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Chapter 1

INTRODUCTION

Rising fuel costs have encouraged weight reductions of commercial

transport aircraft. Weight reductions of approximately 20-30 percent

may occur with the replacement of existing aluminum construction with

advanced composite materials. Composite materials offer both high

strength- and stiffness-to-weight ratios. Also, the directionality of

these composite materials allows designers to tailor the properties of a

structure and, thus, design more efficiently. Composite materials have

additional advantages over metallic materials in their tension-tension

fatigue and corrosion properties.

Although composites offer many inherent advantaqes over metals,

there are still many problems which must be solved before they can be

used for primary loa, carrying structure. Past research has uncovered

shortcomings of composites which are not found in metals such as delam-

ination, free edge effects, and poor impact damage tolerance. Much work

has been done on the response and failure of composite materials sub-

jected to in-plant• loadings. However, little experimental work has been

d(-ne on composite materials under combined membrane and bending loads.

A combined stress state occurs in the skin of a fuselage which is inter-

nally pressurized. This internal pressure could be carried most effi-

ciently in a uniform membrane state of stress if the skin were free to

expand uniformly in the radial direction. lnternal stiffeners necessary

to support mechanical loads apVlied to a fuselage restrain the skin
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locally and prevent uniform radial expansion consistent with a membrane

state. The pressure-i.duced deformation of the skin in a typical bay of

a stiffened fuselage is illustrated in Figure 1 and is often referred to

as "pillowing."

The product of the large pressure-generated membrane tension and

change in slope of the skin's reference surface, which results from non-

uniform radial expansion, produces a geometrically nonlinear pressure

response. This nonlinearity is included in this study and is essential

for accurate response prediction. The degree of radial constraint also

introduces bending strains which occur in the skin adjacent to the

stiffeners. The bending strains, which are a maximum az the panel's

edge, combine with the membrane tension strains to initiate failure in

the skin.

The primary structural configurations of composite pressure vessel

researc> are thick unstiffened shells which carry very high pressures.

Much literature has been published on this research area due to the

development of high strength fibers and filament winding techniques.

Analysis of these structures using geometrically linear membrane theory

is sufficiently accurate for design. Thin stiffened shells such as a

fuselage require a different procedure. Bending in addition to membrane

action must be included in the analysis of these structures. Refer-

ences 1-7 report on studies of fuselage-type structures under internal

pressure. Portions of the material presented in this thesis are docu-

mented in Reference 8.

F4 \
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Reference I reports on a one-dimen6ional nonlinear elastic membrane

analysis for long flat or slightly curved metal panels. This work

illustrates the nonlinear nature of the problem but does not address the

severe bending gradients which occur in the fuselage skin at the stiff-

ener support.

Flugge (Ref. 2) addresses a number of problems which arise in the

internal pressurization of an airplane fuselage. The importance of

the nonlinear response is illustrated by a membrane example similar to

that described in Reference 1. Local Lending stresses induced by the

restraint of the stiffeners on the fuselage skin are not predicted with

the membrane approximation of Flugge. Neither can these local bending

stresses be correctly exz.mined with a linear axisymmetric appr,1ximation

or the pressurized fuselage as used by Flugge. In this approximation

the skin and longerons are lumped 'ogether to obtain an equivalent

"smeared" orthotropic shell with the individual rings modeled dis-

cretely. Skin bending adjacent to a ring will not be properly predicted

with this approach and bending adjacent to a longeron is not allowed by

the analysis.

!:	 Additional axisymmetric anal y ses are includea in References 3

and 4. Williams (Ref. 4) included in his analysis the important geo-

metric nonlinear term which accounts for the product of the in-plane

axial load and slope in the radial equilibrium equation. However, the

importance of the nonlinear effect of this term is lost when "smeared"

longeron theory is used which makes the skin effectively very thick and

the contributions of the nonlinear term small. This approach therefore

f •.
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does not accurately address the "pillowing" which results in local skin

bending.

Wang (Ref. 5) modeled the fuselage as a shell connected to discrete

internal rings and stringers. The analvsis was linear; and it was

assumed that the interaction between elements consisted onl y of normal

stresses, thus excluding shear. Series solutions were used to satisfy

the equilibrium equations for each individual component. Displacement

compatibility between the individual elements couples these elements and

allows for the determination of the interaction forces. This analysis

for isotropic matErials does address "pillowing" effects but geomet-

ricall y linear behavior is assumed. Linear behavior would become more

appropriate as the skin thickness increases or as the stiffnesses of the

R'
frames and longerons decrease.

Formulas are given in Reference 6 for stresses in an isotropic skin

adjacent to individual frames and longerons. Although the details of

the derivation are not discussed nor a reference given, nonlinear terms

are apparent in the formulas given.

Reference 7 reported axial and circumferential strain distributions

for a typical bay of a composite stiffened circular cylindrical shell

under internal pressure. These results were generated from a Lockheed

in-house computer program. The analysis developed by Wang (Reference 5)

has been extended to include composite skins. The analysis is again

linear with numerical results given for a fuselage skin laminate at an

ultimate ground test condition of 17.63 psi.

1
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References 1-7 all deal with pressurization of a fuselage but none

show how the geometric nonlinearities effect the severity of the bending

gradients in a composite skin adjacent to a stiffener. Only Reference 6

has experimental pressurization results. This work is on large scale

stiffened adhesively bonded aluminum fuselage structures and does not as

such focus on the response of the skin. For panels with longitudinal

cracks in the center of the bay, the crack propagated until it met a

frame and turned and ran parallel to the frame along its intersection

with the skin. For aluminum pressurized panels, the high stresses which

occurs in the local bending gradient are relieved by material yielding.

For composite pa^els, strain relief must come primarily from other

sources such as transverse matrix cracking, local fiber failure, and

delamination.

In the edge bending gradient region, interlaminar stresses become

large and must be examined because of inherent transverse strength

weaknesses of comp-cites. The majority of references on interlaminar

stresses is directed towards the free edge problem of a composite

laminate. References 9 and 10 examine the distribution of interlaminar

stresses near the supported edges of composite circular cylinders under

internal pressure. Linear shell analysis was used on a layer-by-layer

basis to determine the axial distribution of interlaminar stresses for

clamped or simply supported axial boundary conditions. Because linear

theory was used in the above studies, the same response characteristics

would be found at any pressure. The response character will vary with

pressure when geometrically nonlinear behavior is considered.

4
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A one-dimensional approach is used in the present study to concen-

Irate on tre nonlinearities and local skin bending important in a pres-

surized fuselage skin. The skin is approximated by an infinitely long

shaiiow cylindrical panel. This geometry approximates typical fuselage

skin bays which are long in the axial direction relative to their cir-

cumferential arc length. In addition to the in-plane circumferential

stresses, interlaminar stress distributions are examined. :Nonlinear

equations of elasticity, which include geometric shallowness and

Donnell's approximations, are integrated to determine the interlaminar

stresses. Past research has not a,-amined these stresses with geometric

nonlinearities considered.

Experiments were conducted to verify the analysis and identify the

ultimate failure pressures and modes. Comparison between analysis and

experiment points out the range of applicability of the analysis. The

test article is a shallow cylindrical panel of the same approximate

dimensions as a typical fuselage skin panel. Under internal pressure

the radial deflections of the fuselage skin are symmetrically dis-

tributed along lines perpendicular to the frames and longerons as shown

in Figure 1. Because of this symmetry the slope of the deflection curve

normal to the boundary is zero. To approximate this slope condition,

curved graphite-epoxy and aluminum panels were tested in a fixtui^- with

clamped edges. The outward radial deflections at the stiffeners of an

actual fuselage were not duplicated in the experiment. The panels were

constructed of 4, 5, 8, or 16 plies of unidirectional graphite-epoxy

tape to illustrate a range of responses and failures.



Chapter 2

EXPERIMENTAL PROGRAM

2.1 Test Specimens

The materials used in this study include 2024 —T3 aluminum and

commercially available 0.005 —inch —thick unidirectional Thornel 300

graphite fiber tapes preimpregnated with 350°F cure Narmco 5208 thermo -

setting epoxy resin referred to as T300-5208 graphite —epoxy. The

aluminum panels were cut to size from flat sheets which had nominal

thicknesses of 0.020 and 0.040 inches. Unidirectional preimpregnanted

tape was layed up on a smooth cylindrical surface with a 60 inch radius

at specified orientations to form uncured laminates. These nanels were

cured in an autoclave following the resin manufacturer's recommendations

and then inspected with ultrasonic C —scan. Typical lamina pr-operties

are 19.0 nisi fcr the longitudinal Young's modulus E 11 , 1.89 msi for the

transverse Young's modulus E 22 , 0.93 msi for the in —plane and shearing

deformation moduli G 12 and G131 0.60 msi for the shearing deformation

modulus G23 , and 0.38 for the major Poisson's ratio v 12 . The panels

and their stacking sequence are shown in Table 1. The aluminum

specimens are designated specimens Al and A2 and the graphite—epoxy

specimen., are designated G1 through G11.

After trimming the panels to an approximate size of 23 inches by

11 inches, bolt holes were drilled around the panel's edge for securing

the panel to the fixture as shown in Figure 2. A special drill fix -

ture was used for drilling thirty —two 0.25—inch holes into each panel.

8
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Table 1. Test Specimens

Specimen
Number
of Plies

Thickness,
in.

Laminate Stacking
Sequence

A! 1 0.0203 2u24-T3 Aluminum

A2 1 0.0389 2024-T3 Aluminum

G1 4 0.0206 [±45]s

G2 4 0.0207 [±45]s

G3 5 0.0251 [t45 /0]s
G4 5 0.0247 [±45/011

G5 8 0.0387 [90/±45/0]s

G6 8 0.0397 [90/0/±45]s

G7 8 0.0400 [90/C/±45]s

G8 8 0.0912
[+45]2s

G9 16 0.0901 [±45/±45/902/02]s

G10 16 0.0880 [902%±45/±45/02]s

Gil 16 0.0893 [902/02/±45/±45]s

ti
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The drill fixture consists of a top and bottom part. The trimmed panels

were placed between the two curved surfaces of the drill fixture for

drilling the holes. Force was applied to the top and bottom parts of

the drill fixture with C-clamps to force the panel into an untwisted

60 inch rr.dius configuration and to prevent any movement during the

drilling operation.

The drill fixture design had an important effect on the circumfer-

ential distance between bolt holes of different thickness panels. The

drill fixture design provided for constant opening angles between the

arc-wise position of the bolt holes drilled in all the panels. However,

it did not compensate for the various panel thicknesses. Thus differ-

ences occur in the middle surface arc lengths between the bolt holes

used in clamping the etraight edge. The rsiddle surface arc length dif-

ference between the thickest panel (0.080 in. nominal) and the thinnest

panel (0.020 in. nominal) was predicted to be approximately 0.004 in.

Although this difference may seem like a minor variation in the middle

surface arc length, it will be shown later that small changes in the arc

length for shallow panels can result in very large changes in the middle

surface radius.

Fiberglass tabs of uniform thickness (approximately 0.1 in.) were

used to reinforce the bolt holes against bearing failure along the

straight edges of the panels. These flat tabs measured 1.5 in. in width

and 20 in. in length and were drilled separately and bonded onto the

convex surface of the predrilled composite panels.

r `
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To measure the bending gradient away from the clamped edges, the

panels we-e ins trumented with strain gages. Back-to-back strain Rages

were bonded to the panels from the edges to the center along the circum-

ferential and axial center lines of the panel. Because of the rapid

strain variation at the panel's edge, strain gages with short gage

lengths were located as close as possible to the clamped boundary to

determine the best pointwise estimate of the edge strains. Gages with

an effective gage length of 0.015 inches were used close to the edge.

Since the strains were almost constant outside the edge bending boundary

layer, larger gages could be used away from the edge. These strain

gages had an effective gage length of 0.187 inches.

2.2 Test Apparatus

The test apparatus consisted of the test fixture, pressure source,

and instrumentation. A cross secticnal drawing of the assembled test

fixture is shown in Figure 3. The test fixture consists of.three compo-

nents: test frame, strain gage lead feed-through panel, and top clamp-

ing bars. The test frame was machined from a solid steel block and has

a 60-inch radius machined surface around the edges where the curved

panels were clamped. The strain gage lead feed-through panel allows

recording a maximum of 16 strain gages bonded to the panel concave sur-

face. The feed-through panel allows the strain gage signals to be

transmitted out of the pressurized interior of the test fixture. The

feed-through panel also haq an inlet port for Lite pressurizing media, a

bleed valve, and a pressure transducer port. Six bars were used for

1
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clamping the specimen to the fixture. These include two straight bars

and two curved bars, rectangular in cross section, which were used to

clamp the panel to the tent f.eme. Thirty-two 0.25-inch bolts secured

these bars and the test panel to the ttcL frame. These bolts were

torqued to 100 in-lb. Two larger bars, L-shaped in cross section,

allowed application of very large normal forces to the straight edges of

the panel in an attempt to minimize in-plane slippage of the panels in

the clamped support. The bolts which passed through the flange of the

larger bars are tightened down on the smaller bar as shown in Figure 3.

A photograph of a failed test specimen assembled in the test fixture is

shown in Figure 4. The L-shaped bars are not shown in the photograph.

During the course of the experimental program various methods were

used to pressurize the curved panels. Pressure sources include the use

of low pressure shop air (to 50 psi), city water (to 60 psi), an

1800 psi bottled nitrogen source, and a hydrostatic tester. A pressure

regtlator between the pressure source and the interior of the test panel

was used to control the pressure.

After the manufacturing and drilling of the composite curved pan-

els, their shapes deviated from the desired 60-inch radius right cir-

cular cylinder. Therefore, geometric imperfection equipment was used to

measure the initial shape of the curved panels. A DCDT (direct-current

displacement transducer) was fixed to a trolley which rolled on

straight, flat rails. Scans of the panels were made in the two direc-

tions parallel to the supports to determine the true geometry of the

panels.

i
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The test procedure consisted of the following steps. A panel was

placed in the test fixture and the clamping bars were torqued symmetri-

cally. Next, the panels were surveyed with the geometric imperfection

measuring equipment. The imperfection measuring equipment was removed

and DCDT's were positioned normal to the panels surface at selected

points along the axial and circumferential centerlines to monitor dis-

placements of the panels to the applied pressure. Pressure was

increased until failure of the panels occurred. Digital strain,

displacement, and pressure data were recorded on a data acquisition

system.



Chapter 3

ANALYSIS

In this chapter the energy method is used to derive two sets of

geometrically nonlinear equilibrium equations for the response of

cylindrical panels to int•crnal pressurization. For a set of nonlinear

strain-displacement equations, elasticity equations are derived in

Section 3.1. Using the same set of nonlinear strain-displacement equa-

tions and explicit assumptions for the displacement variation as a

function of the thickness coordinate z, shell equations are derived in

Section 3.2 which account for through-the-thickness shearing deforma-

tions. In Section 3.3 the two-dimensional shell equations are reduced

to a one-dimensional sat of ordinary differential eq<<rtions in the

circumferential coordinate by assuming that the stress resultants are

independent of the axial coordinate. The reduction to a one-dimensional

set of equations is appropriate for the response of a panel which is

long in the axial direction. Closed form solutions to the nonlinear

ordinary differential equations are obtained which include transverse

shear deformation effects and twist-curvature coupling of laminated

composite panels. ThQ one-dimensional solution provides details of the

bending gradient response near the straight edge of the panel. In

Section 3.4 through-the-thickness shear and nurmal stresses are obtained

in this bending boundary layer that contains the bending gradient.

These stresses are determined by substituting the in-plane stresses and

radial deflection from the one-dimensional shell solution into the

17
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ANALYSIS

In this chapter the energy .nethcd is used to derive two sets of

geometrically nonlinear equilibriuLi equations for the response of

cylindrical panels to internal pressurizaticn. For a set of nonlinear

strain-displacement equations, elasticity e q uations are derived in

Section 3.1. Using the same set of nonlinear strain-displacement equa-
1

Lions and explicit assumptions for the displacement variation as a

function of the thickness coordinate z, shell e q uations are derived in

Section 3.2 which account for through-the-thickness shearing deforma- 	 i

tions. In Section 3.3 the two-dimensional shell equations are reduced

to a one-dimensional s?t of ordinary differential eq«ations in the

circumferential coordinate by assuming tha t_ the stress resultants are

independent of the axial coordinate. the reduction to a one-dimensional

set of equations is appropriate for the response of a panel which is

long in the axial direction. Closed form solutions to the nonlinear

ordinary differential e q uations are obtained which include transverse
	 a

shear defc,rmation effects and twist-curvature coupling of laminated

composite panels. T'ha one-dimensional solution provides details of the

bending gradient response near the straight edge of the panel. In

Section 3.4 through-the-thickness shear and normal stresses are obtained

in this bending boundary layer that contains the bendin; gradient.

These stresses are determined by substituting the in-plane stresses and

radial deflection from the one-dirensional shell solution: into the
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elasticity equations derived in Section 3.1. The stresses in the

elasticity equations are also assumed independent of the axial

coordinate to be consistent with the one-dimer:sional shell solution.

Finally, in Section 3.5 a strength of materials solution is presented

for the nonlinear response of an internally pressurized cylindrical

membrane which is long in the axial direction.

3.1 Three-Dimensional Elasticity Equations

Elasticity equilibrium equations will be used to determine the

transverse stresses in Section 3.4 after the shell solution is obtained

in Section 3.3. However, these equations are developed before the shell

equations since an elasticity formulation has fewer assumptions, and

hence, is less restrictive than a shell formulation.

Figure 5 shows the middle surface or reference surface of the

circular cylindrical panel. The shell coordinates shown are the axial

coordinate x, circumferential coordinate 8, and the thickness

coordinate z. The origin is at the center of the middle surface such

that -L < X < L, -a < 8 < a, and -t/2 < z < t/2, ;where 2L is the

length of the panel, a is the semi-opening angle, and t is the

thickness. The radius of the circular arc on the middle surface is

designated by a.

Let u, v, and w designate displacements in the axial, circum-

ferential, and thickness directions, respectively, of a material point

in the panel. The normal strains are denoted by 
exx* cog, 

and Ezz,

and the engineering shear strains are denoted by 
yg;,, Yxz , and Yx8'

V

4
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The strains are assumed to be small, and the rotations are assumed to be

moderately small. On a surface parallel to the middle surface, the

rotations of the axial and circumferential line elements out of the

tangent plane are assumed to be larger than the rotations about the

normal, such that rotations abou t the normal are neglected. Since the

panel is shallow, the contribution of the circumferential displacement

to the rotation of the circumferential line element out of the tangent

plane is neglected (Donnell-Mushtari-Vlasov approximation). Sanders

(Ref. 10 presents kinematic relations for the surface strains in

general curvilinear coordinates under these assumptions. Specialized to

cy lindrical coordinates Sanders kinematic relations are

E	 = 
bu	 ^1 i aw+ 

x 	 b::	 [1 ax

2

E Be	 r 6 + r + 2\r o0l	
(3.1)

	

_ 8v	 i bu	 N l bw

Yx6	 N	 r 60	 ox r b0'

where r = a + z is the radius of a surface parallel to the middle

surface. The transverse kinematic relations are assumed to be given by

.4r
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_ by 

+ 
1 Ow

Y 0z	 bz	 r b0

^,Z = bxY	 + a

bw
Ezz	 bz

The panel is thin, such that a >> t > IzI. Thus in e q uations (3.1) and

(3.2) the radius r is replaced by the radius a of the middle

surface.

The potential energy for the panel is

V = U - W,
	

(3.3)

where U is the strain energy and W is the work of the prescribed

surface tractions. Body forces are neglected. Let 0xx, 	 0
00 , 

and

0Zz denote the normal stress components in the panel, and let T0z'

Tx` , and Tx0 denote the shear stress components. The strain energy

for a lineal elastic thin shell is

t/2 	 L

V = 2 
3_	 f c, f I xx axx + E00 °00 + Ezz ^r 	 zz

t/2	 a	 I.

+ Iez It 	 + Yxz Txz + Y
x0 TX0] dx ad0 dz

	
(3.4)

The prescribed surface traction components at x = ±L are denoted

0xx' Tx 
0' and TXz . The overbar notation is also used for the pre-

scribed surface traction components at 0 = ±a and z = ±t/2. The pre-

scribed tractions are treated as dead loads in the energy .ormulation.

(3.2)

r
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Although hydrostatic pressure is not a dead load, it is conservative,

and may be approximated by ;1 dead load potential (Ref. 12) for a shallow

panel. 'Thus, the work done by the prescribed tractions is

f L fa(
	

z=t/2

W 
	 \ =x.. u+S6e v+ozz w
 	

'-
7z_=-t / 2 

6d6 dx

	

t/2 f L	 8°a

+

	

f-t/2 	
`Tx9 u + 009 v + T ^ w)	 dxdz

	

 L	 0s-a

	

t/2 	 x=L

+J

	 fa

 ^ axx u + Sx6 v + -1xz w)	 ado dz	 (3. 5)

	

t / 2	 a	 i x= -L

where the internal hydrostatic pressure p is equal to -a 	 atzz

z	 t/2.

Equilibrium equations and boundary conditions for the thin shallow

cylindrical panel are obtained from stationarity of the potential

energy, i.e.,	 bV - 0.	 Combining equations (3.3), (3.4), and (3.5) with

the approximate kinematic relations (3.1) and (3.2), the first variation

in the potential energy, after integrating by parts, is

1 
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tit	 L 

1 
a 

rsv =	 _ a xx _ 1 aTx 6 - "I	
s«

	

t/2	 LL
f	

ax	 =a ae	 az
a 

+ - a xx0- 1 oaee - aT ez 	_ 6Txz _ 1 aT6z

	

Tx	 a a6	 az	 s" +	 ax	 a ae

a 6 z	 1	 a "	 aw	 1 a ( aee a^. )
az + a a e6	 ax ^, axx Tx)	 a 66 l a ae /

	

- a( T	 1 aw	 l a 
(rxe 	 &.; ade dxdzax ^ xe a To) - a ae 	 N

 afr/2 f

	 -	 _ -

 J 	 [(Clxx - axx ^ b" + (It 	 Txe^ by

	

t, 2	 a

\	 x=L
+ (T + a aw + T 1 ^ - 

_

T J 
sw	 adA dzxz	 xx ax	 xe a ae	 xz

I x=-L

	

t/2	 L

+	 lTx6 - Txe? s" + (a66 - a 0A ) by

	

-t/2	 -L [/

I 	 ;j1

0=a

+ (T ez + a 6e a ae + T xe ax	 Tez ) bw
	 dxdz

	

I L 	 a

+

	 [(,Ixz	

Xz I6u+( T6z-T6z)sv

	

L	 a 	 `

z=t /2

+ (azz - azz ) 6w	 ade dx - 0
z=-t/2

(3.6)
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Since the variations bu, bv, and bw are completely arbitrary, equa-

tion (3.6) can vanish only if the coefficients of each variation vanish

individually. From this reasoning the three equations of elasticity

for equilibrium in the x, 0, and z direction are

aQ 
x + 1	 ^xz = 0

ax	 a ae	 az

aTxe 	 1 aa ee zO E+	 + 	

= 0
Ox	 a b e 	 Oz

(3.7)

a-r
xz	 1 aS ez	 aazz	 1	 O	 aw

ax + a ae + az - a ae6 + Ox ( axx ax )

+ 1 a a ee	 +	 r "x.eawl+i a (,XB
a 60a aawe^ aax \ a ae 	 a ae

aw
 N J

Tne nonlinearities appear in the z-direction equilibrium equation only,

which is tae third equation in (3.7).

The vanishing of the first variation also leads to boundary condi-

tions on the surfaces of the panel. Since the equilibrium equations are

used to estimate the transverse stress components, only the conditions

on the upper and lower surfaces are needed. Thus, conditions on the

surfaces at x = ±L and e = ±a are omitted. At z - ±t/2 the

following are prescribed

zxz or u,

29Z or v,
	 (3.8)

azZ or w.

^M
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3.2 Two-Dimensional Sht.11 Equations

3.2.1 Kinematic Relations

The assumptions of geometric shallowness, small strains, and moder-

ate rotations were used in the derivation of the elasticity equations.

In this section a shell theory will be derived from the variational

principle (3.6) by assuming the z-direction dependence of the displace-

ments. Normals to the reference surface before deformation are assumed

to remain straight and unchanged in length but not necessarily normal to

the deformed reference surface. This assumption allows through-the-

thickness shear leformz.tion of the Mindlin type (Ref. 14) to occur which

is important for composite materials where the ratio of shearing defor-

mation modulus to in-plane extensional modulus is low (1/20-1/30). This

assumption implies that the in-plane displacements u and v vary

linearly through the thickness. Let u 	 and vo represent the dis-

placements u and v on the middle surface (z - 0), and let T x and

T6 designate the rotations of the middle surface normal about the

&-axis and x-axis, respectively. Then the displacement field for the

shell theory has the form

u(x, &,z) = u o (x, 0) + z Tx (X, 0)

v(x,0,z) - vo (x,0) + z '1 0 (x,0)	 (3.9)

w(x,©,z) = wo(x,0)

, 
A
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Substituting the displacements (3.9) into the strain-displacement

relations (3.1) and (3.2) results in the following expressions

E	 _ E	 + z r
xx	 xx	 xx

0

E ee = E 00 + Z roe

O

Yx e	 Yx e + z rx e

(3.10)

o

Y 9z 

_ 

Y 0Z

_ o

Yxz	 Yxz

E	 = E°
ZZ	 zZ

in which the middle surface strain-displacement relations are

\2

o 	 au°	 1 ( bw°

Exx	 ax + 2 \ ax

2
O	 1 (bV°	W°	 I	 I -Ow

E 90 c a 60 + a + 2 a 60
(3.11)

'i*.Iw

O	 (7V° + 1 au ° + a GW 1 8w °
Yx 0	 bx	 a 66	 6x a 60- 9

•^	
_	 ^sw	 rT'Fr^t:'
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and where the transverse stains aTid rot '.ion gradients are

0

Y a 	 ^8 + a e

Yxz ox ^x

alr
r = " (3.12)
xx ox

1 a1Fd

r	 . _.

` e9	 a oe

r	 = al

e + 1 6T 

x e N	 a be

3.2.2 Shell Equilibrium Equations

The assumptions for the displacements (3.9) are substituted into

the first variation of the potential energy (3.6) and explicit integra-

tion in the thickness coordinate z from -t/2 to +t/2 is carried

out.	 In this process weighted integrals of the stresses in z occur.

These integrals are interpreted as stress resultants and stress couples

in shell theory. The stress resultants and couples, defined per unit

arc length on the reference surface, are

1.

ff.r

I^ .
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t/2

(yx'Ne'Nxe) _( ox , ae, 1xe) dz
-t/2

ft/2

(Qx,Qe(zxz ,z ez ) dz
t/2

;3.13)

rt/2

(Mx'Me'Mxe) - J 	 (ax,oe,Itxe) z dz.
t/z

After performing the integration through the thickness, and using the

stress resultant definitions (3.13), the vanishing of the tirst varia-

tion of the potential energy leads to the equilibrium equations
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aNx	 a''x 9

h + a ax + f 
Txz 	 Txz ( - t/Z))	 0

1 ati A	 aK
x A

a 08 +	 ax + f -C	 (+t/2) - z (-t/2) 1 = 0

a I K 
aw `1 _ A + 1 a( No aw 1	 1 6` A

ax	 x ax )	 a	 a aA '''a aA / + a aA	 (3. 14)

+--+--l	 ^x A l

axe 	 a 6  ( x8 ax / + ax
0

 \ a a
aw

A

+ lazZ (+t/2) - azz(-t/2)) - 0

a^'Y	 1 a''x A	 t
be 	 —aA - Q + fjxz(c/:) + z (-t/2)^ = 0xz

1 ^'e	 ^1 xe	 c
a ae + ax — °e + L -1 (t/2) + z^ (-t/2) 1 - 0.

1'he shell boundary conditions, which result from the integrated form of
	

1	 '^
the lirst variation of the potential energy, consist of five conditions

along each edge. At x - ±L the following are prescribed

1
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o-o
N= 1	 0	 u = u,
x	 x

M = M	 or T = T ,
X	 x	 x	 x

N
x8 = Nx8 °r v° = v°,	 (3.15)

Mx8 = M;;8 or 'F
6 = e'er

Q +N bw + Nx8 6, Q or w° = w.
x	 x bx	 a be	 x

at 8 = ±a the following are prescribed

N
x8 = Nxe or u° = u°,

Mx8 = M x8 or T = 'Yx,

N 8 = N 	 or v° = v°,	 (3.16)

M 8 = M 8 or 'F 8 = Te.

+ 8a+N
	

3w	 o=-o
Q 8 a 66 0	 xe ^x - Qe or w	 h

The shell equilibrium equations (3.14) can be obtained from the

elasticity equilibrium equations (3.7) by integrating the latter equa-

tions through the thickness. For example, if the last l uation in

I4
1
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equations (3.7) is first integrated it z from -t/2 to t/2, and

secondly it is multip.Lied by z and integrated from -t/2 to t/2,

then the first and fourth equations in equations (3.14) are obtained

when the tesultant definition in equations (3.13) ,-e used. 	 This fact

is significant for the estimations of the through-the-thickness stress

component: 
Sxz , Tfiz, and a

T from equations (3.7) when stress com-

ponents ax , ae, t ex , and deflection w are assumed to be given by

the shell theory.

3.2.3 Shell Constitutive Equations

The panels in this stuay are fabricated by laminating plies of a

unidirec*tonal fiber-reinforced composite material. It is assumed each

Ply is homogeneous, linear elastic, and orthotropic with respect to the

fiber (1), transverse (2), and through-the-thickness (3) directions.

The fiber direction with respect to the positive x-axis in each lamina

is given by the angle 0 shown in Figure 5. Thus, in the shell coordi-

nates x,	 A. and z, the material appears to b2 monoclinic with d plane

cf symmetry perpendicular to tho z-axis. In adjition it is assumed that

the through-the-thickness stress a z is negligible with respect to the

in-plane stresses ax , a,, and zxe, such that az is set to zero in

the constitutive equations. Since the strain 
c 	

also vanishes (see

equations (3.10)), the constitutive equation for the z-direction normal

stress and strain is neglected. For the in-plane stresses and strains,

the lamina constitutive equations are

4
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x	 411	 4 12	 4 16	 ^Ex

/
1 °a ) -	 422	 426	 E e 	 '	

(3.17)

I

-̂Tx e 	
j symi..	

466J	 Yx8

in which the elements 
4 11'	

466 are the transformed reduced

stiffnesses determined by the elastic moduli E 1 , E21
	 v 121 and G12'

and the angle ^.	 (See Ref. 13, pp. 46-51.) The lamina constitutive

equations for the through-the-thickness shear stresses and strains are

(Tel	
C44	 C45^	 fY9

1	 I\

	

L(3.18)

	

xz C 45	 C 55	 Yxz'

where

C44 = cos 2 d G23 + sin 2 0 G13

C 45 = sin 0 cos	
( '23 - G13)	

(3.19)

C 55 = sin 2 ^ G 23 + cos 2	G 13'

and G 13 and G23 are the shear moduli in the 1-3 and 2-3 planes,

respectively.

The shell constitutive equations are obtained by substituting the

,trains (3.10) into equations (3.17) and (3.18), and then substituting

these results into the definitions for the stress resultants (3.13).

f^

ti —
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Since the panels tested are balanced and symmetric lamina-tes, the shell

constitutive equations for this important class of laminates are

N 	 A11	 Al2	
0	 0	 0	 0	

^rox^
I

A 0	 A1,	 A22	 0	 0	 0	 0	
I E,
i

tv x8 	 0	 A66	 0	 0	 0	 Y00	 (3.20)

Mx	 0	 G	 G	
D11	 D12	

D15	
lxr

M 6	 0	 0	 0	
D12	 D22	

D,
5 '	 roe

^MxO	 L 0	 0	 0	 D16	 D 26	 ` 5c	 rxe

and

/- 
1	 2	 0,	 `

Q e	 k1A44	 0	 Y0z
(3.21)

L	 O
^Qx	 0 "'A55	 YxzJ

where the laminate extensional stiffness (A .) and the laminate bendingg

	

stiffness (D id ) are determined from the individual lamina stiffness and

	

	 ♦ ^
a

the staking configuration

r h/2

(A ij ,D ij ) = 
J

Q ij ( 1 , z2 ) dz	 (i,j = 1,2,6)
h, 2

h/2

A id 	 Cif dz	 (i,j = 4,5)

-h/2
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In equation (3.21) kl and k2 are shear correction factors, which are

introduced to account for the nonuniformity of the through-the-thickness

shearing stress distribution.

F>rmulas for the shear correction factors are given by Whitney

(Refs. 15 and 16) for laminated anisotropic plates under static loading.

For homogeneous isotropic plates various values of the shear correction

factors have been used (e.g., 5/6, n 2 /12, and 2/3; see Ref. 17). The

shear correction factor serves to change the effective value of the

laminate shearing deformation modulus. It is assumed that the shear

correction factors are unity in this analysis, since the values of

shearing deformation moduli are difficult to measure and are not well

known.

3.3 One-Dimensional Shell Equations

The solution of the two-dimensional shell equations is very diffi-

cult and requires the use of a numerical computer code. in transport

aircraft nesion the axial lengths of fuselage panels are usually greater

than the circumferential are lengths or widths. A simpler analysis is

possible for the central section in long panels if it is assumed that

the static response to internal pressure is independent of x. Thus

stresses and strains depend only on 6. The solution to the shell

equations based on this assumption is developed in this section.

As reported in Reference 1, W. D. Douglas in 1916 argued that the

end effects associated with the curved-end boundaries for internally

pressurized fabric panels are confined to approximately a half panel

••R

r7l)

r+a



+
1 a 

1	
awl	 h'x8 62w

a 69	 x9 ox 1 + a ax60 (3.22)
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width in the axial direction from each curved edge. On this basis an

analysis which is independenL of the axial coordinate x is applicable

for jxj < L - aa. The axial length of the central region where a one-

dimensional analysis is applicable is examined in more detail in

Section 4.1.

3.3.1 Shell Equations

Assuming the stress resultants and couples are independent of the

x-coordinat= the shell equilibrium equations (3.14) simplify to

1 dx6
a d9 + 

ITxZ (t/2) - T xz (- t /2)J = 0

1 d t, 9

a d 6 + [ 76z(t/2) - T e" (-t/2) J = 0

c 2w \0	 1 a I l e aw 1	 1 dQ8

^x 6x  a + a 60 ^a be / + a d A

+ (o (t/2) - o (- t /2)] = 0
zz	 z 

dM

a da e - Q  + 2[T%z (t/2) - T%z (-t/2)] = 0

dM

a ae a — Q o +	 8z (t/2) - T
8z (- t /2)J = 0

'e
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3.3.2 General Displacement Field

The assumption that the stress resultants and couples are indepen-

dent of the x-coordinate implies the strains and rotation gradients are

independent of the x-coordinate as well, since the two sets of variables

are linearly related by the constitutive equations (3.20) and (3.21).

For this general case, however, the displacements and rotations are not

independent of the x-coordinate. To determine the explicit dependence

of the displacements and rotations on x, the strain.-displacement

equations (3.11) and (3.12) are integrated with respect to x under the

restriction that the strains are functions of 0 only. Integrating

equations (3.12) gives

wo (x, 0) = f 3 ( A) - 2 C 1 x 2 + C 2 x0 + C3 

`Yx (x,0) - f 4 (0) + C l x	 (3.23)

`Y 0 (x, 0) = f 5 ( 0) - a C2x,

in which C,, C 2 , and C 3 are arbitrary constants, and f 3 ,	 f 4 , and

5 are arbitrary functions of 0. Using the functional form of

wo (x,o) in the first of equations (3.23) in the process of integrating

equations (3.11) gives
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110(x,8) - f 1 (e) + C l f 3 (0) x -	 C l x + 1 C 1 C 2x 0

- 2 aC l e 2 x + ^ C I C 3 x2 + ( C4 - C2 C 3 ) xe +(C5 - 2 C 3

/

I x

`	 (3.24)

vo (x,e) = f,(e)- a C Z f 3 (8) x + 6a C1C-x3

+ 2 (C 1 - a C 2 )
 x 2 e - 2 C Z xe 2 - I C 4 x 2 - C 3 xe + C6 x,

where C4 . C 5 , and C6 are arbitrary constants, and f l and f2 are

arbitrary functions of 0.

Using linear elasticity equations Lekhnitskii (Ref. 18) develops

general displacement equations for an anisotropic cylindrical body in

which stresses are independent of the axial coordinate x. Equivalent

uo and vo displacements are linear and quadratic in the x-coordinate,

respectively. Lekhnitskii's equivalent wo displacement is quadratic

in the x-coordinate. The difference between the displacements derived

here and Lekhnitskii's results is due to the use of nonlinear stra i n-

displacement relations and the assumption of a linear displacement vari-

ation in the z-coordinate.

3.3.3 Application of Special Boundary Conditions

Special boundary conditions were applied to the general displace-

ment relations (3.23) and (3.24). These conditions were selected

because they are needed to model accurately the experimental boundary

conditions. They are applied along Lke circumferential edges of the

im

s
I

--•--sl
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panel (0 = a and 6 = -a) and place further restrictions on the dis-

placement functional form. The boundary conditions are

o	 -
u (x,±a)	 Ex

v°(x,±a) = +v

w°(x,±a) - 0	 (3.25)

( x ,±a) = 0
x

T 0 (x,± a) - 0

where E and v are prescribed data. Application of these boundary

conditions reduces the general displaceu*nts (3.23) and (3.24) to

u° (x, 0) = f ( 0) + Ex

v°(x, 0) = f2(0)

w° (x, 0) = f 3 (0)	 ( 3.26)

:fx (a. 0) = f 4(0)

T 8(x, 0) = f 5(0),

i

n



A

where

f 1 (±a) = 0

f^(*_a) _ +v

f 3 (ta) = 0

f 4 (±a) 0

f 5 (±a) = 0.

(3.27)

i n

10"') 11
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3. 3.4 Reduction of the Field Equations

The one-dimensional shell equations are simplified further for the

particular problem of interest. In addition to the boundary conditions

(3.25), the applied loading in the experiment is an internal pressure

with no surface shear tractions applied to the panel. Hence, for this

loading, the equilibrium equations (3.22) become

1 dNx9
a d A s ^^

] 
dN 0

a d© = o

dQ

a ^A + a dO (^0 a d6) + a d8e + p = 0
	 (3.28)

1 Vx9

a d6 -Qx	
0

1 d "' e
a de -4e'°'

' ^I
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Considering the functional form of the displacements in equa-

tions (3.26) the strain-displacement relations in equations (3.11) and

(3.12) reduce to

0
E	 Exx = 

2
o __ I d v°	

W 
	 1 r 1 dwo

E AA	 a dA + a + 2 \ a dA

o	 _ 1 df 1

Yx0	 a dA

o _1 dw0

Y Az	 ^A + a dA

(3.29)

o	 = ,y
Yxz	 x

r	 =o
xx

1 dTAr =--
AA	 a dA

_ 1 dTx

rxe	 a dA

From the first equilibrium equation in equations (3.28) N xe is

spatially constant. The constitutive equation for N AA in equa-

tions (3.20) then implies the middle surface shear strain 
y0isxe

spatially constant. For a spatially constant middle surface shear

11

v^

I^

t



Ii	 .

tit

strain, the third equation in (3.29) combined with the boundary condi-

tions on function f l (e) in equations (3.27) requires f l (e) to vanish

for all	 e.	 "hus 
yx9	 Y 0	

0 for all e. Equations (3.29), with

the addition of f, equal to zero, imply the constitutive

equations (3.20) reduce to

Nx = A 11	 1
2

E + A
E 

0

e

0
N 3	Al2 E + A22Ee

% - D 12 r ee + D16rxe	
(3.30)

Me	
D22 r ee + D26rx6

Mxe ' D26 r ee + D66rxe,

The constitutive equations (3.21) for the shearing deformation resul-

tants remain unchanged, and are repeated below for convenience with

shear correction factors k 2 and k2 assumed to be unity.

0
Q e	 A44Yez

(3.31)

0
^x a A55Yxz

Using the equilibrium equations (3.2$), with N X6 . 0 for all 6,

in combination with the strain-displacement equations (3.29) and

11

R
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constitutive equations (3.30) and (3.31), the mathematical formulation

reduces to

dh 0

d0 = 0	
(3.32)

N
0 d 2 w° A 44 d (	 1 dw°	 0

a 2 d02 +	
1 +a 6e 10 	a d6	 -P + a	

(3.33)

U22 d``Y0 + 
D 2 d Tx - A(^ + 1 dw°/
	 0	 (3.34)

a 2 d02 	a2 d0` 	44 ` 0	 a d0

U	 v `3' 	D	 d T

2 6	 20 + 1^ - ,
x - A55 T - 0	 (3.35)

a	 d0	 a	 d0`

u	 oA c+ A	 1 dv_ + w + 1 1 dw
0

	(3.36)
0	 1t	 22 a d0	 a	 2 a d0

Equations (3.32) to (_.36) constitute an eighth order system of ordinary

differential equations for the dependent variables h 0, w°,	 3' 0 , 'Yx,

and vo , with p and c as prescribed loads. They are to be solved

subject to the eight boundary conditions

v°(±a)	 +v	 (3.31)

w° (+ a)	 0	 (3.38)

`Y 0 ( ±a)	 0	 (3.39)

ti

r^
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Y ( .La) ` 0,	 ( 3.40)
x

which arc, obtained from equations (3.26) and (3.27) where v is a

prescribed di-,plac-•ment.

3.3.5 Method of Solution

Equations (3.32) to (3.36), subject to boundary conditions (3.37)

to (3.40), are a nonlinear two-point boundary value problem. The cir-

cumferential stress resultant N 6 is spatially constant as the

equilibrium equation (3.32) indicates. Since N 6 is spatially

constant, equations (3.33) to (3.35) appear to be linear in w o .	
416,

and Tx . However, N 6 depends nonlinearly on w 	 as shown in equa-

tion (3.3b). This structure of the boundary value problem permits the

following solution procedure. Using the methods of solution for linear

ordinary differential equations with constant coefficients, equat-

ions (3.33) to (3.35) are solved for wo (e),	 F e (6), and y' x (6), subject

to boundary conditions (3.38) to (3.40). These solutions will depend on

the "coefficient" N 6 . The solution for w o (e) is then substituted 	 ti

into equation (3.36) and indefinite integration on a is perfc.Ymee

usi•Ig the fact that N 6 is spatially constant. The unknown constant of

Integration and the unknown value of N 6 are determined by boundary

conditions on vo in equation (3.37).

By neglecting the hending terms (these have coefficients D22,

D66 , and D26 ) equations (3.32) throagh (3.36) obtained apply to the

^	
e
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correspunding membrane shell. Sub_ject to boundary conditions (3.38),

the membrane solution is

pa - N

wo (e) = a	
2

( 
N	

6 ^a - 9 2
)
	 (3.41)

p	 \	
e

pa - N

4 ep (6i = -	
N	

6 e
	 (3.42)

e

T	 (9) = 0.	 (3.43)
xp

Notice that in the nonlinear membrane theory it is possible to satisfy

boundary conditions on the deflection wo (e). In linear membrane shell

theory the boundary conditions on the deflection cannot be satisfied in

general. The fact that nonlinear membrane theory can satisfy physically

reasonable boundary conditions whereas lincir membrane theory cannot,

was pointed out by Bromberg and Stoker (Ref. 19).

A homogeneous solution of equations (3.33) through (3.35) has the

f orm
i

w0	 ^ X 1
'Y6 , y	 ea6

l x h

(3.44)

F
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whi,:h, when substituted into equations (3.33) through (3.35), leads to

	

(N 6 + A44 )k 	 A44 	 0	 ^x	 0

-2	 72	 I I	 ke =-A44 x	 D2)2 x- A
44	 D26	

Y	 e	 0

U	 D26 ?L	 n66 ^2 - A 55	 ZJ	 0 (3.45)

where k _. Nontrivial solutions of equation (3.45) require the
a

determinant of coefficients to vanish, which results in the character-

istic equation

	

^( 1 - E^) X4 - ( b 2 + c^ ) ^2 + c 2 b2 = 0,	 (3.46)

where by definition

2

	

2	 D26
e = (

3 2LD66)

N	 a
	b2	

Ue 
4 4+ 

y	 (3.47)

22 44	 6

c2 = A55

D66.
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The roots of the characteristic equation are 0, 0, ta 1 , and tat,

where

2
^2	 = b 2 + c 2 t	 (b 2 - c 2 ^ + +E 2 b2 c2	

(3.48)
1,2	

2(1 - E2)

The four nonzero roots given by equation (3.48) are associated with

bending boundary layers at 6 = ta, which decay exponentially from the

edges towards the center of the panel. Approximate expressions for the

roots may be obtained by performing an asymptotic expansion in the small

parameter E which is less than unity for the materials examined.

These approximate expressions reveal more about the nature of the roots

and are given as follows

A 2 = b2 + E 
	

b2 + - 2	 + O(E4)
b - c

(3.49)

2	 2	 2\ 2 = c + E	 c - 2 ` ^ 	 42 1 + O(E )
b - C 2

The parameter E is zero for specially orthotrcpic laminates (D 26 - 0)

and the roots a 1 and a 2 uncouple. For small E the root a l is

associated with the rotation 
T6 

(circumferential shear and bending),

and the root a 2 is associated with the rotation T 	 (axial shear and
x

the twisting moment). F_ the laminates and pressures considered here

the root a 2 is an order of magnitude larger than the root a 1 . Thus,

the twist-curvature bending boundary layer effects deca y at a much

faster rate from the clamped edges than the circ:imferentiai bending

boundary layer effects.
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The complete homogeneous solution is

	

I w°1 	 c l i	 ^1	 1 ^	 1

`	 I	 I	 ^ 1 e	 -^1 e

	

-c 2 /a? + c^ 0 6 + c3 X21 ^e	 + c 4 -^21 ei

	

^x J	 0
h	 I	 0	 X31	 I -^31

	

i	 L

1	 Q	 I^ 1	 -^^ Q

+ c5	

^

1 ^'2 e	 + c 6 / -^22 e	 (3.50)

X32	 -^32

where c 1 , c2 ,	 c6 are arbitrary constants, and the eigenvectors

are the solution of

D22 %i - A L 4	 D26^i	 ^C21	 -	 A44^`i	 -

	

2	 `, t	 0

	

L D26 ^i	 D66i - AS 5J	 3i	 ( 3.51)

The principle of superposition does not hold for equations (3.32)

to (3.36) because the equations are nonlinear. However the total solu-

tion for w°, ? e , and 
T  

may be obtained by adding the membrane

solution (3.41-3.43) and the homogeneous solution (3.50) where the con-

stant Ne which occurs in both solutions has not been specified yet.

The solution is exact once N e and v° are determined from equations

(3.36) and (3.37). The six constants for the total solution are deter-

mined from the six boundary conditions given by equations (3.38) to

(3.40). Writing the exponential functions in terms of hyperbolic

functions, the solution subject to the boundary condition is

L
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w°(A)	 pa - N9 ! "`1 '2 1 a D26 - D22 D66 - + D22A55 + D66A44

\ ^9	 X	 l	 A44 A 55	 1	 A44A55	 X1

1 \ cosh X 1 9 - cosh Xla

sinh X, a	 (3.52)
1

-2	 //
pa -
 N O) 

X X,
	

(D 26 - D D	 D A + D A_ 	 1	 26	 22 b6 - + 2'' S 5	 66 44 1
_	 ^

9	 - X2 
a	

A44A55	 A44A55	 a2

1	 cosh X,8 -cosh X^a	 pa - N ei (02
	

a2

3	 sinh X a	 a	 N	
_

2 	2
^2 	2	 8

_	 (A55 _ -2

(
pa -

 N@)	
1 	 D66 '\D66 	

sinh X19
Y^6(6) _
	

ti	 l -'	 -2 a A	 -2	 sinh X aXZ 	55	 X1	 1

A55

D6b ^l sinh %,^ 9	 (pa - N O)
_	 +	 B	 (3.53)-2	 sinh X2a 	N6

2

pa - N o	 X1 X?	 D26 sinh X 1 6	 sinh X29
Tx(9)	

NA	
2	 -2 a A 55 sinh X 1 a	 sinh X2	

(3.54)(3.54)

V 1 -'`2

The dependent variables w°, T., and T x were not evaluated

numerically using the functional forms shown in equations (3.52) to

(3.54). For large values of X 1 and X2 the hyperbolic functions

exceeded the maxi Tmim magnitudes permitted an CDC 170 series machines at

NASA Langley. Since the hyperbolic functions occur in the numerator and

I ^. _.i

t

A

to",



cosh X 1 6	 X1(6-a)

sinh X 	
e

a
(3.56)

cosh X 1 9	 -X1(e+a)
e

sink Xla
(3.57)
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denominator of the terms in equations (3.52) to (3.54), it is possible

to rewrite the devision of two large numbers in a more numerically

efficient manner. To accomplish this, the hyperbolic functions are

written in exponential form and then manipulated to make the denominator

approximately eq ual to one. A typical example of this procedure is

shown below.

cosh X16	
Xle + eXl e	 -x i a	 e X 1 (e-a) + - X I (e+ae	 )

sinh X l a	 Xla	
-X l a	 -Xla	

-2X1a
e	 - e	 a	 1- e

(3.55)

cosh X 1 9	 X1(6-(1)	 -Xl(e+a)
e	 + e

sinh Xla

Near the edge 9 = a the second term in equation (3.55) is negligible

with respect to the first such that

and near the edge 9 = -a the first term is ne g ligible with respect to

the second term such that

Let 0 - 6 + a so that at the edge 9 = -a, m = 0, and	 increases

toward the center of the shell. In terms of the coordinate ^, equa-

tions (3.52) to (3.5-) are approximated by

'4
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-2

w0(9)	

pa - N A 	^1 
^Z	 016 - 

D "
22 D66	 + D 22 A55 + D66 A44 1

A	
^ - '2	 A44A	 1	

A A55	 4455	 k 1

	

^	 -2 -2	 2
1	 -R1 m	 _	 pa - RA	

R1 R2	 D26 - D 22 D66 -

^3 \ e	 - 1	
RA	 ^2 _ -2 i a	 A44A55	 ^1

1	 1^

D 22A 55 + D 66A 44 1 - 1	 ^e^1	
pa

^ - 1
J 

- a+ 
I`	 -^)

	

A4455	 R^	 R^	 R	 2A 

(3.58)

r	
\

-, ( A 55 _ -2 1 A55	 -2
^pa - NA',I	

^1 ^2	
a 

D66 \ D66	 ^2 ) e ^2^	 D66 - 
	 _Xj

T
0
 (0)-

2	 -2	 A
8	

3 - '2 )	 L55	 ^2

(

Pa_NA
+ N a) 	 (3.59)
 A

`Y (m)	
pa N

- Ne 1 

- 2 1 X2 2 	 A26 [e )2
^ - e R1 ]	 (3.60)

x	
A	 -	 55

The circumferential resultant N A is an unknown constant at this

point. The value of it and the circumferential displacement v o (A; are

determined by substituting wo (A) given by equation (3.52) into equa-

tion (3.36), integrating on A, and applying the two boundary conditions

III

^ a

Ole
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given by equation ().37). The result of this procedure for N 	 as a

function of the internal pressure parameter R is the equation

	

A(NG) R 2 + B(he) R + C(h e ) - 0	 (3.61)

in which

R = pad	
6	

(3.62)	 i
a

-2

A = - l (	 1	 _	 ¢
4	 kI tank AI ¢	 sink` ^.1¢

KZ	 1	 ¢

4 I ^ tanh a ^—
\ 2	 2	 sir.h X 2 a

K1 K2/	 'k1
	 _

k
2^_	 ,tank X a tank X a

1

K 1	 ), ¢	 K	 ^ ¢	 3

+	 (— }	 — - 1^ + 2	 - 1	 - 6	 (3.63)
X1 Stan ^`1 a	 "2 tank X2a

K1	
a	 1	

K2	
a	 1	 ¢3

_)

B	 ^1 tanh X 1 a	 ?, 1	 } X2 tanh X2a -	 - 3	 (3.64)

A C) a	 -

C =	
6	

12	 + a	
(3.65)A

22

r

Vi
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and

-2 -2	 2 _
2j ^1 ^	 D26	 D '' 66D	 -'2	 A 55	 44 66

	

D22 + AD	 _ 1

K1 - \ % - ^^
A
44 

A
55^1 +
	

A44 A55^1 
a	

(3.b6)

/ 1

	
(D226- 

D22 Db6 2	 A 55 D2 2_ + A44 D66 _ 1

K2 	 - -2	 -2	 A A 	 +	 A P.	 -2 ^ a
44 55	 44 SS	

^2^	 (3,67)

Solutions to equation (3.61) are readil y obtained by assuming a value

of N 0 and solving for R, and hence p, as the roots of the resulting

quadratic equation. In the cases examined in this study the pressure

-associated with one root of equation (3.61) was positive and the

pressure associated with the second root was negative. The negative

pressure solution to equation (3.61) was disregarded since it is not

consistent with an internally pressurized shell. These solutions

relating; the pressure p to the circumferential stress resultant Ne

are then used to determine the other unknowns of this nonlinear shell

response problem.

The exponential terms in equations (3.58) to 13.60) decay away from

the boundary (m = 0) hecause of their negative exponents. A boundary

decay length may he defined as the distance from the boundary for an

exponential term to decay to a small value E. After selecting a value

for E a boundary decay length (y) ma y he determined

e 	 = E

q



T e _ dw°
X	 dX

(3.U9)

_ 1 dw°

^9	 a d9 (3.70)

^^	

^I
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or

= ao	
1 X'

 
\e/

	
(3.68)

where

X

a'
41

A typical value for a might be 0.01 and two values of X are given by

equation (3.48). Therefore, two boundary decay lengths are evident in

the dependent variables Riven by equations (3.58) to (3.60). One decay

length is associated with twist-curvature effects (X 	 and the other

with circumferential bending effects (k.)).

3.3.6 Kirchhoff-Love Approximation

In this section additional kinematic restrictions will be placed on

the panel displacement fields. Normals to the undeformed surface will

be assumed to remain normal to the deformed surface. This assumptiop

means the shearing deformation strains y0and YXZ vanish, which
	 ti

imply the rotations in equation (3.12) become



dNe

T6__ -
(3.74)

w _91

r^
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Thus the displacement fiPIds in equation (3.9) have the following form

for the one-dimensional analysis

u(x,e,z) - Ex	 (3.71)

0
v( •(,6,z) = VOW- z a dde 	 e)	 (3.72)

w(x,e,z) = wo (e)	 (3.73)

With the above restrictions a mathematical formulation equivalent to

equations (3.32) :•:) (3.36) becomes

T

°22 d w 	
Ne d w 
	 p - N 
	

(3.75)
a
	 do 	

l	 a- a2 de 

2

N	 p E+A	
1 dv°

+w°+ 
1 1 dwo)

e	 12	 22 a de	 a	 2 (a de	
(3.76)

Equations (3.74) to (3.76) constitute a sixth order system of ordinary

differential equations for the dependent variables N o , wo , and vo,

with p and c as prescribed loads. They are solved subject to the

six uoundary conditions

vo (*a) - ;v	 (3.77)

wo (ta) - 0	 (3.78)
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0

	

d6.(±a) - U	 (3.79)

Equations (3.74) to (3.76), subject to boundary conditions (3.77) to

(3.79), are solved by the snme method of solution described in

Secticn 3.3.5. The results of the solution are

	

o (e)	 a ^pa - N
6 (a	 +2 -	

62)	
Pa - t` 6 as (cosh X6 - cosh ka)

W ,0	 (3.80)
2 7 h e 	)	

N e 	
x	 sinh X9

where

	

aN e/ -	 (3.81)

and	 N  and the pressure are related by

A(N 6 > F. 2 	 + H(N e )	 R + C(N e ) U	 (3.82)

in which

pa - Ne
R a	

N
6

A	 a3 + a 1 -	 ka	 + 1	 a2 	 1	 a3
t	 2(	 tanh ka)	 4 tanh Xa	 4	 2

>`	 sinh ka

(3.83)

3
I--
	 a	 _	 ^a

B = - 3 + ^2 (1	tanh ka )

C	 (N 8 - A l2 E ^ + v
A22	 a

%I

4
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The parameter a in equation (3.81) is the magnitude of the nonzero

roots (*A) of the characteristic equation for the homogeneous solution

to w°(9), and represents the rate of exponential. decay of the bending

boundary layer. The root a of equation (3.81) is equivalent to the

root ^ 1 of equation (3.48) which is associated with circumferential

shear and bending in the shear deformation theory. For the Kirchhoff-

Love approximation there is no root equivalent to A 2 of equa-

tion (3.48). A boundary decay length associated with circumferential

bending may be calculated by substituting A from equation (3.81) into

the definition given by equation (3.68).

For geometrically linear strain-displacement relations equa-

tions (3.74) to (3.76) of the Kirchhoff-Love theory become

dNe

de	
0	 (3.84)

D22 d 4 w°	 h9
a4 de- - p - a	 (3.85)

0	 0
Ne	

A l2 E + A22L' de + a	
(3.86)

La

These linear equations are a sixth order system of ordinary differential

equations and are solved subject to the six boundar y conditions given by

	

equations (3.77) tc (3.79). 	 Equation (3.85) may be easily integrated

and the solution derived is equivalent to that determined from beam

1



h9
p l p - a (3.87)

	

(	
22

v	 + A 22	 2 4
A l2  - A22\aa	 45D	

a a pa

	

1 +	 2 a2 a4452 
22

N.
e

(3.89)

9

S7

theory when the right hand side of equation (3.85) is eauntec' to an

effective pressure pl

After integration of equation (3.85) and application of boundary condi-

tions in equations (3.78) and (3.79), the solution for w 	 is

4	 2
wo(9)	 241	 pl(92 - a2^

22

(3.88)

The circumferential stress resultant N 0 is still an unknown in equa-

tion (3.88). The resultant N. may be found by integrating equa-

tion (3.86) subject to boundary conditions in equation (3.77) and using

the fact that N0 is a constant from equation (3.84). The result of

this operation is the following expression for N 

The linear Kirchhoff-Love solution for w o in equation (3.88) does not

exhibit a bendirg boundary laver as does the nonlinear Kirchhoff-Love

solution given by equation (3.60) and the nonlinear shearing deformation

solution given by equations (3.5C) to (3.60). " -ie linear and nonlinear

K.i rchhof f-Love approximations are compared in Section 4.3.

c
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ie-Thickness Stresses

verse stresses ( T ez , Tx aZz ) are calculated from the

,iiibrium equations (3.1) with the assumptions, consistenr

imensional shell analysis, that all stresses are assumed

ent of Cie x-coordinate and the displacement w is

x as given by equations (3.26). With these assumptions

) r -( puce t o

iT
X t	 XT.

( 3.90)

` y H	
r`

0	 (3.91)

-,o? _ `eH	 d ^a4E 8`:l = 0.	 (3.92)aF	 M	 a 69\ z 60,

for Ln,- stress components ax , a e , and Txe

in the th ickrcs	 : fellow fro g equations (3.10), (3.17), and

(..29), ccabined	 t;. Although a	 is not needed to deter-s :,	 x

mine `_:ie transverse ,tt-•ssF. i t, the elasticity equilibrium equations, it

is V - - --	 tJw since it ;s needed in subsequent failure analyses. The

ir.plr.,.:- SLrNss zurponents within a typical lamina are

0
ax - Q 11^ + Q . 2 E ? + z `` 11rb,,	 -16rxe^	 (3.93)

o e = ti,2E + 427 Ee + zIQ	 eq - Q 26 rx ^	 (3.94)
J
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Tx8 ' Q 16 E + Q 26 E A + z L 26 ree + Q66rxA]'	
(3.95)

The transverse shear stress 
Sxz 

is determined by substituting sxe

from equation (3.95) into the equilibrium equation (3.90) and integrat-

ing in the z-direction. Similarly the transverse shear stress 
lAz 

is

obtained by substituting a 	 from equation (3.94) into the second

equilibrium equation (3.91) and integrating on z. The constants of

integration resulting from these indefinite integrations are determined

by r-quiring the transverse shear stresses to vanish at z = -t/2 which

is consistent with boundary conditions (3.8). Finally, the expressions

for the transverse shear stress T 6z , the circumferential stress a 	 in

equation (3.94), and the deflection wu (A) in equation (3.52) are

substituted into the third e q uilibrium e q uation (3.92) and indefinite

integration on z is performed to determine a z . The constant of

integration is determined by setting az = -p at z = -t/2. In the

integration processes described it is important to re-ognize that the

transformed reduced stiffnesses are piecewise constant functions of z.

The results of this lengthy process are

dI'	 d 
ziX ) (A,z) ` - a dA A(6)

 
q226 (Z) - a dA A(A) g266(z)	

(3.96)

dt	 dI'

S zA)(A ' z) = - a dA A(A) g 222 (z)	 a d6A(A) g226(z)	 (3.97)

^I

ti
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_	 o	 2

	

Q(k)(8,z) _ -p + E I1 - 1 
d2w(9) 

g 112 (z) + a
8 	- a d-W(0 ) g1^2(z)

z	 a	 a d82	 d0

+
 [

r ea
(/1 - 1	

0).) 	 1 dr0(0) dw 0	 (z)

	

a	
a d0

2
	a2	

d0	 d0	 8222

+ rx0 ( 0) 
I1 - 1 d 2w 0 1 - 1 d, xe(0) ,w, 0 g(z)

L
a 	

a d62 /
	 a 2	 d0	 d0	 226

`	 ( 2	 '

+ 12 

dr 

0

0)

(	 g 322 (z) + 12 

d r	
0) g326(z)'	 (3.98)

a	 d0	 a	 d0

where

k-1
1

g lmn (z) _	 Qmn'(zi - z i-1 ) + 4mn)(z - zk-1)	
(3.99)

k-1( 2_ 2 1	

C 
2	 2

zk-1
\

g2mn( ) = v `mn) 
z i 2 z i-1 + QTk	

z	

2--	
(3.100)z	

`m
i=1 s

V

k-1 -(i)F
z 	 z

3	 3
- i_	 mn	 i	 -1 - 

z 2 (z -z	 )+(z 
2 
-z 
2 

)(z -z )
g 3mn (z)	 2	 3	 i-1 i	 i-1	 i	 1-1	 1

i =1

	

-(k)
11Z
 

- z
3	 3

+ mn 3
 k-1 _ zk-](z - zk-1)
	

(3.101)
L

in equations (3.99) to (3.101), zi designates the thickness coordinate

	

to she top of the ith layer in the laminate; i.e., z i	 (i - N/2) h,

A ^`

i

,JI^I
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1,2, ..., N, where h is the layer thickness, and N is the number

of layers in the laminate (t = Nh). 	 If z is set equal to t./2 in

equations (3.99) to (3.101), then q
lmn	 mn

(t/2) = A ,	
2mn	 mn

q	 (t/2) = B	 = 0,

1

4	
and g3mn(t/`^	

Dmn' in which A
mn' Bmn' and D

mn are the extension,

>	 coupling, and bending stiffnesses, respectively, of classical lamination

theory. The stresses 
Txz' :gz, and a
	 given by equations (3.96) to

(3.98) vanish at the upper surface, as they should, because the shell

equilibrium equations are integrated versions of the elasticity

equilibrium equations.

3.5 Strength of Materials Solution

i
A simple strength of materials apnroach was used to perform a non-

linear nembrane analysis of long cylindrical panels under internal

pressure. The str-ngth of materials analysis gives good approximations

for center deflection. and circumferential membrane strains for

sufficie , .t:v thin panels. The circumferential membrane stress resultant

can serve as an initial approximation for the shell stress resultant in

the bending theory discussed in Section 3.3.5. Local effects such as

the edge bending strain are not predicted from this analysis. An

equivalent analy sis for a curved plate is described in Reference 1.

The basic assumption of this analysis is that the initially

circular panel remains circular when internally pressurized. Under an

internal pressure p the panel with initial radius a deforms to an

arc of a circle with a radius R. This deformation process is shown in

Figure 6. Vertical equilibrium relates the circumferential stress

.sue ^ w +
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resultant N 	 to the pressure p and deformed radius R by the

relation

N 9 = pR	 (3.102)

The constitutive relationship depends on the assumed axial strain state

as follows.

For co - 0	 No = A22E0

2

For Nx = 0ti^ = A^2 - X	 0
12),o
	 (3.103)

 (	
1 1^

For EX = Ex	 Ive - 
A l2 E x	 A22E9

1	 '
f

These axial strain states are examined in Chapter 4. The geometric

expression relating strain to deformation (change in radius) is 	 j

fi

	 y

Ee	
as

=	
as	

(3.104)	
I

where the angles a and 0 are the semi-opening angles of the panel

before and after deformation. Geometric compatibility requires

R sin	 = a sin a = C	 (3.105)

where G denotes the half chord length shown in Figure 6. The

equilibrium equation (3.102) is combined with an appropriate constitu-

tive equations (3.103), the strain-displacement relation (3.104), and

ti
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geometric compatibility (3.105) to give an equation relating pressure to

deformed radius. using the constitutive relationship for the axial

strain equal to zero, the equation is

R sin-1 CR
p -i C - 1

a sin —
a

The solution may be obtained by solving this equation for the -adius of
I

the deformed panel R given the pressure p. Since this equation is

transcendentally nonlinear in the unknown radius R, but linear in the

pressure p, it is more expedient to solve the problem by choosing a

value of R and calculating the corresponding pressure p. By succes-

sive approximation the radius can be determined for any given pressure.

With the radius determined, other quantities such as renter deflection

and edge rotation may be calculated from simple geometric considera-

tions. The center deflection (w c ) and edge rotation (y e	- a) are

WC =	 R11	 - cos(sin - 1 (C/R))]	 -	 all	 -	 cos(a)] (3.106)

Ye
= sin-1 (C/R)	 - sin- 1 (C/a) (3.107)	 ,
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Chapter 4

ANALYTICAL RES.'T,TS

In this chapter analytical results for the different analyses

described in Chapter 3 are presented. In Section 4.1 two-dimensional

finite element results are used to validate the one-dimensional approxi-

mation solved analytically in Chapter 3. In Section 4.2 the geometri-

cally nonlinear nature of the response of shallow cylindrical panels is

illustrated by plotting center deflection and middle surface strain as a

function of pressure for panels of differing stif:nesses. The circum-

ferential surface strain distributions are given in Section 4.3 to

illustrate the severity of the bending gradients at the edge, and to

show the boundary layer decay lengths for the range of panels tested.

In Section 4.4 the effects of a prescribed axial strain are discussed,

and in Section 4.5 different boundar y conditions are examined. The

parametric studies in Sections 4.4 and 4.5 are useful for interpreting

the experimental results, since ideal clamped boundary conditions were

not achieved in the test fixture design. In Section 4.6 Kirchhoff-Love

and shear deformation theories are compared to illustrate the importance

of through-the-thickness shearing deformations in the bending boundary
r

layer of the shell. Also the shear deformation theory for the one-

dimensional analysis is used to assess the effect of the twist-curvature

coupling (U26 # 0) of laminated composite shells.

65
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4.1 Two-Dimensional Finite Element Results

Geometrically nonlinear computer analyses with the finite element

code STAGS (STructural Analysis of General Shells) (Ref. 18) were per-

formed on two panels representative of those tested. The purposes of

the STAGS analyses were to identify regions of the panels where a one-

dimensional infinitely long cylindrical panel analysis was applicable,

and to validate the one-dimensional analytical solution. A 5-ply ortho-

tropic panel and a 16-ply quasi-isotropic panel were chosen for the

STAGS analyses because these panels represent extremes in thickness and

lay-up of the test articles. Thus, they were expected to exhibit

different response characteristics to the pressure loading. Both panels

had a 60-inch radius, an 8-inch circumference, and were 20 inches long.

Clamped boundary conditions were applied to all four edges. Since the

STAGS computer code does not have shearing deformation capability, the

clamped boundary conditions were modeled by constraining the three dis-

placements along the edge and the slope normal to the edge to be zero.

The 5-ply laminate had a layup of (t45/90/+451 T where the sign con-

vention for the fiber angle 0 given in Figure 5 is used. A contour

,p lot of the radial deflection is shown in Figure 7, and this figure re-

veals that the deflection is spatially uniform in the x-direction over a

center axial length of approximately 10 inches at a pressure of 1.j psi.

This central area is the region in which a one-dimensional analysis is

appropriate. The length of 10 inches for this central region of axial

uniformity is slightly less than the 12-inch estimate for this geometry

following the argument given by Douglas as repo-` mo d in Reference 1.	 ,M

t
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In Figure 8 the center deflection from the STAGS analysis is compared

with center deflection from the one-dimensional shallow panel analysis

as a function of pressure. There is excellent correlation between the

two-dimensional and one-dimensional analyses.

The circumferential surface strain distributions for the two-

dimensional and one-dimensional analyses are shown in Figure 9 for the

5-ply panel. Besides showing that excellent agreement is obtained for

strains, Figure 9 illustrates an important advantage of the one-

dimensional analysis. Strains may be determined at any circumferential

point including the edge of the panel with the analytical solution. The

strains in the STAGS analysis are determined at the location of the cen-

troid of the finite element. Thus, interpolation is required to estimate

strains at other circumferential locations in the finite element method.

In particular, the strain gradient at the edge of the panel, which is

important for failure analysis and in estimating through-the-thickness

strains, may not be represented very accurately in the finite element
i

solution since to compute it would require even higher derivatives of

the basic displacement data. Since the majority of panels failed at the

straight -dge, the one-dimensional analysis allows more insight into a

critical aspect of the problem than the finite element solutions.

Excellent agreement between the two-dimensional and one-dimensional

analyses was also obtained for the strains and displacements for a

16-ply laminate. Because of the increased stiffness of this panel over

the 5-ply panel, the portion of the axial length in which the one-

dimensional analysis is valid is decreased substantially. This distance

im

i

t

by ^
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N

3	 — — — ONE-D I MEN S I OVAL
ANALYSIS

c 0 STAGS ANALYSIS
P,	 NONLINEAR  
psi 1

	

—''	 LINEAR
0	 1	 2

We

t

Figure G.- Normalized center deflection of a 5-ply [±45/01, panel from
a two-dimensional nonlinear STAGS analysis and a one-
dimensional nonlinear shallow panel analysis.
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is illustrated in Figure 10. The distribution of axial surface strains

indicates heading occurs for a distance of .6 to .7 X/L away from the

curved edges. The axial strain is equal to zero in the center of the

panel as was true for the 5-ply laminate. This axial membrane strain

state resulted from requiring that the axial displacement along the

straight edge of the panels be zero in the STAGS model. The axial

membrane strain was treated zs a parameter in the one-dimensional

analysis for infinitely long cylindrical panels.

4.2 The Importance of Geometric Nonlinearity

The stiffening effect caused by the geometric nonlinearity on the

panel response with increasing pressure is shorn in Figures 11 and 12.

In Figure 11 the pressure is plotted as a function of center deflection

normalized by the shell thickness for a 5-p ly j+45/ T0) s laminate having

an initial raatus of 60 inches and an 8-inch arc length. The results

from two nonlinear analyses are shown; the strength of materials

membrane solution of Section 3.5, and the Kirchhoff-Love shell theory

(which includes bending) given by equations (3.80) to (3.83). 	 In

addition the linear Kirchhoff-Love solutions given by equations (3.88)

and (3.89) are also showa in Figure 11. As illustrated in this figure,

there is little difference between the two nonlinear analyses which

suggestf that bending does not significantly affect the center deflec-

tion. 'However, there are significant differences between the linear and

r

i

1

v

nonlinear solutions shown in Figure 11. The nonlinear solution is

considerably stiffer than the linear solution even at low pressures.

i
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For example, at a pressure of approximately 0.6 psi the linear theory

predicts a center deflection equal to the panel thickness. The linear

theory deflection is approximately 50 percent greater than the nonlinear

theory deflection at 0.6 psi.

Figure 12 also shows the stiffening effect of the geometric non-

linearity on a plot of normalized pressure pa/A 22 versus circumfer-

ential membrane strain e	 for three different values of the semi-

opening angle a. These results were obtained from the nonlinear

membrane analysis presented in Section 3.5 (bending is neglected).

Shallow panels are completely charac'-^rized by the semi-opening angle

a; smaller values of a imply shallower panels. Figure 12 illustrates

that for a fixed value of the pressure a shallower panel has a smaller

membrane strain. In addition, the curves in Figure 11 provide a good

estimate of the middle surface circumferential strain at a given value

of the pressure for the more complex nonlinear panel analyses, which

include both bending and membrane actions, presented in Chapter 3.

Consequently, the elementary membrane solution closely predicts the

center deflection and circumferential strain, but by definition ignores

the bending at the panel boundaries.

The reason ge-)metric nonlinearity is significant for a shallow

internally pressurized panel can be found from the elementary membrane

analysis in Section 3.5. For an increment in the arc length ds the

following kinematic formulas can be derived from the equations in

Section 3.5 for shallow panels:

ri

`I



dR	 _ 3 1
ds -	 3

a

d8	 3 1

ds	 4a 2
a

dwc	
3 1

ds	 4 a

76

in which R is the radius, 8 is the rotation of the panel at its

support, and w e is the center deflection. The above formulas are

obtained with the chord length fixed. The initial radius and semi-

ope,._^t angle are denoted by a and a, respectively. These formulas

show the decrease in radius, increase in edge rotation, and increase in

center deflection are very sensitive to an increase in are length fcr

shallow panels. The increase in arc length may be a result of strain,

or perhaps a slip at the edges in a test fixture. Thus there are sig-

nificant chanties in geometry in shallow panels for small changes in

circumferential strain. Figure 13 shows the dramatic decrease in panel

radius as the arc length increases for a panel with an initial radius

a = 60 inches and initial arc length 2aa = 8 inches. Finally, since

equilibrium of the circular membrane requires N 8 = pR, it is clear that

the decrease in radius zt a constant pressure in the nonlinear analysis

results in a smaller circumferential stress resultant than obtained from

a linear analysis.

For laminates with considerable bending stiffness the nonlinear

r..embrane effects becomes less important and bending resistance must be

i.

, q `
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taken into con.ideration. A solution to the linear shallow panel theory

which allows bending and extension was examined. This solution was

described in Section 3.3.6 (equations (3.87) to (3.89)). A nondimen-

sional plot of membrane strain a , id center deflection as a function of

nondimencional pressure is given in Figure 14 for values of the

parameter X defined in the figure. The 4- to 16-ply panels examined

in this investigation have values of the X parameter which fall

between values of 0 and 1. The hues representing an 8-ply and a 16-ply

panel are shown in the figure. The 4-ply laminate would be represented

by a line very close to the line X = 0. The results Riven in Figure 14

are accurate for cases where the center deflection of a panel are less

than its wall thickness. For the 16-ply panel, the center deflection is

greater than the wall thickness for pressures less than 10 psi. There-

fore, linear results cannot provide accurate predictions for thin panels

at pressures above 10 psi.

The effect of panel thickness on the response is shown in

Figures 15 and 16. Each panel has a common initial radius of 60 inches

and a common middle surface arc length of 8 inches. The thicknesses of

the 4-ply, 8-ply, and 16-ply panels are 0.0208, 0.0416, and

0.0832 inch, respectively. The pressure versus center deflection in

Figure 15 and the pressure versus membrane strain in Figure 16, are

obtained from the nonlinear panel analysis of Section 3.3. These

results show that the response is nonlinear even at moderate pressures

fcr the thicker 16-ply panel. As would be anticipated, the thinner

panels are more compliant.
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4.3 Circumferential Strain Distributions

The circumferential surface strain distributions of an 8-ply

laminate are shown in Figure 17 for the nonlinear membrane analysis

(Sec. 3.5), anr! the linear and nonlinear shallow shell analyses

(Sec. 3.3.0) with the Kirchhoff-Love assumption. A great deal of varia-

tion exists between these analyses. The nonlinear shallow cylindrical

panel analysis exhibits an edge bending boundary laver visible in

Figure 17 and represented mathematically by the exponential terms in the

homogeneous solu t ion given in equation (3.80). A boundary layer is not

distinct for the linear solution given in Figure 17. The linear solu-

tion given in equation (3.88) does not exhibit a bending boundary layer;

i.e., the homogeneous solution does not have exponential `unctions in

the solution. The strains predicted by the nonlinear shallow shell

analysis are uniform awa y fror: the clamped edge. The bending strains

Increase substantially in a narrow region near the edge, which is

referred to as the edge 1•ending boundary laver. The nonlinear membrane

analysis approximates the center bending strain, but cannot predict any

local edge bending. (The bending strains for the nonlinear membrane	 a

analysis were calculated from the change in curvature of the deformed

and undeformed radii of the circular arcs shown in Figure 6.) Although

the linear analysis overpredicts the maximum value of the tensile strain

in this 8-ply example, it cannot in general be used for conservative

design. In a 5-ply example, the edge surface strains determined from

nonlinear analysis exceeded those predicted from the linear analysis on

1

f
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both the concave and convex surfaces. The nonlinear and linear analyses

agree more closely for thicker panels.

Laminate bending stiffness plays an important role in the character

of the local bending boundary laver exhibited in the nonlinear shallow

cylindrical panel analysis. The character of this boundary laver is

represented in Figure 18 where normalized bending strain distributions

are given for 4-, 8-, and 16-ply laminates at 20 psi pressure. The

inside surface strains were normalized to allow comparisons between the

panels of three different thicknesses. The middle surface membrane

strain was subtracted from the concave surface strain of each panel.

The membrane strain is a spatial constant so the above subtraction

yields the bending strain distribution. The distributions were

normalized to go to the value of -1 at the center by dividing the bend-

ing strain distribution by the value of center bending strain.

Figure 18 shows the bending is uniform over most of the circumference

for the 4-ply laminate with a boundary layer width of 0.75 inches. The

boundary layer width may be easily determined in the bottom portion of

the figure where the vertical scale has been greatly magnified. From

this enlargement it rav be seen that bending varies over the entire

circumference of the 16-ply laminate. The edge bending strain

normalization factor is iargest for the thinnest panel. The bending

strain distribution for the convex surface would be identical in shape

but inverted with respect to the abscissa.

The boundary de.;&,- length of the Kirchoff-Love shallow shell theory

is expressed mathematically by equation (3.68) where the value of a is

v1^
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given by equation (3.81). The boundary decay length is plotted in

Figure 19 for 4-, 8- and 16-ply laminates as a function of pressure

with E = 0.01 in equation (3.08). The boundary decay length is

inversely proportional to the square root of the circumferential stress

resultant and therefore decreases with pressure for all the laminates.

Since the decay lengths are short and edge bending strains larger for

the thinner panels, bending gradients are more severe for these panels

than the thicker panels.

4.4 Effect of an Applied Axial Strain

The results of the previous sections are based on analyses which

assume that the axial strain is zero. Tensile axial middle surface

strains were measured experimentally and for this reason it is important

to understand this effect. In this section the nonlinear membrane and

bending analyses are used to examine three axial strain states. In the

first case the axial stress resultant is set to zero. This state occurs

when free axial contraction is allowed due to the Poisson affect and is

the correct state for an arch as opposed to a long cylindrical shell. A

negative axial strain results from the Poisson contraction. In the

second case the axial strain is set to zero. This state is the one pre-

dicted by the STAGS analysis in the central panel section away from the

curved edges and is the corre^t state for a long cylindrical shell with

axial displacements along the straight edge constrained. A tensile

membrane stress resultant is present for the second case. In the third

case a tensile membrane strain is applied. For purposes of this

:

i4
p
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comparison the value of this strain was chosen to be equal to the magni-

tude of the negative strain which results from lateral contraction in

the first case where the axial stress resultant is zero. Prescribed

axial strains (E) and stress resultants (N x ) were applied to an 8-ply

quasi-isotropic [±45/90/0] s laminate with a 60-inch initial radius and

8-inch arc length at a pressure of 20 psi. Numerical results are pre-

sented in Table 2 for the membrane and bending solutions. Circumferen-

tial membrane strain, circumferential stress resultant, and center

deflection are given for the membrane solution in the table. The same

physical quantities along with the edge bending strain and the middle

surface interlaminar shear stress (-c Oz at the edge are given for the

bending solution in the table. Both the circumferential membrane strain

and the center deflection decrease as the axial strain increases for

both the bending and membrane solution. Conversely, the circumferential

stress resultant increases due to the Poisson effecL. Comparing the

membrane and bending theories ,e circumferential membrane strain and

center deflection are approximately 9 percent and 2 percent larger,

respectively, when calculated from membrane theory. For the bending

theory the edge bending strain and shearing stress decrease as the axial

strain increases.

4.5 Circumferential Boundary Conditions

Boundary conditions were examined to study their influence on both

the panel center and edge responses. Also, the results were used to

model closely the actual conditions on the panels as tested. This

,q
1
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Table 2. Effect of Axial Strain on Stress and Deflection Results
Calculated with Membrane z.nd Bending Theory (8- ply

Specimen, p = 20 psi)

Membrane Theory

E	

Nx.	
to	 NP	 w	 R,

'
lb	 lb	 t 

c	 in.

in.	 in.

	

-.000623	 0.	 .00196	 630.	 2.81	 31.5

	

0.0	 206.	 .00181	 648.	 2.64	 32.4

	

.000623	 412.	 .00167	 667.	 2.48	 33.4

Bending Theory	
i

EbE	 Nx^ N w
T0

lb lb
8z_ t p

in. in.

-.000623	 0.	 .00181 587. 2,76 .00477 -79.4

0.0	 206.	 .00167 606. 2.59 .00455 -76.9

.000623	 412.	 .00152 :'27. 2.42 .00432 -74.1

1 ^ .
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modeling of actual conditions was accomplished by measurement of

boundary displacements. An additional reason for examination of

boundary conditions is that the examination allows representation of

actual fuselage conditionF which are very difficult to simulate experi-

mentally. Edge displacements, v° and w°, and edge rotation, 1 dw°
a Ui

boundary conditions were examined and are discussed in individual

0

sections. These three conditions ^v°, w° + and a dA ) are given by

equations (3.77) - (3.79). The axial condition was Satisfied by the

assumptions that u° = 0 along the edge of the panel.

4.5.1 Circumferential Displacement Condition

The effect of circumferential displacements or slip is shown in

Figure 20 for a 16-ply panel at 20 psi. In this figure the concave and

convex edge strains are plotted as the circumferential slip is allowed

to increase from 0 to 0.020 inches. The membrane strain is also plotted

and goes through zero as the slip increases and becomes compressive for

higher values of slip. The bending strains represented by one-half the

difference between the concave and convex strains increased substan-

tially in the process. These results are very informative in explaining

events which occurred when the test panels slipped circumferentially in

the clamped edge supports under internal pressurization. This circum-

ferential slipping will be discussed further in Section 5.1.

4.5.2 Radial Spring Boundary Condition

In an actual fuselage the skin may deform radially at the stiff-

ener. This deformation is difficult to duplicate experimentally without

2^1

t

.^r^'
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testing a complete stiffened cylinder. However, it can be examined

analytically by allowing the skin support to deform radially through the

use of an extensional spring. To address the problem a special analysis

was conducted in which the boundary condition on w o (see equa-

tion (3.78)) was replaced by the more general condition of a radial

spring support with stiffness K. Shearing deformations were not

included in this analysis. 1'he solution procedure was similar to the

procedure described in Section 3.3.5. The effect of radial spring	 +
i

stiffness on the membrane stress resultant for a 4- and 16-ply laminate

is shown in Figure 21. As tae radial spring stiffness K goe_ to zero

the membrane stress resultant approaches the complete cylinder hoop

tension solution (hoop tension equals pressure times original radius).

The de,7iation between the linear and nonlinear solution is larger for
k

the 4-ply panel than the 16-ply panel. The 16-ply panel carries a large

portion of the load through bending, whereas the 4-ply panel stretches

more with the resulting decreased radius and carries the pressure

through the nonlinear membrane action. For low radial spring stiffness

these results indicate that geometrically nonlinear effects are less 	 1I

important.

Circumferential surface strain distributions are shown in Figure 22

at 30 psi pressure for one panel which has a radial spring stiffness K

of 100 lb/in. and for one radially constrained panel. Results for these

otherwise identical panels were obtained with the nonlinear shallow

panel analysis. The difference in the membrane circumferential strain

• +Y
1



93

tY
Q
WZ

OZ

g opQ N
Z

i. O C
o - --
 `n= Z _
w

Q
w
_Z

J
Z
OZ

^
o g

N

^ ^ C
gam,=Z^
W

ti

^o

c
Lf1

V
Y

M c

N

J
0

ti

Y
m

C.7

N 
Ow

JU

m
m
v
N
u
m

L
Gv

w

5
u

u

c
0
9.
m
a^
c
w
w
u
m

00
C

a
m

m
^v
m

w u
0 c

mu u
d a
w m

w ►Q1.

I

N

co
-ri
Lc.

T 1

T^,vl

.07

U

IZ Q
C:) w

Cy

rY Z
~ JO
V7

a

C

00	 to

U	 ^

Q r	 V)	 Q
p	 ^

N ^-	 Q

NOW w	 w
^	 Zti,^?	 to

'Y
J

IZ

F5
1O

Z

w



m

N

J O
O

O

1

o m I ez

OD
i

r^

^I

II

O
C

I^

II•

^ C i
N C Y O

un

it

c>o
X

II
cu:

> Ea—. cv Y lI
O O —. cv ^I
U V V ^ ^I

II

O q I
^

it

O C:)
N ^--^
O O Qj

ltJ

O

1,57 rq 71 7111

94

c
^v

Ln

L—' L
a. c
^ M
4

I 'v
s v

C

{w M

W ►.L^ m
c v
o

,.4

a.1

w u
u M
m u
w ^
'v ap

c v

co 'v

v^
a,

c M
w m
^. M
^ w
GO

Gi
r-4 t4
to c
,4
41r
C u

G1 ,,

I.r t G
v a o
w ,4
8 an N

7 r U
u v a
w c w

c .4
U av

I

NN
d
7

00

rl

IN

Al



Iv

95

agrees with results shuwn earlier in Figure 21. The additional informa-

tion determined from this plot is that severe bending gradients at the

edge still exists for the finite i,Adial spring stiffness. The largest

strains still occur at the erg ,:, cut the bending strains are decreased.

4.5.3 Rotational Boundary Condition

0
The effects of edge circumferential rotation (w9 ° - a d8 ) are

bound by considering clamped (ye 	 0) and simply supported (M e - 0)

boundary conditions with shearing deformations suppressed. The solution

for clamped boundary conditions is given by equaLion (3.80) and a solu-

tion for simply supported boundary conditions is derived similarly.

Radial, circumferential, and axial displacements (w°, v°, and u°) at

the edge were set to zero to avoid the unnecessary introduction of addi-

tional variables.

The membrane strain response of an 8-ply laminate is shown in

Figure 23 for clamped and simply supported boundary conditions. The

membrane strain is slightly higher for the simply supported condition.

Although not shown, there is little difference between the center

deflections for clamped and simply supported boundary conditions. The

deflection for simply supported conditions are slightly greater than for

the clamped condition. The difference between the membrane stain and

central deflection for simply supported and clamped boundary conditions

increases with bending stiffness. However, for the 4- to 16-ply panels

teited, the rotational constraint did not have a large influence on the

center Deflection and circumferential middle surface strain.
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The edge bending strains were significantly influenced by the

rotational edge support. Circumferential surface strain distributions

are shown in Figure 24 for an 8-ply quasi-isotropic panel with simply

supported and damped boundary conditions. The bending strain is a

maximum at the edge for the clamped condition and is zero for the simply

supported condition. The predicted failure location for the clamped

panel is at the edge and away from the edge for the simply supported

panel. The rotation constraint therefore has a major effect on the

response at the edges but -nly a minor effect on the response at the

center of the panel.

4.6 lrfluence of Through-the-Thickness Shear Deformation

Shear deformation is important for metal structures with a span-to-

thickness ratio less than about 10. For materials which have a high

E11/G12 ratio, such as graphite-epoxy, shear deformation effects may be

important for higher span-to-thickness ratios. The panels tested have

span-to-thickness ratios greater than 80 but their graphite-epoxy mate-

rial construction and the rapid variation of bending moment at the edge,

make consideration of shear deformation important. The effects of

through-the-thickness shearing deformations are approximated by allowing

the normal to the middle surface to rotate independently of the circum-

ferential and ixial line elements in the deformed middle surface. Thus,

the right angle between the normal and circumferential line elements is

not preserved during deformation, i.e., shear strain 
Ya@ 
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Similarly, the right angle between the normal and the axial line ele-

ments is not preserved during deformation, i.e., shear strain

° # 0. For the long panel analysis developed in Section 3.3 the
yzx	

S P	 l	 P

shear strain 
Yzx 

may also be nonzero since the normal can rotate

through an angle (,x out of the z-e plane even though the axial line

element is restricted not to rotate. lle.ice y 
0

= y . . However,
zx	 x

yzx

U 
# 0 occurs in the long panel analysis only if the twist coupling

coefficient D26 # 0. In lamination theory D26 # 0 reflects the

material coupling between circumferential normal stress and the shear

strain yxe on a parallel surface. The inplane shear strain y X6 on a

parallel surface is determined, in part, by the change in the rotation

of the normal out of the E-z plane along the circumferential arc length,

3 ry
or mathematically by a a@}', If D

11 6 # U, as it is for the laminates in

this study, circumferential bending is accompanied by a nonzero rotation

a ^'x
gradient 

1
a 69	

which implies yx # 0, and hence a nonzero shear strain

y 
xz 

results.

0
The distribution of the through-tlie-thickness shear strain Y

xz

predicted by the shear deformation solution of Section 3.3.5 is shown in

Figure 25 for a 4-ply [±45] s laminate at 100 psi. The shear strain

y0	 is zero over most of the circumferential arc length in Figure 25
zx

except for a narrow region near the edge. In this edge region Yo
zx

changes very rapidly, attains a peak value very close to the edge, and

then returns to zero at the edge. Since (yx is prescribed to vanish at

the clamped edge, and Y = (,, y°	 must vanish at the edge also. As
zx	 x	 zx

discussed in the previous paragraph, if D 26 = 0, then the shear strain

fa

,q

IR )_
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yzx would vanish over the entire arc length. Also the Kirchhoff-Love

shell theory presented in Section 3.3.6 would predict y°zx = 0 over the

entire ac^ length. The shear strain y0is zero because the rotation
zx

yx must vanish over the entire arc length to satisfy the hypotheses of

the Kirchhoff-Lore theory for this problem, and not because D 26 = 0.

It is interesting to compare the predictions of the shear deforma-

tion theory, designated SDT 1 , with the Kirchhoff-Love theory, desig-

nated KLT. This is done in Table 3 where various response measures are

computed from the two theories at pressures of 10 psi and 100 psi for

4-, 8-, and 16-ply laminates. The table also presents results from a

second shear deformation theory, designated SDT 2 , which was obtained

from SDT 1 by setting D26 = 0. Although setting D 26 = 0 appears

arbitrary, and is unnecessary in this analysis, setting D 26 = 0 must

be done in more complicated two-dimensional iaminated plate and shell

analyses to make matrematical solutions tractable. For example Wang

(Ref. 20) has shown the separation of variables technique does not work

in solving the linear partial differential equations for laminated

plates when D 16 and D26 are nonzero. Separation of variables will

work when D 16 and D26 vanish in such problems (specially orthotropic

plates, for instance). Since it is a relatively simple matter to set

D26 equal to zero in SDT 1 to obtain SDT 21
 this is done the-:. t,. s..0

the effect.

Comparing the Kirchhoff-Love theory (KLT) to the first shear defor-

mation theory (SDT 1 ) for the laminates and pressures presented in

Table 3 the following statements may be made: The center deflection we

Y
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Table 3. Effect of Shearing Deformations on Panel Center and Edge
Response Quantities

ELamioa^e
0and	 c,	 uin.	 (1'a)	 (TBz^e	

(T'0
e z)e

Pressure	 Aralysis	 in.	 in.	 p	 p

[i45] s SDT1 0.1303 2097. -.5207 -165.1 34.69
p=10ps_ SDT2 .1303 2097. -.5001 -142.2 -46.79

1MT .1303 2097. -.5049 -144.8 -47.65

[i45] ,z SDTl .3924 1066. -3.453 -226.2 47.55
p=100psi SDT2 .3924 1066. -3.208 -194.8 -64.14

KLT .3921 1065. -3.356 -212.8 -70.04

['45]2s SDTl .08722 1197. -.1366 -63.5 5.31
p-lopsi S'T2 .08722 1197. -.1356 -62.0 -10.20

KLT .08721 1196. -.1364 -62.7 -10.31

[i45]2s SDT1 .2874 6449. -.9653 -96.5 8.40
p=100psi SDT2 .2874 6449. -.9524 -93.7 -15.43

KLT .2871 6443. -.9803 -99.0 -16.30

[+45]4s SLT1 .0532 608. -.0385 -30.7 1.23
p=Iopsi SDT,, .0532 608. -.0385 -30.5 -2.51

KLT ` .0532 608. -.0387 -30.7 -2.53

[±45]4s
1SDT .2033 3699. -.2791 -45.2 1.88

p=100psi SDT2 .2033 3699. -.2'83 -44.9 -3.69
KLT .2030 3693. -.2837 -46.4 -3.81

.	 IN
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for SDT I is greater than we for KLT. Circumferential middle

surface strains Ee are about the same for each theory. Differences

of less than 10 percent occur for the edge rotation gradient re

between the two theories, but one theory does not consistently pre-

dict larger magnitudes for r e with respect to the other theory.

T'tie rotation gradient r e is directly proportional to the circumfer-

ential bending strain. Differences in the shear stress r0	 computed
ez

on the middle surface at the edge are less than 20 percent Eor the two

theories. Again one theory does not consistently predict a 1=.rger

magnitude for TO with respect to the other theory. There are large

discrepancies in the values of shear stress T	 computed at the edge

of the middle surface. First, there is a sign difference in T0Z with

KLT predicting negative values, and SDT 1 predicting positive values.

Second, the magnitudes of -r 0 KLT are greater than the magni-
xz

tudes of TXZ from SDT 1 . These large discrepancies in TO are a

consequence of neglecting the rotation yx in Kirchhoff-Love theory.

The differences are largest for the thinnest panels.

The effect of neglecting D26 can be examined by comparing the two 	 ^'v

shear deformation theories SDT 1 and SDT 2 in Table 3. Both theories

predict essentially the same center deflection w e and circumferential

middle surface strain Ee. Values of the edge rotation gradient re 	

I

differ between the two theories, SDT 1 predicts larger values than

SDT 2 . The shear stress T^ on the middle surface at the edge has a

consistently smaller magnitude in SDT 2 with respect to SDT1.

However, the shear stress To	 at the edge of the middle surface has a
xz

JA ri
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consistently larger magnitude in SDT 2 with respect to SDT 1 . What

appears to be more important, though, is that SDT 1 predicts positive

values of TO whereas SDT2 (like KLT) predicts negative values of

0
T
xz'

The comparisons between the three theories given above do not

establish the correctness of any one over the others. If an exact ncn-

linear elasticity solution were available to compare to, then a con-

clusive statement on which theory is best may be made. No exact

elasticity solution is available to compare with the three theories,

however. Since the first shear deformation theory is less restrictive

in its assumptions relative to the other two theories, it is assumed to

be the best of tie three. In Chapter 5 the theory used to compare to

experiment is SDT 1 which will be referred to as the shear deformation

theory. In the following section of this chapter further comparisons of

the three theories are made to illustrate differences in the predicted

distributions of oz, TBz, and TXz through-the-thickness of the

laminate.

4.7 Through-the-Thickness Stresses

In this section the through-the-thickness stress components T W

Txz' 
and oz are examined in more detail. The interlaminar stresses at

the panel middle surface k'z =0) and along the circumferential arc from

the center to the edge of a panel are shown in Figure 26 for [t451

symmetric laminates of 4 an? 16 plies. These stresses ace calculated at

an applied internal pressure of 100 psi and are normalized by this

a
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applied pressure. For the 4-ply panel the interlaminar stresses are

nearly zero over most of the are length except for a small distance near

the edge. For the 16-ply panel the interlaminar stresses are uniform

for about ore-half of the distance to the edge. The shear stresses

T0z and -E0	are zero at the center with the shear stress L0

increasing monotonically toward the edge. The slope of the TO	shear
xz

stress distribution changes sign near the edge. The normal stress a 	 !

is compressive except in a small region a short distance away from the
i

panel's edge where it is tensile. The maximum values of all inter-

laminar stresses occur at the edges of the panel, and the maximum values

are larger for the thinner panels than for the thicker panels. Also, at

the panel edges, the magnitude of the shear stress r 0	is greater than
ez

the shear stress z	 which, in turn, is greater than the normal stress
xz

a . The severe interlaminar stress gradients shown in Figure 26 occur
z

near the panel edges as a consequence of the severe bending strain

gradient shown in Figure 18. The interlaminar stresses are proportional

to the bending strain gradient as shown in equations (3.96) to (3.98).
r

The results shown in Figure 26 are obtained from the first shear

deformation theory (SDT l ) which includes the effects of the twist

coupling coefficient D 26 . In Figures 27 and 28 these interlaminar

stresses are also computed from Kirchhoff-Love theory (KLT) and the

second shear deformation theory (SDT 2 ), and plotted for comparison

with SDT 1 . In Figure 27 the results plotted are for a 4-ply [±451

symmetric laminate at 100 psi, and in Figure 28 the results are plotted

for a 16-ply [±451 symmetric laminate at 100 psi. The distributions are

.a

-1' ^ ^•	 _ -^--mac•
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Figure 27.- Circumferential distribution of normalized interlaminar
stresses calculated at the middle surface of a 4—ply f`4 5]
panel with 100 psi internal pressure. Results calculated
with KLT, SDT 1 , and SDT ` theories.
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Figure 28.- Circumferential distribution of normalized interlaminar
stresses calculated at the middle surface of a 16-ply

[ t45 14s panel with 100 psi internal pressure. Results

calculated with KLT, SDT,, and SDT 2 theories.
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only plotted near the edges Ma - 0.90-1.0). For both laminates the

largest differences occur at the edge with no differences occurring away

from the edge. The most pronounced difference between the three

theories occurs for the interlaminar stress z°. In the mathematical
xz

solution the roots tX2 given by equation (3.48) are responsible for

these differences. These roots are associated with the rotation yx

and the twist coupling coefficient D26 . The differences in the

stresses z^ and a° between the theories are greatest at the edge

but small in magnitude. Through-the-thickness shear and twist coupling

effects extend over a greater distance from the edge for the 16-ply

panel.

The boundary layer decay lengths from shear deformation theory

(SDT I ) are associated with roots XI 
and 3.2 of equation (3.48), and

are given in Table 4 for 4-, 8-, and I6-ply [t45] symmetric laminates.

These decay lengths are calculated with equation (3.68) after evaluating

the roots with equation (3.48). The value of the root 
X2 

is an order

of magnitude larger than the root X 1 for the pressures examined. The

root 1'I is numerically close to the root	 X (eq. (3.81)) of the

Kirchhoff-Love theory and both XI 
and X increase with pressure and

their corresponding boundary decay length decreases with pressure. For

the internal pressures loads which caused small strains in the panels,

the boundary decay length associated with 
X2 

is much shorter than the

decay length of X I . In addition, the boundary decay length associated

with %,, remains approximately constant with pressure. Both boundary

decay lengths increase with increases in laminate thickness.

1

I

1

y

1

ti
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Table 4. Boundary Decay Lengths^ 1 and !; 2 of 4-, 8- and 16-ply

i ±45°J ns Laminates with Internal Pressures of 10 and 100 psi

I-minate p,	 psi ^1,	 in. E?,	 in.

[*--45] 5 10 0.6223 0.0586

100 0.2730 0.0582

[±45] 2s 10 1.638 0.1372

100 0.722 0.1369

[±45] 4s 10 4.582 0.2r)34
100 1.883 0.833

1

11
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The distributions of stress components	 oz ,	 T9z' and 'S X, through

the thickness are shown in Figure 29 for the 1±45) symmetric laminates

of 4 and 16 plies. These results are calculated at the clamped edge

using SDT 1 . The through-the-thickness shear otresses are symmetric

about the middle surface and the normal stress is nonsymmetric. The

shear stress T Oz is the largest in magnitude relative to 
Txz 

and a 

and attains a maximum magnitude at the middle surface. The shear stress

TOz is a maximum at the clamped edge of the middle surface. The

maximum values of the stresses T	 and o	 occur at locations other
xz	 z

than the middle surface.

The influence of the twist coupling coefficient D 26 on the

through-the-thickness distributions of stress az , T oz , and 
Txz 

is

shown in Figures 30 and 31 for the same 4-ply and 16-ply (±451 symmetric

laminates. The twist coupling coefficient has the largest influence on

the shearing deformation stress t Xz . The shear deformation theory

(SDT 1 ) predicts the largest value of the stress T,, in Figure 30(a)

for the 4-ply panel whereas the Kirchhoff-Love theory predicts the

largest value in Figure 31(a) for the 16-ply panel. Therefore, as

pointed out previously, the Kirchhoff-Love theory does not, in general,

give conservative solutions.

In this paragraph through-the-thickness stresses of two quasi-

isotropic 8-ply symmetric laminates and one I±451 8-ply symmetric

laminate are compared. The through-the thickness distribution of oz,

Tez , and -txz for three 8-ply laminates of different laminate

stacking sequences are shown in Figure 32. These distributions -ire

t+

a

I	 '
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Figure 29.- Through-the-thickness distribution of normsliaed
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calculated at the clamped edge using the shear deformation theory

(SDT 1 ). The laminate stacking se q uence has a large influence on all

through-the-thickness stresses. The largest change in slope of the

shear stresses Txz 
and tioz occurs at the interface of +45° plies.

The largest slope changes for the normal stress (a z ) distrihutions occur

at the interface of the 90° ply and 0° ply on the concave side of the

middle surface.

^ I`



Chapter 5

COMPARISON Or ANALYSIS AND EXPERIMENT

To correlate the analysis with the experiment, it was found

necessary to measure the initial shape of the panel after fitting it

into the test fixture, and to measure the slipping of the panel out of

the test fixture with increasing pressure. Using the measured initial

geometry and the measured pressure-slip characteristics in the analyti-

cal model, the comparisons presented in this chapter establish that the

analysis can predict reasonably well the experimental response data.

With confidence established in the analytical model of the experiment,

it is reasonable to use the stresses and btrains predicted in the

analytical model to analyze failure, which is the subject of Chapter 6.

Results of thirteen test specimens are given in Table 1. Most of

the comparisons between analysis and experiment are carried-out on

specimens G2, G4, G7, G9, and G10 listed in Table 1, because only these

panels were surveyed prior to pressurization to determine their actual

shape after fitting into the test fixture. The other panels were tested

before it was determined that the initial shape deviated substantially

from a nominal 60-inch radius cylindrical panel. Thus, comparison of

analysis and experiment is presented only for the panels in which the

actual shape was determined and used in the analysis. In particular, 	 j

the comparisons are presented for the 4-ply (G2), 8-ply (G7), and 16-ply

(G10) panels. Ne comparisons are presented for the 5-ply (G4) and

16-ply (G5) panels, since these results are similar to those presented

for specimens G2, G7, and G10.

118
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5.1 Measurements Required for the Analysis

5.1.1	 Panel Stiffnesses

Some of the elastic stiffnesses utilized in the analysis were

verified by actual testing. Tensile coupons were cut from flat panels

of the same material and cured under the same conditions as the 5-ply

specimens G3 and G4 and the 8-ply quasi-isotropic specimens G5, G6, and

G7. These panels were tested in tension to failure. The specimen

elastic stiffnesses were measured and compared to their values computed

from classical lamination theory using the lamina properties given in

Section 2.1 for T300-5208 and the average lamina Lhickness measured from

the coupons. The experimentally determined extensional stiffnesses of

the 5-ply specimens (G3 and G4) were 97,9UU lb/in. and 164,200 lb/in.

The theoretically predicted stiffnesses are 103,500 lb/in. and

167,000 lb/in., respectively. The experimentally determined extensional

stiffness of the quasi-isotropic 8-ply specimens (G5, G6, and G7) was

325,000 lb/in. and the theoretical stiffness was 321,500 lb/in. The

experimental and theoretical stiffnesses agree very well and suggest
	

t'' v^

that the use of lamination theory with the elastic properties for

T300-5208 given in Section 2.1 is sufficient for predicting the elastic

stiffnesses of the specimens. The computed stiffnesses used in the

analysis for panels G2, G4, G7, G9, and G10 are given in Table 5. The

average lamina thicknesses used in computing the stiffnesses are also

given in Table 5 for each panel.
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5.1.2	 Initial Geometry

Shape surveys of unpressurized specimens clamped in the test

fixture were conducted to determine the actual initial geometry of the

specimens. The instrumentation and procedures used to conduct these

Initial geometr y surveys are described in Section 2.2. The results of

typical measurements to determine the shapes of circumferential (x - 0)

and axial (6 = 0) lines passing through the center of specimen G7 are

shown in Figures 33 and 34, respectively. A circular arc with a radius

of 39.9 in. has the same rise and chord as the measured shape and is

shown in Figure 33 for comparison. Points on the measured curve fall

inside of the circular arc and the radius of the circular arc is 33 per-

cent smaller than the nominal 60 inch panel radius. The radius of the

circular arc was used in the analysis to approximate the effects of the

initial panel geometry. The same procedure was used to determine radii

of 33.4, 43.1, 53.4, and '50.3 inches for panels G2, G4, 69, and G10,

respectively. The shape of the measured axial line through the panel

center shown in Figure 34 differs from the nominal straight line genera-

tor of a cylindrical panel indicating that the initial shape of the

specimen is also curved in the axial direction. The curvature in the

I .	 axial direction was neglected in the analyses. These differences in

shape indicate that the initial geometry of the panel is distorted from

the nominal circular cylindrical panel shape.

.y
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Figure 33.— Measured vertical shape along the circumferential center
line (x-0.) of specimen G7 before pressurization.
Appropriate circular shape used in analysis shown for
comparison.
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5.1.3 Paael Slip

Applied internal pressure loading causes circumferential and axial

tensile forces to be generated in a specimen. These tensile forces can

c-use the specimen to pull away or slip from the test fixture clamping

mechanism and this slipping affects the response of the specimen.

In-plane circumferential displacements at the specimen edges were

measured with direct-current differential transformers as

internal pressure was increased to determine the magnitud,

ments or slippage which occurred during testing. Results

in-plane circumferential displacement ,measurements at the

straight edge of specimen G7 are shown in Figure 35. The

displacement curve in Figure 35 is approximately bilinear

the applied

of displace-

of typical

midlength of a

pressure-

up `o failure.

Circumferential displacement values from these pressure-displacement

curves were used as prescribed values for v (eq. (3.37)) in the one-

dimensional panel analysis to approximate the effects of in-plane cir-

cumferential edge displacements on panel response. Rotations at the

clamped edges also occur, but were difficult to measure for inclusion

into the analysis.

The two-dimensional STAGS analysis results shown in Figure 10 indi-

cate that the axial strains are zero at the center of an ideal panel

with perfectly clamped edges. However, in the experiment back-to-back

axial strain gages located at the center of the specimens indicate that

tensile axial membrane strains are nonzero. The axial strain curves for

specimen G7 are shown in Figure 36. The 4-, 5-, and 8-ply specimens

s
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tested in this study had nonzero axial membrane strains at Ehe specimen

center. The stiffer 16-ply specimens had both nonzero axial membrane

and bending strains at the specimen center. The nonzero axial membrane

strains are a result of the two-dimensional effects associated with

pillowing and the inability of the test fLa ure clamping mechanism to

prevent the specimen from slipping axially at the straight edges of the

panels. In the -)ne-dimensional analysis, the assumed axial boundary

displacements of equation (3.25) are directly responsible for the

uniform axial strain state of equation (3.29). Although the axial

boundary slip waF never measured, axial sli p probably occurred simul-

taneously with the measured circumferential slip. This assumption is

substantiated by comparing Fi gures 35 and 36 which exhibit a change in

slope at essentially the same pressure (27.6 psi) for specimen G7.

Therefore, the two-dimensional axial strain effects, caused by slipping,

are modeled as an applied axial strain E in equation (3.65) of the

one-dimensional .analysis.

5.2 Comparison of Analysis and Experiment

5.2.1 Center Deflection Versus Pressure

The effects of increasing internal pressure p on the nondimen-

sionalized radial deflections at the center w e are shown in Figure 37

for the 4-, 8-, and 16-ply panels (specimens G2, G7, and G10, respec-

tively). The radial deflection is nondimensionalized by the panel

thickness. The solid curves in the figure represent results from the

1

N,	 •
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one-dimensional panel analysis and the symbols represent experimental

data. The filled symbols represent specimen failure. The effects of

the initial measured radius (e.g., Fig. 33), the measured in-plane

circumferential edge displacements (e.g., Fip. 35) and measured axial

strains at the panel center (e.g., Fig. 36) are included in the analysis

of each panel. Analytical ►exults for the 8-ply panel (0) that do not

include the effects of measured initial radius, in-plane circumferential

edge displacements and axial strain at panel center are shown in

Figure 37 by the dashed curve. Comparing the results of the analysis

for the 8-ply panel with the experimental results indicates that the

effects of initial geometry and panel slip must be included in the

analysis for accurate correlation with experimental results. The non-

linear character of the global pressure-displacement responses in

Figure 37 is indicated by the large radial deflections relative to the

panel thicknesses and the increases in the slopes of the pressure-

displacement curves, or stiffening, as internal pressure increases.

These analvtical results correlate well with the corresponding experi-

'	 ; n

mental results up to failure.	 +

5.2.2 Membrane Strain Versus Pressure

Circumferential membrane strains at the centers of the typical 4-,

8-, and 16-ply panels (specimens G2, G7, and G10, respectively) as a

function of internal pressure are shown in Figure 38. The solid curves

represent the analytical results and the symbols represent the experi-

mental results. The filled symbols represent specimen failure.
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These results indicate that the circumferential membrane strains at the

panel center are larger at every pressure for the thinner panels than

for the thicker panels, and that the analytical results for the two

thinner panels correlate well with the experimental results up to

failure. Although the analytical results for the 16-ply panel correlate

reasonably well with the experimental results for the lower values of

applied internal pressure, the analytical and experimental results do

not agree as well at the higher values of the internal pressure. The

back-to-back axial strain gages at the center of the 16-ply panel

indicate that negligible bending strains exist at the lower pressures,

but the strain gage data show that both bending and membrane strains are

significant at the higher pressures and increase as the pressure is

increased. For the thinner panels the bending strains were negligible

up to failure. Apparently, axial bending effects at the center are more

important for the stiffer 16-ply panels than for the thinner panels and

become more pronounced as the applied pressure is increased.

-).2.3 Circumferential Strain Distributions at a Fixed Pressure

Circumferential surface strain distributions at the panel mid!ength

(x = 0, Fig. 1) are shown in Figure 39 for the typical 4-, 8-, and

16-ply panels (specimens G2, G7, and G10, respectively) discusEed in the

previous section. The distributions are shown for only half the panel

due to symmetry and are for an applied internal pressure of 50 psi.

Results from the one-dimensional panel analysis are represented by the

Solid curves and the experimental results are indicated by the symbols.

.q
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Strain gage data for the concave surfaces are represented by the

circular symbols and data for the convex surfaces are represented by the

square symbols.	 These results indicate 'hat the circumferential

membrane strain found by averaging the two surface strains is nearly

'	 constant along the circumferential arc length for each panel as was

predicted by the one-dimensional panel analysis. 	 The surface strains

• are uniform near the center of	 the panels,	 but significant bending #

strains exist near the panel edges. 	 These bending strains are maximum

at the edges.	 The magnitudes of the bending strains are larger for the I

thinner panels than for the thicker panels, and the bending strain

gradients are confined to a smaller edge region for the thinner panels.

For example,	 the bending strain of	 the 4-ply panel G2 are distributed
1

over approximately	 10 percent of the circumferential arc length (see
i

Fig.	 39(a)),	 but are distributed over about 80 percent of	 the arc length

of	 the	 16-ply	 panel G10 (see Fig.	 39(c)).	 The strains predicted by	 the

analysis agree with the experimental strains and indicate the severity

of the bending strain gradient near the parcel edges. 	 The magnitudes of

the strains measured near the edges are smaller than those predicted by

the analysis.	 These differences may be due to slight rotations of 	 the
t

specimens and clamping bars at the panel edges which relieve the bending

strain.	 Also,	 differences ma y occur due to the difficulty of measuring I

strains	 in a	 region of severe bending gradient.
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5.3 Prediction of Through-the-Thickness Stress Components for
Specimens G2 and G10

The through-the-thickness stresses cz, L
Xz
, and 

`Oz 
were cal-

culated from the analyses of specimens G2 (4-ply) and G10 (16-ply) and 	
i

the results are presented in Figures 40 and 41 for an applied internal

1 .1	 pressure of 50 psi. The stresses shown in these figures are normalized

by this applied pressure. The distribution of interlaminar stresses

along the circumferential arc and at the panel middle surface for the

4-ply specimen G2 is shown in Figure 40(a) and those for the 16-ply

specimen G10 are shown in Figure 40(b). The normal stress a z is

compressive except for a small tensile region near the panel edge. At

the panel edges the magnitude of the shear stress z Oz is greater than

the shear stress TXz , which is greater than the normal stress a z . The

maximum values of all interlaminar stresses are at the panel edges and

the maximum values are larger for the thinner panels than for the

thicker panels. The bending strain distribution in Figure 39 and the

equilibrium equations (3.90) to (3.92) indicate that the thinner panels

with severe bending gradients near the panel edge (e.g., see Fig. 39(a))

also have severe interlaminar stress gradients near the panel edge

(e.g., see Fig. 40(a)). The distributions of through-the-thickness

stresses at the panel edge for the 4-ply panel are shown in Figure 41(a)

and those for the 16-ply panel are shown in Figure 41(b). These results

9
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indicate that the shearing deformation stresses are symmetric about the

middle surface and the transverse normal stress is nonsymmetric. The

normal stress is equal to the applied internal pressure on the concave

surface of the panel and equal to zero on the convex surface. The shear

stresses are both equal to zero on the panel external surfaces. The

fluctuations in the shear stress tixz are related to changes in ply

orientation from +45 to -45, and the maximum value of shear stress 
T 9

occurs at the panel middle surface.

4 'v
1



Chapter 6

FAILURE

6.1 Observations of the Failed Specimens

6.1.1 Examinations of the External Surfaces

All specimens except the aluminum panel A2 were tested to failure

to Etudy their failure characteristics, and to determine their ultimate

pressure. The applied internal pressure was slowly increased until the

specimens ruptured along a straight or curved edge and the applied

pressure could not be maintained. The failures initiated at the bound-

aries of the panels and not in the interior. Most failures occurred

along the straight edges as shown in Figure 42. Photographs of the

concave and convex surfaces of each failed panel are included in

Appendix A.

The edge failure locations for each panel shown in the photographs 	 1,

.n Appendix A are summarized in Table 6. The straight edges are identi-

fied as S1 and S2 and the curved edges as Cl and C2. Edge S1 is closest

to the strain gages located along the circumferential center line, and

edge Cl is closest to the strain gages located along the axial center

line. The edge failures have visible damage on both the concave and

convex surfaces. When the failure is characterized by a complete break

of all laminas through the thickness, the edge is marked with an aster-

isk superscript in Table 6.	 In the other cases the laminate `ailure

does not completely separate the interior test portion from the clamped

portion of the laminate. For example, the concave surface plies of

138
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Table 6. Eoge Failure Description

Panel
Stacking
Sequence

Edge Failure " Concave Ply Failure
Only

Al -- S2* --

A2 -- Not failed --

GI [!451 Cl* S2* C2 S1
s

G2 [±45] Cl	 S2* C2 --
s

C3 [±45/90] 5 Cl*-S2*-C2* --

G4 [!45/90] s S1* C2* S2* --

G5 [90/±45/01 5 Sl* C2

G6 [90/O/±451s Sl* Cl	 S2 C2

G7 [90/0/i451 s S2* Cl	 S1	 C2

G8 [±45]2s Cl*-S2* --

G9 [±45/±45/90 2 /0 2 1 s S2 --

G10 [±45/z45/90 2 /0 2 ] Sl --s

G11 [90 2 /±45/±45/0 2 ] s S1* --

3 1 1% 1 1 1 1 11 V / 1 V L 3

An asterisk superscript on edge indicates all lamina have failed

through-the-t',iickness

2A dash between edge designators indicates the failure is continuous
between edges

--^s+	r • 'i

IM

r



1

141

panels G9 and G10 delaminated and railed at the bolt holes as shown in

Figures All and Al2 in Appendix A. In Table 6 a dash between two edges

indicates that the edge failure is continuous between these two adjacent

edges. Also in the fourth column of Table 6, the edges in which the

concave surface plies failed are identified. These edges did not fail

catastrophically but the concave surface ply failures may have contrib-

uted to the catastrophic failure of the other edges. Delaminations

occurred at the failed edge(s) of all the specimens.

The 4- and 5-ply specimens Cl, G2, G3, and G4 were composed pri-

marily of 45° plies and failed with extensive surface fiber delamination

which extends from the edge to the center as shown in Figures A3, A4,

and A5 in Appendix A. These panels had more damage around the curved

edge than the thicker panels. In general the thicker panels failed

exclusively along the straight edge. The concave surface plies of

specimens G6 ,nd G7 have failed at the edge as indicated in Table 6.

These failed plies are delaminated from the panel almost completely

along the edge. Some delaminations extend as much as a distance of

2 inches normal to the edge. The 16-ply specimens G9 and G10 had

failures which extended to the bolt holes on the concave surface but not

completely Through the thickness of the specimen at the edge. Specimens

G9 and G10 had the ±45° plies located closer to the outer surfaces of

the laminate rather than near the middle. The 16-ply panel G11 which

had t45° plies at the middle surface failed completely through the

thickness at the edge.

s
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6.1.2 Panel Dissection

Typically the failures occurred along one edge of the panel leaving

the other edge intact. The failed edge was often too severely damaged

to determine where failure initiated. The intact edge opposite the

failed edge of the panel experiences an identical stress state as the

failed edge prior to ultimzte failure. These stress states are iden-

tical because of the symmetry in the pressure load and boundary condi-

tions. Therefore, the intact edge should give a good indication of the

local failure state immediately before failure. The results described

in Table 1 , are from a surface examination of the specimens and describe

the edge failure locations, surface damage states and whether the crack

is continuous through the thickness or not. However, it was impossible 	 1

to accurately determine what was happening through the thickness of the

laminate. To accomplish this examination, the panels were cut along the

circumferential direction (at x = 0) and the cross section was

polisheu. Only the circumferential cross section will be examined since

most failures occurred along the straight edge where the one-dimensional

analysia was valid. The thinner panels had a greater tendency to fail

near the curved edges. The _ircumferential cross section was examined

under a 10 power hand lens and photographs were taken to determine the

extent of any local damage at the intact edge opposite the failed edge.

Photographs of the circumferential cross section of the intact and

failed edges of the 16-ply specimen C9 are shown in Figure 43(a).

Matrix cracks in the center four 0° plies are visible at both edges and

4
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(a) 16-ply specimen G9 intact and failed edge cross sections

1 N I Ht, I tUVt

(b) 8-ply specimen G7 intact edge cross section

Figure 43.- Cross sections of intact and failed specimen edges.
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ma y have been caused by the high transverse shear stress Sbz and the

circumferential normal stress a 	 shown in Figure 41(b). A photograph

of the cross section of the intact edge of 8-ply quasi-isotropic speci-

men G7 is shown in Figure 43(b). Transverse matrix cracks and delamina-

tions are visible, and the two outer plies on the concave side have

failed in tension and have delaminated.

The results of these cross-sectional examinations are summarized in

Table 7. Damage at both the intact and failed edges are described In	 ,1
Table 7. The type of damage and the throng`i-the-thickness ply locations

are identified. Delaminations (D) and fiber breakages (F) of specific

plies are identified in the table. The damage designation (D Cr F) is

followed by numbers in the table which either identify the adjacent

plies which have delaminated or identify the ply wh i ch has fiber.

failures. The plies are consecutively numbered from the concave surface

to the convex surface. Transverse matrix cracks were visible in most of

the specimen cross sections and are not included in Table 7. It is very

interesting that panels with significant failure along one edge had no 	 f

^v
damage along the intact edge.

6.2 Interpretation of Strain Gage Data

In addition to the photomicrographs the response of strain gages

located at the clamped edge of the panels was also very important in

understanding the failure mechanisms. The strain response of back-to-

back circumferential strain gages near the straight edge of specimen G7

is shown in Figure 44. The responses of the convex and concave gages

4

L^



74.

145

Table 7. Observable Damage In Machined Circumferential Edge

Cross Section

DAMAGE

	

SPECI- STACKING	 INTACT	 FAILED

MEN	 SEQUENCE	 EDGE	 EDGE	 COMMENTS

G1 [*45]s Da 1-2b Severe D	 under tab

G2 [±45] s D 1-2 Severe D 1-2 under tab

D 3-4 D 3-4 in test
section

G3 [*45/90] s D 1-2 Severe D	 in test section

G4 [-45/ -TM s Severe Severe Both edges failed

G5 [90/±45/0] None D 1-2 D	 1/8" from edges
D 2-3 D between all
D 3-4 plies at failed
D 7-8 edge

G6 [90/0/±45] Fal and 2 D 2-3
s

D 2-3 D 3-4
D 3-4

G7 [90/0/'45] s F 1	 and 2 D 2-3 D mainly in test
D 2-3 D 3-4 section
D 3-4 D S-6

G8 [±451 2s D 5-6 D 3-4 Both edges intact
at cross section

examined
D under tab

G9 [±45/±45/90 2 /0 2 1 s None D 6-7 D 6-7 7/8" under
D 10-11 tab and 2" in test
D 13-14 section.

Severe damage at
failed edge

G10 [±45/±45/90,/O 21S D 5-6 D 6-7 Most damage on
D 6-7 D 10-11 intact edge under
D 2-3 tab;F 1 and 2 under

tabs

G11 [90 2 /±45/*45/0 2 1 s None D 2-3 Most D in test
D 5-6 section
D 6-7

a D - delamination; F - fiber breakage

b Numbers refer to lamina location. Lamina numbered consecutively
from concave to convex surface. A dash indicates delamination
occurs between laminas (i.e. 1-2 indicates delamination between
the first and second ply)

V
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8-PLY STRAIN RESPONSE

125 r 	A B	 SURFACE
I	 ^ /

I 
PLY

1 	 FAILURE
P. 75

-CONVEX
P si 50 ^-	 SURFACE

25	 CONCAVE
SURFACEp

.006-.0030  .003.006.004
C I RCUMFERENTI AL STRA I N, E 

Figure 44,- Circumferential strain response of back-to-back gages

located at clamped edge (x-0., e. I of specimen G7.
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are smooth until a small discontinuity occurs at approximately 61 psi.

This discontinuity is associated with an abrupt circumferential slip at

the boundary shown by the displacement response data in Figure 35. The

effect of circumferential slip on the edge strain response was shown in

Figure 20. The slip caused an increase in bending strain and a decrease

in middle surface strain. The decrease in the middle surface strain is

offset by the increase in the bending strain at the concave surface.

The opposite effect occurs at the convex surface and the slip shows up

as a discontinuity in the gage response.

Figure 44 also shows a larger discontinuity at an internal pressure

of 82.7 psi where both the convex and concave strains abruptly change.

The concave gage which was indicating a large tensile strain before the

discontinuity registers zero immediately after the event. The convex

gage which was increasing in compression registers tension immediately

after the event. As the pressure increases the concave gage changes

onl y slightly and continues to register nearly zero and the tensile

strain measured by the convex gage increases. This behavior is
I F^ ^

explained by a local failure of the concave surface plies at the clamped

straight edge. This concave surface failure is substantiated b y the

photomicrographs of specimen G7 shown in Figure 43. T'he 90° concave

surface ply in Figure 43 has failed by a tensile fiber failure at the

edge. The 0° inside ply next to the 90° ply has also failed circum-

ferentially in a tensile matrix failure mode at the edge. Delamination

of both the 0° ai,d 90° plies is apparent from the edge inward. This

delamination propagates under the concave surface strain gage which is



1^ 8

located approximately one-eighth of an inch away from the edge. Tie

strain gage on the concave surface remains attached tj the two delami-

nated plies and registers a strain of zero reflecting the loss of load

carrying capability. With the two plies on the concave side failed, the

remaining laminate must now support the tensile stress resultant and the

convex strain gage registers an increasing tensile strain. The re-

sponses of the edge strain gages for panels G2, G4, G7, G9, and G10 are

given in Appendix B. Local edge failures, such as occur at 82.7 psi for

specimen G7, have a large detectable influence on the strain gage

responses shown in Appendix B. 	 s

6.3 First Major Damage Event and Ultimate Failure

The discontinuities in the edge strain gage response are believed

to be cauGed by either a fiber fracture or delamination. Many local

failures were audible during the test and their effects on panel

response were detected by the edge strain gages. As will be shown in

Section 6.4, the analysis predicts transverse matrix cracking to occur

at lower pressures than fiber fracture. Transverse matrix cracking is

;9
classified as minor damage since it did not cause a discontinuity or

abrupt slope change in the measured strain response. The strains at the

first major damage event, and at ultimate pressure were determined from

the edge strain response given in Appendix B and are presented in

Tables 8 and 9.
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Measured circumferential surface strains near the clamped straight

edge of the panel are given in Table S and axial strains near the

clamped curved edge of the panel are given in Table 9. These strains

are recorded by edge gages immediately before and after the first major

damage event and at the ultimate pressure. The axial gages are located

approximately at the center of the curved edge, and the circumferential

gages are located at the center of the straight edge. The gages were

either located one-eighth of an inch away from the edge or as close as

possible to the edge which is indicated by 0 + in Tables d and 9. For

example, distances of 0.020 in. and 0.030 in. were measured between the

strain gages and the edge for specimens G9 and G10, respectively. The

strains could not be recorded to failure for all panels because in some

instances the strain gages failed due to the high strains. Also, for

some of the panels in the table, the strains after the first major

damage event are not reported since the first major damage event

occurred simultaneously with rupture at the ultimate pressure.

The first major damage event pressure and the ultimate pressure are

plotted in Figure 45 for the specimens tested in this investigation.

Also shown on the figure is the maximum pressure applied to the thicker

aluminum specimen (specimen A2) which was not tested to fai`_.re. All

specimens failed at pressures well above 20 psi which is greater than

the nominal pressure used for ground test verification o: pressurized

fuselage structure. The aluminum specimens yielded at the specimen

edges to form plastic hinges that reduced the bending strains at the

edges. The lighter weight graphite-epoxy specimens failed at lower

pressures than the aluminum specimens with the same nominal thicknesses.
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Ply orientation and laminate thickness appear to have a strong

influence on the ultimate pressure capability of the graphite-epoxy

specimens. As shown in Figure 45, the 16-ply q uasi-isotropic panels

(G9, G10, and Gil) did not fail at twice the ultimate pressure of the

8-ply quasi-isotropic panels (G5, Gb, and G7) and the 8-ply ±45°-angle-

ply panel (G8) did not fail at twice the ultimate pressure of the 4-ply

±45°-angle-ply panels (G1 and G_'). Although the strains, bending

gradients and interlaminar stresses at the panel edges are more severe

fo r the t,,inner panels (see Figs. 39-41), the thinner panels are more

structurall y efficient on a weight basis with respect to their ultimate

pressure capability than the thicker panels. The 8-ply quasi-isotropic

panels (G5, G6, and G7) failed at lower pressures than the 8-ply +45°-

angle-ply panel (Gh) and the 5-ply (±45/901 s panels (G3 and G4) failed

at lower pressures than the 4-ply +45°-angle-ply panels (Gi and G2).

Graphite-epoxy specimens G1, G3, G5, G9, and Gil ruptured with a sudden

loss of pressure and with no indication from the response of the edge

strain gages of progressive local failures or damage occurring at

pressure below the ultimate pressure. The other graphite-epoxy speci-

mens had one or more major local failures (e.g., fiber fracture or

delamination) occur at pressures below the ultimate pressure.

6.4 Evaluation of Failure Criteria

The stresses computed from the one-dimensional panel analysis were

used to determine if the first major damage event could be predicted by

some commonly used failure criteria. Stresses at the straight edges of
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panels G2, G4, G7, G9, and GIO were determined at the pressures asso-

ciated with the major damage events given in Table 8. The analyses

utilized the measured radius, circumferential slip, and axial strain fcr

each specimen to model the response as accurately as possible. The

strains and stresses determined frum the analyses were substituted into

phenomenological and individual mode failure criteria. Six different

individual modes of failure and two phenomenological failure criteria

were examined. The individual failure modes included tensile fiber,

compressive fiber, tensile matrix, compressive matrix, tensile inter-

laminar, and compressive interlaminar failure modes (Ref. 21) and are

shown in Appendix C. The material strength properties used in the

failure criteria are given in Table 10. The phenomenological failure

criteria include a two-dimensional Tsai-Wu failure criterion which is

I ased on the in-plane stresses (cxx + cog, and z x e), and the more

general three-dimensional Tsai-Wu functional which includes the in-plane

stresses and the through-the-thickness stresses (zxz ,	 -Egz, and o„z).

The Tsai-Wu functional utilizing the full three-dimensional stress state

is given in Appendix D. The two-dimensional Tsai-Wu failure criterion

found in many composite material text books is a specialized case of the

three-dimensional criterion. Tliese failure criteria were examined

across the circumference and through the thickness of the panels. The

maximum value (dimensionless) of each criterion occurs at the clamped

edge but at different locations through the thickness. These values are

given in Table 11 at the first major damage event pressures. Values

greater than unity indicate failure in each criterion. The value of the

'^,..I

J
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Table 10. Material Strength Properties of T300/5208 Usel in the

Failure Criteria

Property l Symbol Strength,
ksi

Axial Tensile Strength X 218.0

Axial Compressive Strength
X 

-218.0

Transverse In-plane Tensile Strength Y  6.1

Transverse In-plane Compressive Strength Yr -21.4

Transverse Thickness Tensile Strength z  6.1

Transverse Thickness Compressive Strength z -21.4
c

Shea: Strength in x-y Plane S 9.8
),-.v

Shear Strength in x-z Plane S 9.8
xz

Shear Strength in v-z Plane S 6.0
yz

Coordinate x refers to the axial or fiber direction

Coordinate y refers to the transverse in--plane direction

Coordinate z refers to the transverse thickness direction

^r V

i



1-6 1

156

Taole 11. Maximum Values of Failure Criteria at First Da-cage
Pressure. All Maximum Failure Criteria Values Occur

at the Clamped Edge.1

Specimen Pressure,
psi 2-D Tensor

Polvnomial

Failure Criterion

3-D Tensor	 Tensile
Polvnomial	 Fiber

Compressive
Fiber

G2 61.93 22.41(I) 22.4071) 1.29 1 0.69

G4 86.69 27.45 (1) 27.44 (I) 1.44 (1) 0.93 (0)

G7 82.55 7.12 (1-2*) 7.56 (1- 2 *) 1.35 ( 1 ) 0.66 (0)

G9 75.94 5.64 (1) 5.63 (1) 0.64 (4-5*) 0.42 (0)

G10 99.69 3.75 (2-3*) 3.78 (2-3*) 1.11 (I) 0.83 (0)

Failure Criterion

Specimen °ressure. Tensile Compressive Tensile Compressive

psi Matrix Matrix	 Interlaminar Interlaminar

G2 61.93 44.04 (1) 10.99 (I) 2.45 (M) 2.29 (M)

G4 86.69 55.09 (1) 13.70 (I) 3.67 (2-3*) 3.45 (3-4*)

G7 82.55 15.27 (1-2*) 1.69 (1-2*) 0.82 (M) 0.76 (M)

G9 75.94 8.97 (I) 2.32 (1) 0.45 (M) 0.40 (9-10*)

G10 99.69 5.41 (2-3*) 1.43 (2-3*) 0.53 (M) 0.46 (Q-10*)

1 The through-the-thickneS7 failure prediction location are identified by the
following notation:

I - Failure predicted at the inside or concave surface fiber

0 - Failure predicted at the outside or convex surface fiber

M - Failure predicted at the middle surface

1-2* - Failure predicted at the interface of plies 1 and 2, and in ply 2
marked with an asterisk. Plies are numbered consecutively
beginning with the concave surface ply
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tensile matrix iailure mode is much g reater than unity which indicates

that tensile matrix cracking was predicted at a pressure lower than the

pressure of the first major damage event. The two-dimensional and

three-dimensional Tsai-Wu functions are also very large due to the

influence of a similar transverse matrix term in the criteria. No

abrupt chaa&6 in the panels response nor substantial water leaking was

obser,e^ due to the occurrence of transverse matrix cracking. The

maximum value of the three-dimensional Tsai-Wu function occurs at t>>e

same location as the two-dimensional Tsai-Wu function and the values of

each do not significantly differ. The influence of the through--the-

thickness stresses which are a maximum at or near the middle surface is

not significant on the magnitude or location through the thickness of

the maximun Tsai-Wu value. The values of the failure criterion do	 i

change significa<tly at the midplane of the laminate where the through-

the-thickness stresses are largest and the bending stresses valti •sh. For	

I^
most of the panels the tensile fiber mode has values closer to unity 	 j

than any of the other criteria. For four of the panels the analysis

predicts tensile fiber mode  of failure values greater than unity. The

analysis did not model all phenomena which wer,- observed in the experi-

ment. Transverse matrix cracking and edge rotation from incomplete

clamping affect the experimental response but are not modeled analyti-

cally. The tensile fiber mode is analogous to the maximum-stress

failure criterion app'ied in the tensile fiber-direction and appears to

correlate reasonably well with the pressures corresponding to the first

major damage event.

v
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Chapter 7

CONCLUDING REMARKS

An experimental and analytical investigation was conducted to study

the nonlinear response and failure characteristics of internally pres-

surized 4- to 16-ply-thick graphite-epoxy cylindrical panels with

clamped edges. The panels were selected to simulate the skin between

two frames and two stringers of a typical transport fuselage structure.
is

The stiffness of each panel tested, as measured by the slope of the

response curve relating the radial deflection of the panel center to the

applied internal pressure, increased with increasing internal pressure

which is characteristic of a geometrically nonlinear response. Clamping

the panel edges caused local bending and interlaminar stress gradients

near the panel Odges and these gradients were found to be more severe

for the thinner panels. The radial deflections of the panels were uni-

form in the axial direction over a substantial portion of the central

region of the panels.

A one-dimensional cylindrical panel anal y sis based on nonlinear

shallow shell theory was derived and used to determine the nonlinear

response of the central region of the panels. The formulation included

through-the-thj=-Kness shear deformations which introduce the twist-

coupling coefficient D26 into the analysis. Twist-coupling coeffi-

cient effects were determined to be important for response quantities in

the region of severe bending gradients near the clamped straight edge.

Neglecting through-the-thickness shear effects in the analysis gives

158
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edge stresses which are higher than those predicted with through-the-

thickness shear for some laminates, but lower for other laminates. This

nonconservative nature limits the use of the Kirchhoff-Love .shell

theory. When the measured initial radius and the effects of measured

in-plane circumferential displacements at the panel edges and measured

axial membrane strain at the panel center are included, the one-

dimensional panel analysis accurately predicts the nonlinear response

of panels away from the curved edges. The analytical results correlate

well with the experimental results up to the first major damage event

including the severe local bending gradients at the panel straight

edges.

Different boundary conditions were examined to study the nature of

the geometric nonlinearity, to approximate more closely "real life"

conditions, and to evaluate experimental boundary condition anomalies.

The important geometric nonlinearity in this problem results from the

product of the membrane hoop tension and the slope of the radial deflec-

tion. The nonlinearity disappears when the edge is allowed free radial

expanEion. In this case the radial deflection slope goes to zero since

every point on the circumferential curve deforms uniformly in the radial

direction. Another boundary condition evaluated was the rotation. The

circumferential and radial boundary displacements were set to zero and

the limiting cases of clamped and simply supported edge rotation were

examined. The differences between clamped and simply supported boundary

conditions in the panel responses at the panel centers were very small

for thin panels. Rotations of the panel edges allowed by incomplete
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clamping and individual ply failures at the edge did not have a large

influence on the center response of the panels. Tht fact than. the panel

center response was relativel y insensitive to the extremes in rotational

constraint imposed by clamped and simply supported boundary conditions

explains why such good correlation existed between the test and clamped

analysis results for pressures up to the ultimate pressure. The local

bending strains near the edge were vastly different for the two dif-

ferent boundary conditons. The simply supported panels had no bending

strains at the edge. The clamped panels had rapid variations in the

bending strain near the edge with the maximum occurring at the edge.

The graphite-epoxy panels failed along the panel edges where the

local bending and interlaminar stress gradients occur. Some graphite-

epoxy panels ruptured with a sudden loss of pressure and with no indica-

tion of local failures or damage occurring at pressure below the ulti-

mate pressure. The other graphite-epoxy panels had one or more major

local failures at pressures below the ultimate pressures. The failures

appear to be caused by tensile lamina failures at the panel edges.
i

Transverse matrix cracking and delaminations also occur*ed in regions

with local bending and interlaminar stress gradients. Aluminum panels

tested for comparison yielded and formed plastic hinges at the panel

edges before rupture. A nonlinear analysis is required to predict

accurately the stresses in regions with severe local bending and inter-

laminar stress gradients. These accurate local stress predictions are

necessary in order to predict the onset of failure in br±ttle graphite-

epoxy laminates. All graphite-epoxy panels failed at pressures well
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ibove the 2C psi nominal pressure used for ground test verification of

pressurized fuselage structure. The experimental results indicate that

ply orientation and laminate thickness have a strong influence on the

failure characteristics and ultimate pressures of graphite-epoxy curved

panels.

In conclusion, the present study has identified and resolved

important aspects in the response to internal pressure of an aircraft

fuselage skin. The response was determined from experiment to be non-

linear. A one-dimensional geometrically nonlinear analysis was

developed and correlated well with the me.-sured panel response. Both

testing and analysis identified the skin region adjacent to the Stiffen-

ers as the critical area of the pressurized panel. A bending gradient

exist in the skin near the stiffeners and initiated failure of all

panels tested. The edge gradient response of the aluminum panels was

different than the response of the composite panels. The aluminum

relieved the edge bending gradient by yielding, whe reas, the brittle

graphite-epoxy developed transverse matrix cracks, fiber breakage, and

delaminations at the edge. Although all panels carried pressures much

greater than the design ultimate pressure, the long term durability

issues of pressurized composite skins must be exemined.
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APPENDIX A

PHOTOGRAPHS OF THE FAILED PANELS
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Appendix C. Failure Mode Criteria

The following failure criteria are used to predict different

failure modes. Values equal to or greater than one indicate failure in

all the criteria. These failure criteria were extracted from Reference

[21].

Tensile Fiber Mode

`11 = 1

X t

Compressive Fiber Mode

rt
` 11	 =	 I
X

c

Tensile Matrix Mode

2	 2

2`+
22- =

Y	 S
1

t	 xv

Compressive Matrix Mode

2 2 2

Y c X22 y^ 2 T12
1 -	

2S
xv

+
y 

F e 1
S24S

Tensile Interldmivar Mode

2	 2	 2
,j
33 + ( T 13 + T23) = 

1

z 2	S2
t	 Vz

Compressive Interlamina: Mode

2	 2	 2	 2
z c 	 °33	 a33	 (^13 + T23^

1 - 2Syz

	 z 	 + 4S2
	 +	 S-yz

1
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Appendix D. Three-Dimensional Tsai-Wu Failure Criterion

The Tsai-Wu Failure criterion is a special case of the tensor

polynominal failure criterion where only linear and quadratic terms

are included. The Tsai-Wu failure criterion is commonly used for

two-dimensional stress states but can be expanded to three-dimensional

stress states. For three-dimensional stress states the Tsai-Wu

failure criterion has the following form

F 1
a ll + F 2a ^2 + F 3a 33 + F11all + 2F 12a 11 a 22 + 2F 13 11a

	
33

+ 
F 22 a22 + 2F23a22a A + F33a33 + F44 T 23	 F55T31

+ F66 7 2 1) = 1.	 (D.1)

In the above expression the coefficients F 4 , F 5 and F 6 which

correspond to the linear T
23 , T31 and 7

12 terms are zero. These must

be zero since the shear strength is independent of the loading

direction. The coefficients in the failure criterion are determined

in terms of the strength properties given in Table 10 by considering

one-dimensional loadings. Consider the case of a tensile loading in

the fiber- or one-direction such that

all ^ 0 and a
22 w X33 ' T 23 - T 31 = T 12 = 0.
	 (D.2)

At failure all = X t and the Ts-ii-Wu failure criterion becomes

F 1 X^ + F 11 Rt = 1	 (D.3)

Next compressive loading in the fiber direction is considered where

at failure all = X c and the Tsai-Wu failure criterion becomes
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F I X c + F11Rc = 1
	 (D.4)

H

The strength coefficients F 1 and F 11 are determined by solving Eqs.

(D.3) and (D.4) simultaneously.

F 1 =	 1 + 1	 (D.5)
X	 Rt	 c

and

F 11	 1	
(D.6)

X X
t c

Similarly it may be easil y shown that

F 2 u 1	 + 1	 (D.7)

Y	 'i

and	 t	 c

F22	 - 1	 (D.8)

Y
t c

from consideration of tensile and compressive loadings in the transverse

or two-direction. Furthermore *.wo additional coefficients may be

determined from loadngs in the thickness direction.

F 3 = 1	 + 1	 (D.9)

z	 z
t	 c

and

F33 = - 1 _	 (D.10)

z 
t 
z 
c

By considering the 'hree possible shear loadings se?arately the following

coefficients may be determined

F44 = 1	 (D.11)

(S	 )^
yz

F55	
1

2(S	 )
Xz

-.^

t ,
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and

Fhb = 1

(SXY)2

The coefficients F 12' F23 and F 
1 

may only be determined from biaxial

stress states. Such tests are very difficult to conduct and these

coefficients were assumed to be equal to the following values

F12 = F'3 = F 13 = -0.58 x 10-10

This value was found to giv q good correlation with off-axis tests for

boron/epoxy by Pipes and Cole [22]. when used for F 12 in the two-dimensional

Tsai-Wu criteria.

i
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