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The pair annihilation radiation in gamma-ray bursts is
seen as broad lines with extended hard wings. This ra-
diation is suggested to escape in a collimated beam
from magnetic polar regions of neutron stars.

Cosmic gamma-ray bursts are widely believed to be gene-
rated on strongly magnetized neutron stars. The strongest
support for this hypothesis comes from the observation in
the gamma-ray burst spectra of absorption and emission fea-
tures which are supposed to be cyclotron and gravitationally
redshifted annihilation lines, respectively
(_azets et al., 1981, 1982; Teegarden and °° ..................180q 7g

Cline, 1980; Hueter and Gruber, 1982). How- + v\

ever the origin and emission mechanism of _. +v-,2
gamma-ray bursts remain unclear (Lamb,1984; >_

kLiang, 1984; Woosley, 1984 ). This emphasi-

zes the need ins comprehensive study of _°_ //i__
the spectral behavior of bursts. ^4

The Konus experiment on the Venera 11
to 14 spacecraft carried out in 1978 =_0' / \\_
through 1983 has revealed over 350 gamma-
ray bursts. Several tens of events exhibit
in their spectra emission features. In many Q" ...................
cases the statistical accuracy of measure- o o2 0'E, KEV

ments was high enough to provide more accu-
rate information on the spectral shape of. Pig.1
these features.

The new data show that the emission features represent
very broad asymmetric lines with extended hard wings. This
means that the gamma-ray bursts under study are made up es-
sentially of two radiation components. The first (softer)
,e".........., ........, ,11,,_,,,,_........, ,H......., ........,.- component is character-

_\ \ 20,7g_ \ ized by an exponential
\ falloff with increasing\

.>,0' _ 3 +_ photon energy. Thespectrum drops steeply
_ below 1 MeV. This com-

_,_'_ / \\\_ / ponent is similar to

I the continuum spectra

" of the bursts without

_'_" / _ _ emission features.The second (har-
der) component exhibits

o' ........ ................... ........ : ....... ........ a low-energy cutoff be-I01 I0 2 I0 3 ,r I0 2 I0 3 102 I0 3

E,KEV low N300 keV. The po-
Pig.2 sition of the spectral
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,o°: . ......., ........, ... ,o': .., ....., ,.. ....., ,,, maximum varies from _-350
250582 80982 to 450 key for different

event s. This narrow regi-

_ _ o° on corresponds to the
_ gravitational redshift of

_62 ; _ the pair annihilation ra-_\ _6 diation produced near theo_
/_ _ o surface of a neutron

__ _ star. The hard wing of

_3 _ the feature extends to-
ward high energies by ap-

,_ ........ , ........, ,,, ,o__........, .... _...,,_ ,_ proximately a power law
0_ 0_ 03 0 02 0_ with a slope of -2.5 to

E KEy E ,EV --3.5. It is highly proba-

Pig.3 Fig.4 ble that the hard tails
in the gamma-ray burst

spectra revealed in the S_ data (Riager et al., 1982) ori-
ginate in such features (Mazets et al., 1983).

In the present report we are going to submit only
a few observations of annihilation features as well as some
considerations concerning their possible interpretation.
The results obtained will be treated in more detail else-
where.

We have fitted the shape of the photon energy spectrt_
having an emission feature with a sum

e(

/dE :AE- exp(-E/k )+B
EP*(kmc2)# (I).

The first term of this expression describes satisfactorily
the spectrum of a continuum without the absorption and emi-
ssion features (Mazets et al._ 1982). The second term is a
simple model for the hard radlation component representing

a bro_ad line with an extended hard wing. This functlon_/=grows
as E % passes through a maximum at E_=K_/(#-_)I/#kmc 2,

and falls off after this as E _r J. The parameter k permits
shifting the distribution along the energy axis. A and B are
dimensional normalization factors.

Consider examples of such representation of the gamma-
ray burst spectra with clearly pronounced features. Pig.1
shows a photon spectrum of the 18 April 1979 event. The ex-
perimental points exhibit a complete agreement between the
measurements performed on the two spacecraft. The solid li-
ne at energies above 50 keV corresponds to relationship (1).
The two radiation components are shown separately by dashed
lines, The parameter adjustment was performed by minimizing

the sum _(N_obs-Njc)2/g2(Njobs ) where NjobsiS the experi-j u

mental value of the photon flux in channel j of the spect-

rum, and Njc is the corresponding value calculated by Eq.(ll

The _2 test (_q_p2 =23 for the number of the degrees of fre-
edom q-p =24) showed this approximation to be satisfactory.
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Fig.2 displays three spectra of the

2 April 1979 event measured consecutive- _o"__'"" '_'o_'_'8...... _
ly with a 4 s accumulation time. In ad- • _._ ,.o.,
ditien to a strong annihilation compo- ,o-_ H_H
nent, the spectra contain also an inten- _ \±
se cyclotron feature. Both the continuum
and the features exhibit a strong and _,_
independent variability. The hard compo-
nent in the energy spectra can evolve on
a very fast time scale. Pig.3 shows two o_
spectra of the 25 May 1982 gamma-ray
burst. The strong annihilation llne is
seen only in the first spectrum measured 0_
with an accumulation time of 1 s. 0 0_ 0_ 0_E, KEV

It is remarkable that the annihila- _ig.5
tion component is present also in some
very short gamma-ray bursts. Fig.4 presents a spectrum of
the 8 September 1982 event which lasted only for 100 ms.

The above examples represent only a small fraction of
the available data on the bursts exhibiting this pattern of
spectral behavior.

The spectral range of our measurements extends only as
far as2 MeV. Therefore we cannot provide direct evidence
which would show that the hard wing can extend up to several
MeV and even higher. There is. however, a remarkable obser-
vation supporting our suggestion. Fig.5 presents a spectrum
of the 25 _arch 1978 event measured on HEAO-I up to about
10 MeV (Hueter, 1984). One can see here both types of spect-
ral features. Our approximation of this spectrum with the
two-component model yields a result which does not differ
from the other cases considered.

In conclusion consider a possible explanation for such
a spectral behavior of the annihilation radiation from a
pair plasma assuming its temperature to vary within a fairly
"broad range, k_ O.1-_ MeV. In Pig.6 constructed from the
data of Ramaty and M4szaros (1981) the solid lines corres-

,_,3........, ........, ........pond to annihilation spectra for a pla-
,_. 8 sma with the temperature varying from
;I_,_3×I0K

,_,*//_',,0'K 3X108 tO 3X10I0 K. The dashed line is a

//l_,3xmO,K result of superposition of these spect-ra. While being schematic, this result
%_ _,_ _', nevertheless exemplifies clearly the

'//_ possibility of formation of an annihl-
'O'°K lation spectrum with a maximum around

",, mc2 and a hard power-law wing. This si-
_I_ ,o'% tuation can apparently become realized

_I_*16'7 in a plasma with a spatially nonuniform
and/or rapidly varying temperature.

As follows from the data obtained,
16'8---_-_-_-_'........' ........the line energy flux S1 is comparableI0-I I I0 I0_

ENERGY(MeV} with the continuum energy flux Sc and

Fig.6 even may exceed it, i.e. S1/Sc = 1 to 4.
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We believe that such a ratio can be accounted for by diffe-
rent directional patterns of these two components.The loca-
tion and temperature of the regions responsible for the li-
ne and continuum radiation are apparently different.The ma-
gnetosphere of a neutron star is opaque to hard radiation.
Therefore the parers formed in the (_) and (_) processes
above the surface of an isotropicaIly emittlng continuum
source should apparently accumulate in the star' s magnetic
polar regions before annihilation. Here a window should
exist in the opaque magnetosphere within a solid angle are-
und the star's magnetic moment through which the annihila-
tion radiation from the stored plasma will escape in a col-
limated beam (cf, e.g., Katz, 1982).

The annihilation lines are observed in about 10-15% of
the gamma-ray bursts. One may suggest that this frequency
corresponds to a difference between the directional pat-
terns of the annihilation and continuum emission. Accordin-
gly, the actual ratio for the energy emitted in the two

components will drop down to SI/S c _ 0.1 - 0.4.
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