
NASA Contractor Report 177952

MODULAR DIGITAL HOLOGRAPHIC
FRINGE DATA PROCESSING SYSTEM

NASA-CR-I77952
19850026063

James G. Downward, Pamela C. Vavra,
Frederick S. Schebor, and Charles M. Vest

KMS FUSION, INC.
Ann Arbor, Michigan

Contract NAS1-17945
June 1985

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

... " " .. I I ~- ..

, 1

111
NF00710

1 Report No 2 Government Ace_Ion No

NASA CR-177952
4 Title and Subtitle

Modular Digital Holographic Fringe Data
Processing System

7 Author(s)
James G. Downward, Pamela C. Vavra,
Frederick S. Schebor and Charles M. Vest

3 ReclPllOt', Citllog No

5 Report o.tI
June 1985

6. Performing Orglnlzatlon Code

8 Performing OrlllnlZltlon Report No

~--------------------------------t 10 Work Unit No
9 Performing Organization Name and Addr ..

KMS Fusion, Inc. 11 Contract or Grant No

NASl-17945 3621 South State Road, P. O. Box 1567
Ann Arbor, MI 48106 1---------------------------------1 13 Type of Report and ~Iod Covered

12 Sponsoring Agency Name and Address
Contractor Report

National Aeronautics and Space Administration
Washington, DC 20546

14 Sponsoring Ageney Code

324-01-00-01
15 Supplementary Notes Final Report

James G. Downward, Pamela C. Vavra, and Frederick S. Schebor: KMS Fusion, Inc.
Charles M. Vest: University of Michigan, Ann Arbor, Michigan
Langley Technical Monitor: Jag J. Singh

16 Abstract

Th1s is the final report summariz1ng the work done under Small Business
Innovative Research Program Phase I Contract No. NASl-17945. Under this
contract KMS developed and tested a software architecture suitable for
reducing holographic fringe data into useful engineering data. The
results, along with a detailed description of the proposed architecture
for a Modular Digital Fringe Analysis Syst~,are presented in this report.

17 Key Words (Suggested by Author(s)) 18 Distribution Stltement

Unclassified - Unlimited
Subject Category 35

Interference Fringe, Automatic Fringe
Data Processing System, Expert
Decision I10dule

19 Security Classlf (of thiS report)

Unclassif1ed
20 SecUrity Cllulf (of thiS page)

Unclassified
21 No of Pages

53
22 PrICe

A04

N-305 For sale by the National Technical InformatIOn Service. Springfield. Virginia 22161

Table of Contents

Table of Contents ..•...•. 1
Project Summary .. 3
ProJect Objectives and Overview of Results••.....••...•...•.. S
DetaIls of Phase I Research 6

TechnI cal Background.. 6
Fringe Analysis System Architecture•......•..•.. 7

1 IntroductIon ..•..•. 7
2 The FAS ArchItectural DescriptIon••........ 8
3 The FAS Knowledge Archltecture•...•.........•..••...••• 10
4 FrInge Processing Module Architecture•....•........•••. 12

4.1 Fringe Processing Command Language• 13
4.2 Fringe Processing Module Device Independence •••.•..•••• 14
4.3 Fringe ProcessIng Module Knowledge Interface 14
4.4 FAS Menu ProcessIng Module Support••..•. 14

5 Expert DecIsIon Module Architecture•......•. 1S
5.1 Expert System Development Language•. 15
5.2 EvaluatIon of a Rule-Based Approach to Fringe Analysis.16
5.3 Expert Decision Module Design Requirements ...••.....••• 18

EstablIshIng RequIrements for a FrInge Analysis System 19
EvaluatIon of FrInge Analysis Algorlthms••. 20
ValIdatIon StudIes of the Proposed FAS ArchItecture •.•...•..•• 23

References ..• 2S

AppendIx A:
FunctIonal DescrIptIon of AnalysIs Shell OperatIon• A-1

AppendIx B:
DetaIled DescrIptIon of the FAS Monitor Program ..•........• B-1

AppendIx C: ,
FAS Inter-Object Communication Architecture .•.............. C-1

AppendIx D:
Named Knowledge ArchItecture and VMS LogIcal Names D-l

AppendIx E:
FrInge Processing Command Language Architecture••.....• E-1

AppendIx F:
Implementation ConsIderations for Expert Decision Modules •• F-l

Report Documentation Page

1

This Page Intentionally left Blank

Phase I Project Su.mary

Holograph1c and 1nterferometric techniques are now used routinely for
measur1ng w1nd tunnel flow field density distributions and structural
deflect1ons. For these measurement techniques to realize their full potent1al,
digital systems which can automatically process the photographic fringe data
into useful engineer1ng data need to be developed. The objective of this
research was to develop an architectural design for a general purpose fringe
analysis system which would be able to utilize expert knowledge to assist in
automat1cally analyzing fringe images.

Fringe analysis is generally a very time-consuming process requiring
continual human judgement. To improve accuracy, eliminate drudgery for highly
skilled engineers or technicians and, most important of all, to allow the
analysis of vast amounts of data needed to understand complex or time dependent
phenomena, there 1S an obvious need for computerized fringe analysis. For this
reason, NASA sponsored a Yorkshop on Automated Reduction of Data from Images
and Interferograms in January 1985. To date, what work has been done in this
field has usually involved writing large fringe-tracing codes of varying
degrees of sophistication which are generally designed to operate in the
context of a part1cular experiment. Thus, there is a need for two things:

o A higher degree of automation of fringe analysis than
currently exists, and

o A software system which can absorb and use knowledge
about and techniques for fringe finding as they are
developed or modified for new tasks.

The current research addresses both of these matters simultaneously and
aims to produce a software system capable of operating in a stand alone manner
or of encompassing all existing and any future fringe finding algorithms in a
user-oriented manner. It thus becomes a useful tool for anyone involved in
fr1nge analysis regardless of whether they need a new standalone system, or a
system w1thln which to implement a new approach to some aspect of the analysis.

During the study, the problems 1nherent in automatic fringe data analys1s
were studied. Based on th1S study and in-house experience in analyzing fringe
data, an architecture for a fringe analysis software system was developed. The
proposed system would:

o Provide the framework required for an automatic fringe
data processing system.

o Process the fr1nge data in discrete steps
mono-function process1ng modules.

using

o Share knowledge gained at any processing stage with
subsequent processing stages.

o Utilize expert knowledge to select fringe processing
algorithms and control the processing steps.

3

The proposed design for a fringe analysis system was evaluated by
implementing and testing a subset of the architecture in software and by
testing the suitability of a number of fringe location algorithms to wind
tunnel holographic fringe data. Further work will imylement the full
architecture in software, develop fringe processing modules, and implement
expert decision modules for controlling the processing steps.

4

Phase I Project Objectives and Overview of Results

During the Phase I contract period, KMS has developed and tested a
software architecture sUItable for reducing holographic fringe data into useful
engineering data. In this report, the results of this work are presented along
with a detailed descrIptIon of the proposed architecture for a Modular Digital
FrInge AnalysIs System (FAS).

The technIcal obJectIve of the Phase I contract was:

To design a software architecture for a Modular Digital Fringe
Analysis System capable of using expert knowledge to control the
processing and analysIs of fringe image data into useful
engineerIng data. The sub-tasks for this contract included
defIning:

The requirements for an AnalysIs Shell.
The knowledge archItecture for the system.
The system data types and structures.
The fringe processing modules.
The Interface to Expert Decision Modules.

The technical goals of this project have been met. Specifically,

o A VAX/VMS software architecture meeting these goals was designed which

Uses an Analysis Shell to control the processIng of fringe
images by sIngle-function processing modules.

Allows frInge knowledge obtaIned using one processing module
to be shared with subsequent processing modules.

Uses a devIce independent fringe processing language to
interface to the processing modules.

Allows frInge processIng to be totally controlled by adding
suitably designed Expert Decision Modules.

o NASA's needs for fringe analysIs were evaluated to insure that the system
design would meet NASA's programmatic goals.

o Existing KMS fringe analysis programs were used to investigate requirements
for analyzing holographic wind tunnel data.

o Available AI languages and knowledge engineering tools were evaluated for
use in developIng Expert Decision Modules, and OPSS was found to have
suitable performance for use in fringe analysis applications.

o The archItecture was evaluated to insure that it met its design goals of
functIonality and performance by developIng prototypes for the Fringe
Analysis Shell, the device independent Fringe Processing Language, and a
number of Fringe Processing Modules.

5

Details of Phase I Research

Teclmical Background

Holographic interferometry is routinely used to study a wide range of
aerodynamic problems. Vhile the primary usage has been for two- and
three-dlmensional flow field visualization in wind tunnels(1,2) and shock
tubes, (3) holographic lnterferometric measurements also have been used in
ballistic ranges, rotor test chambers and turbine facilities.

The primary advantage of holographic interferometry over other measurement
techniques is that it combines visualization with a nonintrusive quantitative
measurement of the entire density field. In addition, holographic
interferometry often can provide a two-dlmensional measurement of the pressure
and, in some case, the velocity field, and may even be used to analyze dynamic
or unsteady flow fields.(4) However, to effectively utilize holographic fringe
data, immense amounts of two dimensional fringe image data must be numerically
analyzed. Until recently, attempts to address this data analysis problem have
met with limlted degrees of success.(5,6)

Recently, however, work by Becker et al. (7,8,9) has shown that digital
analysis of holographlc interferograms can provide aerodynamicists with a new
powerful analysis tool and makes possible wind tunnel measurements which would
otherwise be impossible. For example, the ability to analyze interferograms i~
a semi-automatic fashion, makes possible tomographic analysis of the Rotocraft
experiment at NASA Ames. (10).

Vhile Becker has demonstrated the usefulness and feasibility of applying
digital fringe analysis to a number of aerodynamic applications, conslderable
work remains to be done if holographic fringe analysis is to find routine use
in aerodynamlc methodology or 1S to flnd commerC1al appl1cat1ons in other areas
such as Holographic Nondestructive Testing (HNDT). The need for additional
work was emphasized when in January 1985, NASA Ames and the U. S. Army
Aeromechanics Laboratory sponsored a "Vorkshop on Automated Reduction of Data
from Images and Holograms" to address this problem. In a review paper at this
conference, Vest summarized the fringe data analysis problem:

Perhaps the most pressing problem in the field is that addressed
in this workshop, namely the automated analysis of interferograms to
provide fringe order data. In many applications this presents a
formidable image processing problem. Furthermore, in most
applications significant interaction with a knowledgeable operator is
likely to be required ... the problem may be ripe for application of
concepts of artificial intelligence, particularly expert systems.

6

Fringe Analysis System Architecture

1 Introduction

The goal of frInge research
analys1s system (software and
wIde varIety of frInge data.
provide this capabil1ty was not
for several reasons.

at KMS IS to develop a packaged fringe
hardware) capable of automatIc reductIon of a

DevelopIng monolithic software programs to
consIdered to be a suitable technic3l approach

First, fringe images can be extraordinarily complex and difficult to
interpret. A program correctly workIng with one type of fringe image may fall
with another. Among the conditIons which make analysis difficult are:

o Diffraction by SOlId boundarIes 0 Extraneous frInges
o No regIon of known reference value 0 No frInge closure
o Very closely spaced frInges 0 Inadvertent wedge fringes
o Unknown sIgn of fringe order 0 Laser speckle
o Nonuniform background irradiance 0 Discontinuous fringes
o Data blocked by opaque obJects 0 Broad, "cloud-like" fringes
o Caustics due to refractIon and dIffraction

Second, although a conventIonal analysIs program may address some of these
problems, the program may have limited applicability for analyzing other fringe
image data because the rules or heuristIcs built into the program may be
Inappropriate when applied to the new data. Consequently, in order to
adequately address the general fringe analysIs problem, a more generic approach
IS needed In which:

o Knowledge about how to analyze fringe images controls the fringe analysis
process.

o The fringe data are processed in modular, discrete stages which do not make
assumptions as to the specIfIc nature or sources of the fringe data.

The Phase I study addressed th1S problem by designing and testing a
software architecture for a Modular Digital Fringe Analysis System. The
implementation of this approach will allow new fringe analysis problems to be
solved in a "building block" fashion. However, before presenting the results
of this study, it is important to define what is meant by the phrase "software
architecture".

Writing a single Fortran analysIs program incorporating some algorithm, or
developIng a new algorIthm for that program 1S a straightforward and well
understood problem. A much harder problem to address is creating a software
package of many analysis programs all of which must communicate with each
other.

engineering
create its

similar to
out with an

A current software
package is to first
architecture is very
building. Starting

approach to creating a large analysis
architectural design. Creating a software

creating an architectural design for a
overall concept of the design goal, at

7

successive stages the software engineer refines the concept with greater and
greater detail so as to show how the design's component parts will correctly
fit together. Specifically, ln deslgnlng a software architecture:

o Goals are establlshed as to what tasks the analysis package should perform
and how it should function ln relationship to those using it.

o The required components of the package and thelr functions are defined.

o The methods by which elements of the package communicate wlth each other
and the outside world are defined.

o The correctness of the design may
software components prlor to
development project.

be verified
committing

by
to a

implementing
full scale

critical
software

In thlS report, the archltectural design for the
Digital Fringe Analysis System (FAS) is presented.
architecture is to allow a general purpose fringe
system to be developed which is:

software of a Modular
The prlmary goal of this

processing and analysis

o easy to malntain and support
o versatile and expandable
o able to use expert knowledge
o able to process fringe data automatically.

The architecture for the FAS is composed of four interrelated parts:

o The analysis shell architecture
o The knowledge architecture
o The fringe processing module architecture
o The expert decislon module architecture.

These parts will be discussed in subsequent sectlons.

2 The PAS Architectural Description

The Fringe Analysis System consists of both the hardware (computer, fringe
digitizer, operator terminal, image display, etc.) and the fringe analysis
software. The relationship of the software to the to the system as a whole is
schematically shown in Figure 1. This study has addressed the architectural
design for the fringe analysis software which is the core of the fringe
analysis system.

The FAS Analysis Shell consists of a FAS Monitor program under which can
run any number of external, independent, fringe processing modules (PMs) and
cooperating Expert Decision Modules (EDMs). The Analysis Shell maintains
independence from the specific hardware supported by the computer by performing
input/output operations via devlce driver routines in the outermost shell. The
input to the system is a fringe image plus any operator supplied input. The
output is the processed fringe data in a format suitable for numerical,
engineering analysis.

8

Image Display

Fringe Digitizer

Fringe Image
Disk and Tape

Storage

and

Pointing Device

Figure 1. Fringe Analysis System

Device
Drivers

The Analysis Shell is created and maintained by the PAS Monitor program
which

Manage~ the communication channels between the operator and the processing
modules.

Maintains global knowledge used by the analysis modules.

Keeps track of the curnmt statE~ of the fringe data being analyzed so tha't
the cooperating analysis modules stay in synchronization.

Details of the operation of the PAS Monitor and the PAS Analysis Shell are
presented in Appendices A-C. Appendix A presents a functional description of
the FAS Analysis Shell in operation. Appendix B discusses the multi-level
processing archi tec tUrE~ maintained by the FAS Monitor. Finally, Appendix C
discusses the FAS Communication Architecture.

The PAS global knovrledge data base consists of knowledge required for the
cooperative analysis of the fringe data by a collection of independent modules.
It is composed of information supplied prior to the start of analysis
(historical, configuration, etc.), and knowledge generated by the modules
during the process of fringe analysis. This knowledge may be accessed by name
by any module running within the Analysis Shell. In addition to global
knowledge, domain·-specific, expert knowledge and heuristics for use in guiding
the fringe analysis process is available to Expert Decision Modules. .On VAX
systems the global knowledge data base is maintained by the VMS operating
system in cooperation with the FAS Monitor program.

9

Each process1ng module is des1gned to be independent of all other
processing modules. Because the format of the input and output data required
by each module is defined, internal details of each module need not be known
outside of the procesS1ng module itself. Any processing module can be replaced
without affecting the FAS operation as long as the replacement module can
accept the eX1sting input data and return the expected output data.

The modules are des1gned to be independent of the specif1c types of
hardware used 1n conJunction w1th the FAS. For example a frame buffer, v1deo
d1git1zer, or 1mage display device m1ght be used by the FAS software for
storing, acqU1r1ng, or d1splaying the fr1nge data during the fr1nge processing.
Input and output to these devices is accomplished by low level software drivers
so that the FAS software can be implemented on a wide variety of hardware with
minimal changes.

The operat1on of the FAS is stra1ghtforward. An operator glves an 1nit1al
command to the FAS, perhaps to invoke a predefined analys1s script (llSt of
th1ngs to do). As each 1tem in the scr1pt 1S read from a file by the FAS
Monitor program, the FAS Monitor sends off a command to the appropr1ate
processing module.

For some analys1s problems, perform1ng a ser1es of act10ns stored as a
scr1pt file may be adequate. However, if the fringe analysis problem is
complex, the problem might benefit by applying expert fringe analysis knowledge
to control the fringe processing steps. In this case, an Expert Decision
Module (EDM) may be activated.

The EDM exam1nes the global knowledge about the fr1nge lmage being
analyzed and decldes what actions to take. If it is unable to perform the
action by itself, the EDH sends back a command to the FAS Monitor to direct a
procesSlng module, to perform that function (Shell Callback). The EDH waits
for the processing module to complete lts task and update the global knowledge
as appropriate and then resumes analyzing the fringe image. Vhen the EDM
finally has succeeded 1n accompl1shing its goal, it exits, returning control of
the FAS to the operator or script file as appropriate.

3 The FAS Knowledge Architecture

In order for the FAS to control the flow of fringe analysis by independent
modules, it must provide an environment for sharing current knowledge about the
state of the fringe analysis between the FAS Monitor, the processing modules
and the expert decision modules.

Knowledge needed by the FAS may take many forms. It may be global (all
modules may use 1t), local (only one module uses it), historical (results of
previous operations), situational (describes the current state), scratchpad
(use and discard), or expert (for the EDMs).

The emphasis on modular1ty 1n the FAS Architecture imposes a number of
conditions on the methods used to provide global knowledge to the processing
modules.

10

Because the FAS 1S to be modular and expandable, global knowledge
must be accessible by name from any module within the Analysis
shell. Such knowledge is referred to as "Naaed Knowledge".

Because the FAS Monitor, the process1ng modules, and the Expert
Oecis1on Modules are discrete programs, the global knowledge base
must be stored external to these programs.

Because each module activated
data frequently, access to
poss1ble so as not to degrade
FAS.

may need to access Named Knowledge
the knowledge must be as rapid as

the over-all performance of the

Because many different types of knowledge need to be stored
(text, real numbers, integers, etc.) the knowledge storage format
must be flexible.

An 1nvest1gat1on of a number of possible approaches showed that the proper
approach depended on the storage requ1rements for the given data element. If
the information ent1ty to store is phys1cally small 1n size « 256 bytes) and
need not exist after the analysis has been performed, storing the data as text
strings in VMS Job Log1cal Names was chosen as the best general solution to the
problem of providing rapid, random access, by name, to data of widely varying
formats. However, 1f the data is a fringe picture, vector array, or a large
quant1ty of data, or if the data must exist for the next FAS analysis problem,
then the data itself is stored as a disk file whose file name is pointed to by
a Named Knowledge element. In Appendix 0, VAX/VMS Logical Names and their use
in storing knowledge of varying formats is be discussed in detail.

Each Named Knowledge element consists of two parts as shown in F1gure 2.
The first part, the Knowledge Name, consists of a unique name (identifier) of
1-255 alpha-numer1c characters. Using the Knowledge Name, one can retrieve the
Knowledge Value which will be returned as a string of 0 to 255 ASCII
characters. The Named Knowledge data base consists of all the variable length
Named Knowledge elements which currently have a non-null Knowledge Name.

The functionality of this 1mplementat1on technique was evaluated in two
ways.

o The prototype monitor program was used to pass information between the
Shell, the processing modules, and the operating system via Named Knowledge
elements. The technique proved to be both powerful and simple to use.

o The speed of retrieving Named Knowledge stored in the Logical Name
was measured. Independent of table size, the average time for
retrieval of each knowledge element is about 2.5 milliseconds
VAX-l1/750 which 1S far faster than a disk-based retrieval system.

11

tables
random
on a

lmeve I]
Slaws I , J
AV9_lnlenslty I
fringe I J

Knowledg. N..... Knowledge V.lue N 'i J
1-2550h o •• f. 0-255 OMf.ot.,.

• • •
Named Knowledge Element • • •

• • •
(fringe Numberl "")

Named Knowledge Data Base

Figure 2. Named Knowledge Representation and Data Base

4 Fringe Processing Module Architecture

The FAS supports fr1nge process1ng modules in both the image analysis and
englneering analysis doma1ns. By breaking up the fringe analysis problem into
a number of discrete steps with well defined goals and end states, fringe
processing can be accomplished by a sequential series of commands to process
the fringe data.

To support analys1s 1n a modular ser1es of steps, a Fringe Processing
Module Architecture has been des1gned to meet the following requirements.

o Each processing module is a separate program designed to perform a generic
class of operations on the fringe data.

o Processing modules are command dr1ven. To perform a
function, the appropr1ate command 1S constructed and
Monitor to the appropriate processing module.

fringe analysis
sent by the FAS

o Fringe analysis modules may be invoked independently of the Analysis Shell
to facilitate program development and testing.

o A logically consistent, English-like, Fringe Processing Command Language is
used to send commands to the processing modules.

o The Fringe Processing Command Language and the processing modules
themselves possess a high degree of device independence to minimize the
1mpact of special hardware requirements and to simplify the operator's use
of the FAS.

12

..

4.1 Fringe Processing Command Language

To control the fringe processing modules in a consistent and intuitive
fash1on, a Fringe Processing Command Language (FPCL) has been designed and
tested to support the Fr1nge Processing Module Architecture. In Appendix E,
the preliminary des1gn for the FPCL is presented. In Figure 3 is a diagram of
the command and I/O flow supported by the FPCL.

FAS C_nd

.... ---4. Del

Command Interface

••••

Duk

JOystlCk • • •

nonltor

Figure 3. FPCL Command Flow

Because the FPCL follows the general Command Line Interpreter syntax
format which is supported by the VAX/VMS operating system, the FAS Monitor is
able to make extens1ve use of system services to simplify parsing and
interpretation of FAS commands. F1rst, the FAS Monitor parses the command to
see if it is an external VMS command, an internal FAS Monitor command, or an
external process1ng module command. If it is an external VMS command, it is
sent off to the VMS DCL monitor for processing. If it is an internal command,
the FAS Monitor executes it. If it is an external processing module command,
the FAS Monitor uses standard VAX/VMS operating system services to parse the
command to insure that it 1S syntactically correct and that all required inputs
are present and to supply any default values which may be needed by an
processing module.

If the FPCL command is correct, the proper analysis module is activated,
retr1eves the parsed command, takes the action specified, and performs any
required input/output operations. If the FPCL command is incorrect, an error
message 1S displayed explaining the problem.

The general format of a FPCL command is:

COMMAND[/switch2][...][/switchN] Command Line

13

The var10US command sW1tches may take values and the Command Line may contain
any information as required by COMMAND. Command Switches qualify or select
which feature of a given command will be applied. A FAS command may also be
issued d1rectly by the user from DCL (i.e., outside of the Analysis Shell), the
command must be directly preceeded by a "FAS/". Examples of the FPCL are seen
in Appendix E.

4.2 Fringe Processing Module Device Independence

The FPCL and the processing modules are designed to support dev1ce
independent analysis. FPCL commands may either operate on an image in the FAS
local memory or on an image stored on a disk file.

Images may be on a disk file, a frame buffer, or 1n a VAX memory buffer.
The display device may be a frame buffer or an image processor. By performing
display I/O V1a replaceable device 1nterface subroutines, reconfiguring the FAS
to use a new device only requires that the appropriate device interface
rout1nes be implemented.

4.3 Fringe Processing Module Knowledge Interface

Knowledge 1S passed two ways in the FAS. The first form of knowledge used
by a processing module 1S informat1on Wh1Ch tells that module what do do next.
This informat1on is passed to the module by the FAS Monitor as a parsed command
and interpreted by the module uS1ng standard VAX/VMS subroutines.

The second form of
know about the current
elements and may be
Get_Named_Knowledge and

knowledge 1S 1nformat1on which tells the module what we
problem. Th1s knowledge is stored as "Named Knowledge"
retrieved or updated by a module using the
Put Named_Knowledge subroutines.

4.4 FAS Menu Processing Module Support

The flexibility of the FAS Architecture allows for either direct operator
control of the FAS (via direct FPCL commands) or for creating tailored operator
interface programs to perform selected functions.

At the direct command level, the FAS will perform any syntactically
correct command either entered by the operator or from a command script.
However, for situations In which operator control is needed but requ1r1ng the
operator to know the FPCL commands 1S not desireable, 1t is straightforward to
create a FAS Menu Processing module to sit as an interface between the operator
and the system.

The FAS Menu Module could present the operator with one or more menus from
which to make selections. Based on the select10n input by the operator, an
FPCL command to the processing modules would be formed, and passed to the
Monitor. A FAS Menu Module, controlled via operator input, performs the same
function as an EDM except that for the EDM the expertese resides within the EDM
rather than within the operator.

14

5 Expert Decision Module Architecture

For all but the slmplest frlnge lmages, current analysis methods require
knowledge (guidellnes, processlng step order, rules, heuristlcs) about the
methods to be used to reduce the fnnge data either to be "hard coded" in the
analysls program or to be applled by the operator during the analysis process.
The rules may be simple ("For thlS class of photographs, start fringe numbering
at the far left"), numerically complex ("Trace the fringe through the
dlscontinulty by working backward from both sides of the discontinuity") or
judgemental ("That is not a fringe").

These rules are not the type of lnformation suitable for encoding withln
the body of a general purpose analysis routine. Rather they represent the
criteria used to select the method of analysis to be applied. Consequently, a
general purpose FAS capable of automatlcally analyzing a broad class of fringe
data, must be able to recognize when to apply the expert knowledge of a trained
operator, and to lndependently use thlS knowledge to control the analysis
process.

Recently work in Artlflclal Intelligence has shown that Expert or
Rule-Based systems are well suited for encodlng rules and heurlstics in a
flexible format sUltable for controlling the lmage segmentation process.(ll) A
FAS Expert Declsion Module (EDM) would provide similar capabilities for a
rule-based control of the fringe process.

In many respects an EDM resembles a conventlonal, small expert system.
However, there are a number of signlflcant differences. A traditional expert
system is deslgned to mlmic the reasoning of a human expert in solving a
problem. Typical components of an expert system lnclude an operator interface,
an inference engine, and an expert knowledge data base. Such systems tYPlcally
operate by requesting lnformatlon from the operator or data base and using this
lnformatlon for making a Judgment whlch the operator then acts on.

An EDM, on the other hand, lS an lntegral part of the fringe analysis
control loop and must mimlc both the reasoning and actions of trained operator.
The EDM acts autonomously as the operator of the FAS to request existing
information from the FAS knowledge base, to command that a new action be taken
by some module, and to dlrectly control the extractlon of the fringe data from
the fringe lmage. Llke any other component of the FAS, it is modular, able to
both receive a command from the FAS and to send control commands back. It is a
specialist in its narrow knowledge domain rather than being an all encompassing
"expert system." The FAS may support more than one EDM, each being an expert in
its own domain. ThlS allows an EDM to calIon a consultant EDM if knowledge
outside its specialization is required.

5.1 Expert System Development Language

A number of expert system development language and tools were evaluated.
A detailed discussion of this work is presented in Appendix F. Three criteria
dominated the language selection process:

o Slnce frlnge analysls lS very CPU intenslve and potentially quite time
consuming even without an expert system, the language chosen must not
appreciably slow down the system.

15

o Expert Decis10n Modules must be able to start up and exit from the
system rapidly.

o The language must allow for creat1ng a rule based system.

As a result of a extenive reV1ew of available tools, and hands-on
evaluation of some tools, OPS5 was selected as the best currently available
language for build1ng a rule based system.

OPS5 is a non-algor1thm1c 1nference eng1ne developed 1n the mid-1970s at
Carnegie Mellon University. It allows the programmer to encode a set of rules
quickly, efficiently, and conscisely. As a result of the non-algorithmic
nature of OPS5, the programmer need not worry about the flow of control within
the execution of the program. All control problems are handled by the resident
OPSS interpreter, making the OPSS program or Production System, as it 1S often
called, readily expandable and much less d1fficult to mod1fy than a program
wr1tten 1n a conventional, algor1thm1c language.

An OPS5 program 1S composed of a ser1es of 1ndependent rules, called
Product10ns. The OPSS inference engine continualy scans existing Vorking
Memory Elements (VMEs) (where the rules are stored) to see if the current
conditions match the rules stored there. If the Production's conditions match
the contents of the VMEs, the rule is said to "fire" and the Production's
actions are performed and the contents of the VMEs updated. The process by
which this occurs 1S refered to as the "Recognize-Act Cycle."

A tYP1cal OPSS Product10n 1ncludes a Production Name, a number of
conditions to match, and right arrow, and a number of actions to take if the
conditions are met. An example of a gener1c OPSS rule 1S:

(P Production-Name
(Condition 1)
(Condition-Z)

--->

(. :-)
(Condition_n)

(Action 1)
(Action-Z)
(.. -.)
)

In this example, if and when the conditions Condition 1 to Condition n all
match the contents of the working memory, the production will "fire" and the
actions specified by Action 1 ... Act10n_n will be performed.

S.2 Evaluation Of A Rule-Based Approach To Fringe Analysis

Once fr1nge processing modules have located cand1date fringe contours and
have represented them as llne segments, the segments must be joined together or
extended to form complete contours, m1slocated segments must be removed, and
the contours must be numbered in the correct order. This process represents
the most critical, operator-intensive and error-prone step in the fringe

16

analysis process. This process is complicated by the fact that fringe contours
may not be directly trackable across shock boundaries.

To address the problem of fr1nge ordering expert knowledge must be applied
to the process either interactively by the operator or by the fringe analysis
software. Current fr1nge analysis software such as Becker's (8) builds some of
th1S knowledge into the analysis code, but slgn1ficant operator input is still
required.

An alternate approach 1S to create a more extensive set of expert rules
for order1ng fringes contour segments throughout the image. For example, in
adresslng the more general image segmentation problem, Nazif and Levine (11)
developed a set of rules to control the processing of data representing line
segments. These rules provide them w1th the ability to determine whether or
not line segments detected 1n an Image should be merged together or deleted.
US1ng these rules, they first detect 11nes and edges 1n a dlg1tized image and
then determine whether or not these 11nes have missing segments.

Conventional fr1nge analys1s algor1thms also must address locatlng and
recognizing exist1ng fringes segments which are not apparent in the
digitizat10n process but Wh1Ch the human eye detects quite clearly.

Because of the d1rect bearing of Nazif and Levine's rules to fringe
analysis, a subset of these rules was implemented in OPS5 to investigate the
util1ty of applY1ng expert rules to the fringe analysis process. For example,
the following rule (number 1701) IS used to merge a short line segment into a
larger lIne segment.

RULE (1701)
IF: (1) The FRINGE LENGTH IS NOT LO~

(2) The LENGTH of the FRINGE IN FRONT is LO~
(3) The FRINGES are TOUCHING
(4) The closest POINT IN FRONT is LO~

THEN: (1) MERGE the LINES FOR~ARO

The corresponding OPSS product1on is:

this first clause chooses two fringes, one in front of the
other, which satisfy clause (4) above, that is, the closest

; point on the fringe in front is LO~.
(In Front Of -Fringe in front IO <fringe in front>

- - -Fringe-IO-<fringe> - -
-Pos of Close P01nt in Front « VERY LO~ LOY»)

; this second clause Insures that the length-of the fringe in
; front is LOY
(Fringe -Fringe ID <fringe in front>

-Length-« VERY_LOW LO~ »)

17

-->

; the third clause insures that the length of the fringe in
; question is NOT LOY
(Fr1nge AFringe ID <fr1nge>

ALength-« MEDIUM HIGH VERY_HIGH »)

1f all the above clauses are sat1sf1ed, an external routine
, called Merge 15 called wh1ch w1II merge the two fringes
(call Merge <fr1nge> <fringe_in_front> Forward)
)

A number of rules slm1lar to the above were 1mplemented. The rule based
system was then evaluated uS1ng using a wide range of coordinate data. The
results showed that given a collection of rules suitable for fringe processing,
OPS5 can easily be used to generate and eff1c1ent rule based system to assist
1n the fringe segmentat10n and numbering process.

5.3 Expert Decision Module Design Requirements

The overall architecture for the FAS is driven by the requirements for
building expertise 1nto the system, namely:

o The knowledge requ1red to control fringe process1ng 1S dynamic. At any
glven processing step, exist1ng information about the fringe 1mage may
change forcing previous decisions to be reconsidered.

o An Expert Dec1sion Module must be able to 1ndependently request specific
analys1s steps and gather new knowledge from that analys1s step.

o The FAS must not require the existence of expert knowledge for any given
function but must be able to use such knowledge to assist fringe analysis
1f 1t 1S available.

To meet these goals, the FAS processing modules operate on the fringe data
1n d1screte steps. Although an EDM is also a process1ng module, bes1des having
access to the global Named Knowledge, 1t also has expert data consisting of
rules, heuristics and meta-rules (how to apply rules) on how to process fringe
images. An EDM controls the processing modules via Shell Callback using the
Fringe Processing Command Language (FPCL). Because the FPCL is syntactically
rigorous and consistent in command format, processing commands can be
dynamically composed (lion the fly") by an EDM. This provides the EDM far
greater flexibility for controlling processing than could be accomplished by
embedding explicit commands with1n a control program or analysis script.
Following the completion of a processing command, an EDM can exam1ne the
results of the action and select the next action to perform.

Implementing each EDM as an independent processing module has a number of
significant advantages over more conventional expert system approaches. First,
the EDM is to be small, effic1ent, and primarily a rule-based decision maker,
using 1ts knowledge to d1rect the activlt1es of other processing modules. This
division of activit1es allows CPU intensive fr1nge and image processing work to
be performed in appropriate computational languages like Fortran yet still
allows using an appropriate language (OPS5) for developing the rule-based

18

system.

Second, the limited scope of each EDM simplIfIes the development of the
expert system rule-base by helping to minimize unexpected side effects caused
by addIng new rules to an existing system. On large rule-based systems with
many complIcated rules, great care must be taken that adding a new rule will
not affect the operation of other rules and cause unwanted side effects. By
keep1ng the rule-base of each EDM small and relevant to the problem it is
addressIng, side effects will be m1nimIzed and the EDM will be easier to
develop and maintain.

ThIrd, by limItIng the scope of specIalization for each EOM, a processing
environment becomes possible 1n which the system can be easily augmented with
new expert knowledge in incremental steps as needed. For example, if an EOM
requIres informatIon or processIng to be performed not within its area of
expertIse, It requests the assistance of a consultant EOM. From the viewpoint
of the FAS monItor, the consultant EDM is Just another EOM which has taken over
control and is sendIng back commands for varIOUS processing modules to perform.
Yhen the consultant fInishes performing its task, it exits, leaving behind for
the Initial EDM to use, the knowledge It has acquired and the processing it has
had performed.

Establishing Requirements for a Fringe Analysis System

Yhile the primary goal of this project was to design a software
architecture for a "state-of-the-art", modular, digital Fringe Analysis System,
1t was also necessary to 1nsure that the system KMS would propose would be
appropriately focused and have the flexibility to meet the anticipated
requirements for both NASA and private industry.

Consequently, during the Phase I study, Dr. Charles Vest evaluated the
current requirements of NASA and private industry for a general-purpose,
holograph1c fringe process1ng system.

Dr. Vest's study concluded that:

o The prImary area for init1al FAS development work to address is the
aerodynamics fIeld. Once a fully functIonal FAS has been developed,
applicatIons to HNDT (Holographic Non-Destructive Testing) may open up.
Until that time, numerous applications exist in the aerodynamics field
which would benefit immediately by the development of a FAS.

o Data analysis for the projects at the NASA Langley Cryogenic Yind Tunnel
and at NASA Ames (among others) would benefit by the development of a FAS.

o For holographic fringe analysis to realize its potential, significant new
research must be done to develop fringe locatIon software and to automate
the data reduction process as much as possible.

o There currently 1S no commercially-available fr1nge analysis package or
equipment which is fully suitable for the applications at NASA Langley or
Ames. Moreover, although great strides have been made in recent months
fringe-f1nd1ng algor1thms, no general-purpose systems exist which have the
capability of being adapted to a wide variety of problems.

19

o The complexlty of the fringe analysis problem may lend it self to use of a
rule-based or expert system.

Evaluat~on of Fringe Analysis Algorithms

To gain experlence in fr1nge analys1s problems typ1cally encountered by
aerodynamlc1sts, an eX1st1ng KMS fringe contour locat1on package was used to
analyze holograph1c fr1nge 1mages acqu1red during both NASA Langley wind tunnel
tests and an Ames Rotocraft experlments.

The KMS fringe analys1s package 1S des1gned to work with fringe lmages
acquired in laser-plasma interactlon experiments which have:

o Slmple, regular shapes.

o Monotonically increasing spatial frequency and decreasing fringe
curvature.

o Low signal to nOlse ratlo wlth the spatlal frequency of the noise
close to that of the frlnge spacing.

o H1gh granularlty.

The package 15 able to rout1nely locate fringe contours embedded in noisy,
low-contrast fringe data. Its approach is to linearly transform the
coordlnates of each curved frlnge into a nearly vertical straight line, perform
a slldlng wlndow row average to enhance the slgnal to noise rat1o, locate the
peak coordinates in each row for that fringe, and then transform the peak loci
back lnto the initlal frlnge coordinate system.

To accompllsh this, an approximate plece-wlse-linear "guess" or
approximation is made for the shape of a fringe as is seen in Figure 4.
first approximation may be input from a stored template, calculated, or
1nteract1vely by an operator.

first
This

input

A llnear transformatlon (shlft) array lS then constructed to transform the
initial approximation fringe into a straight vertical line. This
transformation is applied to each row of the digitally stored image and the
signal to noise ratio of the target fringe, which is now approximately
vertical, is enhanced by row averaging. The resulting peak coordinates
representing pOlnts along the fringe center are converted back into the initial
coordlnate system by 1nverting the transform.
The existing fringe analysls package proved to be successful at
semi-automatically extracting many fringe contours from wind tunnel
inteferograms. Figure 5 shows the results of using this package to trace
fringe contours obtained from two different sources. In Figure 5a, the flow
field contours of a conlcal test object ln a NASA Langley wind tunnel were
located. Note that the fringe contours are correctly followed across the shock
boundary. In Figure 5b, even the hlgh density flow field contours generated at
the Ames Rotocraft experiment were located.

20

Yh1le successful with this fringe data, the package still needs
considerable improvement before it can be used with many different types of
fringe data. Yhile the analysis package effectively performs the functions for
which it was designed, it is an example of using a technique based on specific
knowledge of the field being examined - namely that the the basic topological
structure and orientation of the fringe patterns produced in the plasma
experiments 1S known.

Moreover, use of the package st1ll requ1res considerable operator
1nteract10n particularly for analyz1ng strongly curved, complex fringe data or
tracking fr1nges through a shock. It 1S easy for the software to get confused
at a shock boundary and m1strack a fringe contour particularly if the
discontinuity is sharp. The package's limitations under certain conditions
suggest a number of areas which warrant further development, namely:

Methods for locating and identifying shock boundar1es.

Methods for correctly matching up fringes across shock boundary
layers.

Algorithms for tracking and extrapolat1ng high density fringe contours
through a boundary layer.

Algorithms for locating highly curved (circular, closed) fringes.

Methods for decreasing operator interaction for analyzing complex
fringe data.

21

Guess

F:ring(~ Straightening

Translate Rows Average Rows

Figure 4. Using fringe straightening to enhance fringe
signal to noise ratio.

22

:1
A

T

(a) (b)

Figure 5. Semi-automatic Fringe Contour Location.
(Bright line are fringe contours found by
thE~ fringe analysis package overlaying the
digitized fringe photographs)
(a) Langley Conical Test object
(b) Ames Rotocraft experiment

Validation Studies of The Proeosed FAS Architecture

As the architectural design of the FAS evolved, the conceptual design was
converted to software and the functionality of the implementation evaluated.
Based on the results of the evaluations, the design was modified or refined.
Concept testing and evaluation was performed in the following areas.

o A prototype FAS Monitor was developed supporting the majority of its final
design goals with the exception of Shell-Callback.

o A prototype fringe processing language supporting five external and three
internal commands was tested.

o Five fringe processing modules were developed
involved in creating a device independent
LanguagE~.

to evaluate the
Fringe Processing

problems
Command

o Subroutines were developed to provide ready access to the Analysis Shell's
Named Knowledge elements.

o NASA supplied photographs of fringe data were analyzed to demonstrate the
suitability of our Fringe analysis algorithms for analyzing holographic
wind tunnel fringe data.

23

o OPSS programs and interface subroutines were developed to demonstrate the
feasibility of using OPSS for writing Expert Decision Modules.

o A slmple Fringe Analysis Advisor was developed in OPSS to evaluate the
difficulty of using a rule based approach for developing a fringe locator
EDM.

The intensive "design-evaluate-redesign" cycle applied to all parts of the FAS,
has led to an architecture that is de.an.trably applicable to analyzing
holographic fringe data. Moreover, the architecture's flexibility potentially
lends itself to applications other than fringe analysis.

24

1-

2.

3.

4.
5.
6.

7.
8.

9.

10.

11.

12.

References

G. Lee, Applicatlon of Holography to Flow Visualization, NASA Technical
Memorandum 84325 (1984).
A. Y. Burner and Y. K. Goad, Combined Single-Pulse Holography and
Tlme-Resolved Laser Schlleren for Flow Visualization, NASA TeChnical
Memorandum 83109 (1981).
Y. K. Goad and A. Y. Burner, Holo ra hic Flow Visualization
Langley Expanslon Tube, NASA Technlca Memorandum 8 11 (
G. Lee, D. Buell, J. Licursi, and J. Craig, AIAA Journal 22, 504 (1984).
L. T. Clark et al.,J. Fluid Eng. 99,737 (1977).
R. Y. Menzel-and L. D. Vandergrlff, Program for Automated Holographic
Data Reduction, AEDC-TR-80-39, Aug. 1981.
F. Becker and Yung H. Yu, Opt. Eng. 429 (1985).
F. Becker, G. Meier, and H. Yegner, SPIE Appl. of Digital Image Processing
IV 359,386 (1982).
F. Becker, G. Meler, and H. Yegner, Development of an Instrument for
Evaluation of Interferograms, NASA Technical Memorandum NASA TM-76673
(1981).
J. Kittleson, ~A~H~o~l~o~r~a~h~i~c~~~~~~~~~~~~~~~~~~
Transonic Flow Near a Rotor Bla e, NASA Tec nlca
A. M. Nazif and M. D. Levine, IEEE Trans. on
Machine Intelligence PAKI-6(S), Sept. 1984.
Y. R. Funnell, App. Opt., 22, 3245 (1981).

25

(1984) .
and

APPENDIX A

FUNCTIONAL DESCRIPTION OF ANALYSIS SHELL OPERATION

The phrase "Analysls Shell" is used to describe the analysis environment for
two reasons. First, the FAS Monitor program invoked by the operator serves as a
shell which holds both the processing modules and the global knowledge which any
module may access. Second, the processing takes place in a series of nested
processing levels or shells. Level 0 is the operator or script file input level.

The FAS Monitor translates Level 0 input into a command which is passed to a
processing module in a Level 1 subprocess. Commands generated by active Level N
module are passed back to the FAS Monitor (Shell-Callback) which sends the command
back for processing in a Level N+l subprocess. If the Level N+l subprocess does not
yet exist it will be created and initialized prior to dispatching the command to it.
Shell-Callback can proceed up to the maximum nesting of processing levels allowed
(an installation dependent parameter).

The FAS Monitor program performs the following functlons when activated by an
operator command.

o Creates the Analysis Shell environment

Creates the FAS-specific job logical name table
Creates the primary subp~ocess and initiallzes it
Executes a FAS initialization file if requested
Executes any command-line specified processing script
Prompts the operator for a command

o Provides for operator control of the FAS

o Serves as the central command/communication dispatcher

Parses and sends operator commands to the appropriate
internal subroutines, external FAS modu~es or DCL

Parses and sends script file commands to the appropriate
internal subroutines, external FAS modules or DCL

Receives command requests from a processing module or EDM for
the services of another module and retransmits that command
to the appropriate module. Returns control to the original
module when the secondary processing module terminates

A-l

PORCTIONAL DESCaIP'l'IOtI OF AlfALYSIS SHELL OPERATION

o Maintains and manages the subprocesSes within which the FAS processing and
Em! modules run.

o Manages the process job logical name table in which the "Named Knowledge"
data is stored.

o Manages script files.

- Logs operatOr commanas to script files
- Execut~s command input from script files
- Conditionally exe~utes ~cript c~ands
- Branches to specific ~ti~s ~f the script file

In Figure Al, the interaction betwert trJ~ FAS moni tor program, the operator, a
Shell inith.li~ation script, an analysis 'cmttrol script file, a logging file, an
EDM, a processing moGule and Sh~ll callback is schematically shown. In this
particular example, the operator st.~tea th. monitor program which created the
Analysis Shell, invoked an init1.11~ation fil~ and then started taking commands from
the script file specified by the operator who started the FAS Monitor program. The
script fil~, turned on loggi~ ~t~ track vbat eommands the Expert Decision Module
would select) and then invo~ the 10M Vhi~~ sttrted processing the fringe image to
locate fringe contours. At some poi~t, the BDM invoked the PM2 processing module,
and in the figure is waiting for '"2 ro eO~l~te its processing and update the ~amed
Knowledge data base. Also in ~ in t~ fllUre is tn empty subprocess which is
available to tak~ a Shell callbaCk ~~~ from the PM2 processing module if
necessary.

A-2

FUNCTIONAL DESCRIPTION OF ANALYSIS SHELL OPERATION

FAS Shell Callback

Operator Initialization SCript Log File

, , i-'

Y ----
t

Level 0 FAS Monitor
• i •

C
.I "Callbaclc ~ Callback !

omman~ I
, ,

•

I !

IEDMI
I

ell I
~ I I ,

I :
Command,. I

I l
jll

I Level 2

I
PM2

1

Lev

Il
.,

~'3D
- ,Ir - --, - ---

Named Knowledge

Figure Al. The FAS in Action

A-3

IPMOI

IPM'I
-I ,

:PM2'
• -
IPM~I
IPM4

1 • • •
IPMnl

APPENDIX B

DETAILED DESCRIPTION -OF THE FAS MONITOR PROGRAM

NOTE

The following sections assume the reader is familiar with VAX/VMS
software terminology. Their lnclusion in this report serves to
document the detailed software design work accomplished during the
contract period. Unless other wise noted, the FAS Analysis Shell as
described herein, has been prototyped and tested for functionality.

B.1 Creation And Initialization Of The Analysis Shell Environaent

Assuming the FAS software has been installed on a VAX system correctly, an
operator wishing to use the FAS software logs on to the VAX host computer, and
enters the command

$FAS [Script_File]

Normally, the FAS command is defined to be

FAS:==FASLIBRARY:FAS_Monitor

Once the FAS monitor is invoked the following initialization steps are performed.

1. If a script file is specified on the command line, the file name is saved
so that the script file may be invoked as soon as all initialization is
complete. This facility is useful when reducing numerous fringes of the
same type whose analysis can be expected to follow along relatively similar
lines. The name of the script file may be any legal VMS File name.
However, if the file type is omitted, the file type .FAS is assumed
(Designed but not yet implemented).

2. The FAS Monitor creates the FAS Job Logical Name Table. The maximum size
this table is controlled by the operator's account profile. The size of
the table needed depends on the complexity of the analysis problem.
(Partially implemented)

B-1

DETAILBD DBScaIPTION OF THE PAS '-IIOJIITOR PROGlWf

3. the FAS Monitor creates the primary subprocess for communication with the
Level 1 ·processi~g modules and establishes an exit handler to insure that
the subprocess does not vanish without notifying the the FAS Monitor.

4. Basic initialization of the primary subprocess is performed to a) .stablish
the term1nal as the input device, b) disable extraneous error mes ... es, end
c) establish the FAS command to the subprocess DeL command table.

5. If the Logical Name FAS$INITIALIZE 1S def1ned, the FAS Monitor invokes this
naae as an initiallzstion scrlpt file. This script file can be used to
load the knowledge base with information which is common for all the fringe
.analysis tasks to Be performed (.Qes;Qued ·but DOt yet i.plaented).

6. If a script file was specified on the initial FAS command line, it is
invoked (Desi.g:aed but DOt yet i_plaaented).

7. ~ processing of script f1les 1S complete, the operator is prompted for ~
intecactive command with,

FAS>

B.1.1 Qparator Control Of Tbe FAS

Vben the FAS> prompt appears on the operators terminal, the operator can enter
four types of commands, namely

1. An internal command. The 1nput is first checked to see if it exists in the
internal command table. Internal commands are handled within the FAS
Monitor program itself. The internal commands supported include:

1. EXIT. If EXIT is entered in response to a FAS> prompt, or read from a
script file, all open files are closed, all analysis ceases, and the
FAS Monitor, exits returning the user to the VAX/VMS DeL level.

2. LOG <file-spec>. Vhen the LOG command is used all operator commands
entered to the FAS> prompt will be logged to the file specified by the
<file-spec>. If the <file-spec> is omitted, the log file defaults to
FAS COMMAND.FAS. If the file type is omitted, the file type def~ultc
to :FAS. Operator commands will be logged to the file until the
operator enters a NOLOG command.

3. NOLOG. The NOLOG command turns command logging off and closes the open
log file.

4. HELP. The HELP command accesses the FAS help file which provides the
operator with help on using the FAS commands.

2. A command to open a script file for processing. If the first character of
any input stream is an '@', it is assumed that all following charact~s are
the name of a script file. An attempt is then made to open a script file
with that name and if successful the script file is read in a line at a

B-2

DETAILED DESCRIPTION OF THE PAS MONITOR PROGRAM

time, and each command line 1S processed as if 1t were an operator input.
Scr1pt files also can reference scrlpt files up to 8 levels deep.

3. A command to send to the operating system. Any command preceeded with a
'$' is assumed to be a DCL command and is sent directly to the DCL CLI
(command line lnterpreter) for processlng in the appropriate level
subprocess. The exit status of each DCL command is checked, and if the
status 1S not success, the FAS wlll issue an appropriate error message.

4. All other commands are assumed to be valid FAS commands. These commands
are lnternally preflxed wlth a "FAS/" and sent to the appropriate
subprocess level where they will be parsed by the VMS CLI routines, and the
required processing module will be activated.

B.1.2 Subprocess Control And PAS Monitor Communication

Two types of command communlcation channels exist between the FAS Monitor and
the processlng modules. The flrst is the command channel. which is a bidirectional
channel between the operator terminal and main process and the subprocess. This
channel is set up using the FAS Subprocess control subroutine package which provides
three basic subroutine functions

SUB CREATE
SUB-SEND
SUB-END

Create a subprocess
Send a command line to the subprocess
Delete a subprocess

Yhen a subprocess is created, a mailbox lS established as SYS$INPUT for that
subprocess. From thls point on, the copy of DCL running in the subprocess will take
ltS commands from the mailbox. The SUB CREATE subroutine returns a pointer, so that
the SUB SEND and SUB END routines can direct their commands to the correct
subprocess. As soon as-the subprocess is established and an exit handler for it
established, the subprocess is initialized by 1) the FAS command to be a valid CLI
command, and 2) setting the SYS$INPUT to be identlcal to the SYS$OUTPUT device (the
term1nal) for all other images running in the subprocess (but DCL still takes its
commands from the Mailbox).

The second communication channel is the Shell-Callback mailbox (Designed but
not yet implemented). Yhen a Level N processing module requests additional
concurrent processing of an additional FAS command, it writes the command to the
Shell-Callback mailbox and hibernates. Yhen the command is written, the FAS Monitor
is notified via an AST routine, reads in the command requested from the Level N
module and dispatches the command to a Level N+1 subprocess. Yhen the Level N+l
subprocess completes, the FAS Monitor then wakes the Level N subprocess.

B.2 Use Of Job Logical Names Tables

The FAS knowledge base is stored both as Named Knowledge in the FAS Job Logical
Name Table and as ancillary data and image flIes. Knowledge may be placed into the
logical name table by executing a DEFINE command in the specified subprocess or
using the Put Named Knowledge subroutine (Designed but not yet implemented).
Knowledge may be read-from the logical name table using the Get_Named_Knowledge

B-3

DETAILED DESCRIPTION OF THE FAS IIONITOR PROGRAM

subroutine (Partially iaple.ented).

B.3 Detailed FAS Honitor Logic FloY

In order to understand the operatlon of the FAS, it is necessary to examine in
detail a number of its capabilities and the logic flow of a command as it passes
through the system.

B.3.1 FAS Co..and Processing

The FAS can take commands from three sources, the operator, a script file, or a
processing module via ShellCallback. The processlng of a command lS identical
regardless of the command source. First the command line is normalized to a
standard format. Leading and trailing spaces or tabs are removed. All characters
are converted to upper case and multiple spaces converted to a single space except
for strings enclosed in quotes (Partially iapla.ented)

Each input command line is checked to see what type of command it contains.
The FAS Honitor checks to see if the command is

1. An internal command. Internal commands are
SHELLCHD.CLD. The CLD file is compiled and
program. The SHELLCHD.CLD file specifies
automatically invoke if a command is present on

contained in a CLD file
linked with the FAS monitor
the action routine to
the command line.

2. A command to open a script flle for input. If an '@' slgn is encountered,
the rest of the command line is taken to be a VHS file specifier and the
Shell attempts to open a file of that name to use for command input.

3. A DeL command. If a lead1ng '$' is eAcountered, the rest of the command
line lS assumed to be a VMS command and is sent to DCL for processing.

4. A FAS command. Any other legal input will be assumed to be a valid FAS
command. Illegal input will generate an error message.

After each command is processed by a subprocess, the Shell will check the exit
status of the module processing the command and will display an error message if the
status is not successful. It will do this by sending a command to that subprocess
to place the modules exit status in the Job Logical Name table where the shell can
read it.

B.3.2 Direct Operator Command

Any time the

FAS>
,

prompt is present, the operator can enter a command which will be parsed and
dispatched appropriately. Yhenever, the operator is prompted with FAS), it means

B-4

DETAILED DESCRIPTION OF THE PAS MONITOR PROGRAM

that processIng has stopped and that the shell is at Level O.

B.3.3 Script Pile Processing

Yhenever a leading "@" sign is encountered in a command line, the remainder of
the command lIne is considered to be the name of a a VMS scrIpt file. If the script
fIle eXIsts, the Shell opens the file, reads in the commands a line at a time,
normalIzes the Input llnes, parses the command lIne, and executes the command line
exactly as If it had been input by an operator.

Command scripts may be nested up to 8 levels deep but commands are taken only
from the most deeply nested script file until that script file is closed or a more
deeply nested script file is opened.

Normally the contents of the scrIpt fIles are commands to be sent to external
modules. However, scrIpt fIle processlng supports three commands which are used to
control the script processing itself. These are

Labels withln the scrlpt file. (Designed but not implemented)
The GOTO command. (Designed but not implemented)
The IF command. (Designed but not impleaented)

The GOTO and the label are designed so that it is possible to branch from one
section of the script file to the label specified with the GOTO command. Yhen a
GOTO <label> command is encountered, the script file will be repositioned to its
start and read in a line at a time searching for the label. Yhen the label is
found, script file processing will resume at that point. If the label is not found,
processIng will terminate and an error message will be displayed.

The IF command will allow for conditional branching and conditional execution
of script file commands based on matching criteria In the Shell global data base.

B.3.4 Shell Call-Back

NOTE

Shell-Callback is designed but not yet implemented

After each subprocess maln communicatlon channel is
Shell-Callback mailbox communication channel between the main
subprocess will also be established and the Shell will establish a
AST for it.

established, a
process and each
write attention

Yhen a
module, it
hibernate.
will set

processing module wishes concurrent processing to be done by another
will write the command to be processed to the Callback mailbox and

The Shell will be notlfied of the write by the write attention AST which
a flag to show that a Callback command is incoming (Callback mailbox full

B-5

DETAILED DESCRIPTION OF THE PAS MONITOR PROGRAM

flag), and wake the main process. The maln process will again get ready for the
next input command but because the Callback flag is set will read the command from
the Callback mailbox.

Prior to lssulng the command to a subprocess, the Shell will increment a
Callback level counter to show at what depth callback commands are being processed,
clear the Callback Mailbox full flag and then send off the command to the next level
deeper subprocess (and hibernate until awakened by an AST). Vhen the main process
again is woken up, it will check to see if the Mailbox-full flag is set. If it is
not set, the Callback command completed so the Call back level counter will be
decremented and the proper subprocess notifled (by waking it up) that the command
completed. If it is set, another callback command will be processed.

B-6

APPENDIX C

PAS INTER-OBJECT COHKUNICATION ARCHITECTURE

Because the FAS is implemented as a collection of independent
it 1S 1nherently very flexible. This flexibility is forged into a
package by 1mpos1ng a common communicat1on architecture onto the
system.

software modules,
coherent analysis
modules in the

The Communicat1on Architecture views the FAS as a set of objects each of which
is able to perform four generic Analysis Shell functions in addition to
object-specific analysis functions. The obJects supported by the Analysis Shell
are:

o The FAS operator.
o Shell Script Files.
o Fr1nge processing modules.
o Expert Decision modules.

Vh1le the analysis functions to be performed are primarily in the image
analysis and fringe analysis domains, the FAS architecture allows any type of
analysis to be performed. As seen in Figure Cl, each object may either send or
receive information to or from the Analysis Shell. This information may either be
commands directing the next action to take or fringe knowledge generated by or
needed for the numerical processing of the fringe data. Specifically, each object
can:

o receive an act10n command and take the requested action.

o request knowledge by name from the FAS global knowledge base.

o create or modify knowledge which it then places in the FAS global
knowledge base.

o send/relay additional commands through the Monitor for additional
actions to by performed another (but unknown) object.

C-l

PAS INTER-OBJECT COHKUNICATION ARCHITECTURE

FAS Shell Environment

Receive Command
From Shell

Send Command

u To Shell

FAS OBJECT

Receive Knowledge
From Shell

~, Put Knowledge
In Shell

Figure Cl. The Gener1c FAS Object

The FAS Monitor's primary function is the communication of 1nformation (act1on
commands and 'frInge knowledge) between the various objects in the FAS. To do this
the FAS Monitor establishes a processing enV1ronment in which it creates and
maintains communication channels between itself and the process1ng modules.

Commun1cat1on between the obJects 1S fac1litated by the common Fringe
Processing Command Language shared between them. Vhether a command is input by an
operator, read from a script file, or passed back to the FAS MonItor from an EDM,
the command format is identical. Moreover, consistent command syntax rules and
device independence, allow an EDM to construct a command "on-the-fly" without having
to consider a wide var1ety of special cases.

Figure C2 schematically shows four FAS objects with active communication
channels. In this figure, two features should be noted. FIrst, while each object
has an "open" and "active" communication channel, only the last object in the chain
is executing code. Second, since each object has independent access to all elements
of the FAS Knowledge base, if module A activates module B, module A must assume that
any or all elements of the knowledge base may have been modified while module B was
act1ve.

C-2

PAS INTER-OBJECT COHKUNICATION ARCIIITEC"l'URE

FAS Communication Paths

Operator Processing
Modul~ EOM

Processing
Modul~

~~~~~~~ ~~~~ ~~~~~~~,~~ ~~~~~,~~,~ 

~~~ ~~~~'Il ~~'~"'II~ ~'¥;~~ ~~ 

Named Knowledge

Figure C2. FAS Object Communication Paths

C-3

APPENDIX D

NAMED KNOVLEDGE ARCHITECTURE AND VMS LOGICAL HAKES

D.1 Establishing Knowledge Naming Conventions

During the course of development of the FAS, a lexicon of names for the
knowledge created and requested by modules will be developed. By knowing the name
specifled for a given piece of information, any module may request or update that
informatlon in an unambiguous manner.

Vhlle it will be possible to define "Alias" names to point to information
specified by another name, the initial FAS development work will not attempt to
address the numerous problems lnherent in knowledge representation ambiguitles WhlCh
current AI research into Natural Languages addresses.

For example, while the English language allows essentially equivalent knowledge
to be transferred in a variety of ways, the interpretation of the transferred
lnformatlon depends on significant amounts of knowledge external to the information
1 tself.

As a case in point, consider a simple request such as "How many fringes are
present". Valid answers could include "24", two dozen, or "Too Many". Of these,
answers the first is numeric, the second is numeric but requires a conversion to
numeric format, and the third is a totally fuzzy concept which would require all FAS
modules to know what the definition of "Too Many" is.

Instead, the Named Knowledge passed between
encoded lnto pre-defined, unambiguous data types.
numeric quantity, only a numeric quantity will be
numeric knowledge element.

D.2 Named Knowledge Data Types

the processing modules will be
If a knowledge element is to be a
allowed to be encoded into a

Named Knowledge is data (knowledge) of varying types encoded as ASCII text strings
and stored by name. The text strings may store arbitrary data including names of
additlonal Named Knowledge data elements. The VAX/VMS implementation of the FAS
Architecture will store this data in the VMS Job Logical Name table. However, a
non-VMS implementation of this architecture could provide similar functionality via
common areas and linked lists.

D-1

NAMED KNOVLEDGE ARCIIITBCTUltE AND VMS LOGICAL NAMES

To provide these capabilities each piece of named knowledge has three
attributes.

o The name by WhICh the information may be retrieved.

o The data type of the knowledge so that the ASCII text may be translated
into the proper data format by a routine which knows only the name for the
knowledge.

o The knowledge itself which is encoded as an ASCII text string.

Each Named Knowledge element name is composed of two parts; the type designator
and the data name. Together, they form a Named Knowledge element which can be
translated into an equivalence text string in which the data is stored. The type
desIgnator specifies the format that the text data is to be translated into (text, a
real number, an Integer, etc.). Using simple character tests, a subroutine can
rapidly decide which data type the name represents and translate the data
appropriately. For example:

FAS F name VAX/VMS filename --FAS I --name Integer data
FAS L name Logical data (True/False) --FAS P name Knowledge element pointer --FAS R name Real number data --FAS T name Textual data

0.3 Naaed Knowledge States

Vhen a module requests a named knowledge element two responses can
EIther the information exists and the Shell returns the current information
module, or the information does not exist at all and the Shell notifies the
that the information does not exist.

occur.
to the
module

If the information does not exist, the module may "know" how such information
mIght be obtained. For example, it might pass a request back through the Shell to
an EDM to go find that piece of knowledge.

If the knowledge can be found, the module is notified that it is available and
continues. If the requested knowledge can not be found, and error message will
explain why and the returned Shell Call-back status will inform the requesting
module that the information still can not be obtained. If the unavailable knowledge
is requlred for continued processing, the module will halt, display the name of the
unavailable Named Knowledge element, and provide an opportunity for the
programmer/operator to investigate why the knowledge is not available.

0.4 VMS Logical Naaes

Each process on a VAX/VMS system can create a Logical Name and define it to be
some arbitrary text string. The Logical Name and the text string associated with it
may each be up to 255 alpha-numeric characters long. If the logical name is created

0-2

'\
NAMED ICNOVLBDGE ARCHITECTURE AND VMS LOGICAL NAMES

in the Job Logical Name table, both the main VMS subprocess (the Shell) and each
subprocess (the processing modules) can access a logical name and request that it be
translated into its defined text string.

In addition to storing simple text strIngs, logical names can themselves store
logical names (just another text strIng) and any program can request that the
additional logIcal name also be translated into its's equivalent text string.

D-3

APPENDIX E

FRINGE PROCESSING COMMAND LANGUAGE ARCHITECTURE

Vithln the FAS, lmages are manipulated by using the Fringe Processing Command
Language. The language, and associated processing modules, are designed to support
devlce lndependence. Images may be lnput uSlng technologles such as CCD,
photo-d1ode or v1deo digit1zers. Images may be on disk or tape file, or reside in
VAX memory. Images may be displayed on a simple frame buffer or a complex 1 mage
processor. Device independence makes it easy to re-conflgure hardware for a
particular application. Devices may be switched by simply incorporating new device
driver routines.

The Processing Module Command Language uses the following format:

[$FAS/]COMMAND/qualifier_1, ... ,/qualifier_m parameter_1 •.• parameter_n

If the command is issued from the VMS DCL level, it must be preceeded by $FAS/ and
the FAS command must have been establlshed for the user's process. If the command
1S to be entered to the Shell prompt (FAS», or is embedded in a FAS script file,
the $FAS/ preflx must be omitted.

The COMMAND specifies' the FAS command to be executed. The qualifiers describe
or modify the action taken by the command. The parameters specify what the command
acts upon. The VAX/VMS CLI utility subroutlnes are used to parse and interpret the
command, qualifiers and parameters.

The Processing Module Commands are dlvided into 15 groups:

o Auxiliary image information
o Complex filters
o Display control
o Edge detect10n
o Feature identif1cation
o Geometric transformations
o Image combination
o Image input/output control
o Image statistics
o Neighborhood operations
o Noise reduction
o Pixel transfer functions
o Region of interest
o Template generation

E-1

FRINGE PROCESSING COKHAND LANGUAGE AIlCIIITECTURE

o Transforms

The follow1ng conventions are used in specifying the processing module
commands.

[] - Square brackets indicate that the enclosed item is optional.

<> - Angle brackets ind1cate that the enclosed item is
cho1ce of several opt10ns.

- Separate the choices.

AUXILIARY IMAGE INFORMATION

SCALE - Return the scale factor (pixels/inch) of an image.

$ SCALE <1mage> f1le_specification

<1mage> = ,channel_number file _ specificat.ion

COMPLEX FILTERS

COMPLEX FILTER - Apply a complex filter to an image.

$COMPLEX_FILTER [<roi>] <filter_type> <1mage>

<roD
<filter_type>

<image>

DISPLAY CONTROL

= IROI=INSIDE I IROI=OUTSIDE
= ICONSTANT I ICIRCLE I ISINUSOID

I HANNING I IBARTLETT
= f1le_specification I channel number

CLEAR - Clear (zero) an image or overlay.

$CLEAR [<roi>] <image>

IGAUSSIAN I

<roi> = IROI=INSIDE
<image> = channel number

IROI=OUTSIDE
file_specification I OVERLAY

a single

DISPLAY - Display a channel in either black & white or pseudo color. The pixels may
be d1splayed with a continuous wedge or discrete steps.

$DISPLAY [<roi>] <type> <format> ILOV_LIMIT=z_l IUPPER LIMIT=z 2 Channel Number

<roi> IROI=INSIDE
<type> = IPSEUDO

IROI=OUTSIDE
I GREY

E-2

FRINGE PROCESSING COHHAND LANGUAGE ARCIIITECTURE

<format> = ICONTINUOUS I IDISCRETE=number of divisions

INITIALIZE - Inltlallze the lmage display.

SINITIALIZE

TEXT - Yrlte text onto the graphlc overlay. The text may be included in the call,
or may be obtalned from the keyboard. The starting location may be obtained from
the cursor, keyboard or lncluded in the call.

$TEXT <text_string> <location>

<locatlon>
<text stnng>

ICURSOR I lKEYBOARD I fCOORDS=(x 1,y 1)
= fSTRING=" ... " I ISTRING=KEYBOARD-I -

ISTRING=file_specification

VECTOR - Draw a vector lnto the graphic overlay. The pixel coordinates may be
1ncluded 1n the call, or may be obtained from the cursor or from the keyboard.

$VECTOR <coordlnates>

VIEV - View an image in a channel.

$VIEV channel number

EDGE DETECTION

EDGE - Apply edge detection operators to an image.

SEDGE [<roi» <detection_type> <image>

<roi> = IROI=INSIDE
<detection_type> = IGRADIENT=POINT

IGRADIENT=PLUS X
IGRADIENT=MINUS X
IFILL IN=SIMPLE-

<image> channel number

FEATURE IDENTIFICATION

IROI-OUTSIDE
IGRADIENT=AREA[MAXIMUM] I
IGRADIENT=PLUS Y I
IGRADIENT=MINUS Y I
IFILL IN.ADAPTIVE I ICLOSE CURVE
file_specification

DETECT - Detect different classes of objects in an image and put the locations in a
file. The locations may be boundary edges, centroids or an object mask.

$DETECT [<roi>] <feature> <output> <image> file_specification

<roi> = fROI=INSIDE I fROI=OUTSIDE

E-3

FRINGE PROCESSING COMIIANO LARGUAGB ARCH11BC'tUitE

<feature> = IFRINGE I IOBJECT I ISHOCK
<output> = IBOUNDARY I ICENTROID I IHASK
<image> = channel_number I file_specification

GEOMETRIC TRANSFORMATIONS

GEOMETRY - Apply geometric transformations to a image.

$GEOHETRY [<rol>] <transform> <image>

<roi> IROI=INSIDE I IROI=OUTSIDE
<transform> = ISHIFT=(x columns,y rows)

IHINIFY=AVERAGE IFACTOR.factor
IHINIFY=DECIHATE IFACTOR=factor
IHAGNIFY=INTERPOLATE IFACTORcfactor
IHAGNIFY=REPLICATE IFACTOR=factor
IROTATE .. angle
IX FLIP I IY FLIP
IEXCHANGE I ITRANSPOSE

<image> = channel_number I file_specification

VARP - Apply a spatIal transformation to an image. The control grid may be input
from a file or interactIvely generated.

$VARP <control_input> <interpolation_method> <image>

<control input> I INTERACTIVE IGRID-file_specification
<Interpolation method> = lNEAREST NEIGHBOR IBILINEAR

-<image> = channel number file_specification

IMAGE COMBINATION

ARITHMETIC - Apply arithmetic operations to images or constants and put the result
Into an Image. Underflow and overflow are set to 0 and 255 respectively. To
prevent underflow or overflow, the input images may be scaled (divided by 2) when
performing addition or subtraction.

$ARITHHETIC [<roi>] <operation> <image_i> <image_2> <output_image>

<roi> = IROI=INSIDE IROl=OUTSIDE
<operation> = IADD [=SCALED] ISUBTRACT [=SCALED] IHULTIPLY I IDIVIDE

<image_l> channel number file_specification constant
<image 2> = channel-number file_specification constant

<output image> channel-number file_specification

E-4

FRINGE PROCESSING COMKAND LANGUAGE ARCIIITBCTUBE

LOGICAL - Apply logical operation to images or constants and put the result into an
image.

$LOGICAL [<roi>] <operation> ~image_l> <lmage_2> <output_image>

<roi>
<opera non>
<Image 1>

<image 2>
<output image>

= IROI=INSIDE I IROI=OUTSIDE
= lAND I lOR I IXOR
= channel number I file specificatIon
= channel-number I file-specifIcatIon
= channel-number I file=specification

INPUT I OUTPUT CONTROL

CALIBRATE - Calibrate the dIgitIzer for both bias and gain.

$CALIBRATE

COpy - Copy an image.

$COPY [<roi>] <Input_image> <output_image>

<roi> IROI=INSIDE
<input image> = channel number

<output=image> = channel-number

IROI=OUTSIDE
file specification
file=specification

constant
constant

CORRECT - Use the bias and gaIn values created by CALIBRATE to correct a digitized
Image.

$CORRECT <image>

<image> = Channel Number File_specification

DIGITIZE - Digitize an Image Into a channel. Digitizer noise reduction may be
performed by averagIng a number (power of 2) Images together.

$DIGITIZE [<roi>] [/AVERAGE=number] channel_number

<roi> = IROI=INSIDE I IROI=OUTSIDE

IMAGE STATISTICS

PROFILE - Obtain the intensity profile of the line between two pixels and output it
to a file. The pixel coordinates may be included in the call, or may be obtained
from the cursor or from the keyboard. A line average may be specified and the
profile may be displayed on the overlay plane.

$PROFILE <coordinates> [/AVERAGE=] [/DISPLAY] <image> file_specification

<coordinates> = ICURSOR I lKEYBOARD I /COORDS=(x_l,y_l,x_2,y_2)

E-S

<image> • ehannel_nuaber I file_specification

HISTOGRAM - Compute the histogram of an iaa,. and output it to a file.
the histogram may be dlsplayed on the overlay plane.

$HISTOGRAH [<roi>] [/DISPLAY] <image> file_specification

<roi> = IIOI-INSIDE I IROI.OUTSIDE
<image>_input = channel_number I file_specification

Optionally,

STATISTICS - Find the min, max and compute the aean, mode and standard deviation of
an image and output them to a file.

$STATISTICS [<roi>] <i.age> file_specification

<roi> = IROI.INSIDE
<image> = channel number

IROI.OUTSIDE
file_specification

NEIGHBORHOOD OPBlATIOltS

FILTER - Apply a filter to an image. The filter types are mean, gaussian, laplacian
or arbitrary. If the filter type is IMBAH, the window dimensions may be included in
the command or may be input from the keyboard.

If the filter type is I ARBITRARY , the kernel may be input from the keyboard or
from a file.

$FILTER [<roi>] <operation> <image>

<roi> = IROI.INSIDE I IROI.OUTSIDE
<operation> ~ IMEANaKEYBOARD I I~.(x size,y size) I IGAUSSIAN I

I LAPLACIAN I IARBITRARY .. KEYBOARD I
IARBITRARYzfile specification

<image> = channel_number T file_specification

NOISE REDUCTION

NOISE_REDUCTION - Apply noise reduction operators to an image.

$NOISE_REDUCTION [<roi>] <reduction_type> <image>

<roi> = IROI=INSIDE
<reduction_type> '"' IHODAL

IODD=LlNE
<image> = channel number

IROI..,OUTSIDE
IODD=DOT I
I MEDIAN
file_specification

E-6

FRINGE PROCESSING COKKAND LANGUAGE ARCIIITBCTURI

PIXEL TRANSFER FUNCTIONS

EQUALIZE - Perform a histogram equalization on the image.

$EQUALIZE [<roi>] <image>

<roi> = IROI=INSIDE
<lmage> = channel_number

IROI=OUTSIDE
file_speclfication

LINEAR FUNCTION - Use an arbitrary piece-wlse linear function to modify the lookup
table or pixel values in an image.

$LINEAR_FUNCTION [<roi>] <modify> IFUNCTION=file_specification <image>

<roi> = IROI=INSIDE I IROI=OUTSIDE
<modify> = IMODIFY=IMAGE I IMODIFY=LUT
<image> = channel_number I file_specification

NORMALIZE - Apply a contrast stretch to the image so that the lowest pixel value is
o and the highest plxel value is 255. The stretch may be applied to an image or to
the lookup table.

$NORMALIZE [<roi>] <modify> <image>

<roi> = IROI=INSIDE I IROI=OUTSIDE
<modify> = IMODIFY=IMAGE I IMODIFY=LUT
<image> = channel_number I file_specification

POINT CHANGE - Change the lookup table or image so that all pixels with value z 1
are changed to value z_2.

$POINT_CHANGE [<roi>] <modify> IIN=z 1 IOUT=z 2 <image>

<roi> = IROI=INSIDE I IROI=OUTSIDE
<modlfy> = IMODIFY=IMAGE I IMODIFY=LUT
<image> = channel_number I file_specificatlon

RANGE CHANGE - Change all pixels in the range z 1 •• z 2 to the range z 3 •• z 4. The
change may be made in the image or just the lookup table. --

SRANGE_CHANGE [<roi>] <modify> IIN=(z_1,z_2) IOUT=(z_3,z_4) <image>

<roi> = IROI=INSIDE I IROI=OUTSIDE
<modify> = IMODIFY=IMAGE I IMODIFY=LUT
<image> = channel_number I file_specification

E-7

THRESHOLD - Pixels >= z 1 [and <= z 2J are set to 255. All other pixels are set to
O. The change may be applied to the image or just to the lookup table.

$THRESHOLD [<roi>J <modify> IBOUND=(z_l[,z_2J) <image>

<roi> = IROI=INSIDE I IROI=OUTSIDE
<modify> = IMODIFY.lMAGE I lHODIFY=LUT
<image> = channel_number I file~specification

REGION OF INTDBST

CREATE HOI BOUNDARY - Create a bounded region on an image. Subsequent processing
may then -be limited to that region. The region may be rectangular or arbitrary in
shape. The boundary may be drawn in the overlay plane. The boundary coordinates
may be obtaIned from the keyboard, cursor, a data file or a binary image.

$CREATE_ROI [/DISPLAY] <roi_type> <coordinate_input>

<rOl type> = lRECTANGULAR <coordinate input> I
- IARBITRARY <coordinate input> I

lMASK <image> -
<coordinate input> = ICURSOR I ICOORDINATES.file specification

- I KEYBOARD -
<image> = channel_number I file_specificatIon

DELETE ROI BOUNDARY - Delete the region of interest boundary.
whole Image.

$DELETE_ROI __ BOUNDARY

TEMPLATE GENERATION

TEMPLATE - Generate mathematical images.

$TEMPLATE [<roi>J <type> <image>

<roD
<type>

<image>

TRANSFORMS

= IROI=INSIDE I IROI.OUTSIDE
= ICONSTANT=n I IVBIT! NOISE

IGAUSSIAN I lRAMP T
ISINUSOID[=DAHPEDJ

= channel number I file_specification

i.e. process the

TRANSFORM - Apply a standard transform [or an inverse transform] to an image. The
transformed image is written to a file.

$TRANSFORH [<roi>] <transform> <image> file_specification

E-8

FRINGE PROCESSING COMMAND LANGUAGE ARCBITEC'l'UIlE

<roi> = IROI=INSIDE
<transform> = IBADAMARD[=INVERSE]

<image> = channel number

IROI=OtITSIDE
IFOURIER[-INVERSE]
file_specification

E-9

APPENDIX F

IMPLEMENTATION CONSIDERATIONS POR EXPERT DECISION MODULES

To 1nsure that an EDM could be 1mplemented Wh1Ch 1S compatible with the
proposed FAS architecture, current software approaches to eng1neering rule based
expert systems were 1nvest1gated, several poss1ble EDM 1mplementatlon languages were
evaluated and a slmple EDM was 1mplemented to test concepts.

The result of this work is an prel1minary EDM functional design. The proposed
design, specifies the implementation language to be OPSS, describes how the EDM will
acqu1re knowledge from the analysis shell and control processing steps.

F.l Selecting A Suitable EDM Implementation Software

It is anticipated that many fringe analysis decisions will have to be made on
the bas1s of knowledge WhICh 1S imprecisely known or Wh1Ch is not numerically
quantifiable. Representing such knowledge is best done via textual identifiers. To
engineer an EDM 1t is necessary to develop a rule based system which uses this
knowledge to control and guide the analysis of fringe data. Since conventional
procedural languages (eg, Fortran, Pascal, PL/I, etc.) are not particularly well
suited for this application, we evaluated several alternate approaches for building
EDMs.

The LISP, OPSS, and PROLOG AI languages as well as several expert system
building tools were evaluated for use 1n developing an EDM. In addition, using a
h1gh level language for developing an EDM was considered.

Because an EDM is only a small part of the FAS, it is important to keep the EDM
software development costs in perspective with the entire software package.
Consequently, recently developed, and quite expensive, expert system building tools
were ruled out. Likewise, VAX PROLOG was ruled out because it was quite expensive
and not yet available for evaluation.

Develop1ng an Inference engIne using a hIgh level language was also briefly
considered. After some study, it was felt that the labor costs of developing an
Inference engine in house would be quite large. Consequently, in-house development
of an inference engine was also dropped from further consIderation.

The remaIning languages consIdered were LISP and OPSS for developing the Expert
Decision Modules.

F-l

IMPLBHBN'l'ATION CONSIDERATIONS FOR EXPERT DBCISIOII MODULES

F.1.1 Evaluation Of LISP

Two LISP packages for the VAX were evaluated, NIL and DEC's COMMON LISP. Both
LISP implementat10ns suffered from common failings. The LISP prograas were larle
and took far too much memory. In addition, LISP applications were both slow
(ponderous) to activate and to exit from the system, and seemed to require far too
much in the way of CPU resources. As a consequence, the use of LISP for developing
an EDM was dropped from serious consideration.

F.1.2 Evaluat10n Of OPS5

DEC VAX OPS5 was evaluated ana found to be an excellent language to use in
developing Expert Decision Modules. It is easy to use, and applications developed
uS1ng It activate rapidly, quickly evaluate large rule bases, and are easy to
interface to subroutines written in other VAX languages. In addition, OPS5 is a
relatively inexpensive software product, and a very inexpensive run-time only
license is available. This latter fact is 1mportant if the current research is
develop into a cost-effective technology which can be marketed.

OPSS is a relatively new language specifically designed for building expert or
rule-based systems. Using OPSS, McDermot et. al. developed R5 which later evolved
into XCON. XCON is used by DEC to configure VAX system and is widely considered to
be the single most successful example of an expert system in daily use.

OPS5 1S referred to as a "Production System". Each OPS5 program kernel
automatically incorporates and "inference engine" interpreter which repeatedly
executes a Recognize-Act cycle on all rules in working memory. Vhen a match is
found between a rule condition and the current working memory elements, the actions
to be performed upon satisfying the rule are taken and the Recognize-Act cycle is
again repeated.

OPSS source code (the "rules") is compiled into VAX assembly code ("ThJ;'eaded
code") which is assembled and linked with the OPSS kernel to create a stand-alone
executable image. SInce each OPSS application is linked into an executable image,
OPSS allows each application to also be linked to external subroutines written in
any supported VAX language. This provides an OPSS application with complete access
to the VMS system serVIces and the ability to interact with external tasks.

F.1.2.1 OPSS Evaluation Tests -

Prior to deciding to using OPSS for developing EDHs, its ability
basic functions we would have to perform within an EDM was evaluated.
wrote OPSS applIcations to evaluate its ability to

to implement
To do this we

1. Interface with external subroutines. The external subroutines would be
used to read the Named Knowledge elements, receive command lines froll the
shell and pass commands back to the shell for execution.

2. Suggest fringe processing steps to take based on a collection of heuristic
fringe processing rules used by operators who process fringes.

F-2

IMPLEMENTATION CONSIDERATIONS FOR EXPERT DECISION MODULES

The test applications were developed
efficlently confirmlng the belief that
developing the FAS EDHs.

with
OPS5

little difficulty and performed
is the proper language for use in

F.2 Deslgn Considerations For Developing A FAS EDH

The archltecture for a Fringe Analysis EDH has not yet been designed. However,
a number of features seem reasonable to incorporate in the final design of an EDH.

F.2.1 EDH Scope

The scope of each EDH is to be limited to a narrow scope of expertise. By
llmitlng each EDH to a small rule base, development of each EDH will be faster and
easier to maintain. If the knowledge to make a decision falls outside of the
knowledge boundaries of a given EDH, a valid action to take is for the primary EDH
to invoke an second EDM possessing knowledge in a different area. In this event,
the primary EDM may either choose to exit and pass control to the secondary EDH
(which then becomes the primary) or to wait for the secondary EDH to exit and use
the knowledge gained by the secondary EDH for making subsequent decisions.

F.2.2 Implementation Languages

The EDMs wlll be written in OPSS with operating system interface subroutines
written in either in Fortran or VAX Basic as appropriate.

F.2.3 EDM/Shell Interface

The possible EDH/Shell lnteractions are identical to the interactions any other
module can have in the FAS. However, once an EDH 1S activated, it controls the flow
of processing in the system by repeatedly passing back commands to the Shell to be
dispatched to a lower level subprocess. In effect the EDM becomes a "virtual" FAS
operator.

F-3

End of Document

