6x!

N'v—-

where C,, Cg, and C6 are arbitrary constants, and fl and f2 are
arbitrary functions of 6.

Using linear elasticity equations Lekhnitskii (Ref. 18) develops
general displacement equations for an anisotropic cylindrical body in
which stresses are independent of the axial coordinate x. Equivalent
u® and v°® displacements are linear and quadratic in the x-coordinate,
respectively. Lekhnitskii's equivalent w° displacement is quadratic
in the x-coordinate. The difference between the displacements derived
here and Lekhnitskii's results is due to the use of nonlinear strain-

displacement relations and the assumption of a linear displacement vari-

ation in the z-coordinate.

3.3.3 Application of Special Boundary Conditions

Special boundary conditions were applied to the general displace-
ment relations (3.23) and (3.24). These conditions were selected
because they are needed to model accurately the experimental boundary

conditions. They are applied along tue circumferential edges of the
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6 = -a) and place further restrictions on the dis-

placement functional

u®(x,ta)
vO(x,ta)
w (x,%a)
Yx(x,ta)
Ye(x,ta)

where € and v

are prescribed data.

"

form. The boundary conditions are

gl

{2.25)

Application of these boundary

conditions reduces the general displacements (3.23) and (3.24) to

uo(x,e)

vO(x, 8)

w’ (x, 6)
Y (x.8)
X

We(x,B)

£,(0) + ex
fz(e)

£,08)
fé(e)

f5(6),

(3.26)
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where

(3.27)

Loy
w
~
H
&
"
o

3.3.4 Reduction of the Field Equations

The one-dimensional shell equations are simplified further for the
particular problem of interest. In addition to the boundary conditions
(3.25), the applied loading in the experiment is an internal pressure
with no surface shear tractions applied to the panel. Hence, for this

loading the equilibrium equations (3.22) become

ldeO_(,
a dé
1%
a dé

dQ
1y ,1d (y ldwy) 178 )
a"e"ade("eade)*ad tp=0 (3.28)
'l‘dee—Q = 0
a df X
dM

o
Q‘I
<D
@
!
O
D
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Considering the functional form of the displacements in equa-
tions (3.26) the strain-displacement relations in equations (3.11) and

(3.12) reduce to

XX

o
|-
(=¥
<
(o}
(o]
>
—
(=%
£
o

(3.29)

1 %%
a déo

dy
X

1
Rl

From the first equilibrium equation in equations (3.28) Nxe is
spatially constant. The constitutive equation for Nxe in equa-

tions (3.20) then implies the middle surface shear strain is

o
Yxe

spatially constant. For a spatially constant middle surface shear
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strain, the third equation in (3.29) combined

tions on function f,(8) in equations (3.27)

= o - 1 -
for all 8. Thus Nx9 S 0 for alli 8
the addition of f, equal to zero, imply the

equations (3.20) reduce to

= Di2Tge * Dielxe

Mg = Dyalge * Daglxe

Mxe = D26Tgp * Do6Txe"

with the boundary condi-

requires f,(6) to vanish
Equations (3.29), with

constitutive

(3.30)

The constitutive equations (3.21) for the shearing deformation resul-

tants remain unchanged, and are repeated below for convenience with

2 2
shear correction facturs k and k

1

~N

0
Qe A45Yez

o
QX ASSsz

Using the equilibrium equations (3.28), with Nyg = 0 for all

assumed to be unity.

(3.31)

B,

in combination with the strain-displacement equations (3.29) and
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constitutive equations (3.30) and (3.31), the mathematical formulation

reduces to

dN

B 3.32
as U (3.32)
N 2 (o] A o N
2 2 ' a oe(\’e*a’—dg) P 4= (3.33)
a deé

2 2
P29 % Do T Y (w +ldw°>_0 A5
i 40 & 4o 44\ "0 " a de
5. v, b dle

G
36 2e * gb °x = Ag ¥ =0 (3.35)
a def a~ de

C ( 0 2

: - 1dv?  w® 1(1 e’ .
e N e e L ) . (3.36)

Equations (3.32) to (..36) constitute an eighth order system of ordinary

differential equations for the dependent variables N, Ww°, ¥, V¥ ,
9 ) X

and v°, with p and € as prescribed loads. They are to be solved

eubject to the eight boundary conditions
o =
v (ta) = ¥ (3.37)

wo(ta) = 0 (3.38)

Ye(ta) =0 (3.39)
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¥, (a) = 0, (3.40)

which are obtained from equations (3.26) and (3.27) where v 1is a

prescribed displac=#ment.

3.3.5 Method of Solution

Equations (3.32) to (3.36), subject to boundary conditions (3.37)
to (3.40), are a nonlinear two-point boundary value problem. The cir-
cumferential stress resultant Ne is spatially constant as the
equilibrium equation (3.32) indicates. Since N, is spatially
constant, equations (3.33) to (3.35) appear to be linear in w°, %t
and Yx. However, Ne depends nonlinearly on w® as shown in equa-
tion (3.36). This structure o»f the boundary value problem permits the
following solution procedure. Using the methods of solution for linear
ordinary differential equations with constant coefficients, equat-
fons (3.33) to (3.35) are solved for w°(8), Ve(e), and Yx(e), subject
to boundary conditions (3.38) to (3.40). These solutions will depend on
the “coefficient” Ng. The solution for w®(8) 1is then substituted
into equation (3.36) and indefinite integration on 6 1s perfcrmed
using the fact that Ng 1is spatially constant. The unknown constant of

integration and the unknown value of Ne are determined bv boundary

conditions on v° in equation (3.37).

By neglecting the bending terms (these have coefficients D22,

Dggs and Dyg) equations (3.32) through (3.36) obtained apply to the
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corresponding membrane shell. Subject to boundary conditions (3.38),

the membrane solution is

pa = N
wl(e) = % <______JZ> [o* - 62) (3.41)
P 2 Ne
pa - N )
5 3 ] e
wep(e; ( N, 8 (3.42)
vy (8) = 0. (3.43)
Xp

Notice that in the nonlinear membrane theory it is possible to satisfy
boundary conditions on the deflection w°(8). In linear membrane shell
theory the boundary conditions on the deflection cannot be satisfied in
general. The fact that nonlinear membrane theory can satisfy physically
reasonable boundary conditions whereas lineir membrane theory cannot,
was pointed out by Bromberg and Stoker (Ref. 19).

A homogeneous solution of equations (3.33) through (3.35) has the

HQX (X)
v eI (3.44)

form
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which, when substituted into equations (3.33) through (3.35), leads to

P(N + A )R A, A 0 1
8 " fus’ 44 i l X 0
- =3 =2 : O
~A,, N By B By Dye X YVer={¢o0
A =2 =2 z
g Bag, X Pog & ~ Bss] A J (3.45)

;)‘. Nontrivial soluticns of equation (3.45) require the

where ;\ =
determinant of coefficients to vanish, which results in the character-
istic equation

- 2 2. -2 22
[(1-€e)n =+ N +cbp7] =0, (3.46)

™
"
—~
&
oo
~r

B - i___“.l‘__ (3.47)
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The roots of the characteristic equation are 0, O, t;l' and tiz,

where
2 2 /2 = 2.2 2
=2 _ b +c" 2 V[b" -c") +4ebc
Al 9 = 3 = (3.48)
’ 2(1 - ¢9)

The four nonzero roots given by equation (3.48) are associated with
bending boundary layers at 8 = %a, which decay exponentially from the
edges towards the center of the panel. Approximate expressions for the
roots may be obtained by performing an asymptotic expansion in the small
parameter ¢ which is less than unity for the materials examined.

These approximate expressions reveal more about the nature of the roots

and are given as follows

Vi
= I 4
A?_b2+52<b2+?c__—cf) + 0(e )
(3.49)
2 \
AZ _ CZ & 82 CZ _ c + 0(54)
2 )
br — e

The parameter ¢ 1{s zero for specially orthotrcpic laminates (D26 = 0)

and the roots Al and KZ uncouple. For small ¢ the root il is

associated with the rotation Ve (circumferential shear and bending),

and the root A, 1s associated with the rotation Wx (axial shear and
the twisting moment). Fu. the laminates and pressures considered here

the root 32 is an order of magnitude larger than the root hy Thus,

1.
the twist-curvature bending boundary layer effects decay at a much
faster rate from the clamped edges than the circumferential bending

boundary layer effects.



The complete homogeneous solution is

(o) o (\* R
RN | c1 | B - 1
J o \ ) | A8 S
{ We R = j —cz/a, + czj 0 )8 + cq &21 \e tc, 521 e
|
wajh ¢ | 0 %51 | %31
I/-
} lw, Ay 8 fl -1,0
+ Cq / &22>e + CG)-§22Ke s (3.50)

where Cys Cps wsey, Cp are arbitrary constants, and the eigenvectors

are the solution of

=2 -2 ~ =~
Byoks = Aug DaeM [521 Alo&}‘i/?
{ - = 1.7
. <2 £ 0 ’
DyeN P’y = 55 53t (3.51)

The principle of superposition does not hold for equations (3.32)
to (3.36) because the equations are nonlinear. However the total solu-
tion for w°, We, and Wx may be obtained by adding the membrane
solution (3.41-3.43) and the homogeneous solution (3.50) where the con-
stant Ng which cccurs in both solutions has not been specified yet.
The solution is exact once Ny and v® are determined from equations
(3.36) and (3.37). The six constants for the total solution are deter-
mined from the six boundary conditions given by equations (3.38) to

(3.40). Writing the exponential functions in terms of hyperbolic

functions, the solution subject to the boundary condition is
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N/ <2 <2 2
000 = (P2 = No\[ N % \ P26 ~ P22%6 = D22fss * Pegtus 1
: N =2 _=<2 ¢ A, A | A, A -
J 44 Ass 4atss X,

1 1 1
- :3) sinh A, a (3.52)
A 1
N\ /=2 =2 2
) <pa - "e) Nh ) /36 = Daglss 3, + Dyofss * Dephus 1
N -2 =2 \ A, A A, A -
9 kl = Az 44755 44755 AZ
i l_: cosh A, 6 - cosh Aya - a<%a - N&\(éi _.Ei>
i; sinh kza he J\2 2
=2 =2 is5 iz>
‘(o) - 'pa - Ne> 1 . D66 \Dbﬁ 1/ sinh le
¥g \ he =2 =4 A55 if sinh kla
2|
" %) stah a0 | fpa - N
- Xg sinh k ot Ng ° (3:33)
=2
/pa - N / sinh A, ® sinh A,0
¥x (®) = > AE 26 sinh Kla " sinh hza (3.54)
\ Ass 1 2

The dependent variables w°, Ye, and Yx were not evaluated

numerically using the functional forms shown in equations (3.52) to
(3.54). For large values of xl and A the hyperbolic functions
exceeded the maximum magnitudes permitted on CDC 170 series machines at

NASA Langley. Since the hyperbolic functions occur in the numerator and
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denominator of the terms in equations (3.52) to (3.54), it is possible
to rewrite the devision of two large numbers in a more numerical.iy
efficient manner. To accomplish this, the hyperbolic functions are
written in exponential form and then manipulated to make the denominator
approximately equal to one. A typical example of this procedure is

shown below.

A6 =2,8 -\« A (6=a)  =x;(B+a)
cosh Ale e 1 o 1 e 1 e 1 P 1
sinh X a \ja TAja “Aja —ZAIu
e - e e l -e
(3.55)
cosh 1,9 Al(e-a) -Al(6+a)
— 2 + e
sinh Xlu

Near the edge 8 = a the second term in equation (3.55) is negligible
with respect to the first such that

cosh 1,8 xl(e-a)

1
STah e " © ' (3a36)

and near the edge 8 = -a the first term is negligible with respect to
the secoad term such that

cosh 1,8 -Al(e+c)

;T;F—r;; = e - (3:57)

Let ¢ = 8 + a so that at the edge 8 = -a, ¢ =0, and ¢ increases
toward the center of the shell. In terms of the coordinate ¢, equa-

tions (3.52) to (3.54) are approximated by
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=, Dy2As55 * Deohus
A A, A

44755

P
3

= - \
, Daztss T Peetua 1 1 <e)‘1° ) 1> . (pa Ne)<_q>3 \
Autss T Ne

(3.59)
°]
N P D x, A
pa - \ -0 ]
Y (¢) = g L5 g— l; - e 1] (3.60)
X N =2 =2 A
6 kl - kz 55
The circumferential resultant Ne is an unknown constant at this
point.

The value of it and the circumferential displacement v°(8) are
determined by substituting

w°(8) given by equation (3.52) into equa-

tion (3.36), integrating on 6, and applying the two boundary condition:
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given by equation (3.37). The result of this procedure for Ne as a

function of the internal pressure parameter R 1is the equation

A(Ng) RZ + B(Ng) R + C(Ng) = 0 (3.61)
in which
pa - Ne
R = —g— (3.62)
B
=2
. _1( 1 _ a >
- tanh A «a .o 2
\)‘1 1 sinh >‘1 J
~ 2 ‘/ 1 - a \)
4 A, tanh A a 2
\\ 2 sinh Kza,

B / . . )
2 2 tanh A.a tanh A.a
)\l = %.2 \‘ 1 2
K A i K A, a 3
i -1>+—§- —2—-1> - & (3.63)
)\1 \tanh Kla / )‘2 tanh A

1 ( a 1
B* — | ——m——— = — | +
)\1 tanh )\la 7&1>

3

a 1 a
—_— | - = (3.64)

<tanh )\za kz> 3

O
n
+

o<

(3.65)



and

/_27;\/02-0,1) A.D,, + A, D
c o[ )Kzs 2206 52, AssPa2 * Ruales 1 |
1" \2 _2)\" a,a 1 A A =2
K 2o R\ Audtss 4iss A o
[ =2 =2 2 \
2o [N \[P2e T oo % 4 AssP2y * Raulee 1|
2 2 2|\ A, A A A =2
\\ L - 4itss 4itss o IR

Solutions to equation (3.61) are readily obtained by assuming a value
of Ne and solving for R, and hence p, as the roots of the resulting
quadratic equation. In the cases examined in this study the pressure
associated with one root of equation (3.61) was positive and the
pressure associated with the second root was negative. The negative
pressure solution to equation (3.61) was disregarded since it is not
consistent with an internally pressurized shell. These solutions
relating the pressure p to the circumferential stress resultant Ne
are then used to determine the other unknowns of this nonlinear shell
response problem.

The exponential terms in equations (3.58) to (3.60) decay away from
the boundary (¢ = 0) because of their negative exponents. A boundary
decay length may be defined as the distance from the boundary for an
exponential term to decay to a small value €. After selecting a value
for € a boundary decay length (£) may be determined

elat .
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or
£ =a0=2 () (3.68)

where

>
]
o >

A typical value for € might be 0.0l and two values of A are given by
equation (3.48). Therefore, two boundary decay lengths are evident in
the dependent variables given by equations (3.58) to (3.60). One decay
length is associated with twist-curvature effects (Xl) and the other

with circumferential bending effects (A,).

3.3.6 Kirchhoff-Love Approximation

In this section additional kinematic restrictions will be placed on
the panel displacement fields. Normals to the undeformed surface will
be assumed to remain normal to the deformed surface. This assumption

means the shearing deformation strains and Yzz vanish, which

o
Yoz
imply the rotations in equation (3.12) become

v =& (3.69)

1
Ye = - ade "’ (3.70)
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Thus the displacement fields in equation (3.9) have the following form

for the one-dimensional analysis

u(x,8,z) = ex (1. 71)
1 aw’

v(x,8,z) = vO(8) - z ;-33—(8) (3.72)

w(x,0,z) = wo(9) (3.73)

With the above restrictions a mathematical formulation equivalent to

equations (3.32) to (3.36) becomes

dNe

—_— .74
r 0 (3.74)
E%Z d4 o ) Ne d2w - Eﬂ 1,755
a de ;7 de

- 1 dvo wo
= L AR S
No=AjetAplaae *a

N —
W ) —
a|%

( eo) %] (3.76)

Equations (3.74) to (3.76) constitute a sixth order system of ordinary

differential equations for the dependent variables Ne, w°, and v°,

with p and ¢ as prescribed loads. They are solved subject to the

six boundary conditions
o -
v (2a) = 3v (3.77)

wo(%q) = 0 (3.78)
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(o]
.(ta) = O (3-79)

a

W

i
a

[=¥
D

Equations (3.74) to (3.76), subject to boundary conditions (3.77) to
(3.79), are solved by the same method of solution described in

Secticen 3.3.5. The results of the solution are

pa - N ) pa = N
0 -8 Bl 2 _ 2 6| aa (cosh AB - cosh Aa)
v (0) 2( Ny >(°‘ g < N > i\ sinh A8 (3.80)

where

A= a}NJDzz, (3.81)

and Ne and the pressure are related by

AN ) R% + BN R + C(N) = 0 (3.82)

in which

(3.83)

o
"
+

<
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The parameter ) 1in equation (3.81) is the magnitude of the nonzero
roots (£)) of the characteristic equation for the homogeneous solution
to w°(8), and represents the rate of exponential decay of the bending
boundary layer. The root ) of equation (3.81) is equivalent to the
root A of equation (3.48) which is associated with circumferential
shear and bending in the shear deformation theory. For the Kirchhoff-
Love approximation there is no root equivalent to i2 of equa-
tion (3.48). A boundary decay length associated with circumferential
bending may be calculated by substituting ) from equation (3.81) intec
the definition given by equation (3.68).

For geometrically linear strain-displacement relations equa-

tions (3.74) to (3.76) of the Kirchhoff-Love theory become

dNe
M- .84
s 0 (3.84)
D, 4 o N
—ig d'w _ b= ;g (3.85)
a de

- 1 dv° w°
By = Sy e “22[2 " r] 13:582

These linear equations are a sixth order system of ordinary differential
equations and are solved subject to the six boundary conditions given by
equations (3.77) tc (3.79). Equation (3.85) may be easily integrated

and the solution derived is equivalent to that determined from beam
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theory when the right hand side of equation (3.85) is equated to an

effective pressure P

Py " P~ (3.87)

After integration of equation (3.85) and application of boundary condi-

tions in equations (3.78) and (3.79), the solution for wo is

4 2
a

248, p,(92 - o) (3.88)

wo(g) =

The circumferential stress resultant Ne is still an unknown in equa-
tion (3.88). The resultant Ne may be found by integrating equa-

tion (3.86) subject to boundary conditions in equation (3.77) and using
the fact that Ne is a constant from equation (3.84). The result of

this operation is the following expression for N9

- A
- v 22 2 4
A g€ ‘22<aa> * 4sp,, * @ P?
N, = (3.89)
8 A
kg, 8 4
22

The linear Kirchhoff-Love solution for w® 1in equation (3.88) does not
exhibit a bendirg boundary layer as does the nonlinear Kirchhoff-love
solution given by equation (3.80) and the nonlinear shearing deformation
solution given by equations (3.5€) to (3.60). ™e linear and nonlinear

Kirchhof f-Love approximations are compared in Section 4.3.
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3.4 Through-The-Thickness Stresses

The transverse stresses (tez,txz,o ) are calculated from the
elasticiry equilibrium equations (3.7) with the assumptions, consistent
with the one-dimensional shell analysis, that all stresses are assumed
te 'e independent ot the x-ccordinate and the displacement w is

voade cendent of x as pgiven by equations (3.26). With these assumptions

equations (3.7) raduce ro

| ;T

L, -~ S

Y pes (3.90)

y 00, T,
188, %L (3.91)

_I._tz % N:’. _ _""F)lH - LO_(S_@Q)E 0 (3.92)
“ 0F )z n a 08\ = 06 * =
cit cxivessinm: for Lhe stress components Oygs  Og» and Txe

in the thicknes. cuvordizace follow fron equations (3.10), (3.17), and
(3.29), conbined wiih ];_’= U. Although o 1is not needed to deter-
mine Llie Lransverse Sti-sse: in the elasticity equilibrium equations, it
s givee owiow since 11 is needed in suvsequent fallure analyses. The

inplaue stress components within a typical lamina are

—— - O - an
% = Qe * Qypey z[ PUTRIT x6 ks

. —_

- o -
Op = Q€ + Uyyeq + ‘LQZ?‘ee r QT 0 (3.94)
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- o[- _
o~ N6® T Y% z[stl‘ee * Qeerxe]' (393)

The transverse shear stress T is determined by substituting 0

from equation (3.95) into the equilibrium equation (3.90) and integrat-

ing in the z-direction. Similarly the transverse shear stress is

Toz
obtained by substituting e from equation (3.94) into the second
equilibrium equation (3.91) and integrating on z. The constants of
integration resulting from these indefinite integrations are determined
by requiring the transverse shear stresses to vanish at 2z = -t/2 which
is consistent with boundary conditions (3.8). Finally, the expressions
for the transverse shear stress Tez? the circumferential stress g in
equation (3.94), and the deflection w%(8) in equation (3.52) are
substituted into the third equilibrium equation (3.92) and indefinite
integration on z 1is performed to determine o . The constant of

z

integration is determined by setting o, =P at z = -t/2. In the

integration processes described it is important to recognize that the
transformed reduced stiffnesses are piecewise constant functions of z.

The results of this lengthy process are

dFe

(B)ig 2 = =L —2t8y g, .4 I T FO, (3.96)
Tex ' OZ 38 (©) 926(2) ~ 7 —gg (O dp66(2 .

o |

dr

(k) o o 1 $xe 3.97
9 (82) = = 735 (8) 4975(2) = 7 —75 (8) 9p6(2) (3.97)

—



dee(e)

o 5@ 1) L sl
a a deZ / aZ de de 226
: dzl‘e(e) | dzl"xe
+ = 5 q322(2) +—2——2—<e) q326(z), (3.98)
a- de a~ de
where
k-1
=(1i) =(k),  _
4y AE) = 1Z=1 Quy (24 = 242 * Q2 =2 )) (3.99)
k=1 <z2 z2 > <22 z2 )
S o=(i) \A4 T %l =(k) " k-1
q2mn(2) = f:q an 2 + an 2 (3.100)
k-1 g 3 )3
i, mo | %1 " fi-1 2 2 _ 2 _
A =k 3 sz ey mz )t (gm0 - zy)
3[,3 - 3
mn k-1 2
t 3 — zk_l(z = zk-l) (3.101)

In equations (3.99) to (3.101), zy designates the thickness coordinate

to the top of the ith layer in the laminate; i.e., 2z, = (4 - N/2) n,
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i =1,2, «es, N, where h 1is the layer thickness, and N 1is the number
of layers in the laminate (t = Nh). If 2z 1is set equal to t/2 in

equations (3.99) to (3.101), then qlmn(t/Z) = A

mn’

q2mn(t/2) = an =0,
and q3mn(t/2) = Dmn’ in which Amn’ an, and Dmn are the extension,
coupling, and bending stiffnesses, respectively, of classical lamination
theory. The stresses T2t Tozt and o, given by equations (3.96) to
(3.98) vanish at the upper surface, as they should, because the shell

equilibrium equations are integrated versions of the elasticity

equilibrium equations.

3.5 Strength of Materials Solution

A simple strength of materials arnroach was used to perform a non-
linear membrane analysis of long cylindrical panels under internal
pressure. The strangth of materials analysis gives good approximations
for center deflections and circumferential membrane strains for
sufficient:v thin panels. The circumferential membrane stress resultant
can serve as an initial approximation for the shell stress resultant in
the bending theory discussed in Section 3.3.5. Local effects such as
the edge bending strain are not predicted from this analysis. An
equivalent analysis for a curved plate is described in Reference 1.

The basic assumption of this analysis is that the initially
circular panel remains circular when internally pressurized. Undér an
internal pressure p the panel with initial radius a deforms to an
arc of a circle with a radius R. This deformation process is shown in

Figure 6. Vertical equilibrium relates the circumferential stress
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resultant Ne to the pressure p and deformed radius R by the
relation
Ne = pR (3.102)

The constitutive relationship depends on the assumed axial strain state

as follows:

o _ oL o
For Cx =0 Ne A22€9
AfZ 0
For hx =0 Ne = A22 v ge<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>