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HEATERLESS IGNITION OF INERT GAS ION THRUSTER HOLLOW CATHODES

Michael F. Schatz

National 4ronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract

Heaterless inert gas ion thruster hollow cath-
odes were investigated with the aim of reducing ion
thruster complexity and increasing ion thruster
reliability.	 In this study, cathodes heated by

glow discharges were evaluated for power require-
ments, flowrate requirements, and life limiting
mechanisms. In addition, an accelerated cyclic
life test was completed.

Nomenclature

JA	 anode current

JC	 cathode current

JGD	 glow discharge current

JI	 insert emission current

JIGSC	 ignitor supply short circuit current

JK	keeper current

JKL	 keeper supply current limit

mass flowrate

SCC

	

	 standard cubic
centimeters

(volume)	 standard conditions -
21 C and 760 mm Hq

SCCM

	

	 standard cubic
centimeters per
minute (flowrate)

VA	 anode voltage

VB	 breakdown voltage

VC	 cathode voltage

VG D	glow discharge voltage

VIGOC	 ig0 for supply open circuit voltage

V K	keeper voltage

VKOC	 keeper supply open circuit voltage

Introduction

In recent years, electrostatic ion thruster
research has been heavily focussed on operation

with inert gas propellants because advantages of
'	 inert gases over mercT2 the propellant previously

used, were recognized. ) In addition, the NASA
Lewis Research Center, Hughes Research Labs and
others have studied ways to simplify ion thruster
systems.' , NotNot surprisingly, these two trends
overlap; use of the inert gases suggests natural
simplifications to ion thruster systems (e.g.,
replacement of vaporizers, necessary for Mercury
propellant systems, with a jimpler glow control

scheme on inert gas systems and potential

reductions in power processor requirements).

Continuing in this spirit, the NASA Lewis Research
Center has pursued work on heaterless inert gas ion
thruster hollow cathodes.

Description of Hollow Cathode Operation

Standard Hollow Cathode Ignition

Ignition of the standard hollow cathode begins
with the activation of the heater power supply,
which heats the cathode to approximately 1000 C,5
followed by the introduction of propellant into the
cathode as shown in Fig. 1. The keeper and ignitor
supplies are then activated, the gas breaks down

electrically and an arc discharge ignites. Stable
hollow cathode arcs require a copious source of

electrons which the insert provides by the mQchan-
ism of field enhanced thermionic emission.6,
In this scenario, the insert must be heated to a
temperature of approximately 1000 * C over a region
large enough such that, in combination with the
electric field aenerated by a nearby, dense plasma,
the insert emits enough electrons to maintain a
stable arc.

With mercury as a propeliant, the hollow cath-

ode heater serves two purposes during ignition.
First the heater prevents mercury from condensing
inside the cathode before ignition. Second, the
heater raises the temperature of the cathode to a
level at which significant thermionic electron
emission may occur from low work function surfaces.

After ignition of the arc, the cathode heats
through ion bombardment; thus, the heater is no
longer needed and is usually turned off.

When an inert qas replaces mercury, the cath-
ode heater is not needed to prevent condensation.
Further, hollow cathodes in laboratory inert gas
ion thrusters have been started without a hollow

cathode heater by flooding the cathode during
ignition.	 In addition, although it has been
demonstrated that reliable heaters can be con-
structed, hollow cathode heaters are viewed by some
as a failure prone component and have been shown

to be sensitive to fabrication procedures.5,8,9
Finally, hollow cathode heaters require either a
nedicated power s.-oply for ea--h heater or a switch-

ing scheme for shy ^q a common supply. Both
scenarios entail n^ •eased mass and intricacy for

the overall system. Ultimately, heaterless igni-
tion of ion thruster hollow cathodes should contri-
bute to more reliable ion thruster designs with a
lower parts count.

Heaterless Catnode Ignition

Before the hollow cathode can ignite without
a heater, the propellant must breakdown electri-

cally without a heater.	 (Note that "ignition"
means establishing a low voltaoe (10 to 40 V) f.igh
current (>1 A) electrical discharge (i.e., an
"arc"), while "breakdown" implies the onset of an
electrical discharge in some mode (not necessarily
an arc). Thus, it is important to first understand



what mechanisms govern the heaterless breakdown of
propellant. In our investigation, Paschen's law
serveG as the model of electrical breakdown.
Paschen's law states that when breakdown voltage
(VB) is plotted as a function of P times D
(P*n), wh p rp P is the gas pressure Cetxccn two
electrodes and 0 is the distance between the
electrodes, the breakdown voltage minimizes for a
unique value of P*D (callea the Paschen minimum).
Paschen's law has been experimentally establsihed
for well defined P (stat]^ ses) and D (parallel

plate geometry) (Fig. 2);	 however, neither
criteria is satisfied in the standard hollow cath-
ode geometry because the geometry is nonplanar and
the pressures are nonstatic in the breakdown region
between the cathode orifice plate and the keeper.
Nevertheless, one would expect the trends to remain
the same, i.e., when breakdown voltage is plotted
as a function of P*D for the hollow cathode,
perhaps a Paschen minimum could be found near the
1 MMHG*CM value characteristic of well defined P*O
cases (Fig. 2). Examining the standard hollow
cathode under this assumption, with reasonable
estimates of P and D, the P*D product is seen
to be well below this characteristic value (P*D =
(0.001 MMHG)*(0.15 cm) = 0.00015 MMHG*CM)). The
Paschen theory would qualitatively explain the
experimental observation that the heaterless igni-

tion of standard hollow cathodes requires high flow
rates - inreasing the P*D product by increasing
P through increased flowrate brings the bradkdown
voltage down to the level satisfied by the open
circuit voltage of the ignitor supply. Demanding
heaterless ignition at reasonable ignitor supply
voltages (<1 kV) implies that electrical breakdown
in heaterless hollow cathodes should occur near
Paschen minimum breakdown voltages, typically on
the order of 200 to 400 V .or most gases (Fig. 2).

Under Paschen's law, the breakdown voltage for
the heaterless hollow cathode can be lowered in a
number of ways (e.g., lengthing 0, increasing P,
"seeding" the propellant with a low ionization

potential material, 12 etc.).	 In this study, the
goal was to modify the standard hollow cathode by
disturbing the geometry as little as possible while
achieving heaterless breakdown and ignition at
normal operating flow rates, thereby preserving the
proven lifetime ofthe standard ion thruster hollow
cathode and insert.13

Heaterless Cathode Geometries

Original Heaterless Cathode Design

To our knowledge, Aston first attempted to
construct a heaterless ion thruster hollow cath-

ode. 14 Instead of an oxide impregnated insert,
aston placed a tantalum emitter tube inside the
cathode, which, unlike the insert in the standard
ion thruster hollow cathode (Fig. 1), : s electri-
cally isolated from the cathode body. Aston
achieved breakdown and i gnition but at the expense
of crystallization and melting of the emitter

tube. 14 In our experiments, Aston's idea was
modified by isolating a porous tungsten insert from
the cathode body (Fig. 3). In so dcinq, the break-
down region is moved to the interior of the cath-
ode, increasing the P*D product by raising P
from approximately 0.001 MMliG to 1 MMIiG while keep-
ing D roughly constant. Heaterless configura-
tio , , were tested in diode arrangements (within a
bell jar), and onr ccnfigurat.ion was operated as

a main cathode in the discharge chamber of a 30 cm
J series ion thruster.

Figure 4 depicts the power supply arrangement
and gas flow schematic for the heaterless cathode

(compare with the power Supply arediogement in
standard hollow cathode (Fig. 1)).	 In addition to

the keeper and anode supplies shown for the stan-
dard hollow cathode, the heaterless cathode exper-
iments included a cathode supply and an ignitor
supply. In practice, the cathode supply was little

used and later eliminated. Note that in most lab-
oratory configurations, the keeper supply for the
standard hollow cathode consists of two separate
supplies - a low voltage high current supply and a

high voltage low current supply. Switching from
the standard to the heaterless hollow cathode
eliminates the heater power supply (compare Figs.
1 and 4). After arc ignition the cathode and the
insert were linked electrically by manually closing
a knife switch or vacuum relay. In the initial
experiments, an absolute 'p ressure gaugL 'apped in
upstream (in the direction opposite of pro,'.Iant
flow) of the cathode orifice estimated the n'atic
pressure inside the hollow cathode to within in
order of magnitude.

Modified Heaterless Cathode Design

The original heaterless hollow cathode design
was altered as our understanding of heaterless
ignition increased. First, to better protect the
sintered porous tungsten matrix of the insert dur-
ing ignition, a tantalum tube with 3 thoriated
tungsten plate (ar. "insert cover") was placed over
the insert (Fig. 5). Except for the orifice sizes
(dimensions G and H), this geometry is identical
in appearance to e:listing hollow cathode enclosed

keeper designs, in which the insert cover and
cathode body (with their orifice plates) in this
experiment are otherwise known as the cathode and
enclosed keeper, respectively. In the enclosed
keeper cathode G is less than H, whereas in the
heaterless covered insert cathode G is greater
than H, thus changing the site of flow restriction
and enabling the covered insert design to ignite
heaterlessly at reasonablly low values of ignition
voltage. The reader should compare Fig. 3 to Fig.
5 to contrast physical and nominal differences
between the original and modified heaterless cath-

ode desings.

Next, during ignition the cathode was flooded
with a measured amount of propellant. Lab experi-
ence with heaterless ignition of standard hollow
cathodes and the success of Hughes Research Labs
with rapid heaterless ignition of hollow Ggthodes

using this technique inspired the change. 	 To
begin a pulsed flow start, a fixed volume of pro-
pellant (approx. 12 to 50 SCC) accumulates between
the manual leak valve and the solenoid valve (see
Fig. 4). With the keeper and ignitor supplies on
at open circuit voltages, the solenoid valve opens

and the accumulated gas floods the cathode-insert
region. Then the gas breaks down electrically and
the cathode ignites. The manual leak valve estab-
lishes the normal operating pressures inside the
cathode after ignition because it meters gas flow
at a preset low flow condition. After the arc
extinguishes and the solenoid valve closes, the
manual leak valve continues to meter gas into the
accumulator region between the leak valve and the
solenoid valve until the static pressures on both
sides of the manual leak valve equalize. (This



process took about 10 min in our experimental con-
figuration.) It is important to note that the
additional amount of propellant required to ignite
cathodes in this manner should not significantly
add to the mass of an actual flight system, even
if the system is to operate for thousands of igni-
tion cycles. For example, assuming 50 SCC of xenon
gas per pulsed flow, 1000 ignition cycle; of a

single cathode would require approximately 260 g
of propellant.

Finally, the knife switch, used to electri-
cally connect the insert to the cathode after arc
ignition, was replaced with a high voltage, high
current diode (Fig. 4). During the breakdown of

the propellant, the diode is reversed biased,
effectively isolating the cathode and the insert.
After arc ignition, the diode is forward biased and
the emission current divides itself between the
cathode and the insert as the operating conditions
warrant.

`_xperimental Results

Results of Original Heaterless Cathode Test

Breakdown voltage as a function of flowrate
was recorded for the standard hollow cathode

(without a heater) and for the heaterless hollow
cathode configurations (Figs. 6 to 9). Because
increases in flowrate cause increases in internal
pressure. the plots of breakdown voltage as a
function of flowrate were expected to emulate plots
of breakdown voltage as a function of P*D;
comparing Fig. 2 to Figs. 6 to 9 substantiates this
assumption. When taking this data, the flowrate
was set to a predetermined value, and the ignitor
supply was ramped up until the ignitor voltage
abruptly collapsed and the ignitor current suddenly
increased, indicating voltage breakdown. The
measured breakdown voltage for a fixed flowrate and
geometry varied *20 percent for flowrates less than
4 SCCM and *5 percent for flowrates greater than 4
SCCM. Turning off the keeper, anode or cathode
supplies did not affect the breakdown voltage;
usually these supplies were off during the taking
of breakdown voltage versus flowrate data. The
breakdown voltage increased 10 percent when
repeated breakdowns were measured in rapid succes-
sion; these variations were not removed from the
data.

Figure 6 shows breakdown voltage (VB) as a
function of flowrate for the standard 30 cm hollow
cathode and insert. Note that the standard hollow
cathode typically operates at approximately 5 SCCM
flowrate; thus, an increase of several times the
normal operating flow is required to achieve break-
down at the 1200 V open circuit voltage of the lab
ignitor supplies. Data for the heaterless config-
urations demonstrate a much lower breakdown voltage
for a given flowrate (Figs. 7 to 9). Figure 7 com-
pares the effect of changing the cathode orifice
diameter (dimension F, Fig. 3) on the breakdown
voltage. Increasing the cathode orifice diameter
decreases the pressure in the breakdown region;
thus, at a fixed Inw rate, the P*D product
shrinks and the corresponding breakdown voltage
grows as the cathode orifice area expands. At
higher flow rates, the differences disappear.
Figure 8 demonstrates the effect of cathode-insert
distance on breakdown voltage (dimension G in
Fig. 3). The breakdown voltages are roughly equal
for more than an order of magnitude change in

dimension G except at the lower flows, where
uncertainties in the data may yield spurious dif-
ferences. Figure 9 (configurations 2(b) and 3(a))

illustrates the breakdown voltage versus flowrate
for larger geometries with two different sizes of
insert and cathode body. The data is similar to
that of previous geometries with the same cathode
orifice diameter (compare with Fig. B).

In general, achieving a voltage breakdown does
not guarantee ignition of the hollow cathode
(recall the distinction bet ►.een "breakdown" and
"ignit i on"). Fi gure 10, which depicts a typical
power supply loadline imposed upon a typical volt-
age versus current chp^acteristic for a gaseous

electrical discharge ' s illustrates several
possible regimes of operation which depend ijron the
physical parameters of the discharge ago upon the
physical parameters of the power source. The
criterion for the stability of a gaseous discharge
driven by a power source is (DE/DI - R) > 0, where
DE/DI is the gaseous discharge's impedance and
R is the power supply's impedance at the inter-
section points of the loadline and the character-
istic (see ;ig. 10, B and :; are stable points
of operation while C is an unstable point of
operationlO ). After voltage oreakdown, the
cathode would settle into a glow discharge, a high
voltage (>100 V) low current (<1 A) mode, which
would last anywhere from milliseconds to minutes.
The cathode would then transition into another glow
discharge or, far more typically, would transition
into an arc. This behavior car be understood by

recalling that the normal operating temperature of
the hollow cathode is 1000 C; the hollow cathode
must reach this temperature during ignition.
Instead of using a heater, a glow discharge raises
the temperature of the heaterless hollow cathode.
Normally, the glow discharge would couple from the
insert to the kee per after breakdown because the
keeper', which is at a higher potential than the
cathode body, extracted the glow discharge out of
the cathode body. Without the keeper, the anode
could also extract the glow uischarge. The glow
discharge remained coupled to the keeper (or anode)
during and after the t r ansition to the arc. Rais-
ing the open circuit voltage on the keeper short-
ened the time spent in the glow discharge. Even
hefore connecting the i-isert to the cathode body
with the knife switch, the cathode voltage would
measure nearly zero when the cathode was in the arc
mode. The electrical discharge could not be
extracted out to the keeper or anode if the keeper
and anode supplies .ere not turned on until after
the glow discharge was established or if the cath-
ode supply was used during ignition. Without a
discharge, internal cathode pressures in the 1 to
10 torr range were measured (in agreement with
Ref. 14) an.' were observed to increase by a factor
of five during arc mode operation. An opticai
pyrometer measured temperatures of 1000 to 1200 'C
on the weld between the cathode orifice plate and
the cathode body during stable arc operation.

By isolating the insert in the i.edtcrless
cathode, the ratio of insert emission current to
total cathode emission ei l rvent was meas^red and
compared to results o f a similar study.	 In that
study, insert emission current accounted for 80 to
90 of the total emission current for total emission
currents up to approximately 8 A. Our observations
confirmed this result; however, at around the 10 A
level, the cathode orifice plate/cathode body
(Fig. 11, configuration 1(b)) began to dominate



electron emission for some unknown reason. Per-
haps at the higher power levels, the temperatures
and/or the plasma conditions cause the cathode

orifice plate/cathode body to become a thermionic
emitter, or volume ionization begins to dominate
electron production (i.e. the greater cathode
emission is actually increased ion collection to
the cathode body).

After approximately 100 breakdowns (with
roughly 10 hr of arc operation accumulated over the
course of testing), the inserts suffered damage on
the dowistream ends (Figs. 12 and 13), probably
resulting frow overheating and/or ion sputtering
during the glow discharge. Damage to the inserts
designed for the 8 cm thruster (used in configura-
tion one) was expected since these inserts were
operated in this experiment at total emission cur-
rents Up to 15 

16 
the design operating range is in

the 1 A — gh.—	 Use of the inserts designed
for the 30 cm thruster reduced but did not elimin-
ate the erosion problem (Fig. 13 and configura-

tions 2 and 3). The insert insulatvr was observed
to accumulate a metal l ic coating, lowering the
impedance betwaer the cathode and the irsert. To
reduce the observed erosion, the insert cover and
pulse flow starting were instituted (see results
of modified heaterless cathode test).

The heaterless cathode -.vas operated in the
discharge chamber of a J series 30 cm xenon ion
thruster. The main discharge was stable and a 2 A
beam was extracted at reasonable thruster operating
conditions. Heaterless starting was achieved
without use of the keeper electrode by coupling
directly to the anode. Evidence of arc damage
within the discharge chamber on cathode potential
surfaces was noted and later investigated. (See
the following section.)

Rosults of Modified Heaterless Cathode Test

Modifications to the original heaterless
cathode did not significantly affect the breakdown
voltage-flowrate characteristic curve (Fig. 9)
(note that the pulse flow technique was not used
to take this data). The glow discharge regime was
explored by plotting the time spent in glow dis
charge as a function of glow discharge power (Fig.
14), of flowrate (Fig. 15), and of elapsed time
between successive starting attempts (i.e., spacing
repetitive ignition cycles with a fixed time

interval) (Fig. 16).	 It is thought that lessee ng
the time spent in glow discharge would reduce
erosion due to ion sputtering and/or overheating;

thus, it was important to map the trends which lead
to shorter glow discharge times. The ignitor
supply l oadline wa; characterized by giving the
open circui* vo y age and short circuit current and
the input power to the cathode during the glor
discharge mode by recording the glow discharge
voltage and current. When taking data, the run
parameters were fixed, i steady flow of propellant
through the cathode was established, the ignitor
supply was activated (which caused the voltage
breakdown), the lifetime of the ensuing glo.
discharge was measured with an oscillosco pe, all
power supplies were deactivated after the arc
discharge had stabilized. In Fig. 14 it should be
noted that the glow discharge voltage was fixed by
the geometry; thus, in order to increase the power
added during the glow discharge period, it was
necessary to change the ignitor supply loadline.
In Fig. 16, the shape of the curve is thought to

depend on the thermal time constant of the cathode,
i.e., how quickly the cathode cen lose heat through

radiation and conduction.

With the pulse flow m , thod of starting, the
cathode could ignite in milliseconds; however,

different runs of the same cathode and between
similar cathodes varied markedly. Figure 11
illustrates oscilloscope observations for config-
uration 4(a) (Fig. 5). On some runs, the cathode
would break down, enter a single glow discharge
mode lasting several milliseconds, and transition
to a stable arc (Fig. 17(a)); however, during other
runs of the same cathode at the same operating
condition, the single glow discharge mode could
last several seconds. Furthermore, during runs of
the same cathode configuration (but a different
cathode), the cathode was seen to jump from the
glow discharge mode to the arc mode many times over
the course of several seconds before a stable arc
discharge was established (Fig. 17(b)). The
reasons for these differences are unclear.

Arcing to cathode potential surfaces during
the glow discharge period was observed. This
phenomenon, first seen during the heaterless cath-
ode tests in the J series thruster (discussed
earlie-), occurred during a glow discharge period
when the combination of high gas pressures (>0.001
MMHG) and a plasma within the test facility
(thruster chamber or bell jar) allowed the keeper
and anode supplies (with open circuit voltages of
approximately 100 V) to pass current. Arcing had
not been observed during a pulse flowstart in
which the cathode ignited quickly (<1 sec) because
the dual conditions of plasma and high cas pressure
were not simultaneously present. This observation
illustrates the importance of swift breakdown to

arc transitions.

Dominant electron emission from the cathode
orifice plate/cathode body at high total emission
currents was once again observed despite the
addition of the insert covering and the use of a
diode for insert isolation (*Fig. 11). However, in
this configuration the current emitted by the
insert cover/insert cover orifice plate could not
be distinguished from the current emitted by the
insert itself. Although in the diode connection,
the cathode remains 1 to 2 V negative of the insert
during arc operation, no performance differences
were noted between diode operation and knife switch

operation.

Accelerated Cyclic Ignition Test

To better understand the erosive mechanisms
of heaterless ign i tion, an accelerated cyclic
lifetest on configuration 4(b) (Fig. 18). Table 1
lists the operatin g conditions of the test. The
cathode compiled 3430 successful s'.arts out of 3550
ignition attempts (a successful start occurs when
an arc discharge ignites during a cycle). Each
cycle began by activating the keeper and ignitor
power supplies, while opening the gas supply
solenoid valve to relE•ate the gas pulse.	 (The

anode supply was not ised in this test.) Even
though the power supplies and the solenoid valve
were activated simultaneously, the power supplies
reached their full open circuit voltages before
the ; , s pulse released from the solenoid valve
reached the cathode insert region. Once the gas
reached the cathode insert region, the Cas broke
down electrically and a glow discharge ensued.



The glow discharge period usually ended with the
transfer to an arc or, if the start is unsuccess-
ful, after 15 sec with the shutdown of the ignitor
supply. The keeper supply turned off 3 min later,
quenching the arc (assuming a successful start) and
the solenoid valve closed soon afterward. The
cycle repeated itself 15 min after the beginning

of the previous cycle. It is thought that the 11
min dormant interval in each cycle adequately sim-
ulat F s the ignition of a cold cathode (Fig. 16 and
Ta' ie 1).

Figure 17(b) illustrates the oscilloscope
observations of this cathode during the test. No
significant variation in the traces were seen
throughout the test; the elapsed time between
voltage breakdown an , a stable arc discharge
remaineo at approximately 5 to 10 sec (as judged
by observing the keeper voltmeter and current
meter). Table 1 lists the heaterless cathode's
electrical parameters for various cycles throughout
the test. The keeper current and flowrate were not
monitored and controllev closely; nevertheless, two
trends can be observed. First, the keeper voltage
increased incrementally throughout the test. Sec-
ondly, the :inert emission current to total emis-
sion current (J1/JK) ratio remained cc tant et a
given total emission current and maintained a value

of nearly un i ty, in agreement with our previous
observations at this total emission current level.

About half of the failed starts occurred
because they occurred when the open circuit voltage
of the keeper supply dropped to half of the initial
value (this idiosyncrasy was due to the particular
construction of our keeper supply.) These failed
starts confirmed our observation that increased
keeper supply voltage shortens the time spent in
the glow discharge mode (see results of in'.tial
test). Because the ignitor supply would turn, off
before the cathode could transfer to the arc mode
at the decreased keeper supply voltage, it is
inferred that the glow discharge mode lasted longer
at this lower value of keeper voltage. The other
failed starts could not be explained.

The exterior cathode orifice plate appeared
to suffer some sputter erosion as it appeared

pockmarked and shiny; however the cathode orifice
diameter did not change from its original 0.71 mm
dimension (not shown). The exterior of the insert
cover and the cover orifice plate also displayed
the same scrubbed appearance noted on the cathode

while the insert cover orifice d i d not change from
its original 1.78 mm diameter (Fig. 19). The
insert cover was cracked at the insert coeer-
orifice plate weld. This cracking occurred during
testing and was probably exacerbated by flaring of

one end of the cathode body (done with this test
hardware to obtain a good electron beam weld of the
tantalum insert cover to the 2 percent thoriated

tungsten orifice plate).

In spite of the insert covering, the insert
sustained damage. Normally the insert should slip
out of the insert covering becuase the insert out-
side diameter is slightly smaller than the cover-
ing inside diameter; however, after the cycling
test, the insert had fused to the insert covering
and to the orifice plate (Fig. 19). Further, the
insert displayed dimpling in a reoular pattern.
It is supposed that the insert did not make good
electrical contact with the insert cover (which is
necessary for the emission of copious numbers

from the insert during normal hollow cathode arc
discharge operation) even though the insert was

connected by three 15 cm lengths of rhenium wire.
As a result, the insert connected itself electri-
cally to the covering by arc discharges. Perhaps
similar behavior could be observed with standard
hollow cathodes, but the author is unaware of any
other analogous observations.

Summary and Conclusions

Heaterless ignition of inert gas ion thruster
hollow cathodes was consistently achieved by using
a high pressure reg,on between the cathode and
insert to reduce breakdown voltages at a given
flowra t e and to create conditions for the glow
discharge/arc heating of the cathode. Limits to
insert emission (for the insert isolated from the
cathode) had been noted for total emission currents
greater than 8 A. Linking the isolated insert to
the cathode by use of a diode after arc ignition
has been demonstrated. In response to concerns
over insert erosion, a covering over the insert was
added and the cathode was ignited with the use of
a gas pulse. Millisecond ignition times were noted
with gas pulse ignition, but differences in opera-
tion were observed for similar cathodes and test

conditions. Operation of the covered insert caused
anomolous fusing of the insert to the covering;

however a suspected cause was postulated. Despitf:
these difficulties, a 3550 cycle test with 3430
successful ignitions indicated that heaterless
ignition of ion thruster hollow cathodes for
thousands of cycles is feasible. Future work on
heaterless hollow cathode ignition using the
methods explored here should systematically deter-
mite what characteristics cause quick reliable
ignition and what precisely are the life limiting
effects through a full lifetest under the condi-
tions envisioned for operation of these cathodes
in a flight configuration.
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TABLE 1. - ..CCELERATED CYCLIC LIFETEST CONDITIONS

[V KOC - 110 V; JK = J KL+ V Il COC. - 700 V; J IGSC - IA;
pulse volume -30 sec; be	 Jar pressure: without

flow - 4x10 -7 torr; with flow - 10 -4 to 10 -5 torr.
Cycle times: 0:00 - flow, ignitor supply, keeper
supply on; 0:15 - ignitor supply off; 3:15 keeper
supply off; 3:45 - flow off; 15:00 - repeat cycle.]

Cycle VK JK m J'
number keeper keeper mass insert

voltage, current, flowrate current,

V A (SCCM-xenon) A

1 16 3.6 7.0 3.3

480 16.5 1 6.3

900' 17.5

1500 17.0
a 1950 19.5
2480 19.5 3.75 4.4 3.5

3020 20.5 3.75 7.2 3.5

3450 21.0 3.75 5.8
1	

3.5

a Shutdown to replace empty xenon bottle.
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