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Two experimental groups[l,2] working at different minimum
energies have reported underground muons coming from the direc-

tion of Cygnus X-3 with rates that vary in synchrony with its

binary period. At the Mont Blanc detector[2] the events are,
within statistics, uniformly spread over a 5-degree circle

around the position of Cygnus X-3, even though the angular
resolution is significantly better than this. The ratio of
events in the phase peak to total muons observed rises as a

function of minimum muon energy. The Soudan experiment also
sees an excess in the number of pairs of codirectional
multiple-muon events arriving within about 5000 seconds of each
other, the excess events coming from a direction about 20

degrees away from Cygnus X-3.[3]

Cygnus X-3 is at least 10 kpc from Earth. Charged parti-

cles cannot travel this distance and maintain the required
coherence in direction and time. If these events were caused
by neutrons with enough energy to reach the earth from this

distance their flux would be easily observable in high-energy

cosmic rays, where they have not been seen. Similarly, gamma
rays are ruled out as primaries because there are too many
muons observed for them to have been generated by an acceptable

number of gammas[4] (unless gammas at high energies have
unexpectedly high probabilities of producing muons). Neutrinos

are eliminated as a possible primary by the substantial zenith-
angle dependence of the experimental rates. Therefore, if the

effect is real it must be caused by some rather exotic primary.

The muons in the peak arrive within a rather narrow time

period, approximately half an hour. Maintaining this time
correlation gives another constraint on the particles. The
time delay between the arrival of two particles which left
Cygnus X-3 at the same time is

L*( _1-2 - _2-2)/(2C).

Since this time difference cannot exceed half an hour, the
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primaries must either be nearly monoenergetic or else the
Lorentz factor must exceed 10 . As one increases the minimum

energy of the observed particles, the last particles must be
arriving earlier and the width of the peak should get smaller
if the mass is near the limit. There is even some indication

of such a tendency in the data.[l,2] If the underground signal
is due to muons produced in the atmosphere, the minimum energy
per parent hadron must be sufficient to produce muons that can

penetrate to the detector. Unless the energy is much greater
than this minimum, the above constraint on the Lorentz factor

then requires the mass of the parent to be less than or of

order 1 GeV. It is difficult to believe that a long-lived
particle of this mass, capable of producing muons in atmos-
pheric interactions, would have been overlooked in accelerator
experiments.

One possibility that we have suggested[5] is that the

parent primaries might be nuggets of quark matter. There are

theoretical reasons for believing that such objects might exist

and be stable for certain ranges of mass.[6] Furthermore, they
might be produced in high energy processes around a compact

quark star. One would then expect comparable numbers of up,
down and strange quarks. Some fraction of such nuggets would be
neutral and thus a possible signal-carrier. A high content of
strange quarks would lead to enhanced kaon production in the
atmosphere and thus to a relatively high yield of muons. Quark

globs of the right mass could penetrate deep in the atmosphere
and explode to give rise to Centauro events.[7] A specific
version of a stable ensemble of quarks has been suggested some

time ago which could be relevant in the context of underground
signals from Cygnus X-3.[8] This is the di-lambda, a bound
dihyperon state of 2u, 2d, and 2s quarks.

Hillas[]]] has pointed out that the surface air shower

signal from Cygnus X-3 puts a significant constraint on models -

which would produce the muons by interactions of nucleon-like
objects in the atmosphere: Assume such parent "nucleons" are

bound in aggregates of mass number A. These particles will
also produce air showers. To be consistent with the observed "

air shower signal, dFsurface/dE , one then requires
p,

Cyg X-3 underground signal<JN_E,)[dFsurface/dE]dE,_ ,

where N_ is the number of muons per primary of total energy E
that have sufficient energy to penetrate to the detector. The

differential surface flux is roughly 4x10-8/E 2 cm-2s-lGev -I.

Using an Elbert formula[9] for underground muon yield from

incident nuclei[10], we find a b_und Qn _he underground signal
from Cyg X-3 of 1.3x10-6(E )-Zcm-Zs- , where EG V is theGeV e
minimum muon energy for the un4_rgrou_d 9etector. For Soudan

(EGeV=650) thi_^boun_ i_ 3x10 -±z cm-Zs -_ and for Mont Blanc
(EGeV=3400) 10-_j cm-ls-_ In contrast, the reported signal at
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Soudan is about 7 x i0-II. A flux is not stated for the signal at

Mt. Blanc, but an estimate can be obtained from a comparison of

signal/background ratio with the background flux of single atmos-

pheric muons in the angular region around Cygnus X-3. Such an estimate
gives of order i0-II cm-2s-I. Thus the underground signal appears

to be at least a factor 20 too high to be induced by nucleons. Con-

versely, the parent hadrons must be at least 10-20 times more prolific
at producing muons relative to air showers than nucleons are. In view

of the quark matter suggestion (for which kaon and hence atmospheric
muon production should be enhanced), we ran the cascade simulation of

Ref. i0 for incident lambda hyperons, forcing production of a leading
kaon at each lambda interaction. The muon production was enhanced by
a factor less than t_ relative to nucleons, so even in this case

there is a problem of consistency with the surface air shower fluxes.

A conceivable way out is to arrange the interaction length of the

parent to be comparable to or greater than the thickness of the atmos-

phere so that production of the signal occurs too low for air shower
production (i.e. mostly in the Earth). In this case, however, muon

production must be prompt.

One can in principle use the energy-dependence of the signal im-

plied by the different depths of the experiments to determine whether

the muon production is prompt or atmospheric via pion and kaon decay.
In the latter case the signal should be suppressed by an extra power

of EGe V as the depth increases due to time dilation of the parent
pions and kaons. If the spectrum of the carrier from the source is
E-2 (differential) one would expect the ratio Soudan/5[JSEX under-

ground signal = 5 for prompt and = (5)2 for atmospheric pion and kaon

decay. The ratio of the observed fluxes quoted above is closer to 5,
but the analysis is not conclusive because we have not taken account of

the _lex variation of the overburden in the line of sight to Oggnus
X-3 as it passes across the sky at Monte Bianco.
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