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ABSTRACT
The hybrid model of the Reynolds-stress turbulence closure, which was

developed in the earlier work of this project, is tested for the computation

of the flows over a step and disk. Here ft is attempted to improve the

redistributive action of the turbulence energy among the Reynolds stresses.
By evaluating the existing models for the pressure-strain correlation, better
coefficients are obtzined for the prediction of separating shear flows.

Furthermore, the diffusion rate of the Reynolds stresses is reevaluated

adopting several algebraic correlations for the triple-velocity products. The

models of Cormack et al., Daly-Harlow, Hanjalic-Launder, and Shir were tested

for the reattaching shear flows. It was generally observed that all these

algebraic models give considerably low values of the triple-velocity

products. This is attributed to the fact that none of the algebraic models

can take the corvective cffect of the triple-velocity products into account in

the separating shear flows, thus resulting in much lower diffusion rate than

Reynolds stresses. In order to improve the evaluation of these quantities

correction factors are introduced based on the comparison with some

experimental data.
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NOHENCLATURE

ay, 2. 23, a4 ag, ag constants used in pressure-strain correlations

constants used in pressure-strain correlations

by. by,
Cy. Cpe Cq coefficients used in turbulence model
Ctyxe cocfficient tensor
Oc diametler of the cylinder
Dq diameter of the disk
Dij diffusion of Ujuy
6 generation of turbulence kinetic energy
GU generation of Reynolds stresses
H step height
k turbulence kinetic energy
p pressure fructuation
P mean pressure
Oij generation rate used in pressure-strain correlation
r radial coordinate
R racius of the disk
u fluctuating velocity
b mean velocity
UIN mean velocity at the inlet
U, free stream velocity
v fluctuating velocity in y-direction
v mean velocity in y-directicn
X Cartesian coordinate
y Cartesian ccordinate
Yo height of inlet flow section
oy coefficient used in €q. (22)
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1. INTRODUCTION

This report summarizes the study of the behavior of the second- and

third-moments in the wake region behind bodies. The flow in such a situation

has been investigated by formulating the transport equations for the kinematic

Reyrolds stresses G;ﬁ}.] In evaluating the Reynolds stresses in the

shear region it 1s important to understand the mechanism of energy transfer

which occurs among the Reynoids-siress components. Separated flow generates

turbulence resuiting in an tncrease in the heat and mass transfer rates which
could be advantageous in some cases and, therefore, preferable (e.g., internal

combustion engines). On the other hand, separation causes pressure losses

which are undesirable but are sometimes 4ifficult to avoid in aeronautics.
vhether it is required to create, control or avoid separation and recircula-
tion, a better understanding of the turbulence phenomena in the situation will
provide a good basis for attempts to improve the performance of fluid machin-
ery which operates creating such separating turbulent {lows.

The recent development of computer technigues for solving the partial
differential equations governing these flows has made theoretical studies
easier and less costly by eliminating the need for extensive experimental work
during design stages.

A model of the Reynolds stresses was first proposed by Rottaz. and has

been developed and improved by a number of researchers.” - The correlation

4-6

of pressure-strain was proposed by Haot et al. and Launder et al.B

Maot et al. cvaluated the pressure-strain correlation term by integrating over
space after inserting two-point correlation functions, whereas Launder et al.

obtained the results by assuming a fourth-order ten.or consisting of linear

Reynolds-stress elements. As a simplified model of the Reynolds-stress

Y
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closure, an aigebraic stress model which does not possess both convection and
diffusion terms was developed in a similar manner by Rodi.9

In the authors' previous paper]0 several proposed closures for the
Reynolds-stress model were tested for heat transfer characteristics along the
walls of axisymmetric sudden expansion pipes. After the computation with
several different models, 1t was found that the pressure-strain correlation
proposed by Launder et al.a showed s1ightiy better agreement with
experimental data for Nusselt number distributions along the pipe walls than
with other models. Moreover, 1incorporation of the wall correction terms in
the pressure~strain also improved predictions by about 5 to 10 percent.

Here computations of the turbulent flow are made in the region beyond a
disk by employing the second-order closure model of turbulence. The results
are compared with the existing experimental data at several different
steamvise locations.

Particular attention is paid to the evaluation of the pressure-strain
correlation which plays an important role in transfering turbulence energy
among the Reynolds-stress components in the saparated shear flow region.
First, the models of Naot et a1.4"6 and Launder et a].e are examined, and
the results computed using these models are compared with existing
experimental data. Horeover, a simpler model is formulated that provides
better profiles of the Reynolds stresses in the wake region.

The study is further extended to the evaluation of the diffusion action
of the Reynolds stress. As was discussed in the previous report.’l the
change in the triple-velocity products is significantly Jarge in the wake
region resulting in a considerable variation in the diffusion rate of the

Reynolids stresses. Thus, it is important to reevaluate the existing models of



v Ml 3o et S b Ll fa il cia ) de iy .w,.rm

B o e N O —— Sm

M

% the third-crder closure for better understanding of such diffusion processes
Ei in the separated shear layers. In the present report four models of the

: third-order closure are examined, and the results are compared with the

3 experimental data of Chandrsuda and Bradshaw.lz The models considered are
f those proposed by Daly and Harlow.3 Hanjalic and l.aunder.]3 Shir..'4 and

g Cormack et a].ls Mathematical formulations, along with the results and

% discussion, are presented in subsequent sections.

PN

2. HMATHEMATICAL TORMULATION

S

YT
)

<r

# The steady, two-dimensional form of continuity and momentum equations are
[j given as:

? Continuity Equation:
0,

i )

/- ; rly) - 0 (M
3

o

ﬁi Momentim Equation:

N

!

%A aP a. Y 3 —

, T (pUU) = = S = lu( + =) - puyu) (2)
'f X i7) ax1 axj axj axi 173

L 2.1 Reynolds-Stress Equations

7z

' The transport equations for the Reynolds stresses are given as

Ny

<

K

o axk (u "1uj) = G 1 cij + ¢ij + ¢ij.w + nij (3)
,{ where

5

?t all all

7 Gyj = ~(usu 35 ax, + U, axk) : generation (4)
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it du, au
3 €4 = 2v i R, + dissipation (5)
= 13 ax, ax
2 k "k
r’%‘.‘,
X
@
) su, au
?g byg ™ (-—l + ——1) : pressure-strain correlation (6)
)
3
5 and
&
oss ? —
fé 011 = - 3;; (uiuj"k) : diffusion (7)
4
Eg Equation (5) was approximated by the form given by Rotta™ as:
k3
% )
o 43 " 3 43¢ (8)
3
:«‘.-}
Py 2.2 Pressure-Strain Corielations
G
Eﬁ Several models have been proposed for the pressure-stirain correlations,
%?1 but these have been tested only for relatively simple flows such as free shear
S
51; flows and boundary layers. To date, these have not yet been extensively
3%! tested for the recirculating flows. In this report three models are employed
g
EE to compute all turbulent kinematic stress components.
is‘.:; 4
o Model 1: Naot et al.
' —
- au au.,
N p 4, i = - .2
If P (ax + axi) c¢(Gij 3 6ijG) e (9)
=
oy
Y
..
3
éﬁ -4 -

3\
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Model ?: MNaot et a1.6
au au
p 4, .2 -
p (axj ax‘) a)(6y5 = 3 835 B + 2,(045

P axj Bxi
U au
bt RN |
gk (ot v
3 i
where
— 3U1
G = - uiuj 3;;
au U
kT _k
Qij - (u]uk axj + uyUy axi)

€ T 2
¢ = - Cy (uguy = 5 845 k)

and where Cl = 1.1%.

The coefficients used above are given as

.........

(10)

(1)

(12)

(13)

(14)
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a, = (716 - 8 b])/IOS
a, = (22 + 64 b‘)/105
az = 2 (9 + 172 b])/315
(15)
a, = (b2 + 8)/1)
3g = (e b2 =2)/1
3 = (30 bz -2)/55

The first model was developed by removing the jsotropic constraint from
the double velocity two-point correlation tensor. The second model, an exten-
sion of the first, was proposed in terms of the single point tensor and three

arbitrary functions of the absolute value of the two-point separation distance.

in this model the value of b] was determined as

(7 &)
b] jo r dr (16)
where

+ +
K(F) = Cop11 = Cyia2 an

and where cjk:m represents the coefficient tensor that is used to

correlate between the single-point double-velocity and the two-point double-

velocity products such as

ESTQY—UETQIF) = Cypqm $Xo7) Uy () u_(x) (18)



Tne third model was obtained by approximating the pressure-strain corre-
lation by an arbitrary fourth-order tensor where the single-point double-

velocitly correlations wvere used.

2.3 Third-Order Closure Model

As {s discussed in the last part of the introduction section, the triple
velocity fluctuation products, U;U}E;. should be evaluated appropriately
in a separating and reattaching flow region. Here the four existing models of
the third-order closuie, all in algebraic forms, are reviewed and tested for
the reattaching shear layers. These models are summarized in this section.
baly and Har1ow3 obtained an algebrais expression with a simplification

of such a transport equation of uiuj"k as follows

K du,u,
[ _— PSS iy
uiujuk = - 2.0 CF . kY ax! (19)
Hanjalic and Launder]3 obtained the following algebraic cquation.
au.u au u u,u,
T = - L k, oo 1 13
uiujuk = - 0.08 CP c [uiul ax! + uJug aA’ +uuy axl ] (20)
Sh1r14 proposed the following expression by approximating the first
Reynolds stress that appears in Eq. (19) to be isotropic.
2 au.u,
T ki
uiujuk = - 0,01 CP . axk {21)

-
Cormack et a1.1J obtained algehraic expressions by approximating the

experimentally determined profiles for uuy. and ﬁ;ﬁ;ﬁ; with a
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polynomial with coefficients chosen to give a least-square fit to the data and

discretized the cross-stream coordinate in each flow by using the most g2neral
model for the triple velocity correlation tessor as generated using the as, wp-

totic approach of Lumley and Khajeh Nouri.7 The model they obtained is as

follows:
U.U.U, = 553 C. {2a, (84 8,0 + 85 80 + 8 . & ak_
5% = T Cp Temp Uy %k T %ik Sie T kg Tt axg
3a 3a 23
ik i kj 2
+ eyl 3y + ax, + axy )} + 7 {2ag (3ga5, + $15%s
3a 3a aa
ak _ i ke 18
where
a,, = U, - & ke (23)
i3 i) 3 ")

Out of the twenty parameters, as. that they had started out irilh,
they were able to determine and optimize the most significant four coeffi-
cients. The values of these paraneters have been reconmended for various

kinds of flows along with the universal value applicable to most of the flows.

ay = - 8.18 x 1073
1.72 -2
a, = - 1. x 10
(24)
ay = - 4.80 x 1w
gy = - 0.102



In the original forms of tys. (19)-(22), the coefficient Cp is unity,
kit the best values for Cp were investigated for the reattaching shear flows

by comparison with experimental data. The recommended values are given in

Set. 4.2,

3. NUHERICAL MODEL

3.1 Nvmerical Method

The solution method of the transport equations described in the preceding
section is the same finite volume method as the one used in [1] in which the
difterencing scheme 1s the medified hytrid scheme of Amano.]s This scheme
has a combined mode of convection and diffusion which is derived by expanding
the analytical one-dimensional solution up to the {ourth-order term. The cell
structure for mean-velocity components §s the staggered system in which the
locations of ihe mean velocities U and V are a half-cell shifted in x- and y-
directions, respectively. A1l the normal Peynolds stresses (:f) are
evaluated at the scalar node point along with P, k and ¢. However, the
shear Reynolds stress {(uv) is located at the southwest corner ~f the scalar
cell. This is because the maln driving strains for the shear stress are

aU/3y and 3V/3ax which can easily be evaluated without any inter-

polations (Fig. 1).

3.2 Boundary Conditions

For the examination of the pressure-strain correlation, a cylindrical

coordinate wis used since alj the compenents of the Reynolds tresses (ul,

— -

v?. wz. and uv) for two-dimensional problems can be investigated instead

— ——

of just two components of normal stresses (u2 and vz) and the shear com-

ponent (uv). The flow domain is shown in Fig. 2. For the investigation of

L SPTI R rE pEpi PO S U



the triple-velocity products, however, the plane two-dimensional coordinate
was employed due to the Timitation of the experimental data for these quan-
tities. (see Fig. 3)

Yhere are three different types of boundary conditions to be specified
for the computation of the flows in Figs. 2 and 3: inlet, outlet, and wall
boundary conditions. At the inlet all tue quantities are specified according
to the fully developed condition. At the outlet a continuative flow condition
§s applicd where gradients of flow properties in the flow direction are zero
(Neumann conditions), f.e., 3$/9x = 0, where & = Ui' k, ¢, E;E}. etc.

This outlet is located about 80-120H downstream from the step so that its
infiuence on the main flow region is negligihly small.

At the wall boundaries the velocities and turbulence quantities must be
specified functionally according to the law of the wall. The velocity com-
ponent normal to the wall is simply setl as zero. The wall boundary values for
k are delermined by means of wall functions besed on the assumption of a
Togarithmic near-wall velocity distribution w! ich allows the wall-shear stress
to be extracted from the ",og law® and the va.ue of velocity parallel to the
wall to be computed along the grid line closest to the wall. The energy dis-
sipation rate, ¢, is evaluated under Yocal equilibrium condition. HNear-wall
effects on the turbulence structure, associated with steep velocity varia-
tions, are also taken into account by introducing appropriate modifications to
the generation and dissipetion of the turbulence energv and the energy dissi-
pation rate for the finitc volume adjacent to the wan’l].16

The beundary values itor the Reynolds stresses are determined as

-10 ~
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wl = 1.21k

v = 0.24k
(25)

G

R

-uv = -0.24k + ¥
p

Q
x

in the wall adjacent numerical cells. The details of the derivation of {25)

is given in ref. [11].

4., RESULTS AND DISCUSSION

4.1 Flow Beyond a Disk (Evaluation of Pressure-Strain Correlations)

The flow field considered here is shown in Fig. 2. The diameter of the
cylinder is 1/3 of the disk diameter. The computational domain is subdivided
into many cortrol volum2s in such a way that the sizes increase at the rate of
2 ~ 3 % in beth x and r directions. In this way the size of the numerical
control volume is reasonahly fine in the recirculating region but is rela-
tively ccarse in both the outer region and the downstream region where flows
are mainly parabolic.

Several cases with different mesh sizes were tested and the size of 42 x
42 demonstrated a grid independent state for the flow domain consisting of
four radii of the disk in height and twenty radii in length.

fiqure 4 demonstrates the axial velocity profiles at several different
Jocations behind the disk. Agreement beiween compnted results and the experi-

mental data of Smyth]7 is very good {(within 15% discrepancy). It was also

- 11 -
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discerned that the velocity profiles were almost independent of the pressure-
strain correlation although the computed velocity profiles using all the

rodels are not shown in the figure.
Figure 5 shows the normal stress profiles of u2 and v2 at four dif-
ferent locations downstream of the disk., The computations were madz by using
Models 1, 2 and 3 as defined in Sec. 2.2, and the results were compared with
the experimental data of Smyth.‘7 When the coefficient c¢ = 2/3 {s used
for Hodel Y (which was recommended by the originatorsa). the results are all
simitar to each other. This 1s mainly because, although all the models are
derived o.fferently, their final forms are very close. In particular, Models
2 and 3 ha'~ almost the same values for the coefficient of the first terms on
the right-hand side of both Egs. (30) and (11). MHaot et a1.® obtained the
value of -0.5 for the coefficient b] and Launder et al.a chose the value
0.4 for b2 which results in ay =3, = 0.76. Also, it is noticed
that the second and the third terms of Hodels 2 and 3 have a minor influence
on the levels of turbulence stresses; thus, the pressure-strain correlation
may be represented by the {irst term alone. HNote that Model 1 has this term
only.
In Fig. 5 the computed results using Model 1 with C¢ = 0.4 are also

shown. This value was recommended by Lounder et al.a in referonce 1o equi-

1ibrium shear flows. The computed results using the coefticient c¢ = 0.4

show that the levels of u2 increase about 20% while those of v? decrease
ahout the same amount; this indicates that the redistributive .ction is
reduced by about 20% by changing C, from 0.667 to 0.4. Therefure, the

¢ —
turtulence energy created due to mean strain of the main streaw flow (uz) 1s

not transferred completely to the normal components (v2 and wz) of the

{urbulence stresses.

12 -
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It was generally observed that all the models underpredict the levels of
the Reynolds stresses by 10-50%. In order to predict thc Reynolds stresses
more accurately in recirculating flows, the original models tested for equili-
brium shear flows need to be revised. for ease of analysis Model 1 was chosen
to refine prediction of the turbulence level. Two computations were performed

by using values of 0.2 and 1.2 for CQ. The results are shown in Fig. 6.

As is depicted in this figure, the small value of coefficient c¢ results

in appropriate ievels of u2 but unacceptably low levels of vz. On the

other hand, the large value of C¢ gives reversed results; that is, the

levels of v2 are substantially high but those of u2 are too low.
When the flow reattaches on the center cylinder, the flow starts acceler-~

ating in the downstream direction which causes a high mean normal strain as

the flow recovers. Thus, the term with u2 aU/ax in the pressure-strain

corrclation in the u2~equat10n becomes higher than those in the fully

developed flows which results in significant energy transfer from “2

vz. This effect must be suppressed to some extent in the present flow

to

situation, whereas the corresponding component which balances the energy level

of v2 is relatively small. Therefore, the redistributive action in the v2

equation needs to be promoted more.

_ For the reasons discussed above, the fffe when the coefficient c¢ for

u? vas decreased to 0.2 and when that for v was raised to 1.2 is demon-
strated in the same figure. The results obtained with this treatment show a
large improvement (sec Fig. 5). This observation suggcsts that the
coefficients of the isotropic generation rates for the Reynolds stresses (i.e.
the first terms of £gs. (9) - (11)) siould be adjusted by their values by the

strength of the meen <trains, since the fleow patterns are strongly affected by

-13 -
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the mean strains. The strain varilations are particularly complex in reattach-
ing shear layers being accompanied by recirculating flows. In this way the
Reynolds stresses can be more accurately evaluated by using such simpler
formulations.

In Fig. 7 all the Reynolds stresses computed using the method mentioned

above are displayed at several different axial locations.

4.2 Flow Bevond a Step (Evaluation of the Triple-Velocity Correlations)

8efore computing the triple-velocity products in the region behind a
step, each component of the Reynolds stress equation (3) was solved along with
the momentum, turbulence energy, and turbulence energy dissipation rate
equations.

To establish an optimum grid system, exploratory grid tests were
performed using 32x32, 42x42 and 52x52 mesh sizes and several different grid
expanding factors in the downstream direction. Because computations with
coarse mes) sizes fall to provide a decipherable trend ir the Reynolds siress
distributinns and because the triple-velocity products vary steeply in the
shear layer region the mesh size of 52x52 was used with an axial length of 50
step heights for a step ratio of YO/H = 2.5. The grid expansion factors
used in the streamwise and transverse directions were 1.01 and 1.02,
respectively.

Figure 8 shows the velocity profiles at two different locations behind
the step. The results are compared with the erperimental data of Chandrsuda
and Bradshaw12 obtained with two measurement techniques: a hot-wire, and a
pressure-probe. Although slight disagreement appears near the wall at x/H =

5.4, the corputed results are within 20% of the experimental data.

-4 -
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Figure 9 ;hows the normal Reynolds stresses (u2 and v2) and the shear
Reynolds stress (uv) distributions at three different locations in the flow
field beyond a step. As {s shown in this figure all the Reynolds stresses
decay in the region downstream of the reattachment. In general, agreement
between the computed results and the experimental data is fairly good. Based
upon this agreement with the experimental data, the values of these Reynolds
stresses were used to evaluate the algebralc models of the triple-velocity
correlations (Egqs. (19) - (22)).

Figure 10 represents the distribution of the triple-velocity products at
four different locations in the reattaching shear layer. It is commonly
observed that all the modeis underpredict the levels of triple-velocity
products everywhere. While the medel of Shir consistently gives low levels,
the model of Cormack et al. gives the highest levels for uvv and vwv. The
model of Daly-Harlow, which is most frequently used gives relatively lower
levels ercept for uuv, whereas the model of Hanjalic-Launder gives reasonably
high levels for every component of the triple-velocity products.

In order to adjust for the discrepancy in the peak va:ues of the
triple-velocity products, the multiplying factor Cp in Eqs. (19) - (22) was
incorporated to suitably compensate for the difference in the levels. This
was done by dividing the experimental pezk values of U;U}E; by these
predicted by the particular algebraic model. These factors were obtained for

uuv, uvv, and vvv profiles at x/H locations of 6.4, 8.4, 10.3, and 12.3 for
all four algebraic models.

Jable 1 shows the values of these factors for individial components and
models. The overall factor for a particular model is then obtained bv
averaging ali the values of Cp for all the comwponents ot ﬁ;ﬁ}i; for

that model.

- 15 -
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TYable 1. Correcticn Factors for uiuj"k for
Different Algebraic Models

Cp uuy W [TT2 Overall
Average

Models
Dalv-Harlow 2.66 4.93 6.45 4.68
Hanjalic-Launder 4.18 3.74 4.76 4,22
Shir 7.68 14.20 18.66 13.51
Cormack et al. - 2.12 3.52 2.82

The triple-velocity products were recomputed by using the overall

averaged faclers and the results are shown in Fig. 11. It is interesting to

note that the peak values obtained by using the model of Hanjalic-Launder
agree with the experimental data for all the components, whereas those
obtained by other models agree with the experimantal data only for U

component. This indicates ¢hat, alihough the 1~vels of the triple-velocity

products can easily be adjusted according to flow conditions, we cannot
necessarily obtain universaily improved results for every component of
ﬁ;ﬁgﬁ; when using models other than that of Hanjalic-lLaunder.

The reason that the model of Hanjalic-Launder gives better results for

all the componenis of uiqu; Is because in the derivation preccess of

S

this model the generation rates due to turbulence stresses as well as the
diffusion rates of ui"j"k vw2re taken into account, even though the
convection and the generation rates due to mean strains were neglected (see

ref. 13). The generation caused by the stresses is particularly significant

in the reattaching shear layer.

- 16 -
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Unlike this model the models of Daly-Harlow and Shir do not include
non-homogeneous flow effects. That is, when the Shir model, for example, is
used, the transverse gradient of u2 is the only component that evaluates the
behavior of the triple-velocity product, Uuv, in the transport equation of

u®. The model of Daly-Harlow has an additional ccmponent that accounts for
the variation of ;E in the streamwise direction for the correspending

product. However, these two models are notably limited in comparison with the
Hanjalic-Launder model which accounts for variations of the shear stress in
both directions in addition to the u2 variations. It should, however, be
noted that all the models would produce similar results in an isotropic
turbulence flow field.

The model of Cormack et al. was evaluated only for VvV and uvv since the
values computed for uuv using its original fcrm were not high enough to
estimate the factor Cp within a reasonable range (see Fig. 10).

Finally, the triple-velocity products were recomputed by employing the
individual correction factor cp for each component and the results are shown
in Fig. 12. fn this case all the models agree with each other due to their

component-wise correction factors.

5. SUMMARIZING REMARKS

Pressure-Strain Correlations

1. The models by Naot et a) 6 and Launder et al.8 effectively give
similar results and both models are reasonably reliable.
2. The energy redistribution can be improved for reatiaching shear

fiows by taking the effects of mean strain into account.

“17 -
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Triple-Velocity Cerrelations

1. The triple-velocity productis need to be predicted accurately in the
reattaching shear layer in order to evaluate the diffusion process of
the Reynolds stress appropriately. The behavior of the
triple-velocity products in such a complex turbulent flow is
different from that in sinpler flows.

2. A1l the existing algebraic models for the triple-velocity products
underpredict the levels of'ﬁ?ﬁ}ﬁi in the reattaching shear
layer. The predicted levels can easily be improved by using a
correction factor.

3. With the exception of the model of Hanjalic-Launder, all models
cannot improve the prediction simply by employing a single value for
Cp. Thus, 1t is difficult to cbtain a unique value for the
correction factor. This is because the Hanjalic-Launder model is the
only one that includes the generation terms due to Reynolds stresses.

Finally, it was obseived that none of the above models accurately

ptedicts the overall levels of the triple-velocity product.. This is
primarily attributed Lo the fact that the convection effect of the
triple-velocity products is never taken into account. This effect may be
small in simple shear layers but is significant when the shear layer
reattaches on a solid wall transfering high convective rates of i;ﬁ;ﬁ:

into turbulance diffusive epergy near the wall and, subsequently, these high
Tevels are transported in the downstream dircction. In con:equence, a model

that can take into account this process must be develnped und tested for

complex turbulent flows.
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7. FIGURES

Cell structure.

computational domain for the disk flow.
Computational domain for the step flow.
Hean velocity profiles behind the disk.
Reynolds-stress profiles behind the disk.
Reynolds-stress profiles behind the disk.
A11 the Reynolds stresses behind the disk.
Hean velocity profiles behind the step.
Reynolds-stress profiles beyond the step.

Triple-velocity product profiles beyond the step (original models).

Triple-velocity product profiles beyond the step (overall correction
factors are used).

Triple-velocity produci profiles beyond the step (individual
vorrection factors are used for each component).
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