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Section 1

Introduction

This report presents a scalar/vector potential formulation

for viscous compressible unsteady flows around complex geoLletries
such as complete aircraft configurations.

Several scalar/vector potential methods are available in the
literature for incompressible flows: these methods are reviewed

in this Section (with particular emphasis on that proposed by
this author). The extension of scalar/vector potential method to
compressible flows is presented in Section 4. For the sake of
clarity and completeness some classical results on fluid and

thermodynamics are presented in Section 2 and 3. It should be
emphasized that shock waves and turbulence are not addressed in
this report.

1.1. Scalar/Vector Potential Methodsfor Incompressible Viscous
Flows

A review of the state of the art of scalar/vector potential
methods for viscous flows is presented here. (This author is not
aware of any method for compressible flows, and thus this review
is limited to incompressible flows.) In order to discuss the
advantages of the approach, the primitive variable approach is
also briefly reviewed. Incompressible turbulent viscous flows
are governed by the continuity and Navier-Stokes equations.
Excellent reviews of the state-of-the-art are given for instance
in Refs. 1 and 2 and are summarized here. For the sake of
conciseness, boundary layer formulations are not included in this
review.

There are two basic approaches to the solution of these
equations: solution in the primitive or physical variables (i.e.,
velocity and pressure) and solution in the scalar-vector
potential variables (also called the vorticity-potential method,
a three dimensional extension of the two-dimensional vorticity
stream-function method). The relative advantages of the two
approaches are considered here.

In the primitive-variable formulation there are three basic
approaches to the numerical solution of the problem: finite-
difference, finite-element and nodal methods (see Refs. 1-3).
The major advantage of working with the primitive variables is
the simplicity of the equations and the fact that the unknowns
have physical meaning. However Such formulation has considerable
drawbacks. The use of the Navier-Stokes equations requires the
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solution in the whole physical space, which may be prohibitive in
terms of computer costs. Another difficulty connected with the
primitive-variable formulation for incompresssible viscous flows
is the lack of evolution equation for the pressure: the method of
the artificial compressibility introduced to remedy this problem

is not fully satisfactory (see Ref. I). However such a problem
does not exist for compressible problems, which are the main
objective of this report.

Next consider the scalar/vector potential approach. In two
dimensions the advantages of the vorticity/stream-function method
over the primitive variable approach are well known. One

advantage is that the continuity equation is automatically
satisfied. However, a more important advantage, often ignored in
literature is that the solution for the equation for vorticity is
limited to the computional region of the boundary-layer/wake for
attached flow, while the equation for the stream function is a

Poisson's equation which can be transformed into an integral

equation (also limited to the rotational region). The

implications is that the exact solution of the Navier-Stokes

equations can be obtained by studying only the rotational region

(i.e., boundary layer and wake for attached flows or boundary
layer plus separated flow). In other words, the

vorticity/stream-function method eliminates all the disadvantages

of the formulation in the primitive variables.

To the contrary of a commonly held idea, the

vorticity/stream-function approach may be extended to three-
dimensional flows. Such a generalization is referred to as the

vorticity/potential method or the scalar/vector potential method.

The velocity vector _ is given by the general theorem

= grad_ + curl _ I.I.i

wher_ _ is a scalar potential (harmonic for incompressible flows)
and A is a vector potential. The method is classical: although

Lighthi11 (Refs. 4 and 5) is the standard reference for this

approach, according to Lamb (Ref. 6), who gives a theoretical -

outline of the formulation, this concept was first introduced by
Stokes (Ref. 7) and later refined by Helmholtz (Ref. 8). The

decomposition is not unique and depends upon the boundary

conditions on A. This yields the possibility of different

'versions * of the same basic methodology: this issue has been

examined very carefully in Ref. 9, which includes an excellent
review of the theoretical works on this issue. The theoretical

foundation for their work is to be found in the work by Smirnov

(Ref. 10). Important in this respect is also the works of

Hiraski and l[ellums (Refs. 11 and 12), and Ladyzhenskaya (Ref.
13).

The formulation involves solving for the velocity in terms

of the vorticity using the law of Biot and Savart. The vorticity

is obtained by analyzing the vorticity transport equation, and

1.2



determining the vorticity produced at the surface due to the no-

slip condition. Since the advent of the computer era, this
formulation has been used by several investigators (Refs. 14-24)

including the author (Refs. 24-26). Particularly good results
have been obtained by Wu and his collaborators (Refs. 13, 21 and
23).

1.2. A Scalar/Vector Potential Method for Incompressible Flows

As mentioned above, all the scalar/vector potential methods
are based on the classical decomposition of a vector field into
an irrotational component and a rotational (solenoidal) one. The

highlights of this version of the method introduced by this
author and his collaborators in Refs. 25 and 26 are presented
here.

The problem is governed by the averaged Navier-Stokes
equations for incompressible flows,

D; i i
.... gradp + - p V2_ 1.2.1
Dt p p

and the continuity equation

div v = 0 1.2.2

The boundary conditions are

v = vB 1.2.3

where _B is the velocity of a point on the surface of the body
and (for a frame of reference fixed with the undisturbed fluid)

= 0 1.2.4

at infinity.

The method is based on the classical decomposition theorem

= grad_ + curl A 1.2.5

where _ is a scalar potential and A is a vector potential,
related to the vorticity_ by the relationship

V2A= -_ 1.2.6

The vorticity is given by the third vortex theorem (obtained
by taking the curl of Eq. 1.2.1)

D__= (_.grad)v+ _ V2_ 1.2.7
Dt p

The equation for the potential, obtained by combining Eqs.
1.2.2 and 1.2.5, is
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VZ_ = 0 1.2.8

Equations 1.2.5 to 1.2.7 are fully equivalent to Eqs. 1.2.1 and
1.2.2 and are much easier to solve, First Eq. 1.2.6 yields

Y
whereas Eq. 1.2.8 can be solved using integral equation methods
(also known as panel methods). The numerical formulation is

given in Ref. 26.

Finally a brief assessment of the proposed method is given
in the following. The advantage of the vorticity/potential
method over the primitive-variable approach has already been
discussed above (elimination of problem due to lack of pressure-
evolution equation, etc.). Here it is important to emphasize
again that (1) the method is fully equivalent to the solution of
the Navier-Stokes equation and (2) that the solution of Eqs.
1.2.7 and 1.2.9 requires a (finite difference or finite element)
grid limited to the nonzero-vorticity region (i.e., boundary
layer and wake region for attached flows). However, the main
advantage of the formulation presented above is the fact that it
may be extended to three-dimensional flows. Such an extension is
presented in Section 4 of this report. As mentioned above, this
is believed to be the first time that such an extension has been

presented.
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Section 2

Foundation of Continuum Mechanics

For the sake of clarity and completeness the derivation of

the equation of continuum mechanics from fundamental principles
is outlined in this section. This derivation is classical and is

similar to the one presented in Serri_J Application to fluids is
given in Section 3.

2.1. Basic Definitions

Consider a Cartesian frame of reference in a three-
dimensional Euclidean space. Let:

_=_(_a t) 2.1.1

be the (vector) function relating the Cartesian coordinates x _,
(at time t) of a material point identified by convected

curvillnear coordinates _a. The coordinates _a could for example
coincide with the values of _ at an arbitrary initial time t=0.
The function f is assumed to have an inverse

_a = Fa(_,t) 2.1.2

so that there exists a one-to-one correspondence between the

point i at time t and its curvilinear coordinates. It is assumed
that the flow is smooth: in particular surfaces of sharp
variations in the velocity, i.e., wakes and shock waves, are not
included in the formulation (see Setting, ' pp. 226-228).

An arbitrary quantity g, function of x and t, is also a
function of _a and t. The followlng symbols will be used

2.1.3

Dg _ _g 2.1.4

Dg/Dt is called the material (or substantial) derivative of g.
Note, that by using the chain rule:

+Z 2.1.5
or

D__g= _ + v-grad g 2.1.6

where _ is the velocity of the material point

Bx" Dx _v =--I - 2.1.7

_'_ =const, Dt
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2.2______L.Fundamental Conservation Principles

The motion of the continuum is assumed to be governed by the
following fundamental principles:

Conservation o_.ffMas....__ss

-fff oodV=OConservation of Momentum

a lily:; dV fJ/v, pfdV+d" 2.2.2
_tr

Conservation of Angular Momentum

o_ p_x_7 dV = fdV + _×t d_ 2.2.3
eq , VJ_"

Conservation of Energy (or the first law of thermodynamics,
Ref. 2, p. 177)

_- p(e + _v._)dV = pf.v dV + t,v d; - _2d_" 2.2.4

In Equations 2.2.1, 2.2.2, 2.2.3 and 2.2.4 the volume V, is
an arbitrary material volume (i.e., by definition a volume which

moves with the continuum particles), _ is the velocity of the

fluid particles defined by Eq. 2.1.7, p is the density (mass per
unit volume), f is the force per unit mass acting on the fluid at

a point of the volume VH, t is the stress vector (or force per
unit sur£ace area) acting on the continuum at a point of the

surface _ surrounding V_! and h is the ]:eat flux supplied by the
volume VM.

It may be worth noting that, in postulating the above

principles as the governing equations of the motion of the

continuum, it is implicity assumed that we are dealing with
simple nonreacting species; multiphase flows, and/or chemical

reactions are not included in the formulation. Also

electromagnetic phenomena are not considered in this report.

A considerable amount of results can be obtained as a

consequence of the above set of principles. The rest of this
section is devoted to the derivation of such results.

2.3. Yacobian of Transformation

Note that, for any arbitrary funtion g,

gdV=fffv, g J d Xd * 2.3.1

where Vo is the image of V in the _ space, J is the
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Jacobian of the transformation

J = det ( ) :)0 2.3.2

For future reference, note that:

DJ
m = y div _ 2.3.3
Dt

In order to prove thisj note that if X.a is the cofactor of
ax;'/a_ a so that

5". _'__X_--. J8. _ 2.3.4

then,

D3 ._ D(_)X')X_=_ 9_ _x,

2.4. Time Derivative of Integrals

Note that if Vbl is a volume moving with the fluid, then the
boundaries of its image Ve in the _a space are time
independent. Therefore, using Eqs. 2.3.1 and 2.3.3 one obtains:

 j'yJ ;JJ_- gdV -- (:Dg + gdiv _,)dV 2.4.1Dt

For, V_ V_

!fl, ,JJ gdV = D_ gJ)d_Xd_ 'd_

=jJ!@+ D1)d_Xd_'
%T d_'

= _IJ (D._g_+ gdiv _)Jd_'d_'d_' 2.4.2Dt

Also, note that

D__ + gdiv ; = _ 4- _J(_e) 2.4.3

hence, applying the divergence theore,_

J!I div wdV = _ ',fid_ 2.4.4

(where _ is the outer normal to the surface _) one obtains

cL-_ Oe + g _/)_ ,.46 2.4.5
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which states that the rate of change of the volume integral is
due so Lhe rate of change of the integrand over a fixed volume
plus the flux over the boundary surface.

2.5, Continuity.Eq_u_atio _

Consider the principle of conservation of mass, Eq. 2.2.1.
Using Eq. 2.4.2, Eq. 2.2.1 yields (noting that VM is an arbitrary
volume)

__DP+ pdiv v = 0 2.5.1Vt

orp according to Eq. 2.4.3,

ap
-- + div (p_) = 0 2.5.2
at

Also combining Eq. 2.3.3 and 2.5.i

D
=(p_) = 0 2.5.3
v_

which can _e obtained directly Item Eq. 2.2.1, using Eq. 2.3.1

and 2.4.2 and noting that the volume V M is arbitrary. Equation
2.5.3 yiezds:

pY = constant = PoJo (following particle) 2.5.4

Equations 2.5.1, 2.5.2, 2.5.3, and 2.5.4 are four different forms
of the continuity equation. Note that, using Eq. 2.5.3 one
obtains, for any function g,

af/j /ff gdV= __dV 2.5.5
Dt

Forp V_ V_

it; JJIpgdV = D___ _ :y d_Xd_Sd_ s 2.5.6
tJ_

2.6. Stress Tensor

Consider the principle of conservation of momentum, Eq.
2.2.2. applied to an infinitesimal volume V_, Let e be a typical
length of the volume V so that

M

V = O(e s) 2.6.1

whereas

_= 0(_ s) 2.6.2
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Letting _ go to zero, one obtains, in the limit

tdG = 0 2.6.3

Assume that V_,I coincides with an infinitesimal Cauchy's
tetrahedron, i.e., a tetrahedron with the origin at an arbitrary

point _ and three faces parallel to the coordinate planes (i.e.,

having outward unit normals -_i' -52' -53) and the fourth face
in the first octant with normal _ (see Figure 2.1). In this case

Eq. 2.6.3 yields

_;(_}d6 + t(-il)d_l + t(-i2)dc2 + t(-i,)d6_ = 0 2.6.4

or setting t(-i k) = -_(i'k) = -_k and noting that de"k = nkd_ •

(where nk are the components of the unit normal "n) one obtains

= t±nx + t.an2 + t,n, 2.6.5

i.e.,

tk =_njTjk 2.6.6J

where Tjk is the kth component of tj=t(ij).

The above result can be stated as follows: the forces acting

on three coordinate surfaces through a given point defines a

tensor (stress tensor), with components_j.k: the force acting on
any surface normal to a given direction n xs dependent upon these
quantities through Eq. 2.6.6, which, in tensor notations, may be
rewritten as

2.6.7

2.7. Cauchy*s Equation of Motion

Note that, according to Eq. 2.6.6, and using the divergence
theorem

td_ =_ _njTj k_k _

= . XkdV

= ;II div T dV 2.7.1
V

where div T is a vector defined as

div T =_--_i'__ 2.7.2
J:_×j •

Combining the conservation of momentum, Eq. 2.2.2 with Eq. 2.7.1

and using Eq. 2.5.5 one obtains

_'Jii' pvdV--Jr/ p__-_dV= :f/ (pf + div 'r)dV 2.7.3
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Figure 2.1 Cauchy tetrahedron
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or, noting that V_I is arbitrary,

D_
p_-_ = pf + die T 2.7.4

which is called Canchy's equation of motion (Serrin_ p. 135) or
dynamic equilibrium equation.

2.8. Symmetry of Stress Tensor

Note, that according to Eq 2.6.6,

_xt d_ =j_ _x(Tjknj_k)d_= ._Jjf _(_XTjkik)dV

,j.l,,ilf X_ Tjk_'kdv + -- J IJ Tjk dVj._,

= fff_ xdiv T dV + Z fJTTjkijXVlk dV 2.8.1
'¢PI j,t.," V/.,_

Combining the conservation of angular momentum Eq. 2.2.3,
with Eqs 2.5.5 and 2.8.1 one obtains (noting that 9xDr/Dt = 9x_ =
0)

Jjj j !jr /JJ_- _ xv dV = p (_xv)dV = p _ xD-_ dV

= SfL_ p'_x_ dV + _f_v_Xdiv + dV +,_ ;ifTjk ijxik_l_t 2.8.24'_ V_
or/ using the equilibrium equation, Eq. 2.7.4, and noting that V
is arbitrary

_ Tjk ijx:l k = O 2.8.3
or

Tjk = Tkj 2.8.4

which shows that the stress tensor is symmetric.

2.9. Ener_gX Transfer Equation and Virtual Work Principle

Consider the equilibrium equation, Eq. 2.7.4. Taking the dot
product of both sides of the equation with _ and integrating over
an arbitrary volume V one obtains:

M

Jss: JZ_.vdV- pf._dV + die T._dV 2.9.1

Note that, using Eqs. 2.6.6, 2.7.2, and 2.8.4,
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divT'_ dV =_ l!!_ik'VdVj,_

=z{rr dV
v k

= 7_.. (Tjkvk)dV - • jjj jk-_x j dV,.'# v,_

TjkVkn j d_" JJJ Tjk _ dV5,'_ j_ z a×,j Oy,,,vM

= #6'_"_ d_ - /f/v, T:D dV 2.9.2
where D is a symmetric tensor with component

= - _ + 2.9.3

-'7

and is called the deformation tensor (Serrin, p. 139) or strain-
rate tensor (see also section 2.B).

The last integral in Eq. 2.9.2 is called dissipation term
(Ref.27, p. 138), and is the work per unit time done by the
internal stresses.

Combining Eqs. 2.9.1 and 2.9.2 yields if V is a materialp t4
volume:

JI:v dV = _o_ dV + t.v d_

v_ 6

JJJ- T:D dV 2.9.4

which states that the time derivative of the kinetic energy of a
material volume is equal to the work per unit time of the volume
and surface forces diminished by dissipation term.

The above result is called energy transfer equation or
mechanical energy equation and relates 'mechanical energy terms'
to the dissipation term.

It may be worth noting that if Eq. 2.7.4 multiplied
(internal product) by 8_ instead of v one obtains the virtual-

work equation (which here is not assumed as an independent
principle)

fffP  aDi:.dV= fff p_== dV+ _:j_ _. _u d,_-!f/_':_U dV 2.9.5

where v_ VM V_

8Ujk = 9-_u k 2.9.6_x"
J
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2.10. Thermodynamic Energy Equation

Comparing the principle of conservation of energy, Eq. 2.2.4
with the energy transfer equation, Eq. 2.9.4, one obtains:

eIV = _dV = :D dV- qd_ 2.10.1

which relates thermodynamic energy terms to the dissipation term.

For this reason Eq. 2.10.1 is here called the integral
thermodynamic energy equation.

It may be worth noting that Eq. 2.10.1 is often referred to

as the first principle of thermodynamics. IIere we assume Eq.
2.2.4 (conservation of energy, as a fundamental principle. _q.
2.10.1 is a consequence of Eq. 2.2.4, not a fundamental
principle.

2.11. Heat Flux Vector

Note that in Eq. 2.10.1 if £ is a typical size of the volume
V and _ goes to zero then the surface integral is of order _s

whereas the other terms are of order _3. Hence if V_is an
infinitesimal Cauch_s tetrahedron (see Figure 2.1) one obtains
(see Section 2.6) that:

Q(n) = Q(il)nl +Q(i2)n2 +Q(i3)na 2.11.1

or

Q = _._ 2.11.2

where _ is a vector with components:

qk = Q(ik ) 2.ii.3

equal to the heat flux per unit area through the surface normal
to

2.12. Thermodynamic EnerRv Equation in Differential Form

Combining Eq. 2.11.3 with the thermodynamic energy equation
Eq. 2.10.1, applying divergence theorem and noting that the
volume is arbitrary yields:

: - div 2.12.1Dt

which will be called here the differential form of the

thermodynamic energy equation. 'According to Truesdell this

equation should be attributed to C. Newman' (Serri_ 7 p.177)
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2 A. A Convenient Expression for the Acceleration

Consider

Dv k av k -- av k

- +/vj 2.A.1
Vt 0-_- j

Note that

Z avk _ 0vj avk avj
j axj 0xk

and set

= curl • 2.A.3

so that

- + ]grad v = - vx_ 2.A.4Dt at

and Cauchy's law of motion may be written as

o_ _ - - i+ grad v 2 - vx_ = f._div T 2.A.5

2.B. Kinematics of Deformation

The relationship between the vorticity and the angular
velocity of a fluid element surrounding a point xo is introduced
in this section.

Consider the Taylor series of the velocity field about any
arbitrary iixed point _o in the flow field

vj(_) = vj(io) + Z _"rk 0Xk k + O(r ) 2.B.1

where
= x - xo 2.B.2

Equation 2._.I. may be rewritten as

= Vo + z._ + r.D 2.B.3

where the tensor grad_ has been decomposed into its symmetric and
antisymmetric parts

grad_ = D +.t_ 2.B.4

where D is the (symmetric) deformation tensor with components

, avj 0v k

Djk = _(_k + O-x;) 2.B.5
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(see Eq. 2.9.3), whereas J_ is the (antisymmetric) rotation
tensor with components

x avj _vk

= ca_ik - 2...6
Note that

_._=Zf]kjrkij = _x_ 2.B.7

wher e
z _ 2.B.8

Also

_.D = _ Dkjrki j_j
I

= _grad D 2.B.9

where

D =_rjDjkr k = _.D._ 2.B.10

is called strain rate quadric. Hence Eq. 2.B.3 may be rewritten
as

= Vo + _ox_ + VD 2.B.11

with 1

_D = _ grad D 2.B.12

which indicates _hat the motion of a fluid element around a point

xo can be decomposed in translation (with velocity _o = _(_o)),
rotation (with angular velocity _o equal to half the vorticity,
curl _, at _o) and deformation (with deformation velocity equal
to grad D/2).
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Section 3

Entrovy and the Second Law of Thermodynamics

The fundamental equations of continuum mechanics were
derived in Section 2, from the fundamental principles of

conservation of mass, momentum, angular momentum and energy in
the form of Eqs. 2.2.1, 2.2.2, 2.2.3, and 2.2.4. In this section
the formulation is carried further by assuming that the continuum

be a fluid: the equation of state for a fluid is postulated along
with the second law of thermodynamics. The formulation is again
classical and the presentation given here is quite similar to the
one of Serried( pp. 172-178 and 230-241).

3.1. Starting Equations

Starting from the basic principles of conservation the
following equations were derived in Section 2:

Continuity equation (Eq. 2.5.1)

_--_ + p div _ = O 3.1.1Dt

Cauchy's equation of motion (Eq. 2.7.4.)

= pf + div T 3.1.2

Synnnetry of stress tensor (Eq. 2.8.4)

Tjk = Tkj 3.1.3

Therrlodynamic energy equation (Eq. 2.12.1)

De

= - div 3.1.4
where the deformation tensor, D0 is defined by (Eq. 2.9.3)

1 ark avj

DJk = 2(a_-j + a-_k ) 3.1.5
rn Eq. 3.1.2, the force per unit mass _ is prescribed. It is
apparent that if T and _ were known, then Eqs. 3.1.1, 3.1.2 and
3.1.4, with appropriate initial conditions and boundary
conditions, could be used to obtain p, V and e. In other words,
the above equations cannot be used to solve the problem unless
suitable constitutive relations (relating T and _ to other
quanitities) are available. The objective of this section is to
show that the second law of thermodynamics (introduced in Section
3.4) puts a constraint (Eq. 3.4.4) on the general nature of the

constitutive equations. The actual constitutive equations are
introduced in Section 3.B.
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Equation of State

Our continuum is assumed to be a fluid, i.e., a single-phase

system which is described by two state variables, for instance
internal energy e and density p introduced in Section 2. All
other variables are assumed to be functions of the first two.

Any two variables however may be chosen as the main variables: 'A
particularly elegant formulation of this relation is that of

• _7
Gibbs _ (Serrln, p.172), which is followed here: the two main
state variables are chosen to be the entropy (which is assumed
as a primitive concept, like the energy), and the specific volume,

z=l/p. The fundamental state equation is some definite
relationship giving the internal energy as a function of entropy
and specific volume, of the type

e = e(S, _) 3.2.1

In addition, the (thermodynamic) pressure and the temperature
are defined by

ae
p = - --,- 3.2.2

ae

T = 3.2.3
(it is assumed, of course, that p and T are greater than zero).

Since e and p=i/_ have already been introduced, Eq. 3.2.1 could
be thought of as the (implicit) definition of entropy. Note also
that the pressure is introduced as a thermodynamic quantity (see
also Eq. 3.3.4) rather than a mechanical one (i.e., force per
unit surface).

The differential of the internal energy is

de = TdS - pdr 3.2.4

and, accordingly, the material time derivative is given by

I)_ DS D_= Tm 3.2.$
vt Dt -

3.3. Entropy Evolution Equation

Combining the thermodynamic energy equation, Eq. 3.1.4,
with Eq. 3.2.5 one obtains

DS D_

PTD-'_- PP_t = '_:_ - div q 3.3.1

Note that z=l/p and therefore, according to Eq. 3.1.1

D_ I Dp
- div _ 3.3.2

P_' : p Dt
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Combining Eq. 3.3.1 and Eq. 3.3.2 yields
DS

pT_ = pdiv _ + T:D - div _ 3.3.3Dt

Equation 3.3.2 may be rewritten in simpler form if we introduce
the tensor, V, defined by

_' = 1" + PI 3.3.4

where p is the thermodynamic pressure (Eq. 3.2.2) and I is the
unit tensor. Using Eq. 3.3.4, Eq. 3.3.3 may be written as

p = ,:I,- div _ 3.3.5

where

= V:D = T:D + pdiv _ 3.3.6

Equation 3.3.5 will be referred to as the entropy-evolution
equation. It should be noted that Eq. 3.3.5 was obtained from

the total energy equation (Eq. 3.1.4), by replacing the internal
energy, e, with its expression obtained from the fundamental

state equation. Therefore Eq. 3.3.5 is fully equivalent to the
principle of conservation of energy.

3.4. Secon______ddLa___wwo__ff_Thermodynamics

The main postulate introduced in this section is the second
law of thermodynamics:

pSdV ) - _ q.n dE 3.4.1

where V_is a fluid-volume (i.e., by definition, a volume moving
with the fluid particles, see Section 2.2).

Equation 3.4.1, may be rewritten in a much more interesting
form, by noting that, using the entropy-evolution equation, Eq.
3.3.5 (see also Eq. 2.5.5), one obtains:

d fff i/fv DS
-- =
dt V_

= - -div _)dV
T

-II -'--,. MT2 grad T)dV - _,fi ,_6 3.4.2

Hence the second law of thermodynamics, Eq. 3.4.1, may be
rewritten as :
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pSdV + _q.n d_ =

= fff ( _'7 1- -T .gradT)dV>0 S.4.3
T-v.

or, since V is arbitrary,

@-_:q.grad T > 0 3.4.4

(this equation will be used to discuss the constitutive
relations, Section 4.A).

It is instructive to rewrite the total energy equation, Eq.
3.1.4, as (see Eq. 3..3.6)

De

p_ + pdiv v = - div q + _ 3.4.$

which shows on the right hand-side of the dissipative terms,
whereas the terms on the left hand_ side are nondissipative. Both

terms are equal to pT DS/Dt (Eq. 3.3.$), which indicates that the

entropy is the _link w between dissipative and nondissipative
terms.

3.$ Thermodynamic Pressure and Mechanical Pressure

It is worth noting that Eq. 3.3.4 may be rewritten as

.s.i

where p is Still the thermodynamic quantity originally defined by
Eq. 3.2.2. However it is apparent that in Eq. 3.$.1, p assumes
the role of mechanical pressure (force per unit area). This is

quite clearly indicated by the fact that, in Eq. 3.4.4, _ (see
Eq. 3.3.6) is affected by V, not by T. Therefore the second law

of thermodynamics itself suggests that T be given in the form of
Eq. 3.5.1 (with V responsible for the dissipative effects), i.e.,
that the nondissipative part of T be given by-pI, where p is the
thermodynamic pressure (in particular for perfect fluids, T=-pI).
This point, clarified further in Section4_, is somewhat obscure
in the literature where Eq. 3.5.1 is introduced as an independent
assumption.

3.6. Entha Ipy

Note that, using Eq. 3.$.1, Cauchy°s equation of motion may
be rewritten as

I 1
V_ = _ _ -grad p + -div V 3.6.1
Dt p p
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In discussing Bernoullian theorems, it is convenient to express

(l/p) grad p in terms of a conservative (i.e., exact
differential) and nonconservative part: note that according to

Eq. 3.2.4

1
-dp = rdp = d(rp) - pdr
P

= d(e + _p) - TdS 3.6.2

and hence

1
-grad p = grad h - Tgrad S 3.6.3
P

where the enthalpy h is defined as

P
h= e +- 3.6.4

P

Accordingly Eq. 3.6.1 may be rewritten as
1

Dv _ grad h + Tgrad S +-die V 3.6.S
Dt p

Note that for barotropic flows P

1 f dp
-grad p = grad m 3.6.6
P P

Here Eq. 3.6.3 has the same 'role' that Eq. 3.6.6 has for
barotropic-flow formulations (for isentropic flows Eq. 3.6.3 and
Eq. 3.6.6 coincide since, in this case dh=dp/p).

3.A Dependence of Internal Energy on Specific Volume

A classical result on au/a_ for T = constant is derived here
for use in Section_, Equation 3.2.4 may be rewritten as

dS=+de +_d_T 3.A.1

or, using T and _ as fundamental variables

1 0e 1 ae u

dS - T aTdT + _.d_ + _d_ 3.A.2

Hence,

aS i ae
_- 3.A.3
ST T ST

aS 1 ae

= _(_-_.+ p) 3 .A.4

where it is understood that the partial differention with respect
to T is performed with _ = const (and viceversa).Therefore
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a=s a 1 ae Z ate
a_a-'--_= _-;'_(¥_) = ¥ a._a--'-_

a=S a 1 ae p

_ 1 (ae + P).J (,. ate + ap) 3,A.5
T =a._ _" aTa-€ aT

or

_IT=_l-p _.A.+aTl_

Equation 3.A.6 indicates that
ae

_--_[T= O 3.A.7

whenever, for _ = constant, p is a linear function of T.
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Section

V_ector an__ddScala._______rPotentials

The fundamental equations governing the motion of a fluid
were derived in Sections 2 and 3. In this section the

fundamental equations will be rewritten to obtain a formulation
in terms of vector and scalar potentials.

4.1. Starting Equations

The following equations are used in this section:

Continuity equation (Eq. 3.1.1)

D__ + pdiv _ = O 4.1.1
Dt

CauchT's equilibrium equation (Eq. 3.6.51

D_ _ grad h + Tgrad S + l-div V 4.1.2
Vt p

Entropy evolution equation (Eq. 3.3._

DS

div 4.1.3
Also the expression for the acceleration given by Eq. 2.A.4

D_ a_ 1
-- =-- + _grad v 2 - v× _ 4.1.4Dt at

will be used.

It is understood that the equations of state, Eqs. 3.2.1o
3.2.2 and 3.2.3 are available. It is also assumed that some

constitutive relations (which give T and _ in terms of other
quantities) are available. Such relationships are discussed in
Section 4A. The reason the introduction of the constitutive

relations is postponed is to emphasize the generality of the
vector/scalar-potential formulation, i.e., that the derivation of

such a formulation is independent of the specific expressions
used for T and _.

4.2. Decomposition Theorem

A fundamental theorem of vector field theory states that any
vector field, in particular, in our case, the velocity field, can
be decomposed as (see Serrin, p. 164-165)

= grad _ + curl A 4.2.1
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where q_ is called the scalar potential, whereas A satisfies the
relation

divA = 0 4.2.2

and is called the vector potential.

Note that the decomposition is not unique since any
solenoidal irxotational field can be expressed either as grad
or as curlA.

Taking the curl of Eq. 4.1.1 and using Eq. 4.2.1 and the
vector formula

curl(curla) = grad div _ - VZa 4.2.3

one obtains that _ must satisfy the Poisson equation

V2_, =-_ 4.2.4

Because of its relationship with the vorticity, curl A will be
called vortical velocity

W = curl A 4.2.5

Eq. 4.2.1 will be rewritten as

= grad_ + _v 4.2.6

In addition to the equatlon for_ an equation £or_ and one
for _ are required. These are derived in Sections 4.4 and 4.5

respectively. Before doing that, however, an extension of
Bernoulli's theorem is needed. In potential barotropic flows the
equation for the potential is obtained by replacing Dp/Dt in the
continuity equation with its expression obtained from Bernoulli's
theorem. For viscous rotational flows such a theorem does not

exist. Therefore a generalization of Bernoulli's theorem is
presented in Section 4.3.

4.3. Generalized Bernoullian Theorem

The main innovation introduced in this work is the

introduction of a generalized Bernoullian theorem. There ex:ist
several so-called Bernoullian theorems (Serrin, p. 153). The
classical one is for unsteady irrotational inviscid barotropic
(i.e., p=p(p)) flow in a conservative field (i.e., f=-grad_,

where !h is the potential energy).

I_ f dp
H = __8_+ -v.. + -- + fl= H(t) 4.3.1

at 2 p
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Less known is the one for steady but rotational inviscid
barotropic flow (Serrin, p. 153)

-- I dp
-lv'v+ + _ = constant overaLamb surface 4.3.2

H= 2 , p--_

(a Lamb surface is a surface defined by a network of vortex lines
and strear.,lines).

It is apparent that Eq. 4.3.2 is considerably different from
the classical Bernoulli's theorem, Eq. 4.3.1, in that H is not
constant in the whole field, but is a function of the location.
Such a function is constant on the Lamb surfaces, or if one
prefers, grad H is normal to the Lamb surfaces. The objective of
this subsection is to obtain an expression similar to Eq. 4.3.2
for viscous compressible flows, i.e., an expression which reduces
to Eq. 4.3.2 for inviscld, barotropic steady flows. It is
assumed in the rest of this work that _ is conservative so that

= -grad O 4.3.3

In order to accomplish this, consider Cauchy'sequation of
motion, Eq. 4.1.2, which, using Eq. 4.1.4 and 4.3.3, may be
rewritten as

at 1
-- + -grad 7 ± -_x_=
St 2

-grad _ - grad h + Tgrad S + ldlv V 4.3.4
P

or, using Eq. 4.2.6,

grad(a_._ + 1 ._ + h + fl) =
at 2

a_v 1

- S--_-n_x_+ Tgrad S + -divV 4.3.5P

It is apparent that the right-hand side of Eq. 4.35 is
irrotational (for instance by taking the curl of both sides).
Hence the integral of minus the (d_ssipative) terms on the right
hand side,

_J Vv ldfv(_) _ x • 4.3.6(a--_-- _- Tgrad S- iv V) _P

is path independent (suitable branch surfaces are introduced for

multiply connected regions), i.e., fD is only a function of i and
is such that

a_v
grad f =---_x_- Tgrad S- IdivV 4.3.7

v at p

Combining Eqs. 4.3.5 and 4.3.7 yields

+ + h + + : 14o() 4.3.sat 2
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where IIo is a function of time (for instance, if the fluid at x 1
= -_ is in uniform translation with speed U_, IIo = U_ /2 + h_o +
fD_ where h_ and fD are the values of h and fD at x 1 = -_).
Equation 4.3.8 may be written as:

-- ! v 2
H= _ + _ + h +dl = constant (over fD-surface) 4.3.9

(where a fD-surface is a surface defined by fD = constant).

Equation 4.39 is the generalized Bernoullian theorem. It is
apparent that it reduces to Eq. 4.3.2 for steady, isentropic
(S=constant), inviscid (V = O) flows, since, in this case,

H=H°-fD 4.3.10

is constant on the Lamb surfaces (for, _x_is by definition
normal to Lamb surfaces).

It is understood that Eq. 4.3.8 is a 'formal' (rather than a

substantial) generalization of Bernoulli's theorem. In other

words, no claim is made here about the discovery of a new
physical concept. _ore appropriately, Eq. 4.3.6 should be

thought of as a convenient formal expression that can be used to
obtain a differential equation for the scalar potential (see

Section 4.4), The determination of the function fD(_) is a
problem as complicated as the original one, unless the hyp.otheses
under which Eq. 4.3.2 (isentropic inviscid steady flow) is valid
are satisfied. However, it will be seen in Section 4.4 that, at

least for steady state, the evaluation of fD is not necessary
(see Eq. 4.4.10). Therefore, at least in that sense, the above
generalization is a powerful tool because it allows for the
derivation of the differential equation for the scalar potential

4- Also, it may be worth noting that, integrating along a
str e am1 ine.

fv(._}:f (_v- T grad S -! div _),d_ 4.3.11

4.4_____.Differential Equation for Potential

Consider the continuity equation, Eq. 4.1.1, which may be
rewritten as

div v = 1 Vp 4.4.1
p Dt

Combining with Eqs. 4.2.1 and 4.2.2 yields

_2_ = _ _1 __DP 4.4.2
p Dt

Assuming h and S as fundamental variables of state, one obtains

1 8_. Vh ap DS) 4.4.3
V2_ = - p(a-hl_ _ + _]h Vt
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Note that (see Eq. 4.C.3)

1 ap ap 1

P S S 2

where a is the usual isentropic speed of sound.

Introducing for notational convenience

1 apl- 4.4.5
B =

Eq. 4.4.3 may be rewritten as

V2_ = _ _1 __Vh+ _ 4.4.6
a2Dt Dt

The enthalpy h can be obtained from the generalized
Bernoullian theorem, Eq. 4.3.8, to yield

1 V _ 1 DS
.... (- +-_-_+ f + fl) + B--

a2Dt at 2 _ Dt

i D(a_ DS.... + _'._+ f +fl) + B-- 4.4.7
aZDt at _ o Dt

(where c indicates that ; is kept constant while applying the
operator D/Dt), or

=_ . + DsV2_p 1 ( + .-- -- + B---- 4.4.8
a 2 Dt 2 Dt Dt Dt Dt

where in D_ /Dr 2 the term _ in the first substantial derivative
is kept constant during the second material differentiation.

Note that, according to Eq. 4.3.7

Dfo a fo a f_ a_v
_-_ = _-_ + v. grad f= _-+ _._ - T_.grad S-!_.divVf 4.4.9

which indicates that, as mentioned above, in steady state the
explicit evaluation of fD is not necessary.

4.5. Vorticity Dynamics Equation

In order to complete the formulation an equation for _ is
needed. Taking the curl of Eq. 4.3.4 yields

curl_ - curl(_ x_) = grad T x grad S + curl(-divV ) 4.5.1P

Noting that

curl(_ x b) =-a.grad b + b.grad a + _div b - bdiv a 4.5.2

one obtains
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cur1(_ x_) =-_,grad_ AT, grad 7€ + r4div_ -_div V

1 Dp
=-_._,rad_ ._,grad V + - -- _ 4.5.3

p Dt

and, combining with Eq. 4.5.1 ana noting that

07 0 _
curl 8t =St curl_= _ 4.5.4

one obtains

1 Dp
_-_ + _.grad_ - _. grad _
Ot p Dt

1
= grad T x grad S + curl(-div V) 4.5.5

P

or

D_ 1 1 _1 V) 4.5.6--(-) = -.grad _ + -grad T x grad S + -curl( div
Dt p p p p p

t

which is an extension to unsteadyzviseous_ fluid of Vazsonyi
vorticity dynamics equation (Serrin , p. 189).

4.6. Summary of results

The results can be summarized as follows. The fundamental

unknowns are the potential _, the vorticity _, and the entropy S.

The corresponding equations are:

Potential (Eq. 4.4.8)
2,

"'K_z&1 (De _ D_€v DfD Dg_ DS= + _ ._ + __ + __)+ p.__ 4.6.1
2

a Dt 2 Dt Dt Dt Dt

Vortictt2 (Eq. 4.5.6)

1
D _ _,grad _.-lgrad T x grad S +-curl(-Idiv V) 4.6.2p p p

_Entr__iXg_p_Y (Eq.4.1.3)
DS

pT_ = _ - die q 4.6.3Dt

In addition the enthalpy is given by the generalized

B_rnoullian theorem (Eq. 4.3.8)

a+ 1_
+ - v0v + h + I"}. + fD = Ho 4.6.46t 2

whereas the velocity is given by Eq. 4.2.1
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= grad_ + curl A 4.6.5

where A satisfies Eq. 4.2.4

The above equations have more unknowns than equations and
require equations of state giving 9,P and T as functions of h and
S (such as those for an ideal gas considered in Section 4.A) and
constitutive relations for the heat flux vector, _ and the
viscous stress tensor, V, such as the Fourier law for heat

conduction and the Cauchy-Poisson law of viscosity (which yields
the well known Navier-Stokes equations of ,notion) which are
discussed in Section 4.B.

The above equatiomwith appropriate state equations and

constitutive equations may be solved approximately as discussed
in Section 5 for both attached and separated flows. The possible
advantages of the scalar/vector potential formulation over the

primitive - variable solution of Navier-Stokes equation are also
discussed in Section 5.

It may be noted that for inviscid (V = 0), adiabatic (_ = O)
flows, in the absence of external forces (f_= 0), the above
equations reduce to

v),: + + J 4.6.7a Dt ]Dr

D< 1
--(-_) = -_.grad _ + - grad T x grad S 4.6.8
Dt p 9 9

DS
-- = 0 4.6.9
Dt

Note that integrating Eq. 4.3.6 along a streamline (using dx =

(_/_l)ds = _ dO, where s is the arclength along a streamline-
and dO= ds/19])

f O_v TOS)fD = (_-'_ + -- d9 4.6.103t

since

DS OS
= -- + _.gradS = 0 4.6.11

Dt 3t

In particular, for steady state, noting that (see Eq. 4.3.7)

_e.grad fD = 0_
2

_72_ = __1 v, grad _v 4.6.12
2

a

- _ 1
v. grad(-_) = -_.grad _+ - grad T x grad S 4.6.13

p P p
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1
-_.v+h = constant on Lamb surfaces 4.6.14
2

4.6.15
S = constant along streamlines

4.A. Equation of State for an Ideal Gas

In this section the necessary equations of state for an

ideal gas are presented. An ideal gas is a gas which satisfies

the equation

P
- = pz = RT 4.A.I
P

where R is a constant.

This implies (see Eq. 3.A.6)

0el 0 4.A.2Or T
and therefore

T

e = e(T) =f Cv(T) dT 4.A.3
where

de
c = -- 4.A.4

v dT

In addition (see Eq. 3.6.4 and 4.A.1)
T

h = h(T) = f Cp(T) dT 4.A.5

where

c = c + p. 4.A.6
p v

Finally (see Eq. 3.2.4)

de p
dS = -- + - dz 4.A.7

T T

or

= -- + R in_ 4.A.8
S-So v T

Equation 4.A.5 can be solved for T to yield T = T(h). This can be
used in Eq. 4.A.8 to yield r = r(S,h) and finally Eq. 4.A.I can

be used to obtain p = pRT = p{S,h) which are the three desired

equations of state relating temperature, density and pressure to
the fundamental state variables S and h.

In particular, for ideal gases with constant coefficients,
i.e.,
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cv = constant 4.A.9

and hence (see Eq. 4.A.6)

Cp = constant 4.A.10

Eqs. 4.A.3 and 4.A.5 yield

e = cv T 4.A.11

h = Cp T 4.A.12

(where the constant of integration has been avoided by choosing*
e = h = 0 for T = 0), whereas Eq. 4.A.7 yields

dT dr dp dr

dS = cv _-+ P,--= cv --+ Cp N 4.A.13r p r
or

P1:_= eS/cv 4.A.14

(where the constant of integration has been avoided by choosing*
S = 0 for p = r = 1) and

RT rY-* = eS/cv 4.A.15

IIence, one obtains explicit expressions

T = T(h) = h/Cp 4.A.16

r = _(h,S) = (2 h_S&_/cp)'x/tr-x) =

( _-' k )"/_ ") _I_= _ 4.A.17

=p(h,S) = (h _) _'l(_-x}-s/.
p e 4.A.18

It may be worth noting that (see Eq. 4.4.5)

1 _p 1 _r 1

p h "_DSh R

is a constant. Also, note that the fundamental equation of
state, Eq. 3.2.1, is (see Eq. 4.A.12)

_ £ 1 eS/%
e 7-i r_ -x 4.A.20

i.e., the formulation for ideal gases with constant coefficients

is equivalent to postulating the above equation for the
fundamental equation of state.

* This is consistent with the thizd law of thermodynamics.
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4.B. Constitutive Relations

In this section, the constitutive relations are discussed:
in particular it is indicated how the Cauchy-Poisson law of
viscosity (see Eq. 3.3.4)

= k®I + _ 4.B.1

(where Q = _;v _ , and the viscosity coefficients k and p are
positive functions of thermodynamic variable_and the Fourier law
of heat conduction

= -k grad T 4.B.2

(where the conductivity coefficient k is a positive function of
the thermodynamic variables) may be obtained by introducing
certain additional restrictive (but 'reasonable') postulates.

The first postulate introduced here is that the entropy
condition, Eq. 3.4.4, be satisfied by each individual term (see
Eq. 3.3.6)

=V:D >0 4.B.3

and

_._rad T > O 4.}3.4

These are the mathematical expressions for the familiar
statements that mechanical deforr, ation dissipates energy

(transforming it into heat), and that the heat flows in the
direction of the temperature gradient.

Next, consider a set of four postulates introduced by Stokes

(see Serri_, _ p. 231)

1. V is a continuous function of the deformation tensor

and is independent of all other kinematic quantities.

2. V does not depend explicitly on the position _ (spacial

homo ge ne i ty).

3. There is no preferred direction in space (isotropy).

4. _Then I) = 0, V = 0 as well.

A fluid satisfying the above postulates is called Stokesian.
blathematically speaking, the first, second and fourth postulates
imply

= f(D) (f(0)=0) 4.B.5

(The dependence upon two thermodynamic variables, such as p and T,
while not stated explicitly, is not being excluded). The third
postulate implies that Eq. 4.B.3 is invariant under all
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rectangular coordinate transformations.

In addition, consider another postulate:

5. The function f(D)is linear in V.

These postulates are sufficient to obtain the Cauchy-

Poisson law of viscosity, Eq. 4.B.I. (A proof of this equation is
given in Serri_pp. 233-234). It may be worth noting that if the
fifth postulate, which is the most restrictive one, is removed

then, as shown in Serrin pp. 231-232, f(D) must be of the type

= _i + _D + 7_2 4.B.6

where a, _ and 7 are functions of the invariants of D (as well
as of the thermodynamic variables).

Introducing similar postulates for _ yields the Fourier law
for heat conduction, Eq. 4.B.2.

4.C_____._ of Sound

Note that

8p

8Pl dh + --IhdS_51dp =
4.C.I

On the other hand, using Eq. 3.6.2

dp = 7- + = (pdh- pTd5_ +-- dS
°P s os p

_p

p,ap[ ap )dS 4.C.2= P _P[sdh + (- soT + _'_lp

Comparing Eqs. 4.C.1 and 4.C.2 yields

i 0p[ Op i

P _"_1_= _'-_pi5= _= 4.C.3

where a is the usual (isentropic) speed of sound, defined as

I 4.C.4
a = (_-r ) _/_

op
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Section 5

Concluding Remarks

S.I. Con_ents

A general formulation for viscous, compressible flows has

been presented. In order to discuss the advantages of the
formulatlon, consider the case of the attached flow around an

isolated wing at a high Reynolds number. In this case the region

of nonzero vorticity is limited to a thin region around the

wing (boundary layer) and a region behind the wing (wake), and
the numerical results for the pressure distribution obtained

under the assumption of isentropic irrotational flow are

generally in excellent agreement with the experimental ones, both

in the subsonic and supersonic regimes. This would indicate that

the effects of the presence of the vorticity in the field are

small and therefore the solution to Navier-Stokes equations may
be obtained as a correction of the potential flow formulation.

In order to better understand this, consider the relationship

between the inviscid adiabatic formulation (Eqs. 4.6.7 to

4.6.11) and the potential formulation. If the flow is initially
isentroplc (e.g., at rest at t = 0), Eq. 4.6.9 yields that S =

So (where So is a constant) at all times. Then if the flow is

initially_ irrotational (e.g., at rest at t = 0), Eq. 4.6.8 yields

that _= 0 at all times. Therefore Gv = 0 at all times, and Eq.
4.6.10 yields fD = 0 at all times, and Eq. 4.6.7 reduces to the
classical formulation for the velocity potential.

Next consider the relationship between inviscid adiabatic

formulation (Eqs. 4.6.7 to 4.6.11) and the formulation for

viscous conductive flows (Eqs. 4.6.1 to 4.6.6). In both cases

we will assume that the flow is initially at rest. If the

viscosity and conductivity coefficients arc small (i.e., high
Reynolds number flows), then Eq. 4.6.3 yields that S is

approximately constant in the outer region (the fluid volu1_2e

minus the boundary layer and the wake region). In addition Eq.
4.6.2 yields that the vorticity is approximately equal to zero in

the outer region. Next consider the velocity, _v" induced by
the vorti¢ity (see Eq. 4.6.6). With a suitable choice for the

boundary conditions for Eq. 4.2.4, it is possible to obtain that

= 0 (approximately) in the outer regionp since the velocity
obtained from Eq. 4.6.6 is irrotational in the outer region. As

a consequence of the above remarks, _S/ Bt and _v I Bt are zero
in the outer region and so is fD" Therefore, the additional

(nonpotential) terms in Eq. 4.6.1 are all approximately equal to
zero in the outer region and hence the only modification in the
equation for the velocity potential due to the effect of

viscosity is the presence of some apparent sources of mass in the

region of the boundary layer and the wake. In this case an

integral equation formulation would be ideal to approach this
problem (at least in the subsonic and supersonic regimes).

S.1



5.2. Reconmaendation for future work

A general formulation for scalar/vector-potential

decone_po_ition for viscous compressible flows has been presented.
This formulation should not be considered the last word on the

subject but merely the first. Several issues have not been

addressed here, such as separated flows, turbulence, and the

presence of shock waves in the field and the vorticity generated

by them. l!owever before addressing such issues it seems

appropriate to assess the for_lulation presented here by

developing a numerical algorithm (and corresponding computer

program) and comparing the results against existing numerical and

experimental ones.
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