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ABSTRACT

Making use of the perturbation method based on the
nonlinear differential equation theory, the present work
investigates the classical motion of a relativistic elec-
tron in a class of curved magnetic fields which may be

written as §i5(0,3¢,0) in cylindrical coordinates (R,¢y2Z).
Under general astrophysical conditions the author derives
the analytical expressions of the motion orbit, pitch angle
etc. of the electron in their dependence upon parameters
characterizing the magnetic field and electron. The effects
of non-zero curvature of magnetic field lines on the motion
of electrons and applicabilities of these results to astro-
physics are also discussed.

INTRODUCTION
In astrophysics, s8some curved magnetic fields with sufficiently
small field gradients may approximately be written in a local coordi-
nate system as
B =B(0,B,40), By = By>0, (1)
where By is a constant, and (R,9,Z2) denote the cylindrical coordinates.
The classical motion of a relativistic electron of charge -e in the
field (1) can be exactly solved by the topological method, which was
investigated by the author in some detail.1 The purpose of the present
paper is to find further the analytical solution for the motion, and
then to extend the results +to more general magnetic fields. In the
following treatment, the influence of the radiation damping will be
neglected.

RESULTS
By virtue of the assumed ( without loss of generality ) initial
position and velocity

- <> - -

rl. o ',rO(RO'O’O)’ Vo= vo(vno,v?o,vzo), (2)
the first integral of the equation of motion for a relativistic elec-
tron in the field (1) may be put into the form
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a%r/at +wzn = Ro ‘PO/R *“’b(“o*"zo/wb)' (3)
R249/dt = I (4)
dz/dt = =0, (R=By=v, /W, ) (5)

in which W= oBO/)'nc is the relativistic cyclotron frequency, <Y the
Lorentz factor, and RO the curvature radius of the field line passing
through the initial point. Using the perturbation method based on
Poincare’ 1'.homry2 to solve the nonlinear autonomous equations (3)-(5),
with the initial conditions (2) and

mmpo/wBowls  Bos |Byolr (6)
Bevior o= BrotB3)% o = Byor

a conditien that is adequately met in astrophysics, we get the equa-

where

tions of electron trajectory which, wup to and including of the second
order in J, are

(R/Bg )15 [(B,/B)+(B,0/B)° ] (1-comwot)an(pyo/B)sinwt, (1)
(-0, )/ R [(B, /B4 B o/8) Jotn wi-(Br o /B) (1-conwt), (8)
9 =(1= 28, o/B g2 (B o/B) [(Bo/B)smwrt=(Bro/B) (1-cos wt)],  (9)

vhere

Wa(13B /2 ) Wy u W R/ Whoeo/Rer
On differentiating (3), (4) and (5) with respect to the time, one can
obtain further the analytical expression of the electron velocity. It
is apparent from (7)-(9) that the motion of the electron in the field
(1) may be represented as the superposition of both the helical motion
with gyration radius

ﬁ.no on Bro™ ﬁJ.o (ﬁr/o 5zo Bro-2ro " /2,
P"‘[ ﬁ 2z tH4 2
p g p?
and the curvature drift motion with drift velocity u..
The pitch angle of an electron moving in a curved magnetic field,
v, and its mean value 1p , defined as

Y= sin” [ sin v d(wt)]Vz

are customarily calculated in the reference frame where the drift velo-
city of the electron vanishes. Following this convention, the pitch
angle for the electron in the field (1) is found to be
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Az0 Bro

2 2 2
m&oﬁzzo(1+ Bz0 }f”O cosw t= —— ainuut)]. (10)

) M= (
BB 26 £ B
= oin7 (B,0/B) (141 (8,08 /BB ) 1+ B20/26)]- (11)
In particular, for an electron in typical curvature motion, correspon-
ding to B «|[B,o|s the eas. (10) and (11) reduce to

Yz (JPeaug /B + Bo/F )2 (12)

v = nin"%%zﬁ

DISCUSSION

In topics concerned with the properties of the motion and radiation
of a relativistic electron in a magnetic field what is taken into
account is usually the influence of radiation damping on the motion and
pitch angle (the so-called "radiation conprealion")B, and sometimes
other effects like the magnetic lens. However, our results show that
for a relativistic electron in typical curvature motion the influence
of the curvature of magnetic field lines is also important.

The latter influence will become quite clear in the special case
YLO’O assoclated with primary particles flying out along magnetic field
lines from the surface of pulsars. In this case, from (12), Y aWuu. This
indicates that owing to the effect of the non-zero curvature of field
lines, the initial motion of the electron, even if the initial trans-
verse velocity vanishes, can not generally be maintained, but have to
develop into the helical motion with the pitch angle 4=y and the gyra-
tion radius P&p?, plu; the curvature drift. Another special case occurs
in v o=V = 1uvp§0/52é -=uv for which the pitch angle of the electron is
strictly equal to zero.

It can be expected that these results should be conducive to calcu-
lating or predicting synchro-curvature radiations from some nonthermal
sources, and could exert an influence on the process of the electron
momentum distribution "one-dimensionalization" along curved magnetic
field lines due to radiation damping. Furthermore, when the effect of
radiation demping is taken into account, it may be easily deduced 5
that, as the result of the "radiation compression”, a relativistic
electron in the field (1) should move approximately along Cormm spiral
in the guiding center frame, and tend finally towards the limiting
motion corresponding to the latter special case mentioned above.
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So far we have found the analytical solutions for a relativistic
electron moving in the field (1). Let us consider now the class of
curved magnetic fields

3 = B(0, By 0), By/By = (B/By)" (13)
(where N is a real constant), which is more general than the field (1)
and reduces to (1) at N=0. Most of commen curved magnetic fields with
axial symmetry in astrophysics such as the dipole magnetic field may be
expressed by (13) in a local frame of refrence if only the magnitude of
the field gradient along magnetic field lines is negligibly small. To
maintain the fields (13), there must be electric currents flowing in
the direction parallel to 2, the density 3 of which is given by

330 = )Y 8, Jo = (N41)eB/4 TR, (14)
where jo denotes the current density at the initial point. In applica-
tion, one can select a confiquration of magnetic field from (13), (14)
80 that it is appropriate for the considered astronomical object. It
may be verified that under the condition

Inf« &7 | for Byon|Byols
[N] & (m|B,ol/B 27, for Bo«|Bwol

preceding results based on the field (1), provided w=w,, will continue
to be valid for the fields (13).

(15)
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