RS- UK - O 5 Y

NASA Contractor Report 177952

NASA-CR-177952
198500260063

MODULAR DIGITAL HOLOGRAPHIC
FRINGE DATA PROCESSING SYSTEM

James G. Downward, Pamela C. Vavra,
Frederick S. Schebor, and Charles M. Vest

KMS FUSION, INC.
Ann Arbor, Michigan

Contract NAS1-17945
June 1985

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

NF00710

1 Report No 2 Government Accession No 3 Recipient’s Catalog No

NASA CR-177952
4 Title and Subtitle 5 Report Date

Modular Digital Holographic Fringe Data :une 1235

Processing System 6. Performing Orgamzation Code

Perf: Or Report No
7 Authorlsl - games G. Downward, Pamela C. Vavra, 8 Performng Organization
Frederick S. Schebor and Charles M. Vest
10 Work Unit No

Performing Organization Name and Address

KMS Fusion, Inc.
3621 South State Road, P. 0. Box 1567
Ann Arbor, MI 48106

n

Contract or Grant No
NAS1-17945

13

Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

Type of Report and Period Covered

Contractor Report

14

Sponsoring Agency Code
324-01-00-01

15

Supplementary Notes Final Report

James G. Downward, Pamela C. Vavra, and Frederick S. Schebor:
University of Michigan, Ann Arbor, Michigan

Charles M. Vest:

Langley Technical Monitor: Jag J. Singh

KMS Fusion, Inc.

Abstract

This is the final report summarizing the work done under Small Business

Innovative Research Program Phase I Contract No. NAS1-17945.

Under this

contract KMS developed and tested a software architecture suitable for

reducing holographic fringe data into useful engineering data.

The

results, along with a detailed description of the proposed architecture
for a Modular Digital Fringe Analysis System,are presented in this report.

17 Key Words (Suggested by Author(s})

Interference Fringe, Automatic Fringe
Data Processing System, Expert
Decision Module

18 Distribution Statement
Unclassified - Unlimited
Subject Category 35

19 Security Classif (of this report)

20 Security Classif (of this page)

Unclassified Unclassified

21 No of Pages

53

22 Price
A0S

N-305

For sale by the National Technical Information Service, Springfieid, Virgima 22161

Table of Contents

Table 0f CoONteNTS. ..ttt iiierereencsssseerssoassassnnoassanses 1
Project SUMMAIYo oeenireeesoenerooeonenastosceansossnsanssenas 3
Project Objectives and Overview of Results....ccevviiienrnnnnnnn, 5
Detai1ls of Phase I Research......cveueeeeeerinerenrennccoonncnsnnns 6
Technical Background...........ciioiiiirrinionesnsesnasonsnnas 6
Fringe Analysis System Architecture.......cceeeeeerenccesnnnns 7

1 INtroduUCTaON. s v ue e erosstosnsessesssnsaascnasosossoncsssos 7

2 The FAS Architectural Description......cc.evveeeeeseaennenns 8

3 The FAS Knowledge ArchltectUre......ccvieevenessnscsonnnnns 10

4 Fringe Processing Module Architecture..........ccciiviennes 12

4.1 Fringe Processing Command Language........cccovivaeeess 13

4.2 Fringe Processing Module Device Independence....... ceeald

4.3 Fringe Processing Module Knowledge Interface........... 14

4.4 FAS Menu Processing Module SUpport........veeeeevensaes 14

5 Expert Decision Module Architecture.........oveeeievernnnns 15

5.1 Expert System Development Language.......cceeveveescans 15

5.2 Evaluation of a Rule-Based Approach to Fringe Analysis.16

5.3 Expert Decision Module Design Requirements............. 18
Establishing Requirements for a Fringe Analysis System........ 19
Evaluation of Fringe Analysis Algorithms..........coeeuinunnnn 20
Validation Studies of the Proposed FAS Architecture........... 23
References. . ..ottt i iireereeesennnesesssenossonnsascnnnas 25

Appendix A:

Functional Description of Analysis Shell Operation......... A-1
Appendix B:

Detailed Description of the FAS Monitor Program............ B-1
Appendix C: .

FAS Inter-Object Communication Architecture.........ceeue.. Cc-1
Appendix D:

Named Knowledge Architecture and VMS Logical Names......... D-1
Appendix E:

Fringe Processing Command Language Architecture............ E-1

Appendix F:
Implementation Considerations for Expert Decision Modules..F-1

Report Documentation Page

DT DUD oL

This Page Intentionally Left Blank

Phase I Project Summary

Holographic and interferometric techniques are now used routinely for
measuring wind tunnel flow field density distributions and structural
deflections. For these measurement techniques to realize their full potentaial,
digital systems which can automatically process the photographic fringe data
into useful engineering data need to be developed. The objective of this
research was to develop an architectural design for a general purpose fringe
analysis system which would be able to utilize expert knowledge to assist in
automatically analyzing fringe images.

Fringe analysis is generally a very time-consuming process requiring
continual human judgement. To improve accuracy, eliminate drudgery for highly
skilled engineers or technicians and, most important of all, to allow the
analysis of vast amounts of data needed to understand complex or time dependent
phenomena, there 1s an obvious need for computerized fringe analysis. For this
reason, NASA sponsored a Workshop on Automated Reduction of Data from Images
and Interferograms in January 1985. To date, what work has been done in this
field has wusually involved writing 1large fringe-tracing codes of varying
degrees of sophistication which are generally designed to operate in the
context of a particular experiment. Thus, there is a need for two things:

0 A higher degree of automation of fringe analysis than
currently exists, and

o A software system which can absorb and wuse knowledge
about and techniques for fringe finding as they are
developed or modified for new tasks.

The current research addresses both of these matters simultaneously and
aims to produce a software system capable of operating in a stand alone manner
or of encompassing all existing and any future fringe finding algorithms in a
user-oriented manner. It thus becomes a useful tool for anyone involved in
fringe analysis regardless of whether they need a new standalone system, or a
system within which to implement a new approach to some aspect of the analysis.

During the study, the problems inherent in automatic fringe data analysas
vere studied. Based on this study and in-house experience in analyzing fringe
data, an architecture for a fringe analysis software system was developed. The
proposed system would:

o Provide the framework required for an automatic fringe
data processing system.

o Process the fringe data in discrete steps using
mono-function processing modules.

o Share knowledge gained at any processing stage with
subsequent processing stages.

o Utilize expert knovledge to select fringe processing
algorithms and control the processing steps.

The proposed design for a fringe analysis system was evaluated by
implementing and testing a subset of the architecture in software and by
testing the suitability of a number of fringe 1location algorithms to wind
tunnel holographic fringe data. Further work will implement the full
architecture in software, develop fringe processing modules, and implement
expert decision modules for controlling the processing steps.

Phase 1 Project Objectives and Overview of Results

During the Phase I contract period, KMS has developed and tested a
softwvare architecture suitable for reducing holographic fringe data into useful
engineering data. In this report, the results of this work are presented along
with a detailed description of the proposed architecture for a Modular Digital
Fringe Analysis System (FAS).

The technical objective of the Phase I contract was:

To design a software architecture for a Modular Digital Fringe
Analysis System capable of using expert knowledge to control the
processing and analysis of fringe image data into useful
engineering data. The sub-tasks for this contract included
defining:

- The requirements for an Analysis Shell.

- The knowledge architecture for the system.
- The system data types and structures.

- The fringe processing modules.

- The interface to Expert Decision Modules.

The technical goals of this project have been met. Specifically,
o A VAX/VMS software architecture meeting these goals was designed which

- Uses an Analysis Shell to control the processing of fringe
images by single-function processing modules.

- Allows frange knowledge obtained using one processing module
to be shared with subsequent processing modules.

- Uses a device independent fringe processing language to
interface to the processing modules.

- Allows fringe processing to be totally controlled by adding
suitably designed Expert Decision Modules.

o NASA’s needs for fringe analysis were evaluated to insure that the system
design would meet NASA's programmatic goals.

o Existing KMS fringe analysis programs were used to investigate requirements
for analyzing holographic wind tunnel data.

o Available AI languages and knowledge engineering tools were evaluated for
use in developing Expert Decision Modules, and OPS5 was found to have
suitable performance for use in fringe analysis applications.

o The architecture was evaluated to insure that it met its design goals of
functionality and performance by developing prototypes for the Fringe
Analysis Shell, the device independent Fringe Processing Language, and a
number of Fringe Processing Modules.

Details of Phase I Research

Technical Background

Holographic interferometry is routinely used to study a wide range of
aerodynamic problems. Vhile the primary usage has been for two- and
three-dimensional flowv field visualization in wind tunnels(1,2) and shock
tubes, (3) holographic interferometric measurements also have been used in
ballistic ranges, rotor test chambers and turbine facilities.

The primary advantage of holographic interferometry over other measurement
techniques 1is that it combines visualization with a nonintrusive guantitative
measurement of the entire density field. In addition, holographic
interferometry often can provide a two-dimensional measurement of the pressure
and, in some case, the velocity field, and may even be used to analyze dynamic
or unsteady flow fields.(4) However, to effectively utilize holographic fringe
data, immense amounts of two dimensional fringe image data must be numerically
analyzed. Until recently, attempts to address this data analysis problem have
met with limited degrees of success.(5,6)

Recently, however, work by Becker et al. (7,8,9) has shown that digital
analysis of holographic interferograms can provide aerodynamicists with a new
poverful analysis tool and makes possible wind tunnel measurements which would
othervise be impossible. For example, the ability to analyze interferograms in
a semi-automatic fashion, makes possible tomographic analysis of the Rotocraft
experiment at NASA Ames.(10).

While Becker has demonstrated the usefulness and feasibility of applying
digital fringe analysis to a number of aerodynamic applications, considerable
work remains to be done if holographic fringe analysis is to find routine use
in aerodynamic methodology or 1s to find commercial applications in other areas
such as Holographic Nondestructive Testing (HNDT). The need for additional
vork was emphasized when in January 1985, NASA Ames and the U. S. Army
Aeromechanics Laboratory sponsored a "Workshop on Automated Reduction of Data
from Images and Holograms" to address this problem. 1In a review paper at this
conference, Vest summarized the fringe data analysis problem:

Perhaps the most pressing problem in the field is that addressed
in this workshop, namely the automated analysis of interferograms to
provide fringe order data. In many applications this presents a
formidable image processing problenm. Furthermore, in most
applications significant interaction with a knowledgeable operator is
likely to be required...the problem may be ripe for application of
concepts of artificial intelligence, particularly expert systems.

Fringe Analysis System Architecture

1 Introduction

The goal of fringe research at KMS 1s to develop a packaged f£fringe
analysis system (software and hardware) capable of automatic reduction of a
wide variety of fringe data. Developing monolithic software programs to
provide this capability was not considered to be a suitable technical approach
for several reasons.

First, fringe images can be extraordinarily complex and difficult to
interpret. A program correctly working with one type of fringe image may fail
with another. Among the conditions which make analysis difficult are:

o Diffraction by solid boundaries o Extraneous franges

o No region of known reference value o No fringe closure

0 Very closely spaced fringes 0 Inadvertent wedge fringes

o Unknown sign of fringe order o Laser speckle

o Nonuniform background irradiance o Discontinuous fringes

o Data blocked by opaque objects o Broad, "cloud-like" fringes
o Caustics due to refraction and diffraction

Second, although a conventional analysis program may address some of these
problems, the program may have limited applicability for analyzing other fringe
image data because the rules or heuristics built into the program may be
inappropriate when applied to the new data. Consequently, in order to
adequately address the general fringe analysis problem, a more generic approach
1s needed in which:

o Knowledge about how to analyze fringe images controls the f£ringe analysis
process.

o The fringe data are processed in modular, discrete stages which do not make
assumptions as to the specific nature or sources of the fringe data.

The Phase I study addressed this problem by designing and testing a
softwvare architecture for a Modular Digital Fringe Analysis System. The
implementation of this approach will allow new fringe analysis problems to be
solved in a "building block" fashion. However, before presenting the results
of this study, it is important to define what is meant by the phrase "software
architecture".

Writing a single Fortran analysis program incorporating some algorithm, or
developing a new algorithm for that program 1s a straightforward and well
understood problem. A much harder problem to address is creating a software
package of many analysis programs all of which must communicate with each
other.

A current software engineering approach to creating a large analysis
package is to first create its architectural design. Creating a software
architecture is very similar to creating an architectural design for a
building. Starting out with an overall concept of the design goal, at

successive stages the software engineer refines the concept with greater and
greater detail so as to show how the design’s component parts will correctly
fit together. Specifically, in designing a software architecture:

o Goals are established as to what tasks the analysis package should perform
and hov it should function i1n relationship to those using it.

o The required components of the package and their functions are defined.

o The methods by which elements of the package communicate with each other
and the outside world are defined.

o The correctness of the design may be verified by implementing critical
software components prior to committing to a full scale software
development project.

In this report, the architectural design for the software of a Modular
Digital Fringe Analysis System (FAS) is presented. The primary goal of this
architecture is to allow a general purpose fringe processing and analysis
system to be developed which is:

easy to maintain and support

versatile and expandable

able to use expert knowledge

able to process fringe data automatically.

© 000

The architecture for the FAS is composed of four interrelated parts:

The analysis shell architecture

The knowledge architecture

The fringe processing module architecture
The expert decision module architecture.

00O0Oo

These parts will be discussed in subsequent sections.

2 The FAS Architectural Description

The Fringe Analysis System consists of both the hardware (computer, fringe
digitizer, operator terminal, image display, etc.) and the fringe analysis
software. The relationship of the software to the to the system as a whole is
schematically shown in Figure 1. This study has addressed the architectural
design for the fringe analysis software which is the core of the f£fringe
analysis system.

The FAS Analysis Shell consists of a FAS Monitor program under which can
run any number of external, independent, fringe processing modules (PMs) and
cooperating Expert Decision Modules (EDMs). The Analysis Shell maintains
independence from the specific hardware supported by the computer by performing
input/output operations via device driver routines in the outermost shell. The
input to the system is a fringe image plus any operator supplied input. The
output is the processed fringe data in a format suitable for numerical,
engineering analysis.

Image Display Fringe Image
Disk and Tape

Storage

.. Device
Drivers

Operator Terminal

Fringe Digitizer and

4 Pointing Device

Figure 1. Fringe Analysis System

The Analysis Shell is created and maintained by the TFAS Monitor — program
which

¥ . . : .
- Manages the communication channels between the operator and the processing
modules.

- Maintains global knowledge used by the analysis modules.

- Keeps track of the current state of the fringe data being analyzed so that
the cooperating analysis modules stay in synchronization.

Details of the operation of the FAS Monitor and the FAS Analysis Shell- are
presented in Appendices A-C. Appendix A presents a functional description of
the FAS Analysis Shell in operation. Appendix B discusses the ‘multi-level
processing architecture maintained by the FAS Monitor. Finally, Appendix C
discusses the FAS Communication Architecture.

The FAS global knowledge data base consists of knowledge required for = the
cooperatlve analysis of the fringe data by a collection of independent modules.
It is composed of information supplied prior to the start of analysis
(historical, configuration, etc.), and knovledge generated by the modules
during the process of fringe analysis. This knowledge may be accessed by name
by any module running within the Analysis - Shell. In addition to global
knowledge, domain-specific, expert knowledge and heuristics for use in guiding
the fringe analysis process is available to Expert Decigsion Modules. ~On VAX
systems the global knowledge data base is maintained by the VMS operating
system in cooperation with the FAS Monitor program.

Each processing module is designed to be independent of all other
processing modules. Because the format of the input and output data required
by each module is defined, internal details of each module need not be known
outside of the processing module itself. Any processing module can be replaced
without affecting the FAS operation as long as the replacement module can
accept the existing input data and return the expected output data.

The modules are designed to be independent of the specific types of
hardware used 1in conjunction with the FAS. For example a frame buffer, video
digitizer, or image display device might be used by the FAS software for
storing, acquiring, or displaying the fringe data during the fringe processing.
Input and output to these devices is accomplished by low level software drivers
so that the FAS software can be implemented on a wide variety of hardware with
minimal changes.

The operation of the FAS is straightforward. An operator gives am 1nitial
command to the FAS, perhaps to invoke a predefined analysis script (list of
things to do). As each item in the script 1s read from a file by the FAS
Monitor program, the FAS Monitor sends off a command to the appropriate
processing module.

For some analys:s problems, performing a series of actions stored as a

script file may be adequate. However, if the fringe analysis problem is
complex, the problem might benefit by applying expert fringe analysis knowledge
to control the fringe processing steps. In this case, an Expert Decision

Module (EDM) may be activated.

The EDM examines the global knowledge about the frainge image being
analyzed and decides what actions to take. If it is unable to perform the
action by itself, the EDM sends back a command to the FAS Monitor to direct a
processing module, to perform that function (Shell Callback). The EDM waits
for the processing module to complete 1ts task and update the global knovledge
as appropriate and then resumes analyzing the fringe image. When the EDM
finally has succeeded in accomplishing its goal, it exits, returning control of
the FAS to the operator or script file as appropriate.

3 The FAS Knowledge Architecture

In order for the FAS to control the flow of fringe analysis by independent
modules, it must provide an environment for sharing current knowledge about the
state of the fringe analysis between the FAS Monitor, the processing modules
and the expert decision modules.

Knowledge needed by the FAS may take many forms. It may be global (all
modules may use 1t), local (only one module uses it), historical (results of
previous operations), situational (describes the current state), scratchpad
(use and discard), or expert (for the EDMs).

The emphasis on modularity in the FAS Architecture imposes a number of

conditions on the methods used to provide global knowledge to the processing
modules.

10

- Because the FAS 1s to be modular and expandable, global knowledge
must be accessible by name from any module within the Analysis
shell. Such knowledge is referred to as "Named Knowledge".

- Because the FAS Monitor, the processing modules, and the Expert
Decision Modules are discrete programs, the global knowledge base
must be stored external to these programs.

- Because each module activated may need to access Named Knowledge
data frequently, access to the knowledge must be as rapid as
possible so as not to degrade the over-all performance of the
FAS.

- Because many different types of knowledge need to be stored
(text, real numbers, integers, etc.) the knowledge storage format
must be flexible.

An 1investigation of a number of possible approaches showed that the proper
approach depended on the storage requirements for the given data element. If
the information entity to store is physically small 1n size (< 256 bytes) and
need not exist after the analysis has been performed, storing the data as text
strings in VMS Job Logical Names was chosen as the best general solution to the
problem of providing rapid, random access, by name, to data of widely varying
formats. However, 1f the data is a fringe picture, vector array, or a large
quantaty of data, or if the data must exist for the next FAS analysis problem,
then the data itself is stored as a disk file whose file name is pointed to by
a Named Knowledge element. In Appendix D, VAX/VMS Logical Names and their use
in storing knowledge of varying formats is be discussed in detail.

Each Named Knowledge element consists of two parts as shown in Fagure 2.
The first part, the Knowledge Name, consists of a unique name (identifier) of
1-255 alpha-numeric characters. Using the Knowledge Name, one can retrieve the
Knowledge Value which will be returned as a string of 0 to 255 ASCII
characters. The Named Knowledge data base consists of all the variable 1length
Named Knowledge elements which currently have a non-null Knowledge Name.

The functionality of this implementation technique was evaluated in two
vays.

o The prototype monitor program was used to pass information between the
Shell, the processing modules, and the operating system via Named Knowledge
elements. The technique proved to be both powerful and simple to use.

o The speed of retrieving Named Knowledge stored in the Logical Name tables
vas measured. Independent of table size, the average time for random
retrieval of each knowvledge element is about 2.5 milliseconds on a
VAX-11/750 which 1s far faster than a disk-based retrieval system.

11

1—2865 oharacters 0—255 characters

[Knowiedge Name | Knowiedge v-lﬂ v [W[

Named Knowledge Eiement

Named Knowledge Data Base

Figure 2. Named Knowledge Representation and Data Base

4 Pringe Processing Module Architecture

The FAS supports frange processing modules in both the image analysis and
engineering analysis domains. By breaking up the fringe analysis problem into
a number of discrete steps with well defined goals and end states, fringe
processing can be accomplished by a sequential series of commands to process
the fringe data.

To support analysis in a modular series of steps, a Fringe Processing
Module Architecture has been designed to meet the following requirements.

o Each processing module is a separate program designed to perform a generic
class of operations on the fringe data.

o Processing modules are command driven. To perform a fringe analysis
function, the appropriate command 11s constructed and sent by the FAS
Monitor to the appropriate processing module.

o Fringe analysis modules may be invoked independently of the Analysis Shell
to facilitate program development and testing.

o A logically consistent, English-like, Fringe Processing Command Language is
used to send commands to the processing modules.

o The Fringe Processing Command Language and the processing modules
themselves possess a high degree of device independence to minimize the
impact of special hardware requirements and to simplify the operator’s use
of the FAS.

12

4.1 Pringe Processing Command Language

To control the fringe processing modules in a consistent and intuitive
fashion, a Fringe Processing Command Language (FPCL) has been designed and
tested to support the Fringe Processing Module Architecture. In Appendix E,
the preliminary design for the FPCL is presented. In Figure 3 is a diagram of
the command and I/0 flow supported by the FPCL.

FAS Command
Command Line Interpreter pemmmsmedpy DCL
i Command Interface
v) g)
P1 P2 P3 P4 LR Pn
3
_: A L L Data Interface [

! :

[Y
Image Display
Terminal Device u

Joystick cos

HMomitor

Figure 3. FPCL Command Flow

Because the FPCL follows the general Command Line Interpreter syntax
format which 1is supported by the VAX/VMS operating system, the FAS Monitor is
able to make extensive use of system services to simplify parsing and
interpretation of FAS commands. First, the FAS Monitor parses the command to
see if it is an external VMS command, an internal FAS Monitor command, or an
external processing module command. If it is an external VMS command, it is
sent off to the VMS DCL monitor for processing. If it is an internal command,
the FAS Monitor executes it. If it is an external processing module command,
the FAS Monitor uses standard VAX/VMS operating system services to parse the
command to insure that it 1s syntactically correct and that all required inputs
are present and to supply any default values which may be needed by an
processing module.

If the FPCL command is correct, the proper analysis module is activated,
retrieves the parsed command, takes the action specified, and performs any
required input/output operations. If the FPCL command is incorrect, an error
message 1s displayed explaining the problem.

The general format of a FPCL command is:

COMMAND[/switch2][...][/switchN] Command Line

13

The various command svitches may take values and the Command_Line may contain
any information as required by COMMAND. Command Switches qualify or select
which feature of a given command will be applied. A FAS command may also be
issued dairectly by the user from DCL (i.e., outside of the Analysis Shell), the
command must be directly preceeded by a "FAS/". Examples of the FPCL are seen
in Appendix E.

4.2 Fringe Processing Module Device Independence

The FPCL and the processing modules are designed to support device
independent analysis. FPCL commands may either operate on an image in the FAS
local memory or on an image stored on a disk file.

Images may be on a disk file, a frame buffer, or in a VAX memory buffer.
The display device may be a frame buffer or an image processor. By performing
display 1/0 via replaceable device interface subroutines, reconfiguring the FAS
to use a newv device only requires that the appropriate device interface
routines be implemented.

4.3 Fringe Processing Module Knowledge Interface

Knowledge 1s passed two ways in the FAS. The first form of knowledge used
by a processing module 1s information which tells that module what do do next.
This information is passed to the module by the FAS Monitor as a parsed command
and interpreted by the module using standard VAX/VMS subroutines.

The second form of knowledge 1s information which tells the module what we
know about the current problem. This knowledge is stored as "Named Knowledge"
elements and may be retrieved or wupdated by a module |using the
Get_Named Knowledge and Put_Named Knowledge subroutines.

4.4 FAS Menu Processing Module Support

The flexibility of the FAS Architecture allows for either direct operator
control of the FAS (via direct FPCL commands) or for creating tailored operator
interface programs to perform selected functions.

At the direct command level, the FAS will perform any syntactically
correct command either entered by the operator or from a command script.
However, for situations in which operator control is needed but requiring the
operator to know the FPCL commands 1s not desireable, 1t is straightforwvard to
create a FAS Menu Processing module to sit as an interface between the operator
and the system.

The FAS Menu Module could present the operator with one or more menus from

which to make selections. Based on the selection input by the operator, an
FPCL command to the processing modules would be formed, and passed to the
Monitor. A FAS Menu Module, controlled via operator input, performs the same

function as an EDM except that for the EDM the expertese resides within the EDM
rather than within the operator.

14

5 Expert Decision Module Architecture

For all but the simplest fringe i1mages, current analysis methods require
knowledge (guidelines, processing step order, rules, heuristics) about the
methods to be used to reduce the fringe data either to be "hard coded" in the
analysis program or to be applied by the operator during the analysis process.
The rules may be simple ("For this class of photographs, start fringe numbering
at the far 1left"), numerically complex ("Trace the fringe through the
discontinuity by working backward from both sides of the discontinuity") or
judgemental ("That is not a fringe").

These rules are not the type of information suitable for encoding withan
the body of a general purpose analysis routine. Rather they represent the
criteria used to select the method of analysis to be applied. Consequently, a
general purpose FAS capable of automatically analyzing a broad class of fringe
data, must be able to recognize when to apply the expert knowledge of a trained
operator, and to 1independently use this knowvledge to control the analysis
process.

Recently work in Artificial Intelligence has shown that Expert or
Rule-Based systems are well suited for encoding rules and heuristics in a
flexible format suitable for controlling the image segmentation process.(1l1l) A
FAS Expert Decision Module (EDM) would provide similar capabilities for a
rule-based control of the fringe process.

In many respects an EDM resembles a conventional, small expert system.
However, there are a number of significant differences. A traditional expert
system is designed to mimic the reasoning of a human expert in solving a
problem. Typical components of an expert system include an operator interface,
an inference engine, and an expert knowledge data base. Such systems typically
operate by requesting information from the operator or data base and using this
information for making a judgment which the operator then acts on.

An EDM, on the other hand, 1s an integral part of the fringe analysis
control loop and must mimic both the reasoning and actions of trained operator.
The EDM acts autonomously as the operator of the FAS to request existing
information from the FAS knowledge base, to command that a new action be taken
by some module, and to directly control the extraction of the fringe data £from
the fringe image. Like any other component of the FAS, it is modular, able to
both receive a command from the FAS and to send control commands back. It is a
specialist in its narrow knowledge domain rather than being an all encompassing
"expert system." The FAS may support more than one EDM, each being an expert in
its own domain. This allows an EDM to call on a consultant EDM if knowledge
outside its specialization is required.

5.1 Expert System Development Language

A number of expert system development language and tools were evaluated.
A detailed discussion of this work is presented in Appendix F. Three criteria
dominated the language selection process:

o Since frange analysis 1s very CPU intensive and potentially quite time

consuming even without an expert system, the language chosen must not
appreciably slow down the systenm.

15

o Expert Decision Modules must be able to start up and exit from the
system rapidly.

o The language must allovw for creating a rule based system.

As a result of a extenive review of available tools, and hands-on
evaluation of some tools, OPS5 was selected as the best currently available
language for building a rule based system.

OPS5 is a non-algorithmic inference engine developed in the mid-1970s at
Carnegie Mellon University. It allows the programmer to encode a set of rules
quickly, efficiently, and conscisely. As a result of the non-algorithmic
nature of OPSS, the programmer need not worry about the flow of control within
the execution of the program. All control problems are handled by the resident
OPS5 interpreter, making the OPS5 program or Production System, as it 1s often
called, readily expandable and much less difficult to modify than a program
written 1n a conventional, algorithmic language.

An OPS5 program 1s composed of a series of 1independent rules, called
Productions. The OPS5 inference engine continualy scans existing Working
Memory Elements (WMEs) (where the rules are stored) to see if the current
conditions match the rules stored there. If the Production’s conditions match
the contents of the WMEs, the rule is said to "fire" and the Production’s
actions are performed and the contents of the WMEs updated. The process by
which this occurs 1s refered to as the "Recognize-Act Cycle."

A typical OPS5 Production includes a Production Name, a number of
conditions to match, and right arrow, and a number of actions to take if the
conditions are met. An example of a generic OPS5 rule ais:

(P Production-Name
(Condition_1)
(Condition_2)
(. . .)

(Condition n)

—=>
(Action_1)
(Action 2)

(. « .)
)

In this example, if and when the conditions Condition_l to Condition n all
match the contents of the working memory, the production will "fire" and the
actions specified by Action_l...Action_n will be performed.

5.2 Evaluation Of A Rule-Based Approach To Fringe Analysis

Once fringe processing modules have located candidate fringe contours and
have represented them as line segments, the segments must be joined together or
extended to form complete contours, mislocated segments must be removed, and
the contours must be numbered in the correct order. This process represents
the most critical, operator-intensive and error-prone step in the fringe

16

analysis process. This process is complicated by the fact that fringe contours
may not be directly trackable across shock boundaries.

To address the problem of fringe ordering expert knowledge must be applied
to the process either interactively by the operator or by the fringe analysis
software. Current fringe analysis software such as Becker’s (8) builds some of
this knowledge into the analysis code, but significant operator input is still
required.

An alternate approach 1s to create a more extensive set of expert rules
for ordering fringes contour segments throughout the image. For example, in
adressing the more general image segmentation problem, Nazif and Levine (11)
developed a set of rules to control the processing of data representing line
segments. These rules provide them with the ability to determine whether or
not line segments detected i1n an image should be merged together or deleted.
Using these rules, they first detect lines and edges in a digitized image and
then determine whether or not these lines have missing segments.

Conventional fringe analysis algorithms also must address 1locating and
recognizing existing fringes segments which are not apparent in the
digitization process but which the human eye detects quite clearly.

Because of the direct bearing of Nazif and Levine’s rules to fringe
analysis, a subset of these rules was implemented in OPS5 to investigate the
utility of applying expert rules to the fringe analysis process. For example,
the following rule (number 1701) 1s used to merge a short line segment into a
larger line segment.

RULE (1701)
IF: (1) The FRINGE LENGTH 1s NOT LOW
(2) The LENGTH of the FRINGE IN FRONT is LOW
(3) The FRINGES are TOUCHING
(4) The closest POINT IN FRONT is LOW

THEN: (1) MERGE the LINES FORWARD

The corresponding OPS5 production is:
(P Nazif and_Levine_ #1701

; this first clause chooses two fringes, one in front of the
; other, which satisfy clause (4) above, that is, the closest
; point on the fringe in front is LOV.
(In_Front_Of "Fringe in front_ID <fringe in front>
“Fringe ID <fringe> -

"Pos_of Close_Point_in_Front << VERY_LOW LOW >>)
; this second clause insures that the length of the fringe in
; front is LOW
(Fringe °“Fringe ID <fringe in front>

"Length << VERY LOV LOW >>)

17

; the third clause insures that the length of the fringe in
; question is NOT LOW
(Fringe "Fringe ID <fringe>
"Length << MEDIUM HIGH VERY HIGH >>)
-2

; 1f all the above clauses are satisfied, an external routine
; called Merge 1s called which will merge the two fringes
(call Merge <fringe> <fringe in_front> Forward)

)

A number of rules similar to the above were implemented. The rule based
system was then evaluated using using a wide range of coordinate data. The
results showed that given a collection of rules suitable for fringe processing,
OPS5 can easily be used to generate and efficient rule based system to assist
in the fringe segmentation and numbering process.

5.3 Expert Decision Module Design Requirements

The overall architecture for the FAS is driven by the requirements for
building expertise into the system, namely:

o The knowledge required to control fringe processing 1is dynamic. At any
gilven processing step, existing information about the fringe image may
change forcing previous decisions to be reconsidered.

o An Expert Decision Module must be able to 1independently request specific
analysis steps and gather nev knowledge from that analysis step.

o The FAS must not require the existence of expert knowledge for any given
function but must be able to use such knowledge to assist fringe analysis
1f 1t 1s available.

To meet these goals, the FAS processing modules operate on the fringe data
in discrete steps. Although an EDM is also a processing module, besides having
access to the global Named Knowledge, 1t also has expert data consisting of
rules, heuristics and meta-rules (how to apply rules) on how to process fringe
images. An EDM controls the processing modules via Shell Callback using the
Fringe Processing Command Language (FPCL). Because the FPCL is syntactically
rigorous and consistent in command format, processing commands can be
dynamically composed ("on the f£fly") by an EDM. This provides the EDM far
greater flexibility for controlling processing than could be accomplished by
embedding explicit commands within a control program or analysis script.
Following the completion of a processing command, an EDM can examine the
results of the action and select the next action to perform.

Implementing each EDM as an independent processing module has a number of
significant advantages over more conventional expert system approaches. First,
the EDM is to be small, efficient, and primarily a rule-based decision maker,
using 1ts knowledge to direct the activities of other processing modules. This
division of activities allows CPU intensive fringe and image processing work to
be performed in appropriate computational languages like Fortran yet still
allows using an appropriate language (OPS5) for developing the rule-based

18

system.

Second, the limited scope of each EDM simplifies the development of the
expert system rule-base by helping to minimize unexpected side effects caused
by adding new rules to an existing system. On large rule-based systems with
many complicated rules, great care must be taken that adding a new rule will
not affect the operation of other rules and cause unwanted side effects. By
keeping the rule-base of each EDM small and relevant to the problem it is
addressing, side effects will be minimized and the EDM will be easier to
develop and maintain.

Third, by limiting the scope of specialization for each EDM, a processing
environment becomes possible 1in which the system can be easily augmented with
nev expert knowledge in incremental steps as needed. For example, if an EDM
requires information or processing to be performed not within its area of
expertise, 1t requests the assistance of a consultant EDM. From the viewpoint
of the FAS monitor, the consultant EDM is just another EDM which has taken over
control and is sending back commands for various processing modules to perform.
When the consultant finishes performing its task, it exits, leaving behind for
the 1nitial EDM to use, the knowledge 1t has acquired and the processing it has
had performed.

Establishing Requirements for a Fringe Analysis System

While the primary goal of this project was to design a software
architecture for a "state-of-the-art", modular, digital Fringe Analysis System,
1t was also necessary to insure that the system KMS would propose would be
appropriately focused and have the flexibility to meet the anticipated
requirements for both NASA and private industry.

Consequently, during the Phase I study, Dr. Charles Vest evaluated the
current requirements of NASA and private industry for a general-purpose,
holographic fringe processing system.

Dr. Vest’s study concluded that:

o The primary area for initial FAS development work to address 1is the
aerodynamics field. Once a fully functional FAS has been developed,
applications to HNDT (Holographic Non-Destructive Testing) may open up.
Until that time, numerous applications exist in the aerodynamics field
vhich would benefit immediately by the development of a FAS.

o Data analysis for the projects at the NASA Langley Cryogenic Wind Tunnel
and at NASA Ames (among others) would benefit by the development of a FAS.

o For holographic fringe analysis to realize its potential, significant new
research must be done to develop fringe location software and to automate
the data reduction process as much as possible.

o There currently 1s no commercially-available fringe analysis package or
equipment which is fully suitable for the applications at NASA Langley or
Ames. Moreover, although great strides have been made in recent months
fringe-finding algorithms, no general-purpose systems exist which have the
capability of being adapted to a wide variety of problems.

19

o The complexity of the fringe analysis problem may lend it self to use of a
rule-based or expert system.

Evaluation of Fringe Analysis Algorithms

To gain experience in fringe analysis problems typically encountered by
aerodynamicists, an existing KMS fringe contour location package was used to
analyze holographic fringe images acquired during both NASA Langley wind tunnel
tests and an Ames Rotocraft experaiments.

The KMS fringe analysis package 1s designed to work with fringe 1images
acquired in laser-plasma interaction experiments which have:

o Simple, regular shapes.

o Monotonically increasing spatial frequency and decreasing fringe
curvature.

o Lowv signal to noise ratio with the spatial frequency of the noise
close to that of the fringe spacing.

o High granularity.

The package 1s able to routinely locate fringe contours embedded in noisy,
low-contrast fringe data. Its approach is to 1linearly transform the
coordinates of each curved fringe into a nearly vertical straight line, perform
a sliading window row average to enhance the signal to noise ratio, locate the
peak coordinates in each row for that fringe, and then transform the peak loci
back into the initial fringe coordinate system.

To accomplish this, an approximate piece-wise-linear "guess" or first
approximation is made for the shape of a fringe as is seen in Figure 4. This
first approximation may be input from a stored template, calculated, or input
interactively by an operator.

A linear transformation (shift) array i1s then constructed to transform the

initial approximation fringe into a straight vertical line. This
transformation is applied to each row of the digitally stored image and the
signal to noise ratio of the target fringe, which is now approximately
vertical, is enhanced by row averaging. The resulting peak coordinates
representing points along the fringe center are converted back into the initial
coordinate system by inverting the transform.
The existing €fringe analysis package proved to be successful at
semi-automatically extracting many fringe contours from wind tunnel
inteferograms. Figure 5 shows the results of using this package to trace
fringe contours obtained from two different sources. In Figure 5a, the flow
field contours of a conical test object i1in a NASA Langley wind tunnel were
located. Note that the fringe contours are correctly followed across the shock
boundary. In Figure 5b, even the high density flow field contours generated at
the Ames Rotocraft experiment were located.

20

While successful with this fringe data, the package still needs
considerable improvement before it can be used with many different types of
fringe data. While the analysis package effectively performs the functions for
which it was designed, it is an example of using a technique based on specific
knowledge of the field being examined - namely that the the basic topological
structure and orientation of the £ringe patterns produced in the plasma
experiments 1s known.

Moreover, use of the package still requires considerable operator
interaction particularly for analyzing strongly curved, complex fringe data or
tracking fringes through a shock. It 1s easy for the software to get confused
at a shock boundary and mistrack a fringe contour particularly if the
discontinuity is sharp. The package’s limitations under certain conditions
suggest a number of areas which warrant further development, namely:

- Methods for locating and identifying shock boundaraies.

- Methods for correctly matching up <fringes across shock boundary
layers.

- Algorithms for tracking and extrapolating high density fringe contours
through a boundary layer.

- Algorithms for locating highly curved (circular, closed) fringes.

- Methods for decreasing operator interaction for analyzing complex
fringe data.

21

Fringe Straightening

Guess k Translate Rows . Aver:;gé Rows

Figure 4. Using fringe straightening to enhance fringe
signal to noise ratio.

22

(a) ()

Figure 5. Semi-automatic Fringe Contour Location.
(Bright line are fringe contours found by
the fringe analysis package overlaying the
digitized fringe photographs)

(a) Langley Conical Test object
(b) Ames Rotocraft experiment

‘ Validation Studies of The Proposed FAS Architecture

As the architectural design of the FAS evolved, the conceptual design was
converted to software and the functionality of the implementation evaluated.
Based on the results of the evaluations, the design was modified or refined.
Concept testing and evaluation was performed in the following areas.

o A prototype FAS Monitor was developed supporting the majority of its final
design goals with the exception of Shell-Callback.

o A prototype fringe processing language supporting five external and three
internal commands was tested.

o Five fringe processing modules were developed to evaluate the problems
involved . in creating 'a device independent Fringe Processing Command
Language.

o Subroutines were developed to provide ready access to the Analysis. Shell’s
Named Knowledge elements. : '

o NASA supplied photographs of fringe data were analyzed to demonstrate the
suitability of our Fringe -analysis algorithms for analyzing holographic
‘wind tunnel fringe data. :

a
L

o OPS5 programs and interface subroutines were developed to demonstrate the
feasibility of using OPS5 for writing Expert Decision Modules.

o A simple Fringe Analysis Advisor was developed in OPS5 te evaluate the

difficulty of using a rule based approach for developing a fringe locator
EDNM.

The intensive "design-evaluate-redesign" cycle applied to all parts of the FAS,
has led to an architecture that is demonstrably applicable to analyzing
holographic fringe data. Moreover, the architecture’s flexibility potentially
lends itself to applications other than fringe analysis.

24

10.
11,

12.

References

G. Lee, Application of Holography to Flow Visualization, NASA Technical
Memorandum 84325 (1984).

A. V. Burner and W. K. Goad, Combined Siggle-Pulse Holography and
Time-Resolved Laser Schlieren for Flow Visualization, NASA Technical
Memorandum 83109 (1981).

V. K. Goad and A. V. Burner, Holographic Flov Visualization at the
Langley Expansion Tube, NASA Technical Memorandum 83116 (1981).

G. Lee, D. Buell, J. Licursi, and J. Craig, AIAA Journal 22, 504 (1984).
L. T. Clark et al.,J. Fluid Eng. 99,737 (1977).

R. V. Menzel and L. D. Vandergriff, Program for Automated Holographic
Data Reduction, AEDC-TR-80-39, Aug. 1981,

F. Becker and Yung H. Yu, Opt. Eng. 429 (1985).

F. Becker, G. Meier, and H. Vegner, SPIE Appl. of Digital Image Processing
IV 359,386 (1982).

F. Becker, G. Meier, and H. Vegner, Development of an Instrument for
Evaluation of Interferograms, NASA Technical Memorandum NASA TM-76673
(1981).

J. Kittleson, A Holographic Interferometry Technique for Measurig%
Transonic Flow Near a Rotor Blade, NASA Technical Memorandum 84405 (1984).
A. M. Nazif and M. D. Levine, IEEE Trans. on Pattern Analysis and
Machine Intelligence PAMI-6(5), Sept. 1984.

W. R. Funnell, App. Opt., 22, 3245 (1981).

25

APPENDIX A

FUNCTIONAL DESCRIPTION OF ANALYSIS SHELL OPERATION

The phrase "Analysis Shell" is used to describe the analysis environment for
two reasons. First, the FAS Monitor program invoked by the operator serves as a
shell which holds both the processing modules and the global knowledge which any
module may access. Second, the processing takes place in a series of nested
processing levels or shells. Level O is the operator or script file input level.

The FAS Monitor translates Level O input into a command which is passed to a
processing module in a Level 1 subprocess. Commands generated by active Level N
module are passed back to the FAS Monitor (Shell-Callback) which sends the command
back for processing in a Level N+1 subprocess. If the Level N+1 subprocess does not
yet exist it will be created and initialized prior to dispatching the command to it.
Shell-Callback can proceed up to the maximum nesting of processing levels allowed
(an installation dependent parameter).

The FAS Monitor program performs the following functions when activated by an
operator command.

o Creates the Analysis Shell environment

- Creates the FAS-specific job logical name table

- Creates the primary subprocess and initializes it

- Executes a FAS initialization file if requested

- Executes any command-line specified processing script
- Prompts the operator for a command

o Provides for operator control of the FAS
0 Serves as the central command/communication dispatcher

- Parses and sends operator commands to the appropriate
internal subroutines, external FAS modules or DCL

- Parses and sends script file commands to the appropriate
internal subroutines, external FAS modules or DCL

- Receives command requests from a processing module or EDM for
the services of another module and retransmits that command
to the appropriate module. Returns control to the original
module when the secondary processing module terminates

A-1

FUNCTIONAL DESCRIPTYON OF ANALYSYS SHELL OPERATION

o Maintains and manages the subprocesses within which the FAS processing and
EDM modules run.

o Manages the process job logical name table in which the "Named Knowiedge"
data is stored.

o Manages script files.

- Logs operator commands to script files

- Executes command input from script files

- Conditiomally executes 3cript commamds

- Branches to specific séctiohs of the script file

In Figure Al, the interaction betveen the FAS monitor program, the operator, a
Shell initialization script, an &nalysis ¢éntrol script file, a logging file, an
EDM, a processing module and Shell Callback is schematically shown. In this
particular example, the operatér 3Started the monitor program which created the
Analysis Shell, invbked an initialization File and then started taking commands from
the script file specified by the operator who started the FAS Monitor program. The
script file, turned on loggiftg (to track what commands the Expert Decision Module
would select) and then invoked the EOM which started processing the fringe image to
locate fringe contours. At some point, the EDM invoked the PM2 processing module,
and in the figure is waiting for PM2 to complete its processing and update the Named
Knovledge data bBase. Also in seeh in the figure is an empty subprocess which is
available to take a Shéll Callback comdhd from the PM2 processing module if
necessary.

A-2

FUNCTIONAL DESCRIPTION OF ANALYSIS SHELL OPERATION

FAS Shell Callback

Operator imtialization Script Log File
Level 0 FAS Monitor
i \
| 4caliback % Callback |}
Command! | ;
i PMO
H
Leve! 1 ? |
: PM1
Command
Level 2 3Phﬂ2
PM3
[} ¥
Level 3 PM4
®
°
°
PMn
4 ——

""‘""""‘""‘T":""""""":

L

Named Knowledge

Figure Al. The FAS in Action

A-3

APPENDIX B

DETAILED DESCRIPTION OF THE FAS MONITOR PROGRAM

NOTE

The following sections assume the reader is familiar with VAX/VMS
softvare terminology. Their ainclusion in this report serves to
document the detailed software design work accomplished during the
contract period. Unless other wise noted, the FAS Analysis Shell as
described herein, has been prototyped and tested for functionality.

B.1 Creation And Initialization Of The Analysis Shell Environment

Assuming the FAS software has been installed on a VAX system correctly, an

operator
enters t

Normally

Once the

1.

wishing to wuse the FAS software logs on to the VAX host computer, and
he command

SFAS [Script_File]
, the FAS command is defined to be
FAS:==SFASSLIBRARY:FAS Monitor
FAS monitor is invoked the following initialization steps are performed.

If a script file is specified on the command line, the file name 1is saved
so that the script file may be invoked as soon as all initialization is
complete. This facility is useful when reducing numerous fringes of the
same type whose analysis can be expected to follow along relatively similar
lines. The name of the script file may be any 1legal VMS File name.
However, if the file type is omitted, the file type .FAS is assumed
(Designed but not yet implemented).

The FAS Monitor creates the FAS Job Logical Name Table. The maximum size
this table 1is controlled by the operator’s account profile. The size of
the table needed depends on the complexity of the analysis problem.
(Partially implemented)

DETATLED DESCRIPTION OF THE FAS ‘MONITOR PROGRAM

The FAS Monitor creates the primary subprocess for communication with the
Level 1 -processing modules and establishes an exit handler to insure that
the subprocess does not vanish without notifying the the FAS Monitor.

Basic initialization of the primary subprocess is performed to a) €stablish
the terminal as the input device, b) disable extraneous error messages, and
c) establish the FAS command to the subprocess DCL command table.

If the Logical Name FASSINITIALIZE 1s defined, the FAS Monitor invokes this
name as an initialization script file. This script file can be used to
load the knowledge base with information which is common for all the fringe
analysis tasks to be performed (Designed but mot yet implewented).

If a script file was specified on the initial FAS command 1line, it is
invoked (Desigmed but not yet implemented).

¥hen proeessing of script files 1s complete, the operator is prompted for a
interactive command with,

FAS>

B.1.1 oOperator Control Of The FAS

When the FAS> prompt appears on the operators terminal, the operator can enter
four types of commands, namely

1.

2.

An internal command. The input is first checked to see if it exists in the
internal command table. 1Internal commands are handled within the FAS
Monitor program itself. The internal commands supported include:

1. EXIT. 1If EXIT is entered in response to a FAS> prompt, or read from a
script file, all open files are closed, all analysis ceases, and the
FAS Monitor, exits returning the user to the VAX/VMS DCL level.

2. LOG <file-spec>. When the LOG command is used all operator commands
entered to the FAS> prompt will be logged to the file specified by the
<file-spec>. If the <file-spec> is omitted, the log file defaults to
FAS_COMMAND.FAS. If the file type is omitted, the file type defaults
to .FAS. Operator commands will be logged to the file wuntil the
operator enters a NOLOG command.

3. NOLOG. The NOLOG command turns command logging off and closes the open
log file.

4. HELP. The HELP command accesses the FAS help file which provides the
operator wvith help on using the FAS commands.

A command to open a script file for processing. If the first character of
any input stream is an ’'@’, it is assumed that all following characters are
the name of a script file. An attempt is then made to open a script file
wvith that name and if successful the script file is read in a line at a

B-2

DETATLED DESCRIPTION OF THE FAS MONITOR PROGRAM

time, and each command line 1s processed as if i1t were an operator input.
Script files also can reference script files up to 8 levels deep.

3. A command to send to the operating system. Any command preceeded with a
'S’ is assumed to be a DCL command and is sent directly to the DCL CLI
(command line 1interpreter) for processing in the appropriate 1level
subprocess. The exit status of each DCL command is checked, and if the
status 1s not success, the FAS will issue an appropriate error message.

4. All other commands are assumed to be valid FAS commands. These commands
are anternally prefixed with a "FAS/" and sent to the appropriate
subprocess level where they will be parsed by the VMS CLI routines, and the
required processing module will be activated.

B.1.2 Subprocess Control And FAS Monitor Communication

Two types of command communication channels exist between the FAS Monitor and
the processing modules. The first is the command channel. which is a bidirectional
channel between the operator terminal and main process and the subprocess. This
channel is set up using the FAS Subprocess control subroutine package which provides
three basic subroutine functions

SUB_CREATE -- Create a subprocess
SUB_SEND -- Send a command line to the subprocess
SUB_END -- Delete a subprocess

WVhen a subprocess is created, a mailbox 1s established as SYSSINPUT for that
subprocess. From this point on, the copy of DCL running in the subprocess will take
1ts commands from the mailbox. The SUB CREATE subroutine returns a pointer, so that
the SUB SEND and SUB END routines can direct their commands to the correct
subprocess. As soon as the subprocess is established and an exit handler for it
established, the subprocess is initialized by 1) the FAS command to be a valid CLI
command, and 2) setting the SYSSINPUT to be identical to the SYSSOUTPUT device (the
terminal) for all other images running in the subprocess (but DCL still takes its
commands from the Mailbox).

The second communication channel is the Shell-Callback mailbox (Designed but
not yet implemented). When a Level N processing module requests additional
concurrent processing of an additional FAS command, it writes the command to the
Shell-Callback mailbox and hibernates. When the command is written, the FAS Monitor
is notified via an AST routine, reads in the command requested from the Level N
module and dispatches the command to a Level N+1 subprocess. When the Level N+l
subprocess completes, the FAS Monitor then wakes the Level N subprocess.

B.2 Use 0f Job Logical Names Tables

The FAS knowledge base is stored both as Named Knowledge in the FAS Job Logical
Name Table and as ancillary data and image files. Knowledge may be placed into the
logical name table by executing a DEFINE command in the specified subprocess or
using the Put Named Knowledge subroutine (Designed but not yet implemented).
Knowledge may be read from the logical name table using the Get_Named Knowledge

-

B-3

DETAILED DESCRIPTION OF THE FAS MONITOR PROGRAM

subroutine (Partially implemented).

B.3 Detailed FAS Monitor Logic Flow

In order to understand the operation of the FAS, it is necessary to examine in
detail a number of 1its capabilities and the logic flow of a command as it passes
through the system.

B.3.1 FAS Command Processing

The FAS can take commands from three sources, the operator, a script file, or a
processing module via ShellCallback. The processing of a command 1s identical
regardless of the command source. First the command line is normalized to a
standard format. Leading and trailing spaces or tabs are removed. All characters
are converted to upper case and multiple spaces converted to a single space except
for strings enclosed in quotes (Partially implemented)

Each input command line is checked to see what type of command it contains.
The FAS Monitor checks to see if the command is

1. An internal command. Internal commands are contained in a CLD file
SHELLCMD.CLD. The CLD file 1is compiled and linked with the FAS monitor
program. The SHELLCMD.CLD file specifies the action routine to
automatically invoke if a command is present on the command line.

2. A command to open a script file for input. If an '@’ sign is encountered,
the rest of the command line is taken to be a VMS file specifier and the
Shell attempts to open a file of that name to use for command input.

3. A DCL command. If a leading ’'$’ is emcountered, the rest of the command
line 1s assumed to be a VMS command and is sent to DCL for processing.

4, A FAS command. Any other legal input will be assumed to be a valid FAS

command. Illegal input will generate an error message.

After each command is processed by a subprocess, the Shell will check the exit
status of the module processing the command and will display an error message if the
status is not successful. It will do this by sending a command to that subprocess
to place the modules exit status in the Job Logical Name table where the shell can
read it.

B.3.2 Direct Operator Command
Any time the
FAS>

prompt is present, the operator can enter a commana wvhich will be parsed and
dispatched appropriately. Vhenever, the operator is prompted with FAS>, it means

B-4

DETAILED DESCRIPTION OF THE FAS MONITOR PROGRAM

that processing has stopped and that the shell is at Level O.

B.3.3 Script File Processing

Whenever a leading "@" sign is encountered in a command line, the remainder of
the command line is considered to be the name of a a VMS script file. If the script
file exists, the Shell opens the file, reads in the commands a line at a time,
normalizes the 1input lines, parses the command line, and executes the command line
exactly as 1f it had been input by an operator.

Command scripts may be nested up to 8 levels deep but commands are taken only
from the most deeply nested script file until that script file is closed or a more
deeply nested script file is opened.

Normally the contents of the script files are commands to be sent to external
modules. However, script file processing supports three commands which are used to
control the script processing itself. These are

- Labels within the script file. (Designed but not implemented)
- The GOTO command. (Designed but not implemented)
- The IF command. (Designed but not implemented)

The GOTO and the label are designed so that it is possible to branch from one
section of the script file to the label specified with the GOTO command. When a
GOTO <label> command is encountered, the script file will be repositioned to its
start and read in a line at a time searching for the label. When the label is
found, script file processing will resume at that point. If the label is not found,
processing will terminate and an error message will be displayed.

The IF command will allow for conditional branching and conditional execution
of script file commands based on matching criteria in the Shell global data base.

B.3.4 Shell Call-Back

NOTE

Shell-Callback is designed but not yet implemented

After each subprocess main communication channel is established, a
Shell-Callback mailbox communication channel between the main process and each
subprocess will also be established and the Shell will establish a write attention
AST for it.

Vhen a processing module wishes concurrent processing to be done by another
module, it will write the command to be processed to the Callback mailbox and
hibernate. The Shell will be notified of the write by the write attention AST which
will set a flag to show that a Callback command is incoming (Callback mailbox full

B-5

DETAILED DESCRIPTION OF THE FAS MONITOR PROGRAM

flag), and vake the main process. The main process will again get ready for the
next input command but because the Callback flag is set will read the command from
the Callback mailbox.

Prior to 1issuing the command to a subprocess, the Shell will increment a
Callback 1level counter to show at what depth callback commands are being processed,
clear the Callback Mailbox full flag and then send off the command to the next level
deeper subprocess (and hibernate until awakened by an AST). When the main process
again is woken up, it will check to see if the Mailbox-full flag is set. If it is
not set, the Callback command completed so the Call back level counter will be
decremented and the proper subprocess notified (by waking it up) that the command
completed. If it is set, another callback command will be processed.

B-6

APPENDIX C

FAS INTER-OBJECT COMMUNICATION ARCHITECTURE

Because the FAS is implemented as a collection of independent software modules,
it 1s inherently very flexible. This flexibility is forged into a coherent analysis
package by imposing a common communication architecture onto the modules in the
system.

The Communication Architecture views the FAS as a set of objects each of which
is able to perform four generic Analysis Shell £functions in addition to
object-specific analysis functions. The objects supported by the Analysis Shell
are:

The FAS operator.

Shell Script Files.

Fringe processing modules.
Expert Decision modules.

0o O 0O O

While the analysis functions to be performed are primarily in the image
analysis and fringe analysis domains, the FAS architecture allows any type of
analysis to be performed. As seen in Figure Cl, each object may either send or
receive information to or from the Analysis Shell. This information may either be
commands directing the next action to take or fringe knowledge generated by or
needed for the numerical processing of the fringe data. Specifically, each object
can:

0 receive an action command and take the requested action.
o0 request knowvledge by name from the FAS global knowledge base.

o create or modify knowledge which it then places in the FAS global
knowledge base.

o send/relay additional commands through the Monitor for additional
actions to by performed another (but unknown) object.

c-1

FAS INTER-OBJECT COMMUNICATION ARCHITECTURE

FAS Shell Environment

[)
Receive Command Send Command
From Shell To Shell
FAS OBJECT
Receive Knowiedge Put Knowliedge
From Shell in Shell
. J

Figure Cl. The Generic FAS Object

The FAS Monitor’s primary function is the communication of information (action
commands and fringe knowledge) between the various objects in the FAS. To do this
the FAS Monitor establishes a processing environment in which it creates and
maintains communication channels between itself and the processing modules.

Communication between the objects 1s facilitated by the common Fringe
Processing Command Language shared between them. Whether a command is input by an
operator, read from a script file, or passed back to the FAS Monitor from an EDM,
the command format 1is identical. Moreover, consistent command syntax rules and
device independence, allow an EDM to construct a command "on-the-fly" without having
to consider a wide variety of special cases.

Figure C2 schematically shows four FAS objects with active communication
channels. In this figure, two features should be noted. First, while each object
has an "open" and "active" communication channel, only the last object in the chain
is executing code. Second, since each object has independent access to all elements
of the FAS Knowledge base, if module A activates module B, module A must assume that
any or all elements of the knowledge base may have been modified while module B was
active.

Cc-2

FAS INTER-OBJECT COMMUNICATION ARCHITRCTURE

FAS Communication Paths

kY

¢ ! ¢ t

Processing Processing
Operator Module EDM Module

¥ 7 T+ T3

s/
A,
s,
s/
ey

‘e

o/
Z

A A S A S A A A M AN TN AR SN N S MDA
ATNNNTINIIINCTINNANT - NNTHNNNHY - 20000 CORUAANMARY AMNNRNRNRRRRNS

Named Knowiedge

Figure C2. FAS Object Communication Paths

Cc-3

APPENDIX D

NAMED KNOWLEDGE ARCHITECTURE AND VMS LOGICAL NAMES

D.1 Establishing Knowledge Naming Conventions

During the course of development of the FAS, a 1lexicon of names for the
knowledge created and requested by modules will be developed. By knowing the name
specified for a given piece of information, any module may request or update that
information in an unambiguous manner.

While it will be possible to define "Alias" names to point to information
specified by another name, the initial FAS development work will not attempt to
address the numerous problems inherent in knowledge representation ambiguities which
current Al research into Natural Languages addresses.

For example, while the English language allows essentially equivalent knowledge
to be transferred in a variety of ways, the interpretation of the transferred
information depends on significant amounts of knowledge external to the information
i1tself.

As a case in point, consider a simple request such as "How many fringes are
present". Valid answers could include "24", two dozen, or "Too Many". Of these,
ansvers the first is numeric, the second is numeric but requires a conversion to
numeric format, and the third is a totally fuzzy concept which would require all FAS
modules to know what the definition of "Too Many" is.

Instead, the Named Knowledge passed between the processing modules will be
encoded 1nto pre-defined, unambiguous data types. If a knowledge element is to be a
numeric quantity, only a numeric quantity will be allowed to be encoded into a
numeric knowledge element.

D.2 Named Knowledge Data Types

Named Knowledge is data (knowledge) of varying types encoded as ASCII text strings
and stored by name. The text strings may store arbitrary data including names of
additional Named Knowledge data elements. The VAX/VMS implementation of the FAS
Architecture will store this data in the VMS Job Logical Name table. However, a
non-VMS implementation of this architecture could provide similar functionality via
common areas and linked lists.

NAMED KNOVLEDGE ARCHITECTURE AND VMS LOGICAL NAMES

To provide these capabilities each piece of named knowledge has three
attributes.

o The name by which the information may be retrieved.

o The data type of the knowvledge so that the ASCII text may be translated
into the proper data format by a routine which knows only the name for the
knowledge.

o The knowledge itself which is encoded as an ASCII text string.

Each Named Knowvledge element name is composed of two parts; the type designator
and the data name. Together, they form a Named Knovledge element which can be
translated into an equivalence text string in which the data is stored. The type
designator specifies the format that the text data is to be translated into (text, a
real number, an integer, etc.). Using simple character tests, a subroutine can
rapidly decide which data type the name represents and translate the data
appropriately. For example:

FAS F_name VAX/VMS filename

FAS_ I name Integer data

FAS L _name Logical data (True/False)
FAS P _name Knovledge element pointer
FAS _R_name Real number data

FAS T name Textual data

D.3 Named Knowvledge States

Vhen a module requests a named knowledge element two responses can occur.
Either the information exists and the Shell returns the current information to the
module, or the information does not exist at all and the Shell notifies the module
that the information does not exist.

If the information does not exist, the module may "know" howv such information
might be obtained. For example, it might pass a request back through the Shell to
an EDM to go find that piece of knowledge.

If the knowledge can be found, the module is notified that it is available and
continues. If the requested knowledge can not be found, and error message will
explain why and the returned Shell Call-back status will inform the requesting
module that the information still can not be obtained. If the unavailable knowledge
is required for continued processing, the module will halt, display the name of the
unavailable Named Knowvledge element, and provide an opportunity for the
programmer/operator to investigate why the knowledge is not available.

D.4 VMS Logical Names

Each process on a VAX/VMS system can create a Logical Name and define it to be
some arbitrary text string. The Logical Name and the text string associated with it
may each be up to 255 alpha-numeric characters long. If the logical name is created

-

D-2

A

NAMED KNOVLEDGE ARCHITECTURE AND VMS LOGICAL NAMES

in the Job Logical Name table, both the main VMS subprocess (the Shell) and each
subprocess (the processing modules) can access a logical name and request that it be
translated into its defined text string.

In addition to storing simple text strings, logical names can themselves store

logical names (just another text string) and any program can request that the
additional logical name also be translated into its’s equivalent text string.

D-3

APPENDIX E

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE

Within the FAS, images are manipulated by using the Fringe Processing Command
Language. The language, and associated processing modules, are designed to support
device 1independence. Images may be 1input using technologies such as CCD,
photo-diode or video digitizers. Images may be on disk or tape file, or reside in
VAX memory. Images may be displayed on a simple frame buffer or a complex image
processor. Device independence makes it easy to re-configure hardware for a
particular application. Devices may be svitched by simply incorporating new device
driver routines.

The Processing Module Command Language uses the following format:
[SFAS/]COMMAND/qualifier 1,...,/qualifier m parameter_l...parameter n

If the command is issued from the VMS DCL level, it must be preceeded by SFAS/ and
the FAS command must have been established for the user’s process. If the command
1s to be entered to the Shell prompt (FAS>), or is embedded in a FAS script file,
the SPAS/ prefix must be omitted.

The COMMAND specifies the FAS command to be executed. The qualifiers describe
or modify the action taken by the command. The parameters specify what the command
acts upon. The VAX/VMS CLI utility subroutines are used to parse and interpret the
command, qualifiers and parameters.

The Processing Module Commands are divided into 15 groups:

Auxiliary image information
Complex filters

Display control

Edge detection

Feature identification
Geometric transformations
Image combination

Image input/output control
Image statistics
Neighborhood operations
Noise reduction

Pixel transfer functions
Region of interest
Template generation

OO0 0000000000 O0OO0

E-1

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE
o Transforms
The following conventions are used in specifying the processing module
commands.

[] - Square brackets indicate that the enclosed item is optional.

<> - Angle brackets indicate that the enclosed item is a single
choice of several options.

| - Separate the choices.

AUXTLTARY IMAGE INFPORMATION

SCALE - Return the scale factor (pixels/inch) of an image.
SSCALE <image> file specification

<image> = channel number | file specification

COMPLEX FILTERS

COMPLEX FILTER - Apply a complex filter to an image.

SCOMPLEX FILTER [<roi>] <filter_type> <image>

<roi> = /ROI=INSIDE | /ROI=OUTSIDE
<filter type> = /CONSTANT | /CIRCLE | /SINUSOID | /GAUSSIAN |
/HANNING | /BARTLETT

<image>

file_specification | channel number

DISPLAY CONTROL

CLEAR - Clear (zero) an image or overlay.
SCLEAR [<roi>] <image>
<roi> = /ROI=INSIDE | /7ROI=OUTSIDE
<image> = channel number | file specification | /OVERLAY
DISPLAY - Display a channel in either black & white or pseudo color. The pixels may
be displayed with a continuous wedge or discrete steps.
SDISPLAY [<roi>] <type> <format> /LOV_LIMIT=z 1 /UPPER_LIMIT=z 2 Channel Number

<roi>
{type>

/ROI=INSIDE | /ROI=-OUTSIDE
/PSEUDO | /GREY

E-2

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE
<format> = /CONTINUOUS | /DISCRETE=number of divisionms

INITIALIZE - Initialize the 1image display.

SINITIALIZE

TEXT - Write text onto the graphic overlay. The text may be included in the call,
or may be obtained from the keyboard. The starting location may be obtained from
the cursor, keyboard or included in the call.

STEXT <text string> <location>

<location>
<{text_string>

/CURSOR | /KEYBOARD | /COORDS=(x 1,y 1)
/STRING="..." | /STRING=KEYBOARD |
/STRING=file specification

VECTOR - Draw a vector into the graphic overlay. The pixel coordinates may be
included in the call, or may be obtained from the cursor or from the keyboard.

SVECTOR <coordinates>

<coordinates> = /CURSOR | /KEYBOARD | /COORDS=(x_l,y 1,x 2,y 2)

VIEV - View an image in a channel.

SVIEV channel number

EDGE DETECTION

EDGE - Apply edge detection operators to an image.
SEDGE [<roi>] <detection_type> <image>
/ROI=INSIDE /ROI=0UTSIDE

/GRADIENT=POINT /GRADIENT=AREA[MAXIMUM] |

/GRADIENT=PLUS X /GRADIENT=PLUS ¥ |

<roi> |
|

/GRADIENT=MINUS X | /GRADIENT=MINUS Y |
|
I

<detection_type>

/FILL_IN=SIMPLE | /FILL_IN=ADAPTIVE | /CLOSE_CURVE

<image> channal_number file specification

FEATURE IDENTTIFICATION

DETECT - Detect different classes of objects in an image and put the locations in a
file. The locations may be boundary edges, centroids or an object mask.

SDETECT [<roi>] <feature> <output> <image> file specification

<roi> = /ROI=INSIDE | /ROI=OUTSIDE

E-3

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE

<feature> = /FRINGE | /OBJECT | /SHOCK
<output> = /BOUNDARY | /CENTROID | /MASK
<image> = channel number | file specification

GEOMETRIC TRANSFORMATIONS

GEOMETRY - Apply geometric transformations to a image.
SGEOMETRY [<roi>] <transform> <image>

<roi>
<transform>

/ROI=INSIDE | /ROI=OUTSIDE
/SHIFT=(x_columns,y_rovs) |
/MINIFY=AVERAGE /FACTOR=factor |
/MINIFY=DECIMATE /FACTOR=factor |
/MAGNIFY=INTERPOLATE /FACTOR=factor |
l
I
I

/MAGNIFY=REPLICATE /FACTOR=factor
/ROTATE=angle

/X FLIP | /Y FLIP

/EXCHANGE | /TRANSPOSE

channel number | file_specification

<image>

VARP - Apply a spatial transformation to an image. The control grid may be input
from a file or interactively generated.

SVARP <control_input> <interpolation_method> <image>

<control_input> = /INTERACTIVE | /GRID=file specification
<{interpolation_method> = /NEAREST NEIGHBOR | /BILINEAR
<image> = channel number | file_specification

IMAGE COMBINATION

ARITHMETIC - Apply arithmetic operations to images or constants and put the result
into an 1mage. Underflow and overflow are set to O and 255 respectively. To
prevent underflow or overflow, the input images may be scaled (divided by 2) when
performing addition or subtraction.

SARITHMETIC [<roi>] <operation> <image_l1> <image 2> <output_image>

<roi> = /ROI=INSIDE | /7ROI=0UTSIDE
<operation> = /ADD [=SCALED] | /SUBTRACT [=SCALED] | /MULTIPLY | /DIVIDE
<image 1> = channel number | file specification | constant
<image_2> = channel number | file specification | constant
= I

<output_image> channelznumber file:specification

E-4

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE

LOGICAL - Apply logical operation to images or constants and put the result into an
image.

SLOGICAL [<roi>] <operation> <image 1> <image 2> <output_image>

<roi> = /ROI=INSIDE | /ROI=OUTSIDE
<operation> = /AND | /OR | /XOR
<image 1> = channel number | file specification | constant
<image_2> = channel number | file specification | constant

<output_image> channel:number | file:specification

INPUT/OUTPUT CONTROL

CALIBRATE - Calibrate the digitizer for both bias and gain.

SCALIBRATE

COPY - Copy an image.
SCOPY [<roi>] <input_image> <output_image>
<roi>

<input_image>
<output_image>

/ROI=INSIDE | /ROI=OUTSIDE
channel number | file specification
channel number | file specification

CORRECT - Use the bias and gain values created by CALIBRATE to correct a digitized
1mage.

SCORRECT <image>
<image> = Channel Number | File specification
DIGITIZE - Digitize an image into a channel. Digitizer noise reduction may be
performed by averaging a number (power of 2) images together.
SDIGITIZE [<roi>] [/AVERAGE=number] channel number

<roi> = /ROI=INSIDE | /ROI=OUTSIDE

IMAGE STATISTICS

PROFILE - Obtain the intensity profile of the line between two pixels and output it
to a file. The pixel coordinates may be included in the call, or may be obtained
from the cursor or from the keyboard. A line average may be specified and the
profile may be displayed on the overlay plane.

SPROFILE <coordinates> [/AVERAGE=] [/DISPLAY] <image> file specification

<coordinates> = /CURSOR | /KEYBOARD | /COORDS=(x_1,y_l,x_2,y_2)

E-5

FRINGE PROCESSINEG COMMAND LANGUAGE ARCEITECTURE
<image> = channel number | file_specification
HISTOGRAM - Compute the histogram of an image and output it to a file. Optionally,
the histogram may be displayed on the overlay plane.
SHISTOGRAM [<roi>] [/DISPLAY] <image> file_specification
<roi> = /ROI=INSIDE | /ROI=OUTSIDE

<image>_ input = channel number | file_ specification
STATISTICS - Find the min, max and compute the mean, mode and standard deviation of
an image and output them to a file.
SSTATISTICS [<roi>] <image> file_ specification

/ROI=INSIDE | /ROI=OUTSIDE
channel number | file specification

<roi>
<{image>

NEIGHBORHOOD OPERATIONS

FILTER - Apply a filter to an image. The filter types are mean, gaussian, laplacian
or arbitrary. If the filter type is /MEAN, the window dimensions may be included in
the command or may be input from the keybeard.

If the filter type is /ARBITRARY, the kernel may be input from the keyboard or
from a file.

SFILTER {<roi>] <operation> <image>

<roi> = /ROI=INSIDE | /ROI=0UTSIDE
<operation> = /MEAN=KEYBOARD | /MEAN=(x_size,y size) | /GAUSSIAN |
/LAPLACIAN | /ARBITRARY=KEYBOARD |

/ARBITRARY=file specification

<image> = channel number | file specification

NOISE REDUCTION

NOISE REDUCTION - Apply noise reduction operators to an image.

SNOISE _REDUCTION [<roi>] <reduction_type> <image>

<roi> = /ROI=INSIDE | /ROI=0UTSIDE i
<reduction_type> = /MODAL | /70DD=DOT |
/0DD=LINE | /MEDIAN
l

<image>

channel number | file specification

E-6

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE

PIXEL TRANSFER FUNCTIONS

BQUALTIZE - Perform a histogram equalization on the image.
SEQUALIZE [<roi>] <image>

<roi>
<1image>

/ROI=INSIDE | /ROI=0UTSIDE
channel number | file specification

LINEAR FUNCTION - Use an arbitrary piece-wise linear function to modify the lookup
table or pixel values in an image.

SLINEAR FUNCTION [<roi>] <modify> /FUNCTION=file specification <image>

<roi> = /ROI=INSIDE | /ROI=OUTSIDE
<modify> = /MODIFY=IMAGE | /MODIFY=LUT
<image> = channel number | file specification

NORMALIZE - Apply a contrast stretch to the image so that the lowest pixel value is
0 and the highest pixel value is 255. The stretch may be applied to an image or to
the lookup table.

SNORMALIZE [<roi>] <modify> <image>

<roi> = /ROI=INSIDE | /ROI=OUTSIDE
<modify> = /MODIFY=IMAGE | /MODIFY=LUT
<image> = channel number | file specification

POINT CHANGE - Change the lookup table or image so that all pixels with value 2z_1
are changed to value z 2.

SPOINT_CHANGE [<roi>] <modify> /IN=z_1 /OUT=z_2 <image>

<roi> = /ROI=INSIDE | /ROI=OUTSIDE
<modify> = /MODIFY=IMAGE | /MODIFY=LUT
<image> = channel number | file specification

RANGE CHANGE - Change all pixels in the range z 1..z_2 to the range 2z _3..2 4. The
change may be made in the image or just the lookup table.

SRANGE_CHANGE [<roi>] <modify> /IN=(z_l,z_2) /0UT=(z_3,z_4) <image>

<roi> = /ROI=INSIDE | /ROI=OUTSIDE

<modify> = /MODIFY=IMAGE | /MODIFY=LUT
<image> = channel number | file specification

FRINGE PROCESSING COMMAND LANGUAGE ARCEITECTURE
THRESHOLD - Pixels >= z_1 [and <= z_2] are set to 255. All other pixels are set to
0. The change may be applied to the image or just to the lookup table.
STHRESHOLD [<roi>] <modify> /BOUND=(z_1[,z_2]) <image>
<roi> = /ROI=INSIDE | /ROI=OUTSIDE

<modify> = /MODIFY=IMAGE | /MODIFY=LUT
<image> = channel number | file. specification

REGION OF INTEREST

CREATE ROI_BOUNDARY - Create a bounded region on an image. Subsequent processing
may then "be limited to that region. The region may be rectangular or arbitrary in
shape. The boundary may be drawn in the overlay plane. The boundary coordinates
may be obtained from the keyboard, cursor, a data file or a binary image.

SCREATE_ROI [/DISPLAY) <roi_type> <coordinate input>

<roi1_type> = /RECTANGULAR <coordinate_input> |
/ARBITRARY <coordinate imput> |

/MASK <image>
<coordinate_input> = /CURSOR | /COORDINATES=file specification |
/KEYBOARD

<image> = channel number | file_specification
DELETE ROI_BOUNDARY - Delete the region of inteérest boundary. i.e. process the
vhole image.

SDELETE_ROI__BOUNDARY

TEMPLATE GENERATION

TEMPLATE - Generate mathematical images.

STEMPLATE [<roi>] <type> <image>

<roi> = /ROI=INSIDE | /ROI=OUTSIDE
{type> = /CONSTANT=n | /VHITE NOISE |
/GAUSSIAN | /RAMP T
/SINUSOID{=DAMPED]
<image> = channel number | file specification
TRANSFORMS
TRANSFORM - Apply a standard transform [or an inverse transform] to an image. The

transformed image is written to a file.

STRANSFORM [<roi>] <transform> <image> file specification

E-8

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE

<roi> = /ROI=INSIDE | /ROI=OUTSIDE
<{transform> = /HADAMARD[=INVERSE] | /FOURIER[=INVERSE]
<image> = channel number | file_specification

E-9

APPENDIX F

IMPLEMENTATION CONSIDERATIONS FOR EXPERT DECISION MODULES

To insure that an EDM could be implemented which 1s compatible with the
proposed FAS architecture, current software approaches to engineering rule based
expert systems were investigated, several possible EDM implementation languages were
evaluated and a simple EDM was implemented to test concepts.

The result of this work is an preliminary EDM functional design. The proposed
design, specifies the implementation language to be OPS5, describes how the EDM will
acquare knovledge from the analysis shell and control processing steps.

F.1 Selecting A Suitable EDM Implementation Software

It is anticipated that many fringe analysis decisions will have to be made on
the basis of knowledge which 1s imprecisely known or which is not numerically
quantifiable. Representing such knowvledge is best done via textual identifiers. To
engineer an EDM 1t 1is necessary to develop a rule based system which uses this
knowledge to control and guide the analysis of fringe data. Since conventional
procedural languages (eg, Fortran, Pascal, PL/I, etc.) are not particularly well
suited for this application, we evaluated several alternate approaches for building
EDMs.

The LISP, OPS5, and PROLOG AI languages as well as several expert system
building tools were evaluated for use in developing an EDM. In addition, using a
high level language for developing an EDM was considered.

Because an EDM is only a small part of the FAS, it is important to keep the EDM
softvare development costs 1in perspective with the entire software package.
Consequently, recently developed, and quite expensive, expert system building tools
vere ruled out. Likewise, VAX PROLOG was ruled out because it was quite expensive
and not yet available for evaluation.

Developing an inference engine using a high level 1language was also briefly
considered. After some study, it was felt that the labor costs of developing an
inference engine in house would be quite large. Consequently, in-house development
of an inference engine was also dropped from further consideration.

The remaining languages considered were LISP and OPS5 for developing the Expert
Decision Modules.

F-1

IMPLEMENTATION CONSIDERATIONS FOR EXPERT DECISION MODULES

F.1.1 Evaluation Of LISP

Two LISP packages for the VAX were evaluated, NIL and DEC’s COMMON LISP. Both
LISP implementations suffered from common failings. The LISP programs were large
and took far too much memory. In addition, LISP applications were both slow
(ponderous) to activate and to exit from the system, and seemed to require far too
much in the way of CPU resources. As a consequence, the use of LISP for developing
an EDM was dropped from serious consideration.

F.1.2 Evaluataion Of OPSS

DEC VAX OPS5 was evaluated and found to be an excellent language to use in
developing Expert Decision Modules. It is easy to use, and applications developed
using 1t activate rapidly, quickly evaluate large rule bases, and are easy to
interface to subroutines written in other VAX languages. In addition, OPS5 is a
relatively inexpensive software product, and a very inexpensive run-time only
license is available. This latter fact is important if the current research is
develop into a cost-effective technology which can be marketed.

OPS5 is a relatively new language specifically designed for building expert or
rule-based systems. Using OPS5, McDermot et. al. developed RS which later evolved
into XCON. XCON is used by DEC to configure VAX system and is widely considered to
be the single most successful example of an expert system in daily use.

OPS5 1s referred to as a "Production System". Each OPS5 program kernel
automatically incorporates and "inference engine" interpreter which repeatedly
executes a Recognize-Act cycle on all rules in working memory. Vhen a match is
found between a rule condition and the current working memory elements, the actions
to be performed upon satisfying the rule are taken and the Recognize-Act cycle is
again repeated.

OPS5 source code (the "rules") is compiled into VAX assembly code ("Threaded
code") which is assembled and linked with the OPS5 kernel to create a stand-alone
executable image. Since each OPS5 application is linked into an executable image,
OPS5 allows each application to also be linked to external subroutines written in
any supported VAX language. This provides an OPS5 application with complete access
to the VMS system services and the ability to interact with external tasks.

F.1.2.1 OPSS5 Evaluation Tests -

Prior to deciding to using OPS5 for developing EDMs, its ability to implement
basic functions we would have to perform within an EDM was evaluated. To do this we
wrote OPS5 applications to evaluate its ability to

1. Interface with external subroutines. The external subroutines would be
used to read the Named Knowledge elements, receive command lines from the
shell and pass commands back to the shell for execution.

2. Suggest fringe processing steps to take based on a collection of heuristic
fringe processing rules used by operators who process fringes.

F-2

IMPLEMENTATION CONSIDERATIONS FOR EXPERT DECISION MODULES

The test applications were developed with little difficulty and performed
efficiently confirming the belief that OPS5 is the proper language for use in
developing the FAS EDMs.

F.2 Design Considerations For Developing A FAS EDM

The architecture for a Fringe Analysis EDM has not yet been designed. However,
a number of features seem reasonable to incorporate in the final design of an EDM.

F.2.1 EDM Scope

The scope of each EDM is to be limited to a narrow scope of expertise. By
limiting each EDM to a small rule base, development of each EDM will be faster and
easier to maintain. If the knovwledge to make a decision falls outside of the
knowledge boundaries of a given EDM, a valid action to take is for the primary EDM
to invoke an second EDM possessing knowvledge in a different area. In this event,
the primary EDM may either choose to exit and pass control to the secondary EDM
(wvhich then becomes the primary) or to wait for the secondary EDM to exit and use
the knowledge gained by the secondary EDM for making subsequent decisions.

F.2.2 Implementation Languages

The EDMs will be written in OPS5 with operating system interface subroutines
written in either in Fortran or VAX Basic as appropriate.

F.2.3 EDM/Shell Interface

The possible EDM/Shell interactions are identical to the interactions any other
module can have in the FAS. However, once an EDM 1s activated, it controls the flow
of processing in the system by repeatedly passing back commands to the Shell to be
dispatched to a lower level subprocess. In effect the EDM becomes a "virtual" FAS
operator.

F-3

End of Document

