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Abstract

This paper presents a brief outline of spectral methods for partial

differential equations. The basic ideas, together with simple proofs are

discussed- An aP9licati°n to potential transonic flow is also reviewed.
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Introduction

This paper is meant as a brief survey of spectra! methods, particularly

_ ' as applied to partial differential equations. No attempt is made to cover any

_ : topic in depth, but rather to present a general outline to scientists

unacquainted with the subject.

_i_ We begin by defining the basic spectral algorithms, emphasizing

collocation and discussing the main advantage of the method, namely the

: infinite order of accuracy attained in problems with smooth solutions.
I

i In the next section we present examples of theoretical numerical analysis

of spectral calculations. These are elementary proofs for simple problems,

but still may be taken as representative of more sophisticated results.

We conclude with an application of spectral methods to transonic flow.

The full potential transonic equation is among the best understood among
are

S_:_ nonlinear equations; although there are few analytic solutions, there many

efficient finite difference codes. It is, moreover, of great engineering

interest because in spite of all the simplifying assumptions introduced, it

fits experimental data quite well.

It was very interesting to see what a spectral method could achieve in

this problem, especially since there are several mathematical points not yet

covered by any theory: nonlinearity, singularities, shock waves and entropy

conditions. It turned out that the results are very satisfactory, and the

algorithm as a whole is as efficient and as accurate as the best finite

difference schemes, with the bonus of reduced memory requirements.

Finally, a few words about the special functions mentioned in the

paper. Only the Chebyshev polynomials



are considered in any detail• Various identities and quadrature formulas will

be taken for granted; further information can be found in references [i] and

[2] and in the treatise [3].

I. Spectral _thods - How and Why?

Assume one has to find an unknown function u, satisfying some

differential equation.

A spectral method of solution starts by expanding u in a series of

eigenfunctions of a Sturm-Liouville problem. Then, using orthogonality and

various identities among such special functions one may define approximations

to the derivatives of u, and employ those to compute u. In practice, the

eigenfunctions will usually be trigonometric functions or orthogonal

polynomials•

As a simple example, consider the wave equation with periodic initial

data:

t > 0
U t : Ux

(_ .i)
u(x, t:0)= €(x); _(x): €(x+ 2_)

The solution will be periodic, suggesting a Fourier series rather than a

1 polynomial expansion. Let

! N-I )eikx,

(1.2) UN(X) = _ ak(t "
k=0
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l _uN

l then the derivative _--_--is given by

!

i _uN _ N-I ikx
(I .3) _x [ ikak(t)e 'k=0

and the original problem (i.i) reduces to

k
(1.4) dt - ik ak, 0 < k < N.

This is now a system of uncoupled ordinary differential equations for the

coefficients ak. The only input .eeded for solving (1.4) is the set of

initial values of ak(0). These are the Fourier coefficients of the function

ii _; they are defined as integrals

i

' I 2_ -ikx_(x)dx,(1.5) ak(0) =_ e

or, in a morepracticalfashion,as sums

o-i
(1.6) ak(0) : N £=0

which can be computed in 0(N log N) operations by means of the fast Fourier

I transform (FFT).

An alternative approach resulting in (I .4), but generalizable to

arbitrary orthogonal series is Galerkin's method: Substitute (1.2) into

(I.I), multiply (I.I) by eikx for k = 0,1,...,N-I and integrate over the

period. (For another system of eigenfunctions, substitute an approximating

sum, multiply by the eigenfunctlon and the corresponding weight function, and

integrate over the interval of orthogonality.)



1 We now impose boundary condition on the equation:

i

'ut = Ux, Ix[ < I, t > 0

(1.7) u(x,t=0)= +(x)

u(x=l, t) = _(t).

A Fourier series is no longer appropriate, so we expand in terms of Chebyshev

polynomials:

N

: (1.8) uN = [ ak(t)Tk(X ).k=O

The formula for the derivatives is more complicated
!

_ _uN N
,i --=_x _ bk(t)Tk(X)
i k=0
1 (i.9)

i N {2 if k = 0
I Ck bk = _ . Ck =

p=k+l pap, 1 if k > O,
p+k odd

I but the final equation for the coefficients is similar to (1.4)
I

i a0 a0

al al 1

i (I.i0) dd--_ : = A • ,

a N aN
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with a certain matrix A. The initial values for the coefficients can again

be taken to be the Chebyshev coefficients of the initial data which can be

efficiently computed by FFT. There is, however, an additional equation to be

satisfied:

N

ak(t)Tk(1) = ,(t),
(I.ii) k=O

which represents the boundary condition. Note that (i.i0) and (l.ll)

overspecifY the N unknown coefficients; this would be no problem if infinite

series were used, but for a calculation with a finite number of modes some

compromise has to be made, e.g., satisfying only N of the N+I equations

(I.I0), together with (l.ll). ReservinN some of the coefficients to satisfy

boundary conditions - as done here - is called a Lanczos tau-method.

i! Finally, consider a wave equation with variable coefficients:

t:ic(x)U)x Ixl< t>0
(i.12) lu(x' t=0)

ku(x=l,t) = _(t), a(x) > m > 0.

One should again approximate u by an Nth degree polynomial, but the

coefficients of c(x)u cannot usually be defined in terms of the coefficients

of u. This forces us to adopt a different approach:

Take N+I points x0 ' Xl,...,x N in [-I,I]. These define a unique

polynomial of degree N which is identical with u at the points - the

Interpolant of u. We now replace c(x)u by the interpolant of c(x)u - which

is readily available, since all is needed are the values of u(xj) - and
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compute its derivative to advance (1.12) in time. The boundary condition is

satisfied by having x0 = i and by setting u(x0, t) = _(t).

This procedure - which can, obviously, be applied to nonlinear equations

too, is called a collocation method or a pseudospectral method. It is more

general than the Galerkin and tau methods mentioned above, and boils down to

* defining the values of f'(xj) given f(xj), accurately for all polynomials or

trigonometric polynomials of degree < N. This can be of course done for any

set of points, and the corresponding operator is represented by a matrix

multiplication

(1.13) f'(xj) = _ Djk f(xk).k

However, this is an inefficient numerical procedure, needing O(N2)

operations. For special sets of collocation points the matrix multiplication

can be done by FFT in O(N log N) operations. This is, in fact, one of the

reasons why trigonometric functions and Chebyshev polynomials are usually

employed in spectral calculations. Note that once the algorithm (1.13) is

available, the expansion coefficients are no longer needed - in contrast to

formulas (1.4), (i.I0), (I.ii).

In conclusion, we have introduced three kinds of spectral methods:

Galerkln, tau, and collocation. We have singled out Chebyshev and Fourier

collocation methods as the most useful for two reasons:

a) They may be used in variable coefficient and nonlinear problems;

b) They allow the fast Fourier transform.

1 • o.
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[ We now address the second question in the title of this section: Why use

_, spectral methods? To answer this, notice that the spectral approximation

-- obtained in (1.2) - (1.4) differs from the exact solution of problem (I.I) by
w

the quantity

.

(1.14) _ ak eik(x+t),
k=N

ak are the Fourier coefficients of _. The error is certainlywhere

: maJorlzed by the sum of the absolute values of ak. Now, if one assumes a

smooth _, i.e., one possessing continuous derivatives of all orders, it turns
!

'i out that the coefficients decay faster than any power of k:

i (i.15)

2_ -ikx 1 2_ -ikx
1 I e @(x)dx= I e +'(x)dx

=- 2_ik 0ak 2_ 0

2_ -ikx i 2_ -ikx #(M)(x)dx_i.. _ 1 _ e 0""(x)dx..... _ e ,

i':':i:!: 2_(ik)2 0 2z(ik)M 0

-_ , (simple integration by parts; M is arbitrary). Therefore, a spectral method

!:_ using N modes and applied to smooth functions will admit an error estimate

i:-2" '
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C(M)
lerrorl<_

for any M, with some constant C(M). (In contrast, a finite difference
i

C

method with N grid points will usually have an error of the form 7 where

I = 2 for a second order method.) Formula
, p is some small integer such as p

!:
i (1.16) is usually referred to as the "infinite order of accuracy of a spectral

Ii method," or, for short, "spectral accuracy." It also holds for general

q

eigenfunction expansions: provided one deals with smooth functions.

Computationally, (1.16) means one can obtain very accurate numerical

14 solutions, using relatively few data points.

We should also say a few words about nonsmooth functions. This is not an

academic question, since most nonlinear hyperbolic systems admit discontinuous

solutions, and even allow discontinuities to evolve in time from smooth

initial data. For example, consider the Euler equations of gasdynamics,

which produce solutions with shock waves, contact discontinuities, and

rarefaction waves. In this case one cannot expect high accuracy - rather, the

Gibbs phenomenon which occurs at discontinuities will produce an oscillating

error component which does not vanish as N . =. However, proper treatment of

this problem may filter out the noise and produce good approximations "away

from shocks" [4]. In fact, the Gibbs phenomenon itself may serve as a shock

locator, accurately pinpointing sharp transitions in the solution.



Although there exist several satisfactory spectral calculations of nonsmooth

;_ solutions [5, 6, 7], this area is very much in need of a firm theoretical

• basis.

_ 2. Proofs

In this section we present two examples of analysis of spectral

_ methods. The problems we treat are of the form

and are replaced by numerical approximations

_uN
'.

i results

[ We present elementary convergence proofs, showing that the numerical

actually approach the unknown functions sought.

_i We use the Lax equivalencetheorem,which statesthata schemewhich _

_ consistent and stable is convergent. Consistency is the following limit

property

_ lim LN u = Lu.
N+_
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It expresses the fact that the spectral operator apFroaches the differential

operator as the number of modes increases, and will be taken Eor granted,

under the assumption of spectral accuracy. What we prove is stability, i.e.,

estimates of the form

nUN(X,t)N < C _UN(X, t=0)H, 0 < t < T,

which should hold in some norm, with constants C which may depend on T, but

not on N, the number of modes employed.

2.1 Fourier Collocation

We solve the wave equation with periodic boundary conditions

t > 0

(2.1) Iut = ux'u(x, t=O) = _(x); _(x + 2_) = _(x),

2_j 0 < j < N; we assume that
by Fourier collocation, using the points xj _--_--,

N is even, N = 2M. The appro_:imate solution u is a trigonometric

polynomial of degree N, representable as a linear combination of the

functions:

f, COS(X), COS(2X),...,Cos(Mx)
(2.2) sln(x), sin(2x),...,sin((M-l)x)
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ii...................
which satisfies : "_':_

_uN _uN _i.i_i'
(2,3) _t (xj) - _x (xj) = _ Djk UN(Xj). °:=

•.?

.2i_i
From (2.3) one can deduce the stability of this numerical scheme, namely: :_)i

,.i_

2 t)= 2 !!!i
(2.4) _ UN(Xj, UN(Xj, . _

0<j<N 0<j<N ?_;

One way of proving this is by explicitly computing the collocation derivative _,i!_,_,

matrix Djk , which turns out to be antisymmetric. Therefore, when (2.3) is :J
S.-t

multiplied by UN(X j ,t) and summed, one obtains -_:;:_

.•_-j

(2.5) _ t [ z t)= I , , 0
_t 2 UN(Xj' Djk UN(Xj t)UN(X k t) = ._!!

0<j<N 0<j ,k<N -i_ij

•?!
:,21

which implies (2.4). ._;

-!,I
The second method to establish stability is based on a different "_!

interpretation of the sums in (2.5): ::i_!
-!
.I

_uN _
I _ 2 ,t) = _. ,t) ,t). :_i

(2.6) _t 2 UN(Xj UN(Xj _ (xj 'i'i0_j<N 0<j<N

ii

An examination of the functions in (2.2) shows that one may replace the second .:j
_UN _I

sum by an integral_ because for any combination appearing in UN _x the _!

trapezoidal rule with N points is exact: "i
i i

2"_ /!

(2.7) _ f(x)dx - 2_N _" f(xj). _'__:i,_

-I
:1

._

I

i

- . _ "__r_.--.,_., ......... -_.i.-_ _L-.,:_::5._.'_'._-_.'_.!'_:_:'7_t_!:_'_:_:'.._:':_.,_'17_:_: _.__._.__t_ :i:_:_._"_1_'_=_ "_: _'_'_'_:-Y7 ' ":)_t_ .'--":_ "_". : _ _
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leading again to (2.4).

2.2 Chebyshev Collocation for an Initial-Boundary Value Problem

The differential equation to be solved is:

Ixl < i, t > 0

U t : U X

(2.9) I u(x, t=0) = _(x)
lu(_:1,t) 0.

Consider the points:

• = cos_ 0 < j _ N.
(2.10) x N '

The identity

-i ))= cosjm_
Tm(Xj) = cos(m cos (xj

shows clearly how one can use FFT (a cosine transform) to fit interpolating

polynomials to data at these points. To'solve (2.9) we begin by satisfying

the boundary condition by taking:

(2.10) UN(X0) = O,
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while the collocation procedure is:

_uN _uN

(2.11) _t (xj) = _--f-(xj) 0 < j < N.

(Note that the point xN = -I is not a collocation point.) For the initial

condition, one should set

(2.12) UN(Xj' t=0) = _xj), 0 < j < N.

Conditions (2.10) - (2.12) uniquely define a polynomial UN(X,t), of degree

N-I in x, with coefficients depending on t.

A little thought shows that (2.11) may be replaced by

_uN _uN
- + _(t)PN(X)(2.13) _t _x

where PN(X) is the unique polynomial of degree N-I which vanishes at xj,

0<j<N and takes the value 1 at x0. In fact, since TN(X) attains its

extrema in [-I,I] at the points xj, one can explicitly identify PN

T_(x)

(2.14) PN (x) N2

Thus one may extend formula (2.11) - equality at certain points - to the

formula (2.13) which holds everywhere. This is done at the expense of an

unknown function T(t); we stress again that PN(X) is an explicitly known

function.

Multiply now (2.13) by i + x UN and integrate:
i 7 1 - x2
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(2.15) i

1 _uN 1 1 + x
d 1 1 2 1 . x 1 + x dx + T(t) _ UN PN
_-_ _ uN - - - dx = _ uN 8x -- -i / I - x

-i / i x2 -i / i - x 2

The first integral on the right is negative, as integration by parts shows:

I SUN I + x UN I + x f dx

(2.16) _ UN _x 2 2 x2-i / i- x / i x=-1

2

i uN x)_I/2 x)_3/2
= - _ -_ (i + (i - dx.

-I

The other two integrals may be replaced by sums over xj. Indeed, the

following formula holds whenever g is a polynomial of degree < 2N

i

i g(x) N I = 1,0<j<N).
(2.17) _ dx = _ cj g(xj), (cO = cN = _ ; cj

-! _ I - x2 j=0

Then the multiplier of T

1 l+x N

(2.18) _ UN PN - y" cj UN(Xj)PN(Xj)(l + xj)
-1 / i- x'2 j=0

is seen to vanish, since
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_ 1 + x = 0 at x = XN = -i

!5>
_!i' UN = 0 at x = x0 = 1

"_ PN 0 at the interior points xj, 0 < j < N.
_Sil,

1<" In conclusion, we find

<,

1 -1/2 x)-3/2
.'_: t 2 /I + x _ _ U2N(l+ x) (i - dx _ 0_• (2.19) d _ UN / 1 - x
_i dt -i -1

[< " and have proved stability in the form

\]•?•

_{ .-' _UN(X,t) _ < _UN(X, t=0)ll
_fA°-

_.:_!'- ' where the norm is definedby
_'

•_.;.. _ 2 _ u2 (x)dx.
_:!_ , (2.20) lu_ = -I

t

[

! A few remarks are in order about the above results. We note that special

properties of the expansion functions are extensively used throughout.

.X> 0rthogonality is needed, especially in the subtler form of Gauss quadrature

<4.-<_
__'_- _ formulas; for instance, formula (2.17) uses N+I points, but is accurate for

polynomials of degree 2N-I. None of the methods used in this section would

_. work for arbitrary collocation points; in particular, polynomial collocation

•,"ii$, t
_- i at evenly spaced points has very different (and numerically undesirable)

_;,_ properties. This is, in fact, the basic reason why eigenfunctions of Sturm-

_'._. Liouviile problems are used in spectral approximation; again, the Chebyshev
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;_,_,@_ii"' readllv available functions general_: _olvnomials stand out as , allowing

_!_ boundary conditions, and admitting the Fast Fourier Transform.

_,_- 3, Applications to Transonic Flow

\i-
_;:. 3.1 The Problem

_>_ Consider the steady two-dlmensional flow of a compressible, inviscid gas

_!i_i,'. past an airfoil, with uniform conditions at infinity. Under these
#;.!>

!'}!ii:' assumptions, one may take the velocity vector to be the gradient of a velocity

_._! potential @:

_';'": (3.1) u = @x' v = @,_i;i,i Y"
g i::.l
g_it:!

:_?_'_i"i_,_,_:. The density p is determined by Bernoulli's law

,:_"I "y'-i + - i
:::!:_! (3.2) P = i _ M (u2 v2

!?_i where is the specific heat ratio and M the free stream Mach number.
Y

•_:;_!: The equation one must solve, for the scalar unknown @, expresses mass

,_-:_'_.i conservation:

...._-'v, (3.3) (p@x)x + (p(I,y)= O,
i! y
-"?7_r

:,:_ii_?:. The boundary conditions for (3.3) are as follows:

_'_.'7:_:

i!_:_ _i
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q_

a) At infinity, the potential must satisfy

(3.4) _ _ x <--> u _ I

i
i_ representing uniform flow with normalized horizontal speed i.

b) Let the wing be located on the x axis, with a shape given by

(3.5) y : eT(l - x2), Ixl < i,

! i

- a parabolic wing of (small) thickness ratio = _. We impose

i the boundary condition
i

il ___= dy ___ at y = O, Ixl < i,
(3.6) _y dx _x

which approximates, to the first order in r, the exact condition

B_ 0 on the body y = _(i - x2).
(3.7) _-_=

Because of symmetry,

--= 0
(3.8)

on the rest of the x axis. (The symmetry about the x axis means,

of course, that there is no lift force on the wing; this assumption is

made only for mathematical convenience, i.e., solving for y > 0

only.)
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The outstanding property of equation (3.3) is that it changes type from

elliptic to hyperbolic as the local speed goes from subsonic to supersonic.

We shall describe briefly the qualitative behavior of the flows it represents.

As long as the Mach number M is small enough, the flow is smooth and

symmetrical under the transformation x --> -x; the singularities at x = _i

do not propagate into the field. The speed is either subsonic everywhere, or

a small supersonic pocket may develop over the wing. As M increases over a

critical value, a shock wave develops near the trailing edge, across which the

speed reduces abruptly from supersonic to subsonic. Thus the solution is n__o

longer symmetric, although there is symmetry in the differential equation and

in the boundary conditions. A symmetrical flow would contain an unphyslcal

rarefaction shock near the leading edge.

This is clearly a case of nonunlqueness of weak solutions, to be resolved

by an entropy condition. It means, from the computational point of view, that

ill! some entropy inequality - or equivalently, some desymmetrizlng procedure -must be enforced, in addition to equations (3_3), (3.4), (3.6), (3.8).

3.2 The Numerical Algorithm

_-_i As a first step towards the solution, we notice that the discontinuity of

_:_ -- at x = ±I requires a mesh refinement there. Since we also need buffer
_, _Y..... we discretize the problem by
.77:"

_ zones in front of the airfoil and behind it,
_

_ using three Chebyshev domains, as shown:

'_4•¢

if#
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!

1 _ x

A B C D
-1 1

!

Three Chebyshev Meshes; BC Represents the Airfoil.

We impose continuity of _ and _-_ on the interfaces BG and CF. The various

derivatives appearing in (3.3) are computed by collocation. After these

obvious steps are taken, one is left with two problems:

a) to devise a desymmetrlzlng algorithm;

b) to find an effective iteration scheme for the solution of the

(nonlinear) discrete version of (3.3).

$treett [8] has developed an algorithm to deal with these questions, which is

moreover applicable to lifting flow, including the exact flow tangency

condition (3.7). We summarize now Streett_s method, as applied to the present

problem.
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_' In finite difference codes, desymmetrizing is done by computing
, !

derivatives by upwind differencing in supersonic regions [9] or by biasing the i

density towards upwind values [i0]. As spectral derivative calculation is

: nonlocal, it allows no procedure similar to upwind differencing; it is r_ach

more convenient to use the modified density approach. A modified density

is computed by the formulas:

4-

_ = p _ B _ p (first order)

< . _ = P _ _(Sp _ g6E-ip] (second order),b.

i.

_ with switches _ and _ defined by:

= max(o,1 -,y

_ = max(0, i -

<<
i{':
,} The difference operators E, { are as follows:

{<:"

i<' (_f)(xl) = f(xi) f(xi-l)

T<

_i:_ i (f(xi+l) _ f(xi_l))_:._ (_0f)(Xi) =

_. ] (E-if)(xi) = f(xi_ I)

_ where Xi_l < xl < xi+ I are three neighboring mesh points. M is the local
_<

< Mach number and K of the order of the density Jump across the shock. After

_ p is computed, the equation (3.3) is replaced by

!%1
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Finally, we address the iteration method. One may regard 4>(x,y) as the

time independent solution of an equation

A~=
def

(3.10) (P4>x)x + (p4» = Nsp (4))at y y

(3.9) o.

~.. ' .
where A is a linear operator and stands for the nonlinear part,

The time introduced in equations (3.10) or (3.11) i.':' purely artificial;

The

Motivated byn.

A, which seems arbitrary at this

possesses steady s tai.:e solutions,

is nonzero at su~sonic points, and

N (4))sp

a

(3.10)

with an iteration index

if

t

and

N (4)n) ... 0, so we are still solving (3.9).sp

The operator

a

then

Indeed,

in fact, be chosen very carefully to ensure convergence.

4>n+l _ ~n ... 0

is nonzero at supersonic points.

(11), the following iteration scheme is produced:

that if

point, must,

(3.12)

computed spectrally •

these will satisfy (3.9).

usual choice for the transonic equations is

with variable coefficients

we may replace the variable

The two formulas (3.11) and (3.12) are not exactly equivalent, but it is seen

(3.11)

.,
!.~'.
.;
~:
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As it stands, (3.12) is still hard to solve, as it involves nonlinear

_.i operators and the full matrices of spectral derivation. We overcome this

difficulty by the method of approximate inverses, namely by replacing Nsp by i

a linear opera_-or L, which is easy to invert and is near - in some sense -

to Nsp.

We shall take L to be the finite difference representation of

on the spectral Chebyshev grid, with _ considered as a given coefficient.

This is a five-point operator, since five points are sufficient to define the

derivatives involved; it is also clear that L_ = Nsp(_).

From the resulting iteration scheme '

(3.13) _n+l _ _n) + B(_n+I _ _) = L(_n+l - _n) + Nsp(_n),x

one can readily compute _n+l _ _n by inverting the operator _ + B-_- L.

This is efficiently done by a dimensional split - two tridiagonal matrices for

_ :: separate x and y relaxation - or by an approximate LU-factorization of the
: i

!::i flve-point operator. (For additional material on iteration schemes for

; spectral operators, see [II].)

Using the apparatus mentioned above, the transonic flow was computed for

the simple case of the symmetric parabolic airfoil, as well as for more

meaningful lifting airfoil shapes [8]. The results were compared with state

of the art finite difference schemes for the same problems, and found to

produce the same resolution with significantly smaller number of grid



-23- i_,;

"?i

points. Shocks were accurately captured. Although a spectral iteration is -;;i!

more complex than the corresponding finite difference one, and usually one "•ili

needs more iterations to converge in a spectral code, the running times for _i
o9._

the two methods were comparable, and in certain cases the spectral code ran •\ -i'-_

faster then the finite difference code. This clearly shows the advautage of ! [I
-."_i

smaller computational meshes, which are admissible because of spectral !!

i!
!q

accuracy. =;i
ii

r
i
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o
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