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L.G. Houpert and B.J. Hamrock

Elastohydrodynamic Lubrication Calculations Used as a Tool to Study Scuffing

A new Reynolds equation is developed that takes into account the nonlinear viscous behavior of the

fluid. The new Reynolds equation considers the nonlinear viscous fluid model of g yring, the equi-

librium equation, the constant mass flow, and the kinematic boundary condition. The new Reynolds

equation and the p lasticity equation are solved simultaneously by using a system approach and a

Newton-Raphson technique. Comparisons are made with results obtained from the classical Reynolds

equation. The effects of sliding speed and introducing a bump or a groove within the conjunction

are studied. Results are shown for both moderate and heavy loads.

1 INTRODUCTION

Scuffing is a problem encountered mainly in gears

and rolling-element bearings. In rolling-element

bearings, for example, scuffing is found in the

acreleration zone of large bearings that are

heavily loaded. For these circumstances, inertia

effects probably lead to high sliding speeds.

The authors feel that scuffing is related to

(1) Film thickness failure of the macro-

contacts, as studied by Dyson (1976),

rnd the microcontacts

(2) High pressure and shear stresses act-

ing on the surface

(3) High surface temperatures found when

sliding speeds are high

Film thickness failures lead to metal-to-metal

contact; high surface stresses lead to rolling

bearing fatigue, as studied by lean, , ides an

Harris (1985); and high surface temperatures may
cause local melting of the surfaces.

Since the surface temperature can be calcu-

lated if the kinematic and surface stresses are
known, important parameters to control when

studying scuffing are film thickness and surface

stresses. These parameters can be calculated by
using elastohydrodynamic lubrication (EHL) ana-

lysis. In the present paper, a new method is

described to study macro- and micro-EHL without

any restriction on the load applied to the con-

tact. By macro-EHL, we mean the lubricant film

thickness developed in the inlet zone of the EHL

conjunction. Micro-EHL may occur below the

asperities and is due to the squeeze or sliding

speed effects of the be a ring as described by

Cheng (1983). Macro-EHL is first studied by

using the classical Reynolds equation (linear

viscous fluid model), and the results are shown

to be accurate for any applied loads. But under

the severe conditions mentioned above (large

pressure and high sliding speeds), the lubricant

behavior can no longer be considered to be linear

viscous, and a nonlinear viscous model is devel-

oped. With this fluid model, a modified or new

Reynolds equation is aerived. The new Reynolds

equation and the elasticity equations are solved

simultaneously by using a system approach and a

Newton-Raphson technique. Film thickness, pres-

sure, and shear stress can be obtained without

any load restriction. The method described

herein is therefore a very powerful tool that

can be used in studying scuffing. To illustrate

the power of the new approach, stress concentra-

tions near a bump and a groove are studied.

1.1 Symbols

A	 dimensionless slidira speed,

(ub - ua)/ua

b	 half Hertzian w i dth, R 8W/1, m

b'	 half-width of sin gularity, m

C l	constant, 2E'W/n o,ref

C2	 constant, .EU/8WTo,ref

Cj	 weight factors used to integrate P

E	 modulus of elasticity, N/m2

E'	 effective elastic modulus,

2 [(1 -va)/Ea

*( 1 - vbEb ] -1 , N/m2

G	 dimensionless materials parameter, nE'

H	 dimensionless filn• thickness,

hR/b 2 . wh/8RW

He	 dimensionless file.t • .ckness when dP/dX . 0

HO	 dimens i onless constant used in calculation

of H

h	 film thickness, m

i,j nodes

K	 constant, 3.2U/4W2

N	 number of nodes usP^ in linear system

P	 dimensionless pressure, P/pH

p	 pressure, N/m2
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^wc

PH 	maximum Hertzian pressure, E'b/4R, N/m2

R	 equivalent radius, (1/ra + 1/rb) -1 , m

r	 curvature radius, m

S	 nua/hTo - C 2 n/HT O (1 + A12)

T	 (h/To) dp/dx . Cl(H/4o)(dP/dX)

U	 dimensionless speed parameter, nOu/E'R

u	 velocity of fluid

U	 mean velocity, (ua + ub)/2

W	 dimensionless load, w/E'R

w	 applied load per unit length, N/m

X	 dimensionless abscissa, xR/b2

x	 abscissa along rolling direction, m

xp	 position of singularity

Z	 dimensionless coordinate, z/h

z	 coordinate in direction of film thickness, m

zm 	height of singularity, m

a	 pressure-viscosity coefficient of fluid,

m2/N

Y	 strain rate, s-1

n	 viscosity of fluid, N s/m2

T	 dimensionless viscosity, n/no

no	 viscosity at atmospheric pressure, N s/m2

u R	traction coefficient due to rolling speed

u S	traction coefficient due to sliding speed

V	 Poisson's ratio

P	 density of lubricant, kg/m3

T	 dimensionless density, p/p0

Pe	 density when dp/da . 0, kg/m3

p0	 density at atmospheric pressure, kg/m3

T	 shear stress, N/m2

T O	 critical shear stress, N/m2

To 	dimensionless critical shear stress,

To/To,ref

2 CLASSICAL REYNOLDS SOLUTION

From Houpert and Hamrock (1985), the integrated,

dimensionless form of the classical Reynolds

equation may be written as

P H

H3 dT Kn H - 
eoel	

(1)

where

3w  U	 n0u	 w
K - -

7 
, U • TT, W •

(2)

P - H^	 X	
b,	

H
	

b2
	
- n0

Conventional so.ition of equation (1) required

large computer ruii time, and the approach failed

at moderate and high loads. Okamura (1982) used

a system approach in solving equation (1).

Houpert and Hamrock (1985) 'mproved on Okamura's

approach by making the following changes:

(1) Used a nonuniform mesh to improve the

accuracy of the calculations in the
pressure spike region and in the inlet

(2) Used a more accurate way of calculat-

ing the elasticity

(3) Solved for pressure difference rather
than actual pressures

(4) Used Roelands' pressure-viscosity model

By incorporating these changes, Houpert and

Hamrock (1985) were able „ get accurate and

fast solutions without any restriction on load.

Figure 1 illustrates how fast the new approach

is. It gives the pressure and film profiles at

iterations 0, 1, and 14. Note that in the first

iteration a pressure spike was formed that is

close to the final converged pressure spike. In

general, it took about 15 iterations to obtain a

converged solution, or about 2 min of CPU time

on an IBM 370 computer with a mesh of 181 nodes.

Compare this with the 100 min normally taken by

the Hamrock and Jacobson (1984) approach.

Figure 2 shows the pressure profile and film

thickness ratio for five dimensionless loads

varying over two orders of magnitude. This

dimensionless load range corresponds to a maxi-

mum Hertzian pressure of 0.4 to 4.8 GPa, which

is well within the range that rolling-element

bearings and gears experience. As the loau

increases (Fig. 2(a)), the pressure spike becomes

smaller and moves toward the outlet. Further-

more, as the load increases, the inlet meniscus

moves toward the abscissa X - -1. The nip film

thickness width and length (Fig. 2(b)) both

decrease as the load increases.

3 NEW REYNOLDS EQUATION

The classical Reynolds equation (1) has been

obtained by assuming the lubricant behavior to

be linear viscous. This is only true at low

pressures, or high temperatures, and when the

shear rates are small. A more appropriate lubri-

cant rheological model is the Eyring (1936) non-

linear viscous nodel used by Hirst and Moore

(1974), Johnson and Greenwood (1980), and Berthe

et al. (1978 and 1979). Elastic viscous models

have also been used by Johnson and Tevaarwerk

(1977), Bair and Winer (1978), Berthe et al.

^

1979), Houpert et al. (1981), and Houpert

1985a), but elastic effects have been shown to

be often negligible as proposed by Houpert
(1985b).

The Eyring (1936) model will therefore be
used to develop a new Reynolds equation. The

new Reynolds equation will assume An isothermal

^ehavio , and neglect transient and squeeze-film

eti,_:,. However, the new rheological model,

.s

.a

2
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equilibrium equation, boundary kinematic condi-

tions, and constant mass flow conditions have

been taken into account.

From equilibrium, we can write that

I- T	 (3>
Integrating gives

T	 z dR + Al	 (4)

T o TO dx	 TO

where Al is a constant to be defined later.

Erying's (1936) nonlinear viscous fluid model

can be expressed as

r - T . ^° sinh (T 

\o

Substituting equation (4) into equation (5) gives

du To sinh 

\z	
+All	 (6)Tz^ ^	 TQ dx	

c

Integrating gives

U .	 Cosh T
	 x

+ T	
d	 + A2	 (7)

	

T o	 ZO ,	 Ao^ l

where A2 is an integration constant. The

boundary condit i ons are

(i) z	 0,	 u	
U 

(ii) z	 h,	 u	
u 

By making use of these boundary conditions, the

cunstants Al and A2 are defined and we

find that

A`	 (Alua 1 + ST cosh ZT + T o I - cosh To
/

 (

(8)

where

	

Al	 sinh-1
	 AST	 -	 (9)

	

T o	 2 sinh .,

	

A . ub u u a ,	 Z - F,
a

nu

S ' —a	 C2	 — 	 (10)
1 0 	 1 +	 H< o

h d	 H dP
T 't F' 01- dX

To

Making use of equations (9) and (10), we can

rewrite equations (4) and (6) as

sinh- 1

T o

AST T
• T(Z - 0.5) (11)

2 Binh

d	
^^e1	 sinh	 T(Z - 0.5)

/ + sinh-1
AST

(12)
T

^ slnh	 ,^

To calculate the mass flow, 	 it is convenient

to express the velocit y distribution as

. 1 + A + 7sinh  ^Z -	 1)^
a

x sinh TZ + sinh-1T
AST

i—
(13)—hT2 s n

Note from equation (13) that when	 dp/dx • 0,

then T •	 0,	 sinh	 (T/2)/(T/2) •	 1,	 and

sinh [T/2(Z - 1)J/(T/2) •	 (Z - 1).	 Therefore

. 1 + AZ	 when	 T • 0 (14)
U
a

The mass flow when 	 dp/dx . 0	 can be
written as

fl	

ue he dZ	 oe he (1 * AZ) dZ

 a

. °ehe (1 + Al	 (15)

The condition of constant\ mass /flow at any

location can therefore be written as

° p h e (1 +)	 °h	 I U 1 dZ
\ 1

Making use of equation (13) gives

/	
A	 °eh e	 _ 1	 AST	

2
7112

11 + ^^ ( OF - 11	
l + 2 sinh

X I? sinh() - cosh (')1	 (16)

Equation (16) is the new Reynolds equation. But

in order to make a comparison with the linear

viscous equation, equation (16) must be rewritten

as

3 dP	 K^ H	 °e o	 - PeH

dP	
117)

AST	 2)

1 + sinhh 	 j ^

I

i	 .I

3
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where

2

e . - 

6^ LT 
sinh (^) - cosh G) *

J
 (18,

Comparing equation (1) with equation (17) indi-

cates quite clearly the contribution due to the

nor l inear fluid model.

Table I shows the difference in the equa-
tions developed for the nonlinear and linear

viscous fluid models. Note that if Tp . •,
then T . 0, e • 0, and S • 0. For this situa-
tion the nonlinear viscous equation reduces to

	

the linear viscous equation.	 Therefore, the

new Reynolds equation to be solved at each mode

in dimensionless form can be expressed as

°eHe

3rUj)	Kni Hi
	

o

f i H  `̂ Jl - 	
* ei 0

	

AS i T i 	12
1 `	 T ((

2 sinh \/J

J	 (19)

4 SYSTEM SOLUTION

The basic equation to solve at each node i is

the new Reynolds equation given in equation (19)

or fi . 0, where f is a function of oeHe,

HQ , and the pressures P 2 to P N . The expres-
sion for f also contains the dimensionless film

thickness H, which is expressed as

2

H i 	H O *	
+ ,^ OiJPJ ' b 

g ( x )	 (20)

appendix. The unknowns of the system are aPj,
e(3elie), and aHp • they must be less than or

equal to, respectively, 1/1000 of PA, WE H ,
and H0 . More details on handling the exief
bounaary and, in general, how the system approach

is used are covered in Houpert and Hamrock (1985)

and will not be repeated here.

In general, 10 to 15 iterations are required

for convergence of the results and only 2 min of

CPL' time are necessary on the IBM 370. This
approach is therefore very fast, powerful, and

relatively easy to program. As a result of the

calculations, the film thickness Hi and pres-
sure P i are known at every node. Further-
more, the shear stress T, the shear rate

au/az, and the velocity u are known for values

across the film.

5 DISCISSION AND RESULTS

Maintaining a fluid film of adequate magni-

tude is an essential feature for the correct

operation of lubricated machine elements.

Results presented in this section make use of

the nonlinear viscous rheological model of the
lubricant and apply surface irregularities such

as Lumps and grooves to illustrate the possibil-

ities of the new approach.

We first determined whether there was any

difference between the film thickness obtained

from the new Reynolds equation and that obtained
from the classical Reynolds formulation. From

disk machine experiments and traction force

calculations, r	 has often been found to

increase linearly with pressure. But at high

pressure, a limiting value t is fourd
as proposed by Houpert (1985bg^and Ten Nape]

et al. (1985). A possible relationship can be

written as

where g(x) defines the microgeometry. The

numerical approach used to sulve the system of
equations fi . 0 is identical to the one used

by Houpert and Hamrock (1985). A Newton-Raphson

technique is used and leads to the solution of a
linear system of equations where a Jacobian

matrix has to be calculated as a function of the

Jacobian elements afi/a(4He), ofii/aP 	 and
af i /aFiO . A linear system of N ^ 1 e^uations
is solved

of

3 eH e)
if

ilT
of 
^

ifl

T170 e( dehe)	 -il

of t

;'71

if

'T2

 °f2

0

af2

0 °(P2)	 -^2

if N
711-;'-.T

7fH

0
°rN

^N

^f4

"'0
PNl	 -fN

0 c2 CN 0 a(h0)	 eW

(21)

where Cii are the integration coefficients
developed? in Houpert and Hamrock (1985) and aW

is a parameter representative of the constant

load. The Jacobian elements are aiven in the

T o 	 To,ref T o . 1 - exp \ hp—)
T o,t	 To,t	 ` TO,t

where a and To t are defined for each
lubricant as a function ofthe temperature. The

term c is very small (10-3 ) and is introduced
to avoid numerical problems when calculating

1/7 0 as p - 0.
Numerical runs have been performee pith

a . 2.6x10-Z and T	 ref - T o t . 1.1 ;10 Pa
that show some smaIQ

,
numerical instabilities at

the outlet of the contact while the film thick-

ness is essentially a function of the inlet as

clearly indicated ty Houpert and Hamrock (1985)
in their pressure spike analysis. The results

obtained indicate clearly that the film thick-

nesses for the two forms of the Reynolds equation

were identical fo the conditions simulated h re

(i.e., U - 1x10- ^1 , G - 5007, and W . 2x10-9').
The reason for this is that the shear stress was

smaller than To in the inlet zone. Since

the film thickness is established by the hydro-

dynamic action in the Inlet reg,on and this was

not altered by the new form of the Reynolds

equation, the film shape did not chrnge much.

Because of this result and to avoid numerical

instabilities, To will be assumed to be
constant (TO . Toz	 1) in what
follows	 But it s^oul8 be mentioned that, in

general, accurate film thickness calculations

require the knowledge of To at very small

pressures although To has always been
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determined at large pressure for traction forces
calculations.

The effect of dimensionless sliding speed

A on pressure and film shape through the lubri-
ca • ,ng conjunction is shown in Fig. 3. The

sliding speed had little effect on film thick-

ness but a significant effect on the definition

of the pressure spike. As the sliding speed

increased, the pressure spike diminished. The

main reason for the change in pressure spike
with sliding speed was that near the pressure

spike the shear stres, was larger tan to.

The rolling tractiop coefficient up remained

almost unchanged (u = 4.4x10- } while the

sliding traction coefficient u	 increased

from 0 to 8.4x10- when A increased from 0

to 10.

Haling shown some results of using the new

Reynolds equation, the nest task was to prestudy

micro-EHL. As a first step and example of appli-

cation of th. tool presented herein, we were

interested in what effect a bump or groc- has

on the film shape and stress concentration. The

change of shape due to a bump or groove is taken

care of by g(x) in the film shape equa-

tion (20). For simplicity, g(x) is a polyno-

mial of degree 2 described as a function of the

singularity half-width b', position xp, and
maximum height zm, which is positive for a

groove and negative for a bump.

	

x	 x 2
g(x)	 zm

 1 - I ke/	
for Ix - xP1 < b'

0	 for	 Ix - xp l > b'

In what follows, b' is equal to 0.25x10-4 jr.

and 
bm 

to -0.1x10'6 m for the bump and

2x10- b m for the groove. These values are to

be compared with the equivalent roller radius

R - 0.11112P10-1 m and the Hertzian half-gidth

b . 0.8x10- m at moderate load (W . 2x10- ).

The central film thicl^ness value h in a smooth

situation is 0.25x10- m. A large sliding

speed, A - 10, has been imposed.

Figure 4 shows the film shape and pressure

profile when a bump occurs in the inlet region

of the conjunction (x - -0.1x10 -3 m . -1.25 b).
The undeformed and de^ormed shapes of the bump

are presented. This figure shows that the bump

occurring in the inlet region had quite an effect

on the level of the film thickness but did not

alter the film shape appreciably. The film
thickness was less with the bump than without.

The bump also moved the pressure spike toward

the outlet andlowered the spike height. The

coefficients u R and	 were lightly

affected by the bump (u . 6x10 - and

u - 8.56x10- ).

Figure 5 shows the effect of a bump in the

center of the conjunction on the pressure and

film shape. The bump was the same as that used

in Fig. 4, but its location was changed (xp . 0).

When the bump was in the center, there was no

difference in minimum film thickness. Recall

from Fig. 4 that the bump did significantly
a'fect film thickness when it was located in the

inlet region. Furthermore, Fig. 5 shows that

the presence of the bump in the center of the
contact had a profound effect on the pressure

profile. Stress concentrations p/p H of the
order of 1.5 were calculated. Also the shape of

the bump changed considerably in going from the

undeformed state to the deformed state. This
was not found when the bump was located inthe

d

inlet Segion (Fig. 4). lile coefficients vR

anu	 reemr^ained almos5t unchanged (^

4.9x10 -6, u^ - 8.5x10-4).

The effect of a groove is shown in Figs. 6

and 7. The depth of the groove had to be made

20 times that of the bump used in Figs. 4 and 5

in order to get a comparable effect on pressure

and film shape. Theretore, a groove would have

considerably less effect on pressure and film

shape than a bump if the bump and groove each

had the same depth and width. Figure 6 shows

the groove in the inlet, and Fig. 7 shows the

groove in the center cf the contact. The obser-

vations made for a bump in the inlet and in the

center of the contact can also be made about a

groove, but skbstantia^ differences were noted

concerning	 and y	 ' hen the groove was
in the inlet, u R	7.5x10- and „S	9 6x10-2

as compared with ^u^ . 3.98x10-3 and us . 7.89x10-2

when the groove was in the center. Although

temperature effects havebeen neglected in this

study, the increase of ^ 	 when the groove

was in the inlet can be easily related to the

experimental results of Cusano and Wedeve^

(1983), who found similar increases in u .

The results presented thus far are for a

moderate load. Figures 8 and 9 are for a heavy
load (W - 3x 0-3 ). At this heavy load,
b	 0.97x10-3 m and h . 0.89x10-8 m;
b' - 1.94x10-4 m (or 0.2 b) and
zm	 1.48x10-6 m (or 16.6 h) for the groove

and -1.43x10-7 m (or -1.6 h) for the bump.

The sliding speed A was fixed at 0.1. Figure 8

shows the effect of a bump and Fig. 9 shows the

effect of a groove, respectively, at positions

xp of 0.4 b and 0.2 b. The shapes of the bump

and groo,,e changed considerably once elastic

deformation was considered. The pressure profile
for the bump was very much Hertzian except at the

corner s of the bump. Stress concentrations were

calculated for the groove only, but it should be

r ^iembered that the groove was 10 times deeper

than the bump. The Rcoefficient u	 was [ound

to be almost nil (u - 6.6x10- , while u

was found in the two cases to equal 11.4,10-2.

This large value was due to the isothermal
assumption.

6 CONCLUSIONS

A new Reynolds equation was devfloped that takes

into account the nonlinear viscous behavior of

the fluid. The new Reynolds equation and the
elasticity equation were solved simultaneously

by using a system approach and a Newton-Raphson

technique. The film thickness was identical to
that calculated by using the classical Reynolds

equation (assuming a linear viscous fluid model).

The pressure spike decreased as the sliding speed
increased. A bump or groove in , e inlet hod a

more significant effect than if it was located

at the center of the contact. The effect of a

bump on pressure and film thickness was more

significant than that of a groove. At heavy

loads the impressive result was that, when elas-

tic deformation was considered, the bump or

groove essentially disappeared. These prelimi-

nary results show that micro-EHL can be studied
easily by using this new powerful tool. An

exhaustive study can now be perfo rmed to control

the effect of load, sliding speed, and roughness

I
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wavelength and height on the stress field. Tem-

perature increases in the film and on the sur-

faces should also be included to better

understand scuffing.

APPENDIX

Derivation of Jacobian Factors

Calculation of df i /dPj . - Roelands'
viscosity is expressed as

n i . exp {(ln no + 9.67)

x -1 + (1 + 5.1x10_
9
 FHPi)Z

where Z' is the Roelands pressure parameter,

equal to 0.69 in this study. By writing now

dn i /dP j . 4, we have

n = 5.1x10 9 PH Iln no + 9.67]

Z'-1
x rl + 5.1.10-' p HP i]	 ni kij

where k ij is the Kronecker symbol
k ij .1	 if	 i.j
k ij - 0	 if	 i	 j

The density ° is written as

0.6x10 9 PHPi
+pi ` 

1	 1 + 1.7x10-9 PHPi

which leads to

do i 	0.6x10-9 pH
dP. /	\ kij

J	 (1 + 1.1x10	 pHPi)

In the appendix of Houpert and Hamrock (1985),

d(dP/dX)/dPj has been expressed and can be

written for simplicity as

d(
dP

^) i
. P

By definition of Dij we have
dHi

^ =H.Dij
J

For simplicity, the subscript i will be

omitted when possible in what follows.

From the definition of To we have

a>r " r °
J

apH	
apHPi k

	

ro'4 
exp 

^ro,l	 i

Using the dimensionless variables we have

dP

T CI 
UT H

TO

	

S s	 C 2 	 n

+
A

	

1	 2 Fk o

which leads to

dT i 	[(PH + H -a T o - r d a H,
^. T C1

J	 -2
S

A

dS i	C2	 nHr - n (Hr o - 
roH)

S.
^ 	 1 ^^	 (Hi-

0

)2

We can now define a serias of new variables

	

AST	 d(B1)
BI

2 Binh 3 '	
B1

A (ST + ST) sinh (T) - T cosh (T) ST

rsinh (121

/	 2)1/2	 d(B2)	 B I B 1
B2 . 1 + g I	 dPj . B 2 ;	 B2 . B2

	

sinh ()	 T2

B 3 	 cosh (
T

) +

d B 3

8 3 = aT

7 cosh ( )	 -	 sinh (T) - 
1
sinh (T) + T

1

 T

(2)

	

- 12H	 d(B4)B 4 . ^— B 3 ,	 84

n • a

6
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Using dimensionless variables, a may be written

as

4

e 64 7

C1

leading to

r. -	 ll
\ 6
	 2r 

r °8e	
4 

o	 o	 4/

From the definition of f, we have

Kn H - 
pp lie
-_ l

f . H3dP - 	o /.
UT	 B2	

e
c

The derivation of f is now easy:

F . f 3H2H u * H3P

J

K	 6 IH _ 

pa ce/ 	 CH pa l
KB2n \H	 =) a2- 

P

B2

Calculation of df/dH O . - Using the same

notation we may write

dH	 H	 1
dH0

no • P	 0

and the previous formulations can be kept.

Calculation of df/d(p gH e - From the

definition of f, we have

df	 Kn
peHe	
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TABLE 1. - IMPORTANT EQUATIONS FOR NONLINEAR VISCOUS AND LINEAR VISCOUS MODELS
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O ẑNz
CL&J

C
0	 .25

1.25

1.00

.75

I

50

	

0 
l	 -	 I	 I	 N

	

-3	 -2	 -1	 0	 1

X-COORDINATE, xlb

Fig. 4 Dimensionless pressure and film profiles
without and with a bump in inlet region. Di-
mensionless IRJ, speed, materials, and sliding
speed parameters held fixed at W = 2x10-5,
U - 1x10 -11 , G = 5007, and A = 10. Bump
depth, 0.1x10-6 m; bump width, 0.5x10-4m.

. s.

.a



N
2

N	 I	 PROFILE WITH BUMP
_	 ------ PROFILE WITHOUT BUMP
W
CL

= 1.50
N

U_
c 1.25z

Q 1.00
a ^

L .75 I	 ►^
^ /	 I
Ln
Ln I

^ /W

a .50
_	 I

Ln
Ln

F5 .25 Z UNDEFORMED
z BUMP
LL,

0 0

-3	 -2	 -1	 0
	

1

X -COORDINATE, x/b

Fig. 5 Uimensionless pressure and film profiles
without and with a bump in center of contact.
Dimensionless load, speed, materials, and slid-
ing speed parameters held fixed at W = 2x10-5,
U = 1x10

-1i
, G = 5007, and A = 10. Bump

	

depth, 0. 1;10 	 bump width, 0.5x10-41'1.



PROFILE WITH GROOV,
5 L _____ PROFILE WITHOUT GROOVE	 1.5

N
^
=	 4

=
a
a

u

LS
Q 3 `-

1.0	 w
^=

N 1 N
W

U_
N
kn 

	2 N

Z
1

^^` 0.50
N ` N

W
1 s

0 0
-3	 -2	 -1	 0	 1

X-COORDINATE, xlb

Fig. 6 Dimensionless pressure and film profiles
without and with a groove in inlet region. Di-
mensionless load, speed, materials, and^liding
speed par^[neters held fixed at W - 2x10 - ,
U - 1x10- . G - 5007, and A - 10. Groove depth,
2x10-6 m; groovewidth, 0,5x10-4m.



M, win

tiWt

PROFILE WITH GROOVE
-----PROFILE WITHOUT

N 5 GROOVE 1.5

:V =

=
4

G
1.2 aW

CL
M

Q

N
r\

Uj
Uj3 .9^ i '

1
I N

N
N /

1
1

Ŵ
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