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L.G. Houpert and B.J. Hamrock

Elastohydrodynamic Lubrication Calculations Used as a Tool to Study Scuffing

A new Reynolds equation is developed that takes into account the nonlinear viscous behavior of the

fluid.

1ibrium equation, the constant mass flow, and the kinematic boundary condition.

The new Reynolds equation considers the nonlinear viscous fluid model of Syring, the equi-

The new Reynolds

equation and the =lasticity equation are solved simultaneously by using a system approach and a

Newton-Raphson technique.
equation,
are studied.

1 INTRODUCTION

Scuffing is a problem encountered mainly in gears
and rolling-element bearings. In rolling-element
bearings, for example, scuffing is found in the
acceleration zone of large bearings that are
heavily loaded. For these circumstances, inertia
effects probably lead to high sliding speeds.
The authors feel that scuffing is related to

(1) Film thickness failure of the macro-

contacts, as studied by Dyson (1976),
and the microcontacts

(2) High pressure and shear stresses act-

ing on the surface

(3) High surface temperatures found when

sliding speeds are high
Film thickness failures lead to metal-to-metal
contact; high surface stresses lead to rolling
bearing fatigue, as studied by loannides an
Harris (1985); and high surface temperatures may
cause local melting of the surfaces.

Since the surface temperature can be calcu-
lated if the kinematic and surface stresses are
known, important parameters to control when
studying scuffing are film thickness and surface
stresses. These parameters can be calculated by
using elastohydrodynamic lubrication (EHL) ana-
lysis. In the present paper, a new method is
describec to study macro- and micro-EHL without
any restriction on the load applied to the con-
tact. By macro-EHL, we mean the lubricant film
thickness developed in the inlet zone of the EHL
conjunction. Micro-EHL may occur below the
asperities and is due to the squeeze or sliding
speed effects of the bearing as described by
Cheng (1983). Macro-EHL is first studied by
using the classical Reynolds equation (linear
viscous fluid model), and the results are shown
to be accurate for any applied loads. But under
the severe conditions mentioned above (large
pressure and high sliding speeds), the lubricant
behavior can no longer be considered to be linear
viscous, and a nonlinear viscous model is devel-
oped. With this fluid model, a modified or new
Reynolds equation is derived. The new Reynolds
equation and the elasticity equations are solved
simultaneously by using a system approach and a
Newton-Raphson technique. Film thickness, pres-
sure, and shear stress can be obtained without
any load restriction. The method described

Comparisons are made with results obtained from the classical Reynolds
The effects of sliding speed and introducing a bump or a groove within the conjunction
Results are shown for both moderate and heavy loads.

herein is therefore a very powerful tool that
can be used in studying scuffing. To illustrate
the power of the new approach, stress concentra-
tions near a bump and a groove are studied.

1.1 Symbols
A dimensionless slidirg speed,
(up - ua)lua

b half Hertzian width, RY8W/v, m
b' half-width of singularity, m
C) constant, 2E'W/w g res
C constant, wEU/8MWrq ref
Cj weight factors used to integrate P
E modulus of elasticity, N/m2
E' effective elastic modulus,
o[a - Ve,
* (1= gyt i
G dimensionless materials parameter, af'

H dimeasionless film thickness,
hR/b¢ = wh/8RW

He dimensionless film trickness when dP/dX = 0

Hy dimensionless constant used in calculation
of H

h film thickness, m

i,J nodes

K constant, 3x2/4w?

N number of nodes use in linear system
P dimensionless pressure, p/py

p  pressure, N/m
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maximum Hertzian pressure, E'b/4R, N/m2
R equivalent radius, (l/ra + llrb)‘l. m

r curvature radius, m

S nup/heg = Cp W/HE (1 + A/2)

T (h/rp) dp/dx = C1(H/,)(dP/dX)

U dimensionless speed parameter, ngu/E'R
u velocity of fluid

mean velocity, (uy + up)/2

W dimensionless load, w/E'R

w applied load per unit length, N/m

X  dimensionless abscissa, xR/b2

X abscissa along rolling direction, m

xp position of singularity

Z  dimensionless coordinate, z/h

2z coordinate in direction of film thickness, m
Z, height of singularity, m

a pressure-viscosity coefficient of fluid,
IN

Y strain rate, s"1

n  viscosity of fluid, N s/m?

W dimensionless viscosity, n/ng

ng viscosity at atmospheric pressure, N s/mz
uR traction coefficient due to rolling speed
wS  traction coefficient due to sliding speed
v Poisson's ratio

o  density of lubricant, kg/m3

7  dimensionless density, o/pg

pe density when dp/dx = 0, kg/m3

p0 density at atmospheric pressure, kg/m3

v shear stress, N/m2

1o critical shear stress, N/m?

To dimensionless critical shear stress,
tolto,ref
2 CLASSICAL REYNOLDS SOLUTION

From Houpert and Hamrock (1985), the integrated,
dimensionless form of the classical Reynolds
equation may be written as

H
n:’%;-.x?(-"—o') (1)

where

2 noU
3" U 0 W
keT> V=T VoW
(2)
P pH. X I H ;2'. n "o

Conventional so. ition of equation (1) required
large computer run time, and the approach failed
at moderate and high loads. Okamura (1982) used
a system approach in solving equation (1).
Houpert and Hamrock (1985) ‘mproved on Okamura's
approach by making the following changes:

(1) Used a nonuniform mesh to improve the
accuracy of the calculations in the
pressure spike region and in the inlet

(2) Used a more accurate way of calculat-
ing the elasticity

(3) Solved for pressure difference rather
than actual pressures

(4) Used Roelands' pressure-viscosity model
By incorporating these changes, Houpert and
Hamrock (1985) were able 1. get accurate and
fast solutions without any restriction on load.
Figure 1 illustrates how fast the new approach
is. It gives the pressure and film profiles at
iterations 0, 1, and 14. Note that in the first
iteration a pressure spike was formed that is
close to the final converged pressure spike. In
general, it took about 15 iterations to obtain a
converged solution, or about 2 min of CPU time
on an IBM 370 computer with a mesh of 181 nodes.
Compare this with the 100 min normally taken by
the Hamrock and Jacobson (1984) approach.

Figure 2 shows the pressure profile and film
thickness ratio for five dimensionless loads
varying over two orders of magni:ude. This
dimensionless load range corresponds to a maxi-
mum Hertzian pressure of 0.4 to 4.8 GPa, which
is well within the range that rolling-element
bearings and gears experience. As the loau
increases (Fig. 2(a)), the pressure spike becomes
smaller and moves toward the outlet. Further-
more, as the load increases, the inlet meniscus
moves toward the abscissa X = -1. The nip film
thickness width and length (Fig. 2(b)) both
decrease as the load increases.

3 NEW REYNOLDS EQUATION

The classical Reynolds equation (1) has been

obtained by assuming the lubricant behavior to

be linear viscous. This is only true at low
pressures, or high temperatures, and when the
shear rates are small. A more appropriate lubri-
cant rheological model is the Eyring (1936) non-
1inear viscous model used by Hirst and Moore
(1974), Johnson and Greenwood (1980), and Berthe
et al, (1978 and 1979). Elastic viscous models
have also been used by Johnson and Tevaarwerk
(1977), Bair and Winer (1978), Berthe et al.
1979), Houpert et al. (1981), and Houpert

1985a), but elastic effects have been shown to
be often negligible as proposed by Houpert
(1985b).

The Eyring (1936) model will therefore be

used to develop a new Reynolds equation. The
new Reynylds equation will assume an isothermal
hehavio’ and neglect transient and squeeze-film
efi._.s. However, the new rheological model,

i s e
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equilibrium equation, boundary kinematic condi-
tions, and constant mass flow conditions have
been taken into account.

From equilibrium, we can write that

d [
t Lk @)
Integrating gives
z d M
ot A (4)

where A; 1is a constant to be defined later.
Erying's (1936) nonlinear viscous fluid model
can be expressed as

. du Yo T =
Y -E-n—sﬂlh (ﬁ) (5)
Substituting equation (4) into equation (5) gives
T A
%-n—"sinh(‘z—o%*f—l) (6)
0

Integrating gives

t A T
- =2 cosh z_aﬂd + 1 % +aA 7
oy o8 (to X T, Zagj 2 7)

where A; is an integration constant. The
boundary conditions are

(i) z=0, us=u,
(ii) z=h, u=u

By making use of these boundary conditions, the
constants A) and Ay are defined and we

find that
A. A,
g-: «l# é-f [cosh (ZT + %) - cosh (%)]
(8)
where
1 AST T
-—. 1 - 9
sin Zsinhizlj 2z )
up - U, :
A= U. » l= 'Fn
nu c -
Ty PO RO B (10)
-‘I'_(.)F l’z FFO

h d H dP
Ter®T "G &
0 10

Making use of equations (9) and (10), we can
rewrite equations (4) and (6) as

:- « sinh”! AST

T(Z - 0.5 11
0 Zsinhz i ) )

%z(ﬁ—) - § sioh {T(Z - 0.5)

+ Qiﬂh-l A_STT—]( (12)
2 h i

sin

To calculate the mass flow, it is convenient
to express the velocity distribution as

:_a.lou%,.mn[;(z-l)]

x sinh -;-Z + sinh'l[ AST

2 sinh H; (13)

Note from equation (13) that when dp/dx =+ O,
then T+ 0, sinh (T/2)/(T/2) « 1, and
sinh [T/2(Z - 1)]/(T/2) » (Z - 1). Therefore

T =1+AZ when T.0 (14)
a

The mass flow when dp/dx = 0 can be
written as

1
L ohe (:_.) 4z = ogh, f (1+ A7) dz

= oghe (1 B g) (15)

The condition of constant mass flow at any
location can therefore be written as

ohg (1+3) = oh f (:—l) az

Making use of equation (13) gives

(- 8)(5e-) - [_1*5]
) [% sioh (3) - cosh G)] (16)

Equation (16) is the new Reynolds equation. But
in order to make a comparison with the linear
viscous equation, equation (16) must be rewritten

-2

H " -8 (17)

asT  12)t*
1+ E 5
sinh ilzi
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where

2
ew- E;:w‘rq[% sinh G) - cosh G) + -I-;] (18)

Comparing equation (1) with equation (17) indi-
cates quite clearly the contribution due to the
norlinear fluid model.

Table I shows the difference in the equa-
tions developed for the nonlinear and 1inear
viscous fluid models. Note that if 5+ =,
then T+ 0,e+ 0, and S+ 0. For tgis situa-
tion the nonlinear viscous equation reduces to
the linear viscous equation. Therefore, the

new Reynolds equation to be solved at each mode
in dimensionless form can be expressed as

(19)
4 SYSTEM SOLUTION

The basic equation to solve at each node i is
the new Reynolds equation given in equation (19)
or fj = 0, where f 1is a function of BgHpe,

Hg, and the pressures P, to Py. The expres-
sion for f also contains the d mensionless film

thickness H, which is expressed as
% M
”‘I'HO’T*J%D P —{g(x (20)

where g(x) defines the microgeometry. The
numerical approach used to solve the system of
equations fj = 0 is identical to the one used
by Houpert and Hamrock (1985). A Newton-Raphson
technique is used and leads to the solution of a
linear system of equations where a Jacobian
matrix has to be calculated as a function of the
Jacobian elements afj/a(BeHe), lfl/i and
e

af;/aHy. A linear system of uations
1s solved
[~ of) o) afy I'
r('—.“;" -.-'-2 o s 0 w; wa l(l.".) -'l
of of of of
'T-'ﬁ_T 2 2 a(P,) -f
L 'l e i’; ' w; ma 2 2
fy afy iy oy
WET W W Wy [ “n
| 0 Cz . C“ 0-‘ .(no) | oW
(21)

where C; are the integration coefficients
developeé in Houpert and Hamrock (1985) and aW
is a parameter representative of the constant
load. The Jacobian elements are given in the

a pendix. The unknouns of the system are APJ,
a(BeHe), and they must be ess than or

equal to, respecgiver. 1/1000 of Hs

and Hp. More details on handling tﬂe exi

boungary and, in general, how the system approach

is used are covered in Houpert and Hamrock (1985)

and will not be repeated here.

In general, 10 to 15 iterations are required
for convergence of the results and only 2 min of
CPU time are necessary on the IBM 370. This
approach is therefore very fast, powerful, and
relatively easy to program. As a result of the
calculations, the film thickness Hj and pres-
sure P; are known at every node. Further-
more, the shear stress t, the shear rate
au/az, and the velocity u are known for values
across the film,

5 DISCI SSION AND RESULTS

Maintaining a fluid film of adequate magni-
tude is an essential feature for the correct
operation of lubricated machine elements.
Results presented in this section make use of
the nonlinear viscous rheological model of the
lubricant and apply surface irregularities such
as bumps and grooves to illustrate the possibil-
ities of the new approach.

We first determined whether there was any
difference between the film thickness obtained
from the new Reynolds equation and that obtained
from the classical Reynolds formulation. From
disk machine experiments and traction force
calculations, o has often been found to
increase linear?y with pressure. But at high
pressure, 2 limiting value o, is fourd
as proposed by Houpert (1985b? and Ten Napel

et al, (1985). A possible relationship can be
written as
10 T rft-
_._ole__o.l_exp -2P )+,
Yot To To,0

where a and 1, are defined for each
lubricant as 3 fuhttion of ghe temperature. The
term ¢ s very small s ) and is introduced
to avoid numerical problems when calculating
l/tg as p=+ 0.

Numerisal runs have been performed ’1th
a = 2.6x107¢ and « ref =T = 1.1:0
that show some small’numerical” 1nstab11ities at
the outlet of the contact while the film thick-
ness is essentially a function of the inlet as
clearly indicated bty Houpert and Hamrock (1985)
in their pressure spike analysis. The results
obtained indicate clearly that the film thick-
nesses for the two forms of the Reynolds equation
were identical foflthe conditions simulated hgre
(i.e., U= 1x10" G = 5007, and W = 2x1077)
The reason for this 1s that the shear stress was
smaller than t, in the inlet zone. Since
the film thickness is established by the hydro-
dynamic action in the inlet region and this was
not altered by the new form of the Reynolds
equation, the film shape did not change much.
Because of this result and to avoid numerical
instabilities, to will be assumed to be
constant (1g = 1g = 1) in what
follows But it §hou18 be mentioned that, in
general, accurate film thickness calculations
require the knowledge of 1, at very small
pressures although rt, has always been
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determined at large pressure for traction forces
calculations.

The effect of dimensionless sliding speed
A or pressure and film shape through the lubri-
ca*.ng conjunction is shown in Fig. 3. The
sliding speed had little effect on film thick-
ness but a significant effect on the definition
of the pressure spike. As the sliding speed
increased, the pressure spike diminished. The
main reason for the change in pressure spike
with s1iding speed was that near the pressure
spike the shear stres. was larger taan To.

The rolling tractioﬂ coefficient p"  remained
almost unchanged (u" = 4.4x10-%) while the
sliding traction Soefficient u” increased
fro? 0 to 8.4x107¢ when A increased from 0
to 10.

Hasing shown some results of using the new
Reynolds equation, the nect task was to prestudy
micro-EHL. As a first step and example of appli-
cation of the tool presented herein, we were
interested in what effect a bump or groove has
on the film shape and stress concentration. The
change of shape due to a bump or groove is taken
care of by g(x) in the film shape equa-
tion (20). For simplicity, g(x) 1is a polyno-
mial of degree 2 described as a function of the
sin ularit{ half-width b', position xp, and
maximum height 2zp,, which is positive fgr a
groove and negative for a bump.

X - X z
g(x) = Zm 1- (——BT—E>

=0

for lx = xpl < b'
for lx - xpl > b’

In what follows, b' _is equal to 0.25x10-% m
and gm to -0.1x10"° m for the bump and

2x10-° m for the groove. These values are to
be compared with_the equivalent roller radius

R = 0.111125x10~! m and the Hertzian half—gidth
b = 0.8x10"" m at moderate load (W = 2x107°)
The central film thickness value h in a smooth
situation is 0.25x10"° m, A large sliding
speed, A = 10, has been imposed.

Figure 4 shows the film shape and pressure
profile when a bump occurs in the_inlet region
of the conjunction (xp = -0.1x1073 m = -1.25 b).
The undeformed and de?ormed shapes of the bump
are presented. This figure shows that the bump
occurring in the inlet region had quite an effect
on the level of the film thickness but did not
alter the film shape appreciably. The film
thickness was less with the bump than without.
The bump also moved the pressure spike toward
the outlet and &owered the spike height, The
coefficients " and N were ilightly
agfected by tge bump (u" = 6x10=" and
u> = 8,56x10" ).

Figure 5 shows the effect of a bump in the
center of the conjunction on the pressure and
film shape. The bump was the same as that used
in Fig. 4, but its location was changed (x, = 0).
When the bump was in the center, there was no
difference in minimum film thickness. Recall
from F1$. 4 that the bump did significantly
a’fect film thickness when it was located in the
inlet region. Furthermore, Fig. 5 shows that
the presence of the bump in the center of the
contact had a profound effect on the pressure
profile. Stress concentrations p/pv of the
order of 1.5 were calculated. Also the shape of
the bump changed considerably in going from the

undeformed state to the deformed state. This
was not found when the bump was located in &he
inlet pegion (Fig. 4). The coefficloats "
and re!ained almn;t unchanged (y" =
4.9x10-6, 5 « 8.5x10-¢),

The effect of a groove is shown in Figs. 6
and 7. The depth of the groove had to be made
20 times that of the bump used in Figs. 4 and 5
in order to get a comparable «ffect on pressure
and film shape. Therefore, a groove would have
considerably less effect on pressure and film
shape than a bump if the bump and groove each
had the same depth and width. Figure 6 shows
the groove in the inlet, and Fig. 7 shows the
grnove in the center of the contact. The obser-
vations made for a bump in the inlet and in the
center of the contact can also be made about a
groove, but s&bstantia differences were noted
concernin? w' _and yu”, When the_groove was
in the inlet, R = 7.5x10~% and, 45 = QSletrz
as compared with " = 3.98x10'3 and y° = 7.89110'2
when the groove was in the center. Although
temperature effects have geen neglected in this
study, the increase of > when the groove
was in the inlet can be easily related to the
experimental results of Cusano and Hedeveg
(1983), who found similar increases in y°.

The results presented thus far are for a
moderate load. _Figures 8 and 9 are for a heavy
load (W = 3x§0‘3). At this heavy_load,

b = 0.97x107° m and h = 0.89x1 m;

b' = 1.94x1074 m {or 0.2 b) and

Iy = 1.48x1078 m (or 16.6 h) for the groove

and -1.43x10~7 m (or -1.6 h) for the bump.

The sliding speed A was fixed at 0.1. Figure 8
shows the effect of a bump and Fig. 9 shows the
effect of a groove, respectively, at positions

xp of 0.4 b and 0.2 b. The shapes of the bump
and groove changed considerably once elastic
deformation was considered. The pressure profile
for the bump was very much Hertzian except at the
corners of the bump. Stress concentrations were
calculated for the groove only, but it should be
rcmembered that the groove was 10 Eimes deeper
than the bump. The coefficient u" was found

to be almost nil (™ = 6.6x10~/) while

was found in the two cases to equal 11.4:10-2,
This large value was due to the isothermal
assumption.

6 CONCLUSIONS

A new Reynolds equation was developed that takes
into account the nonlinear viscous behavior of
the fluid. The new Reynolds equation and the
elasticity equation were solved simultaneously
by using a system approach and a Newton-Raphson
technique. The film thickness was identical to
that calculated by using the classical Reynolds
equation (assuming a linear viscous fluid model).
The pressure spike decreased as the sliding speed
increased. A bump or groove in ‘ e inlet had 2
more significant effect than if it was located
at the center of the contact. The effect of a
bump on pressure and film thickness was more
significant than that of a groove. At heavy
loads the impressive result was that, when elas-
tic deformation was ccasidered, the bump or
groove essentially disappeared. These prelimi-
nary results show that micro-EHL can be studied
easily by using this new powerful tool. An
exhaustive study can now be performed to control
the effect of load, sliding speed, and roughness
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wavelength and height on the stress field. Tem-

perature increases in the film and on the sur-
faces should also be included to better
understand scuffing.

APPENDIX

Derivation of Jacobian Factors

Calculation of dfildPJ. - Roelands'
viscosity is expressed as

7y = exp {(ln n * 9.67)

x [-1 t(e 5.1x10~° puPi)z‘]

where Z' is the Roelands pressure parameter,
equal to 0.69 in this study. By writing now

dnildPJ = #, we have

i = 5.1x10™° p,[1n ng + 9.67]

-9 z'-1 _
x[1esamo? e ] T kg
where klj is the Kronecker symbol
kU =1 if i=]

kyy=0 if 14

The density o is written as

0.6x10% p,P,

o=l $—m™m—m————
1 1+ 1.7x107° p,p,

which leads to
— -9
doy 0.6x10 Py

J (1 + 1.7x107° DHP1)2

In the appendix of Houpert and Hamrock (1985),
d(dP/dx)/dPJ has been expressed and can be
written for simplicity as

(&), .
- 4

By definition of Djj we have

kU

dH1 .
apg =H= D‘j

For simplicity, the subscript i will be
omitted when possible in what follows.

From the definition of ?6 we have

dr
o 1
= 0
L
a -ap,P
it oxp (#) ku
0, 0,0

Using the dimensionless variables we have

0

T-Cl

We can now define a serias of new variables

8 = AST H d(Bl) - é
2 sinh (3 LI

- (ST + sT) sinh (3) - T cosh (3) sT

o2 [sinh (,Tz)]z
12 d(8,) . .
52'(1"’%) ; —d'Pj_'Bz‘ B2° %,

T
83 = 312:-£22 - cosh (;) + {;

7
. B
83'373
1 osh (IVI_ 1 ginn (I
g (’!)E%)ZZ“‘ (‘z)_%mh G),T

g -l 4B o
R b el
) 4 J
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a.Jzuu'w-%#E
(%) w

Using dimensionless variables, e may be written
as

B ;2
€= 0
4 —
=

leading to

de . .

i 1 (=2, o=
L ;.17("4'0 " B ghy)

From the definition of f, we have

p H
Kn (- ==

oo 5 /4

The derivation of f is now easy:

A RRCT I

Calculation of dfldHo. - Using the same
notation we may write

%E— Hel

n-pnpno
and the previous formulaticns can be kept.
Calculation of dfld(oeﬂg). - From the
definition of f, we have

of Ko
(o gh,) o8,
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TABLE 1. - IMPORTANT EQUATIONS FOR NONLINEAR VISCOUS AND LINEAR VISCOUS MODELS
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DIMENSIONLESS PRESSURE, P = p/pyy; AND FILM SHAPE, HI2H,
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Fig. 1 Pressure and film profiles at iterations 0,
1, and 14, Barus' pressure-viscosity formula.
Dlmenslonloss load, speed, a;\d matorlals aram-
eters held fixed at W e =2x10™, U = 1x10°11, and
G = 5007. {From Houpert and Hamrock(l985) )



(*(6861) ¥o0JweH pue WadneH wold) 2006 = 9 pue
11-01XT = N e paxy pidy sigjaweled sjelsaew
pue paads ssajuojsuawilq e|NWJoj A}ISOISIA-3INS
-said ,spuejsoy °speo] Ssajuojsuawip buikiea Joj
$3|JoJa wjy pue ainssaid ssajuoisuawiq 2 By

"sadeys wild (@)
QjX ‘3LYNIGY¥D0D-X
0T ¢ 0 ¢-  01- ST
o
P I _ _
—{ 826"
—{000°1
—S0°T
— 08t

SHIH ‘3dVHS W1I4

*sa|ijodd ainssaly (e)

SSTINOISNIWICQ

]

%

00°T

Hdjd ‘3unSSIAd SSTINOISNIWIQ

<1

0s°1



1.50

P = plpy; AND ALM
[

1.00
D
"B
5;, .75
(7]
€3
S50
wv
2
g .25
=)
0

DIMENSIONIESS
SUDiNG
\ SPEED,

LN

=3 -2 g 0 1
X -COORDINATE, x/b

Fl?. 3 Dimensionless pressure ans iilm profiles

or varying dimensionless slicing speeds.
Dimensionless load, speed, and materials
parameters held fixed at W = 2x10-5,
U=1x10"11, and G = 5007.
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Fig. 4 Dimensionless pressure and film profiles
without and with a bump in inlet region. Di-
mensionless load, speed, materials, and sliding
speed parameters held fixed at W = 2x107,
U=1x10"1, G=-5007, and A =10, Bump
depth, 0.1x10"6m; bump width, 0.5x10-4m,
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Fig. 5 Dimensionless pressure and film profiles
without and with a bump in center of contact,
Dimensionless load, speed, materials, and slid-
ing speed parameters held fixed at W = 2x10~,
U=1x10"11, G=5007, and A =10, Bump
depth, 0.1x10"6m; bump width, 0.5x10-4m,
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Fig. 6 Dimensionless pressure and film profiles
without and with a groove in inlet region, Di-
mensionless load, speed, materials, and ;liding
speed parﬂneters held fixedat W = 2x107,
U=1x10"**, G=5007, and A =10, Groove depth,
10"6m; groove widtn, 0,5x10"4m,
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Fig. 7 Dimensionless pressure and film profiles
without and with a groove in center of contact.
Dimensionless load, speed, materials, and slid-
ing speed parameters held fixed at W = 2x10'5,

U=1x10"1!, G=5007, and A =10, Gr
depth, 2x10"6m; groove width, 0,5x10"
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DIMENSIONLESS PRESSURE: P = p/py;; AND FILM SHAPE, HIZ(He)S
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Fig. 8 Dimensionless pressure and film profiles with
bump in heavily loaded contact. Dimensionless load,
speed, materials, and sliding speed parameters held
fixedat W = %10, U - 1x10711, G =-5007, and
A=0.1 Bump depth, L4x107m; bump width,
3,88x1074m,
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Fig. 9 Dimensionless pressure and film profiles
with groove in heavily loaded contact. Dimension-
less load, speed, materials, and sliding speed
parameters held fixedat W =3x10°, U= lxlO'H,
G=5007, and A=0.1._ Groove depth, 1.48x1076m;

groove width, 3, 88x10™4m,
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